
Copyright © 2014 CommonsWare, LLC

Permissions,
Front to Back

Copyright © 2014 CommonsWare, LLC

Permission Theory

● Apps Require Permissions
● To access protected components

● Apps Request Permissions
● To access protected components or use protected

framework methods

● User Prompted At Install Time
● Exception: installation via adb
● Told what permissions the app requests
● Continue with install or abandon install

Copyright © 2014 CommonsWare, LLC

Requesting Permissions

● Step #1: Find the Permission You Need
● Many Android-supplied permissions defined in

Android documentation “List of Permissions”
● Permissions for third-party applications hopefully

documented by them
● You need the fully-qualified name

– E.g., android.permission.INTERNET

● Step #2: Add <uses-permission> to Manifest
● android:name=“name.of.desired.PERMISSION”

Copyright © 2014 CommonsWare, LLC

Platform Permissions

● Defined by Framework
● Seen in framework's manifest
● Always exist

– ...with variations based on API level

● android.permission.X
● If you see a third party trying to define their own
android.permission.X permission, smack 'em

Copyright © 2014 CommonsWare, LLC

Protection Levels

● Normal
● Dangerous

● Presented to user higher in list than normal

● Signature
● Consumer and defender must have matching

signing keys

● System
● Consumer must be installed on system partition

Copyright © 2014 CommonsWare, LLC

Users and Permissions, Part One

● Requested Permissions Inhibit Adoption
● Prospective users may not like a permission,

individually or in conjunction with others
– Example: READ_CONTACTS and INTERNET

● Long lists of permissions are scary
● Not a barrier

– Plenty of big brands ask for plenty of permissions
– Some percentage of your possible audience may elect to

find some alternative

Copyright © 2014 CommonsWare, LLC

Users and Permissions, Part One

● Solution: Minimize Needed Permissions
● Do not ship with permissions that you no longer

need
– Example: StackExchange

● Consider whether feature X requiring new
permissions will be worth the cost
– May be a candidate for a plugin approach

Copyright © 2014 CommonsWare, LLC

Users and Permissions, Part Two

● No Optional Permissions
● Must list all permissions up front, cannot ask for

new ones at runtime
– Avoiding “the Vista syndrome”

● Users do not have ability to grant some
permissions and deny others
– Up front or after installation
– Exception #1: AppOps
– Exception #2: ROM mods
– Exception #3: Your own optional permissions

Copyright © 2014 CommonsWare, LLC

Requiring Permissions

● In the Manifest
● <activity>, <service>, <receiver>:
android:permission
– Single permission that other app must hold to

communicate with this component
– Can be system-defined or custom permission

● <provider>
– android:permission
– android:readPermission
– android:writePermission

Copyright © 2014 CommonsWare, LLC

Requiring Permissions

● In Java Code
● checkCallingPermission()

– Good for bound services
● PackageManager and checkPermission()

– Good for determining if given app (by PID) holds a
permission

Copyright © 2014 CommonsWare, LLC

Requiring Permissions

● Scenario: System Data Leakage
● You use some permission (e.g., READ_CONTACTS)
● You expose some data through an API that came

from a source secured by that permission (e.g.,
contact phone numbers)

● You should require the same permission for
accessing that API

● Net: other apps cannot use you as “back door” way
of getting private information without permission

Copyright © 2014 CommonsWare, LLC

Custom Permissions

● Step #1: Add <permission> Element
● Ideally to all apps tied to the permission
● android:name = unique identifier

– Do not use android.permission prefix, please!
● android:label / android:description = what

the user sees
– Speak to users, not developers
– String resources!

● android:protectionLevel
– normal, dangerous, signature

Copyright © 2014 CommonsWare, LLC

Custom Permissions

● Step #2: Add <uses-permission> As Normal
● Putting the <permission> in all apps allows

install order to be arbitrary
● If signature, app requesting permission has to

be signed with same signing key as app requiring
permission
– Great for developer-only plugins, app suites
– Not great for plugins written by third parties

Copyright © 2014 CommonsWare, LLC

Your Own Optional Permissions

● Step #1: Isolate Permission-Requiring Code
● Separate APK project
● API that main (“host”) app uses

● Step #2: Secure with Signature Permission
● Ensure that only your apps can talk to one another

● Step #3: Distribute Host and Plugin
● Net: Optional Permission

● Only users who install the plugin need to grant
you the permission required by the plugin

Copyright © 2014 CommonsWare, LLC

Permission Provider Proxy

● Wrap System Content Provider In Own
● As a plugin APK, with the permission to access the

system content provider
● Forward all ContentProvider API calls of relevance

on to the system's provider

● Host App Gets Data Via Proxy
● Signature custom permission, so no leakage
● No significant code changes in host

– Mostly, use the Uri for the proxy

Copyright © 2014 CommonsWare, LLC

Custom Permission Vulnerability

● Rule: First One In Wins
● First <permission> element for a given

android:name determines behavior of that
permission

● App can define permission and have
<uses-permission> and not use the permission for
defense

● Net: apps installed before yours could hold
your custom permissions
● ...even signature ones, via downgrade

Copyright © 2014 CommonsWare, LLC

Custom Permission Vulnerability

● Environment
● App A: defines and defends with custom

permission
● App B: defines and requests custom permission

(attacker)
● App C: just requests custom permission

● Scenario: App A, then App C
● User notified about C's request, C gets access

Copyright © 2014 CommonsWare, LLC

Custom Permission Vulnerability

● Scenario: App C, then App A
● User not notified, but C does not get permission,

since not yet defined when it was installed
● Problem for apps publishing SDKs

● Scenario: App A, then App B
● Same as A C: user informed, app gets →

permission

Copyright © 2014 CommonsWare, LLC

Custom Permission Vulnerability

● Scenario: App B, then App A
● PROBLEM: User not notified about B's request
● PROBLEM: B still gets permission
● Downgrade Variant

– A defines permission as signature
– B defines permission as normal
– B installed first, so permission is normal
– B gets permission, despite no signature match

Copyright © 2014 CommonsWare, LLC

Custom Permission Vulnerability

● Not likely for bulk attacks, as normally no
guarantee that B would be installed before A
● If A installed first, user knows about B's request
● In theory, eventually will be discovered as malware

● Bigger Risk: B Ships with Device
● Used devices (not wiped or ROM mod)
● “Presumed good” devices

– Employer to employees
– Gifts

Copyright © 2014 CommonsWare, LLC

CWAC-Security

● PermissionUtils.checkCustomPermissions()

● Call on first run of your app
● Returns details on other apps that have defined

the same permissions that you have defined
– If empty, continue as normal
– If not empty, alert the user, send info along to your

servers, etc.

Copyright © 2014 CommonsWare, LLC

Slides! And Other Stuff Too!

http://commonsware.com/webinars/permissions.html

