
Copyright © 2012 CommonsWare, LLC

Jank Busting



Copyright © 2012 CommonsWare, LLC

What Is Jank?

● In UI, Delays in Animations
● E.g., instead of smoothly scrolling, the UI pauses and 

jerks the scrolling
● Source: Too Much Work on Main Application Thread

● Project Butter = 60fps = 16ms/frame
● Individual callbacks must be cheap
● Popular callbacks must be crazy cheap

– E.g., getView() of a ListAdapter



Copyright © 2012 CommonsWare, LLC

Do We Have Jank?

● Subjective
● “You know jank when you see it”
● Problem: differing tolerance

● Objective
● Dropped frames = jank
● If achieving 60fps without drops, should be no 

noticeable jank



Copyright © 2012 CommonsWare, LLC

Roundup of Tools and Techniques

● Choreographer
● StrictMode
● gfxinfo
● systrace
● Traceview
● Hierarchy View and uiautomatorviewer
● Overdraw



Copyright © 2012 CommonsWare, LLC

Choreographer

● In Java, API For Tying Into Frames
● E.g., postFrameCallback()

● In LogCat, Complaints About Dropped Frames
● If Choreographer says that you are dropping frames, 

you have jank
● There may be a de minimis threshold where 

Choreographer does not complain



Copyright © 2012 CommonsWare, LLC

StrictMode

● Detects Common Runtime Problems
● Disk I/O on main application thread
● Network I/O on main application thread

– Enabled by default on Android 4.0+
● Custom Penalty

● Typical: log to LogCat
● Aggressive: crash the process

● Enable if BuildConfig.DEBUG and API Level 9+







Copyright © 2012 CommonsWare, LLC

gfxinfo

● Utility to Capture Frame Times
● Ties into developer options on device, so must be 

opted-into, as capturing adds a bit of overhead
● Command-Line Tool

● No IDE integration at this time
● Raw Output

● Dump of per-frame time for draw, execute, process
● Need to import into a spreadsheet or otherwise analyze 

to learn anything



Copyright © 2012 CommonsWare, LLC

gfxinfo

● Instructions
● Enable Developer Options (7 taps on build number)
● Enable “Profile GPU Rendering” in Developer Options
● Try your app
● adb shell dumpsys gfxinfo
● Disable “Profile GPU Rendering”
● Create a stacked bar chart or something...
● Look for frames that took > 12ms









Copyright © 2012 CommonsWare, LLC

systrace

● System-Level Tracing
● CPU, GPU, etc.

● Benefits Over gfxinfo
● Report generated in HTML for you

● Downsides Over gfxinfo
● Seriously cryptic output
● Requires Python or IDE / monitor



Copyright © 2012 CommonsWare, LLC

systrace

● Instructions
● Enable Developer Options, “Enable Traces”
● Command Line

– Android 4.3+: python systrace.py --time=10 -o 
mynewtrace.html sched gfx view wm

– Android 4.2 and below: more complicated...
● DDMS/monitor

– Toolbar button and dialog replacement for above
● Run test (then clean up “Enable Traces”)
● Examine results



Copyright © 2012 CommonsWare, LLC

Traceview

● Method Tracing
● Records each method invocation, time it took
● Builds tree of calls, to drill down into slow spots
● Helps you identify more specifically what you are doing



Copyright © 2012 CommonsWare, LLC

Traceview

● Interactive
● Start/stop method tracing toolbar buttons

– DDMS
– Monitor

● Automatically opens results in Traceview perspective
● Programmatic

● Debug class, startMethodTracing() and 
stopMethodTracing()

● Must pull trace file off device, load manually



Copyright © 2012 CommonsWare, LLC

Traceview

● Results
● Top pane = threads (rows) versus time
● Bottom pane = call details

– Inclusive time = call and all downstream calls
– Exclusive time = time spent purely in the method itself, not 

counting downstream calls
● Techniques

● Find expensive or frequent stuff
● Drill down to find something you recognize



Copyright © 2012 CommonsWare, LLC

Hierarchy View and uiautomatorviewer

● Show View Hierarchy
● Containers and children

● Hierarchy View
● Integrated into IDEs, plus monitor
● Full details of widgets
● Only works with emulator or modified project

● uiautomatorviewer
● Works on production devices, with any app
● No widget IDs, less information overall



Copyright © 2012 CommonsWare, LLC

Hierarchy View and uiautomatorviewer

● What You Are Looking For
● Too-deep nesting

– Run risk of StackOverflowError at ~15 layers
– Makes layout of containers expensive

● Too many views
– Each view takes time to draw, so too many views = too much 

time drawing
– Also, each widget consumes minimum 1K heap space, so too 

many widgets = too much heap consumption
● Overdraw



Copyright © 2012 CommonsWare, LLC

Overdraw

● Drawing the Same Pixel, Over and Over
● Common Sources

● Z-axis ordering (widgets on top of widgets)
● Foreground and background both set
● Activity theme and occluding content

– E.g., setting a background color for the activity, then hiding all 
of it with a ListView that has no transparent parts



Copyright © 2012 CommonsWare, LLC

Overdraw

● Instructions
● Enable Developer Options
● Enable “Show GPU overdraw” in Developer Options
● Interpret colors

– Blue = 1x overdraw (OK, though may show a “quick win” for 
large areas)

– Green = 2x overdraw (OK in medium patches)
– Light red = 3x overdraw (OK only in tiny patches)
– Dark red = 4x overdraw (OMG)








