
Copyright © 2014 CommonsWare, LLC

Putting Your App on
a Memory Diet

Copyright © 2014 CommonsWare, LLC

The Problem You Are Thinking Of
E/AndroidRuntime(2065): FATAL EXCEPTION: main

E/AndroidRuntime(2065): java.lang.OutOfMemoryError

E/AndroidRuntime(2065): at android.graphics.Bitmap.nativeCreate(Native Method)

E/AndroidRuntime(2065): at android.graphics.Bitmap.createBitmap(Bitmap.java:605)

E/AndroidRuntime(2065): at android.graphics.Bitmap.createBitmap(Bitmap.java:551)

E/AndroidRuntime(2065): at android.graphics.Bitmap.createScaledBitmap(Bitmap.java:437)

E/AndroidRuntime(2065): at android.graphics.BitmapFactory.finishDecode(BitmapFactory.java:618)

E/AndroidRuntime(2065): at android.graphics.BitmapFactory.decodeStream(BitmapFactory.java:593)

E/AndroidRuntime(2065): at
android.graphics.BitmapFactory.decodeResourceStream(BitmapFactory.java:445)

E/AndroidRuntime(2065): at
android.graphics.BitmapFactory.decodeResource(BitmapFactory.java:468)

...

Copyright © 2014 CommonsWare, LLC

The Problem You Are Not Thinking Of

● System RAM
● The bigger your app, the more likely it is to get

kicked out of RAM once it moves to the background
● Rationale: the bigger they are, the bigger the

benefit for getting rid of 'em
● Converse: the smaller your footprint, the longer

you'll live, and the better your multitasking will
work

Copyright © 2014 CommonsWare, LLC

Root Cause #1: Limited Heap Size

● Originally 16MB
● (no, that's not a typo)

● Varies by Device
● OS level
● Screen resolution

● Not Directly Controllable by App
● ...though we will discuss some indirect controls

Copyright © 2014 CommonsWare, LLC

The Green Mantra

● Reduce
● Consume less of the resource in the first place
● Example: bulk consumer packaging

● Reuse
● Apply the resource to another problem when done with the first
● Example: shipping eBay sale using Amazon box

● Recycle
● Return resource to the manufacturing stream
● Example: consumer paper, plastic recycling programs

Copyright © 2014 CommonsWare, LLC

The #A4C739 Mantra

● Reduce
● Reorder

● When you allocate has impacts on what you can
allocate

● Reuse
● Recycle

Copyright © 2014 CommonsWare, LLC

The #A4C739 Mantra

● Reckon
● The first step on the road to recovery is to admit

that you have a problem... then measure it

● Reduce
● Reorder
● Reuse
● Recycle

Copyright © 2014 CommonsWare, LLC

The #A4C739 Mantra

● Reckon
● Reduce
● Reorder
● Reuse
● Recycle
● Cheat

Copyright © 2014 CommonsWare, LLC

Android Memory:
Reckon

Copyright © 2014 CommonsWare, LLC

Reckon: System RAM

● Why Do We Care?
● Lower system RAM usage = somewhat less likely

for Android to terminate our process
● Improves multitasking for users

Copyright © 2014 CommonsWare, LLC

Reckon: System RAM

● What Can We Do About It?
● GC!

– Dalvik allocates space for our heap from system RAM on
a page-by-page basis

– Dalvik will release those pages if we allow lots of data to
be garbage-collected

● Less code (DEX, .so)
● Stop cheatin'

Copyright © 2014 CommonsWare, LLC

Reckon: System RAM

● Process Stats
● Available in Android 4.4
● Gives you average, peak PSS over period

– Proportional Set Size = how much system RAM to blame
your process for

● Also shows how much time your process ran, how
much time services in that process ran

Copyright © 2014 CommonsWare, LLC

Reckon: System RAM

● procstats
● Same backing data as Process Stats, but with

command-line goodness

● meminfo
● Available on older versions of Android
● PSS per process, grouped by importance

Copyright © 2014 CommonsWare, LLC

Reckon: Heap Usage

● Runtime Information
● ActivityManager#getMemoryClass()

– Returns number of MB for max heap size
– Exception: large heap (but that's cheatin')

● android.os.Debug methods
– getNativeHeapSize()
– getNativeHeapAllocatedSize()
– getNativeHeapFreeSize()
– Not as useful as you might think...

Copyright © 2014 CommonsWare, LLC

Reckon: Heap Usage

● Memory Analysis Tool (MAT)
● Used to examine heap dumps

– From DDMS
– From Debug#dumpHprofData()

● Available as standalone GUI or as Eclipse plugin
● Uses

– Understanding what's using up your heap
– Finding memory leaks

Copyright © 2014 CommonsWare, LLC

Android Memory:
Reduce

Copyright © 2014 CommonsWare, LLC

Reduce: Scale All Your Caches

● Use getMemoryClass()
● Plus algorithm for capping your caches to certain

portion of possible heap
● On top of using weak or soft references

● Beware Multiple Caches
● Library A has a cache, Library B has a cache, etc.
● Sum of all caches must be reasonable, beyond any

individual cache

Copyright © 2014 CommonsWare, LLC

Reduce: Load What You Need, Not What You Have

● Avoid massive scrolling lists
● User can't find anything anyway
● Steer user towards searching large data sets

● Load bitmaps as needed
● Example: avatars for a list
● And pay attention to row recycling and such

● Easy on the POJOs
● ...or at least close your cursors after copying

Copyright © 2014 CommonsWare, LLC

Reduce: Ponder Bitmap Sizes

● Load the Size You Need
● Example: ListView rows

● Load thumbnails, using inSampleSize on
BitmapFactory.Options

● Only load full-size image for the ones the user
clicks upon and brings up some sort of details
fragment/activity/whatever

Copyright © 2014 CommonsWare, LLC

Reduce: Ponder Bitmap Pixels

● Default: ARGB_8888
● 4 bytes per pixel

● Alternative: RBG_565
● 2 bytes per pixel = half the memory for same resolution
● No transparency

● Example: ListView rows
● Thumbnails perhaps can get away with less color depth

Copyright © 2014 CommonsWare, LLC

Reduce: Simpler UI/Progressive Enhancement

● Think Web apps
● Opt into different page rendering depending on browser

capabilities
● Usually same broad-brush features for the user, but missing

“sizzle” or optional features

● Treat low-memory devices differently
● Steer the user away from things that may blow out your

available heap
● Problem: how best to package this

– “Hey! Get a real phone!” unlikely to prove popular

Copyright © 2014 CommonsWare, LLC

Android Memory:
Reorder

Copyright © 2014 CommonsWare, LLC

Root Cause #2: Non-Compacting GC

● Only combines adjacent free blocks into larger
free block
● Does not move objects in memory to try to

coalesce free blocks

● Net: heap fragmentation
● OutOfMemoryError = no block big enough to

satisfy request
● Think defragmenting hard drives

Copyright © 2014 CommonsWare, LLC

Root Cause #2: Non-Compacting GC

A B C

In the beginning, there was heap,
and it was good...

The story of “The Three Little Blocks
and the Big Bad OutOfMemoryError”

C Trash compactor

Copyright © 2014 CommonsWare, LLC

Root Cause #2: Non-Compacting GC

A B C

In the beginning, there was heap,
and it was good...

The story of “The Three Little Blocks
and the Big Bad OutOfMemoryError”

Where, o where has my heap space
gone? O where, o where can it be?

B

Copyright © 2014 CommonsWare, LLC

Reorder: Allocate Long-Lived Stuff Earlier

● CIY (Compact It Yourself)
● Allocate bitmap or other object pools early
● Objective: minimize long-lived objects fragmenting

the heap
● Only really useful for memory buffers that can be

reused, rather than recycled

Copyright © 2014 CommonsWare, LLC

Reorder: Let Your Process Go Poof

● Nuke Your Entire Heap From Orbit
● It's the only way to be sure that you're going to get

a nice clean heap again

● Avoid the “Must Keep Process Running”
Syndrome
● Or use a second process for focused heap for long-

running stuff (but that's cheatin')

Copyright © 2014 CommonsWare, LLC

And Now, a Word from ART

● Compacting (“Moving”) Garbage Collector
● Solves the heap fragmentation issue, but...
● Will only run while app is in background
● Net: will not help games, other foreground-only

apps

● Segmented Heaps
● Separate area in heap for large buffers (e.g.,

bitmaps)

Copyright © 2014 CommonsWare, LLC

Android Memory:
Reuse

Copyright © 2014 CommonsWare, LLC

Reuse: Object Pools

● Pools
● Collection of some common resource (objects,

threads, etc.)
● Access patterns to acquire and release

– Use the resource in between
● Pre-allocated minimum pool contents
● Cap on maximum pool size

– Grow as need to limit, release resources to shrink
– Acquire blocks if needed for other thread to release

Copyright © 2014 CommonsWare, LLC

Reuse: Object Pools

● Rationale
● Avoid heap fragmentation!
● Slight heap compacting effect via pre-allocation
● Reduce GC processing time
● Minimize constructor CPU time

● Counter-Arguments
● Shades of malloc() and free()

Copyright © 2014 CommonsWare, LLC

Reuse: Object Pools

● Framework-Enforced
● SensorEvent, etc.

● Framework-Encouraged
● TypedArray, etc.

● Custom
● Stormpot
● Commons-Pool
● A zillion blog posts

Copyright © 2014 CommonsWare, LLC

Reuse: inBitmap

● BitmapFactory.Options field
● Specifies Bitmap to reuse

● API Level 19+: must be same size or larger than
bitmap to be loaded

● API Level 18 and lower: must match exactly

● Great for thumbnails, other scenarios with
constant bitmap sizes
● Usually integrated into bitmap libraries

Copyright © 2014 CommonsWare, LLC

Android Memory:
Recycle

Copyright © 2014 CommonsWare, LLC

Recycle: MAT and Leaks

● Look for Leak Candidates
● Instances of your classes that should not be

around
● Bitmaps and byte arrays

● Trace Your GC Roots
● “GC Roots” = “what the @#$%&! is holding onto

this &%&$ thing?!?”

Copyright © 2014 CommonsWare, LLC

Recycle: Choose the Right Context

● Beware of a Custom Application Class
● Singleton, so anything it holds onto cannot be GC'd

● Use Application in the Right Places
● If you are holding onto things in static data

members that might be associated with a Context,
use Application, as it is “pre-leaked”

● Failure to do so: leak activities, etc.

Copyright © 2014 CommonsWare, LLC

Recycle: onTrimMemory()

● Called On Your Components
● Activity, Service, ContentProvider, Application, etc.

● Objective: Release Some Heap Space
● In hopes that Dalvik can release some of that heap

back to the OS

Copyright © 2014 CommonsWare, LLC

Recycle: onTrimMemory()

● You Are Safe (But Please Be Kind to Others)
● TRIM_MEMORY_RUNNING_MODERATE
● TRIM_MEMORY_RUNNING_LOW
● TRIM_MEMORY_RUNNING_CRITICAL

● You Are Invisible
● TRIM_MEMORY_UI_HIDDEN

Copyright © 2014 CommonsWare, LLC

Recycle: onTrimMemory()

● Your Time is Running Out
● TRIM_MEMORY_BACKGROUND
● TRIM_MEMORY_MODERATE
● TRIM_MEMORY_COMPLETE

– Also available as onLowMemory() for sub-API Level 14
devices

Copyright © 2014 CommonsWare, LLC

Recycle: Watch Your Threads

● Threads = GC Roots
● Anything reachable by a thread cannot be GC'd

● Tips
● Leaking threads = leaking heap
● Ensure threads in pools null out data members
● Beware the everlasting service!

– Its threads, and anything else, cannot be GC'd
– Also screws up multitasking, etc.

Copyright © 2014 CommonsWare, LLC

Android Memory:
Cheat

Copyright © 2014 CommonsWare, LLC

Cheat: Request Large Heap

● android:largeHeap in <application>
● Probably gives you a larger heap on API Level

11+
● Depends a bit on device capabilities

● Use getLargeMemoryClass() to determine
how large your heap is

Copyright © 2014 CommonsWare, LLC

Cheat: Multiple Processes

● Reason #1: More Heap
● Use second process for specific memory-intensive

operations
● Workaround for pre-Honeycomb devices

● Reason #2: Focused Heap
● Use second process for long-running background

services
● May be able to accomplish same basic end with
onTrimMemory()

Copyright © 2014 CommonsWare, LLC

Cheat: NDK

● Native allocations do not count against Dalvik
heap

● Use native code for memory-intensive
operations
● Particularly where you could gain some

performance from native code
● Example: image processing

Copyright © 2014 CommonsWare, LLC

The Costs of Cheating

● Larger system RAM consumption
● More likely to get blamed by OS, users
● More likely to have background process

terminated

● Multiple processes = IPC
● CPU and battery consumption
● Keep your protocol relatively coarse-grained

Copyright © 2014 CommonsWare, LLC

Summary

● Reckon: measure twice, cut if needed
● Reduce: what you don't use can't hurt you
● Reorder: avoid fragmentation (the heap kind)
● Reuse: object pools FTW!
● Recycle: this is why we used managed code
● Cheat: try not to, #kthxbye

