
Copyright © 2014 CommonsWare, LLC

Event Buses

Copyright © 2014 CommonsWare, LLC

What We Have Here is a Failure to Communicate

● Android Design: Loose Coupling of
Components
● Allows activities, etc. to be implemented internally

or by third parties, sometimes at user discretion
● Reminiscent of Web apps, where pages do not

(normally) communicate with other pages
– GET parameters ~= Intent extras

● Elegant in theory, clunky in practice
– Clunkigant?

Copyright © 2014 CommonsWare, LLC

3 Inter-Component Communication Patterns

● Introduce Tight Coupling
● Bound services and callbacks
● Messenger

● Use IPC
● PendingIntent
● Regular broadcasts

● Use an In-Process Event Bus
● ???

Copyright © 2014 CommonsWare, LLC

Get On The Bus (Gus)

● Publish/subscribe pattern
● Components register interest in specific types of

events
● Components publish those events, which are then

delivered to the registered parties

● Pros
● Logically decoupled, if not “physically”
● Bus implementation can use soft references, etc. to

help mitigate GC risks

Copyright © 2014 CommonsWare, LLC

Where Buses Go

● Example Use Patterns
● Service UI layer→

– Done correctly, can also handle cases where there is no
relevant UI, so we show a Notification instead

● Fragment activity→
– Or fragment fragment, in cases where they happen to →

both be on the screen
● Broadcast receiver something else→

– For system broadcasts, etc. that require a receiver, but
the business logic is best handled elsewhere

Copyright © 2014 CommonsWare, LLC

Bus-Like Substances

● Broadcast Intents
● IPC
● Security

● ContentObserver
● Inflexible
● IPC?

Copyright © 2014 CommonsWare, LLC

The Big Three Buses

● LocalBroadcastManager
● Square's Otto
● greenrobot's EventBus

Copyright © 2014 CommonsWare, LLC

LocalBroadcastManager

● Pros
● Part of Android Support package

– Backed by the full faith and credit of Google
– You're probably already using it, so no new library

artifacts, licenses, etc.
● Uses broadcast Intent semantics and structures

– BroadcastReceiver
– IntentFilter

Copyright © 2014 CommonsWare, LLC

LocalBroadcastManager

● Cons
● Uses broadcast Intent semantics and structures

– Limited by Intent and Bundle and such
– Tends to be more verbose

● Limited thread options
– Messages delivered on main application thread only

● No ordered broadcasts
● No sticky broadcasts

Copyright © 2014 CommonsWare, LLC

Otto

● Pros
● It's Square (so it's cool)
● Annotation based (so it's cool)
● Flexible events (any class you like)
● Clean API
● Event producers

– Reminiscent of sticky broadcasts
– Helps to handle the case where the subscriber is

newly created and needs to “bootstrap” data

Copyright © 2014 CommonsWare, LLC

Otto

● Cons
● Annotation based

– Overhead, particularly on older devices
● Event registration not inherited
● Limited thread options

– Messages delivered on thread they are sent upon
● And exception thrown if that's not the main application thread, unless you

configure it to allow for any thread

– May require somebody to fuss around with getting the event over to
the main application thread

● No ordered events
– ...but can find out if nobody received an event, so

you can use this for UI-or-Notification pattern

Copyright © 2014 CommonsWare, LLC

greenrobot's EventBus

● Pros
● Flexible events (any class you like)
● Clean API
● Sticky events
● Ordered event delivery
● Robust threading options

– Posting thread
– Main application thread
– Dedicated background thread
– Posting-or-background thread

Copyright © 2014 CommonsWare, LLC

greenrobot's EventBus

● Cons
● Naming convention for event receipt methods

– Not quite as flexible as Otto, but does save on
annotation overhead

● Ordered events only work with “posting thread”
option
– May require somebody to fuss around with getting the

event over to the main application thread

Copyright © 2014 CommonsWare, LLC

Choosing a Bus

● LocalBroadcastManager
● Cannot use third-party libraries
● Using regular broadcasts now and want to migrate

over code with minimal fuss

● Otto
● If you're using other Square libraries that work

particularly well with it

● greenrobot's EventBus
● General recommended choice

