
 Copyright © 2014 CommonsWare, LLC

Encrypted
Databases Using

SQLCipher

 Copyright © 2014 CommonsWare, LLC

Rest and Motion

● Securing Data at Rest = Local Storage
– Databases
– SharedPreferences
– Other Types of Files

● Securing Data in Motion = Internet (mostly)
– SSL
– OTR

 Copyright © 2014 CommonsWare, LLC

The Droid Is Not Enough

● Lock Screen?
– Mechanical brute forcing

● Internal Storage?
– Rooting

● Full-Disk Crypto?
– Digital brute forcing

 Copyright © 2014 CommonsWare, LLC

Your Objectives (One Hopes)

● Cheap and Easy Security
– Only have so much time to budget
– Aiming for “low hanging fruit”

● Effective Security
– “Using CryptoLint, we performed a study on cryptographic

implementations in 11,748 Android applications. Overall we find
that 10,327 programs – 88% in total – use cryptography
inappropriately. The raw scale of misuse indicates a widespread
misunderstanding of how to properly use cryptography in
Android development.”

 Copyright © 2014 CommonsWare, LLC

You're Doing It Wrong

● Hardcoded Passphrases
● Manually Seeding SecureRandom

– ...with a hardcoded seed
● Hardcoded Salts
● Insufficient Key Generation Iterations
● Non-Random Initialization Vectors

 Copyright © 2014 CommonsWare, LLC

Introducing SQLCipher

● SQLCipher
– Modified version of SQLite
– AES-256 encryption by default, of all data
– Relatively low overhead
– Cross-platform
– BSD license

 Copyright © 2014 CommonsWare, LLC

Introducing SQLCipher

● SQLCipher Security
– Customizable encryption algorithm

● Based on OpenSSL libcrypto
– Individual pages encrypted, with own initialization

vector
– Message authentication code (MAC) per page, to detect

tampering
– Hashed passphrase (PBKDF2) for key

● 4,000 iterations, moving to 64,000 for 3.0

 Copyright © 2014 CommonsWare, LLC

Introducing SQLCipher

● SQLCipher for Android
– NDK-compiled binaries
– Drop-in replacement classes for Android's

SQLite classes
● SQLiteDatabase
● SQLiteOpenHelper
● Etc.

– Modify your code, third-party libraries also
using SQLite

 Copyright © 2014 CommonsWare, LLC

Integrating SQLCipher

● Step #1: Add to Project
– Download ZIP file from:
http://sqlcipher.net/downloads/

– Copy ZIP's assets/ into project's assets/
– Copy ZIP's libs/ into project's libs/
– Call SQLiteDatabase.loadLibs() before use

● Needs a Context

 Copyright © 2014 CommonsWare, LLC

Integrating SQLCipher

● Step #2: Replace Import Statements
– Some android.database.* and all
android.database.sqlite.* imports

● Move to net.sqlcipher equivalents

 Copyright © 2014 CommonsWare, LLC

Integrating SQLCipher

● Step #3: Supply Passphrases
– SQLiteDatabase openOrCreateDatabase(),

etc.
– SQLiteOpenHelper getReadableDatabase()

and getWritableDatabase()
– Collect passphrase from user via your own UI and

test cases

 Copyright © 2014 CommonsWare, LLC

Integrating SQLCipher

● Step #4: Testing
– Tests should work when starting with a clean

install
● No existing unencrypted database

● Step #5: Beer!
– Hooray, beer!

 Copyright © 2014 CommonsWare, LLC

About the Bloat

● 4MB base
● Additional ~5MB for x86
● Additional ~3MB for ARM
● Why?

– Complete independent copy of SQLite
– Static library implementation of OpenSSL
– Independent copy of ICU collation ruleset

 Copyright © 2014 CommonsWare, LLC

Mitigating the Bloat

● Option #1: Multiple APKs
– Use Gradle for Android to create CPU-specific

builds of your APK
– Upload the builds to the Play Store, which will

distribute right build to right device
● Option #2: libhoudini

– Available on some x86 devices, allows running
ARM native binaries, so no need to package x86

– Downside: speed

 Copyright © 2014 CommonsWare, LLC

About the Performance

● Overall: Not Bad
– Depending upon benchmark, may not notice any

speed changes of significance
– CPU time for crypto is dwarfed by I/O time

● Makes Bad Things Worse
– Avoid table scans!

 Copyright © 2014 CommonsWare, LLC

Upgrading to Encryption

● Option #1: Encrypt It Immediately
– Recipe for replacing a regular database with an

encrypted one
– Requires getting the passphrase from the user

● Option #2: Encrypt It Someday
– User option to encrypt the database, triggered

from your UI
● Option #3: Static Passphrase Immediately

– With user option to re-encrypt later

 Copyright © 2014 CommonsWare, LLC

Upgrading to Encryption

● SQLCipherUtils
– Found in CWAC-LoaderEx
– Helper Methods

● getDatabaseState(): some indication if the
database is encrypted or not

● encrypt(): replace unencrypted database with an
encrypted one

 Copyright © 2014 CommonsWare, LLC

Integrating SQLCipher

● ContentProvider
– Can work, but need to get passphrase to it

before using the database (e.g., call())
– Typically means that it does not work well for

providers used totally independently from app
● Still usable for activities launched from an app,

where the data should be retrieved immediately,
before the process gets terminated

 Copyright © 2014 CommonsWare, LLC

Integrating SQLCipher

● Loaders
– CWAC-LoaderEx and SQLCipherCursorLoader

● Works
● Problem: must route all database modifications

through Loader to automatically get the updated
Cursor

– ContentProvider
– Just Say No

● Use your own AsyncTasks, event bus, etc.

 Copyright © 2014 CommonsWare, LLC

IOCipher

● Virtual Filesystem
– Use replacement classes for java.io.File and kin

● Encrypted using SQLCipher for Android
– No actual files stored directly
– Shares encryption key with your own tables

● Still Early Days
● https://guardianproject.info/code/iocipher/

 Copyright © 2014 CommonsWare, LLC

Slides!

