
Android 6.0 Runtime Permissions
a CommonsWare Code Lab

Welcome to the Android 6.0 Runtime Permissions Code Lab!

The code that the presenter will be walking through comes
from Version 6.8 of the award-seeking book, The Busy Coder's
Guide to Android Development. This PDF file contains the
tutorial chapter from that book that goes along with the code,
showing the steps of how to convert a sample Android project
to one that uses Android 6.0's runtime permissions model.

Like the Tutorial? Want More?

The Busy Coder's Guide to Android Development
(https://commonsware.com/Android) is far more than just this one tutorial. Spanning
nearly 3,400 pages, spread over 200+ chapters, this book is the first, largest, and
most up-to-date book on Android development that you can get. The book is
available as part of the Warescription program, where for $45, you get the book (in
PDF, EPUB, or MOBI/Kindle formats, plus as an Android app), updates to the book for
a year, access to office hours chats for getting your Android development questions
answered, and more!

Like the Code Lab? Want More?

Mark Murphy – the balding guy who is leading the code lab – not only writes the
aforementioned book, but also teaches Android app development. Introductory
courses are available for your organization, and advanced one-day seminars are held
in New York City:

• Updating Your App for Android 6.0 on September 29
• Security and Device Administration on September 30 and January 20
• Performance Analysis and Tuning on November 4
• Media and TV on November 5

Visit https://commonsware.com/training to learn more about CommonsWare's
training options.

https://commonsware.com/Android
https://commonsware.com/training

Tutorial: Runtime Permission Support

Android 6.0’s runtime permissions sound simple on the surface: just call
checkSelfPermission() to see if you have the permission, then call
requestPermissions() if you do not.

In practice, even a fairly simple app that uses these permissions has to add a
remarkable amount of code, to handle all of the combinations of states, plus deal
with some idiosyncrasies in the API. And, of course, since not everybody will be
running a new device, we also have backwards compatibility to consider.

This standalone tutorial — not part of the EmPubLite series of tutorials throughout
the rest of the core chapters — focuses on how to add the runtime permission
support to an existing Android application.

As with the other code snippets in this book, if you are trying to copy and paste from
the PDF itself, you will tend to have the best luck if you use the official Adobe
Acrobat reader app.

If you prefer, you can work with the tutorial code from GitHub, including:

• the completed project
• the MainActivity for the completed project

In particular, the latter link, being simple text, may be simpler to copy and paste
from, for situations where we are modifying the code to directly match what will be
in the completed project.

Also, as part of working on this tutorial, you will be adding many snippets of Java
code. You will need to add import statements for the new classes introduced by
those code snippets. Just click on the class name, highlighted in red, in Android

491

Subscribe to updates at https://commonsware.com/Android Special Creative Commons BY-NC-SA 4.0 Edition

https://github.com/commonsguy/cw-omnibus/tree/master/Permissions/tutorial/finish/RuntimePermTutorial
https://raw.githubusercontent.com/commonsguy/cw-omnibus/master/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java
https://raw.githubusercontent.com/commonsguy/cw-omnibus/master/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java

Studio and press <Alt>-<Enter> to invoke the quick-fix to add the required import
statement.

Step #0: Install the Android 6.0 SDK
You are going to need the Android 6.0 (API 23) SDK Platform (or higher) in order to
be able to implement runtime permission support. You may already have it, or you
may need to install it.

If you open up Android Studio’s SDK Manager, via Tools > Android > “SDK
Manager”, you may see Android 6.0 show up… or perhaps not:

Figure 238: Android Studio 1.3 SDK Manager, Sans Android 6.0

You may need to click the “Launch Standalone SDK Manager” link to bring up the
classic SDK Manager, where you should see Android 6.0:

TUTORIAL: RUNTIME PERMISSION SUPPORT

492

Subscribe to updates at https://commonsware.com/Android Special Creative Commons BY-NC-SA 4.0 Edition

Figure 239: Classic SDK Manager, Showing Android 6.0

You will need the “SDK Platform” entry at minimum, and possibly an emulator
“system image”.

If you have a device with Android 6.0+ on it, you are welcome to run the sample app,
and it should allow you to take pictures and record videos. If you wish to run the
sample app on an Android 6.0+ emulator, the permissions logic that we will be
adding to the tutorial app will work, but it will not actually take pictures or record
video. If your emulator image has 1+ cameras configured (see the “Advanced
Settings” button when defining or editing your AVD), the activities to take a picture
and record a video will come up but just show an indefinite progress indicator. If
your emulator image has no cameras configured, those activities will just
immediately finish and return control to our sample app’s main activity.

Step #1: Import and Review the Starter Project
Download the starter project ZIP archive and unzip it somewhere on your
development machine.

TUTORIAL: RUNTIME PERMISSION SUPPORT

493

Subscribe to updates at https://commonsware.com/Android Special Creative Commons BY-NC-SA 4.0 Edition

https://github.com/commonsguy/cw-omnibus/releases/download/v6.8/RuntimePermTutorial.zip

Then, use File > New > Import Project to import this project into Android Studio.
Android Studio may prompt you for additional updates from the SDK Manager (e.g.,
build tools), depending upon what you have set up on your development machine.

If you run the project on an Android 4.0+ device or emulator, you will see our
highly-sophisticated user interface, consisting of two big buttons:

Figure 240: Runtime Permissions Tutorial App, As Initially Written and Launched

Tapping the “Take Picture” button will bring up a camera preview, with a floating
action button (FAB) to take a picture:

TUTORIAL: RUNTIME PERMISSION SUPPORT

494

Subscribe to updates at https://commonsware.com/Android Special Creative Commons BY-NC-SA 4.0 Edition

Figure 241: Runtime Permissions Tutorial App, Showing Camera Preview

Tapping the FAB (and taking a picture) or pressing BACK will return you to the
original two-button activity. There, tapping the “Record Video” button will bring up
a similar activity, where you can press the green record FAB to start recording a
video:

TUTORIAL: RUNTIME PERMISSION SUPPORT

495

Subscribe to updates at https://commonsware.com/Android Special Creative Commons BY-NC-SA 4.0 Edition

Figure 242: Runtime Permissions Tutorial App, Showing Video Preview

If you start recording, the FAB will change to a red stop button. Tapping that, or
pressing BACK from either state, will return you to the initial two-button activity.

The application makes use of two third-party dependencies to pull all of this off:

• Philip Calvin’s IconButton
• the author’s CWAC-Cam2, which implements the photo and video activities

apply plugin: 'com.android.application'

repositories {
maven {

url "https://repo.commonsware.com.s3.amazonaws.com"
}

}

dependencies {
compile 'com.commonsware.cwac:cam2:0.2.+'
compile 'com.githang:com-phillipcalvin-iconbutton:1.0.1@aar'

}

android {
compileSdkVersion 22
buildToolsVersion "22.0.1"

defaultConfig {
minSdkVersion 15

TUTORIAL: RUNTIME PERMISSION SUPPORT

496

Subscribe to updates at https://commonsware.com/Android Special Creative Commons BY-NC-SA 4.0 Edition

https://github.com/pnc/IconButton
https://github.com/pnc/IconButton

targetSdkVersion 15
}

}

Our two layouts, res/layout/main.xml and res/layout-land/main.xml, have two
IconButton widgets in a LinearLayout, with equal weights so the buttons each take
up half of the screen:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="horizontal">>

<com.phillipcalvin.iconbutton.IconButton<com.phillipcalvin.iconbutton.IconButton
android:id="@+id/take_picture"
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_margin="4dp"
android:layout_weight="1"
android:drawableRight="@drawable/ic_camera_black_48dp"
android:onClick="takePicture"
android:text="Take Picture"
android:textAppearance="?android:attr/textAppearanceLarge"
app:iconPadding="16dp"/>/>

<com.phillipcalvin.iconbutton.IconButton<com.phillipcalvin.iconbutton.IconButton
android:id="@+id/record_video"
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_margin="4dp"
android:layout_weight="1"
android:drawableRight="@drawable/ic_videocam_black_48dp"
android:onClick="recordVideo"
android:text="Record Video"
android:textAppearance="?android:attr/textAppearanceLarge"
app:iconPadding="16dp"/>/>

</LinearLayout></LinearLayout>

MainActivity then uses CWAC-Cam2 to handle each of the button clicks:

packagepackage com.commonsware.android.perm.tutorialcom.commonsware.android.perm.tutorial;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.Environmentandroid.os.Environment;
importimport android.view.Viewandroid.view.View;
importimport android.widget.Toastandroid.widget.Toast;
importimport com.commonsware.cwac.cam2.CameraActivitycom.commonsware.cwac.cam2.CameraActivity;
importimport com.commonsware.cwac.cam2.VideoRecorderActivitycom.commonsware.cwac.cam2.VideoRecorderActivity;
importimport java.io.Filejava.io.File;

TUTORIAL: RUNTIME PERMISSION SUPPORT

497

Subscribe to updates at https://commonsware.com/Android Special Creative Commons BY-NC-SA 4.0 Edition

publicpublic classclass MainActivityMainActivity extendsextends Activity {
privateprivate staticstatic finalfinal int RESULT_PICTURE_TAKEN=1337;
privateprivate staticstatic finalfinal int RESULT_VIDEO_RECORDED=1338;
privateprivate File rootDir;
privateprivate View takePicture;
privateprivate View recordVideo;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

takePicture=findViewById(R.id.take_picture);
recordVideo=findViewById(R.id.record_video);

File downloads=Environment
.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWNLOADS);

rootDir=newnew File(downloads, "RuntimePermTutorial");
rootDir.mkdirs();

}

@Override
protectedprotected void onActivityResult(int requestCode, int resultCode,

Intent data) {
Toast t=nullnull;

ifif (resultCode==RESULT_OK) {
ifif (requestCode==RESULT_PICTURE_TAKEN) {

t=Toast.makeText(thisthis, R.string.msg_pic_taken,
Toast.LENGTH_LONG);

}
elseelse ifif (requestCode==RESULT_VIDEO_RECORDED) {

t=Toast.makeText(thisthis, R.string.msg_vid_recorded,
Toast.LENGTH_LONG);

}

t.show();
}

}

publicpublic void takePicture(View v) {
takePictureForRealz();

}

publicpublic void recordVideo(View v) {
recordVideoForRealz();

}

privateprivate void takePictureForRealz() {
Intent i=newnew CameraActivity.IntentBuilder(MainActivity.this)

.to(newnew File(rootDir, "test.jpg"))

.updateMediaStore()

.build();

startActivityForResult(i, RESULT_PICTURE_TAKEN);
}

TUTORIAL: RUNTIME PERMISSION SUPPORT

498

Subscribe to updates at https://commonsware.com/Android Special Creative Commons BY-NC-SA 4.0 Edition

privateprivate void recordVideoForRealz() {
Intent i=newnew VideoRecorderActivity.IntentBuilder(MainActivity.this)

.quality(VideoRecorderActivity.Quality.HIGH)

.sizeLimit(5000000)

.to(newnew File(rootDir, "test.mp4"))

.updateMediaStore()

.forceClassic()

.build();

startActivityForResult(i, RESULT_VIDEO_RECORDED);
}

}

The details of how CWAC-Cam2 works are not particularly relevant for the tutorial,
but you can learn more about that later in the book if you are interested.

Taking pictures and recording videos require three permissions:

• CAMERA
• WRITE_EXTERNAL_STORAGE (where the output is going)
• RECORD_AUDIO (for videos)

So, our manifest asks for those three permissions:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest package="com.commonsware.android.perm.tutorial"

xmlns:android="http://schemas.android.com/apk/res/android"
android:versionCode="1"
android:versionName="1.0">>

<uses-permission<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>/>

<supports-screens<supports-screens
android:anyDensity="true"
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"
android:xlargeScreens="true"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/Theme.Apptheme">>
<activity<activity

android:name=".MainActivity"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

TUTORIAL: RUNTIME PERMISSION SUPPORT

499

Subscribe to updates at https://commonsware.com/Android Special Creative Commons BY-NC-SA 4.0 Edition

</manifest></manifest>

You might wonder why we would bother doing this using a camera library in our
own app. Most Android devices with camera hardware have a camera app, and most
camera apps — particularly pre-installed camera apps — have activities that we
could invoke to take pictures or record videos. However, these activities are
infrequently tested, and many do not work properly. Since they are unreliable, you
may be happier using something that is a library, packaged in your app.

Note that MainActivity has some seemingly superfluous bits of code:

• We find the two buttons in the inflated layout and assign them to
takePicture and recordVideo fields… but then never use them

• We delegate the actual CWAC-Cam2 work to takePictureForRealz() and
recordVideoForRealz()… instead of just doing that work in the
takePicture() and recordVideo() methods invoked by the buttons

The reason for those apparent inefficiencies is to reduce the amount of work it will
take you to add the runtime permissions, by handling a tiny bit of bookkeeping
ahead of time.

Step #2: Update Gradle for Android 6.0
By default, if you run this app from your IDE on an Android 6.0 device, nothing
appears to be different. The app runs as it did.

If you were to install it via a download, such as from a Web site, the installation
process looks as it does on earlier Android versions, prompting the user for each of
the permissions:

TUTORIAL: RUNTIME PERMISSION SUPPORT

500

Subscribe to updates at https://commonsware.com/Android Special Creative Commons BY-NC-SA 4.0 Edition

Figure 243: Installing the Tutorial App From the Web

However, the user can still go into Settings and elect to disable our access to those
permissions:

TUTORIAL: RUNTIME PERMISSION SUPPORT

501

Subscribe to updates at https://commonsware.com/Android Special Creative Commons BY-NC-SA 4.0 Edition

Figure 244: Settings, On Android 6.0, Showing Tutorial App Permissions

In our case, not all those permissions are always needed, and it would be useful to
know whether or not we hold a permission, and so adopting the new runtime
permission model would seem to be a good idea.

The first step on the road to doing that is to adjust some values in our app/ module’s
build.gradle file:

• Change compileSdkVersion to 23, as we need to use methods from the latest
SDK

• Change buildToolsVersion to 23.0.0, to keep it in sync with the
compileSdkVersion, and

• Change targetSdkVersion to 23, to tell Android that our app was written
with the runtime permission model in mind

This will give you an android closure like:

android {
compileSdkVersion 23
buildToolsVersion "23.0.0"

defaultConfig {
minSdkVersion 15
targetSdkVersion 23

TUTORIAL: RUNTIME PERMISSION SUPPORT

502

Subscribe to updates at https://commonsware.com/Android Special Creative Commons BY-NC-SA 4.0 Edition

}
}

Step #3: Review the Planned UX
So, our app is here to take pictures and record videos. Of the three permissions that
our app is requesting in total, two are essential for the app to do anything
meaningful: CAMERA and WRITE_EXTERNAL_STORAGE. RECORD_AUDIO, by contrast, is not
needed if the user only wants to take pictures.

Part of the objective of the runtime permissions system is to allow you to lazy-
request permissions that many users may not need. If there is some fringe feature in
your app that, say, needs READ_CONTACTS, rather than force everyone to give you
READ_CONTACTS, you can request it only of users who go down the path in your UI
that leads to the feature that needs READ_CONTACTS-secured capabilities.

Hence, we will only ask for the RECORD_AUDIO permission if the user taps the “Record
Video” button.

For the other two permissions, we could take the approach of asking for them only
when the user taps either of the two buttons. However, those permissions are
essential for app operation, and so another approach is to ask for those permissions
on first run of the app, and only worry about them on button clicks if our original
request was rejected. You might have some sort of “onboarding” welcome tutorial
that explains a bit why we are going to ask for the permissions. Or, you could just
ask for the permissions and hope that users will have seen those sorts of request
dialogs before, as this app will do (for simplicity as much as anything else).

When the user clicks a button, we need to double-check to see if we have the
permissions, and perhaps ask the user again for those permissions. Along the way,
we may wish to show some “rationale” — an explanation, in our own UI, of why we
need the permissions that we asked for previously and the user said “no”.

If, however, the user not only declines to grant us some permission, but also checks
the checkbox indicating that we are not to keep asking, we may as well disable the
affected button(s), as the user cannot use that functionality. Alternatively, we might
keep the buttons clickable, but instead of doing the actual work (which we cannot
do due to lack of permissions), show a message directing the user to the Settings app
to flip the switches and grant the permissions to our app. The app in this tutorial
will settle for just disabling the buttons.

TUTORIAL: RUNTIME PERMISSION SUPPORT

503

Subscribe to updates at https://commonsware.com/Android Special Creative Commons BY-NC-SA 4.0 Edition

So, for each of our permissions, we are in one of four states:

1. We have never asked for the permission before
2. We asked for the permission, and the user granted it
3. We asked for the permission, and either the user rejected our request, or

perhaps granted it but then changed their mind and turned the permission
back off in Settings

4. We asked for the permission, and not only did the user reject it, but the user
also indicated (via a checkbox) that we are not to ask again

We are going to need to distinguish between these four states as part of our app
logic, in order to present the proper behavior in each case.

Step #4: Detect the First Run
If we are going to ask for the CAMERA and WRITE_EXTERNAL_STORAGE permissions on
the first run of our app, we need to know when the first run of our app has
happened. To do this, we will take a typical approach, using a boolean value in
SharedPreferences to determine if we have run before.

With that in mind, add the following constant declaration to MainActivity:

privateprivate staticstatic finalfinal String PREF_IS_FIRST_RUN="firstRun";

This will serve as the key to our boolean SharedPreferences value.

Then, add the following data member to MainActivity:

privateprivate SharedPreferences prefs;

Next, initialize prefs in MainActivity, shortly after the setContentView() call:

prefs=PreferenceManager.getDefaultSharedPreferences(thisthis);

Then, add the following method to MainActivity:

privateprivate boolean isFirstRun() {
boolean result=prefs.getBoolean(PREF_IS_FIRST_RUN, truetrue);

ifif (result) {
prefs.edit().putBoolean(PREF_IS_FIRST_RUN, falsefalse).apply();

}

TUTORIAL: RUNTIME PERMISSION SUPPORT

504

Subscribe to updates at https://commonsware.com/Android Special Creative Commons BY-NC-SA 4.0 Edition

returnreturn(result);
}

This retrieves the existing value, defaulting to true if there is no such value. If we get
that default back, we then update the SharedPreferences to save false for future
use.

Finally, at the bottom of onCreate() of MainActivity, add the following lines:

ifif (isFirstRun()) {
// TODO

}

We will replace that comment shortly.

Step #5: On First Run, Ask For Permissions
As was covered back in Step #3, we want to ask for the CAMERA and
WRITE_EXTERNAL_STORAGE permissions on the first run of our app. To do that, we
need to call requestPermissions() from within that if block we added in the
previous step.

requestPermissions() takes two parameters:

1. A String array of the fully-qualified names of the permissions that we want
2. An int that will be returned to us in an onRequestPermissionsResult()

callback method, so we can distinguish the results of one
requestPermissions() call from another

You might wonder why, when adding this in 2015, the Android engineers did not use
some sort of a callback object, rather than mess around with int values. Sometimes,
the author of this book wonders too.

But, regardless, that is what we need, and we had best start implementing it.

First, to make our code a bit easier to read, add the following static import
statements to MainActivity:

importimport staticstatic android.Manifest.permission.CAMERA;
importimport staticstatic android.Manifest.permission.RECORD_AUDIO;
importimport staticstatic android.Manifest.permission.WRITE_EXTERNAL_STORAGE;

TUTORIAL: RUNTIME PERMISSION SUPPORT

505

Subscribe to updates at https://commonsware.com/Android Special Creative Commons BY-NC-SA 4.0 Edition

If you have not seen this Java syntax before, a static import basically imports a
static method or field from a class (in this case, from Manifest.permission). The
result of the import is that we can refer to the imported items as if they were static
items on our own class. So, we can just have a reference to CAMERA, for example,
rather than having to spell out something like Manifest.permission.CAMERA every
time.

Next, add the following static String array to MainActivity, one that uses some of
our newly-added static imports:

privateprivate staticstatic finalfinal String[] PERMS_TAKE_PICTURE={
CAMERA,
WRITE_EXTERNAL_STORAGE

};

Also add the following int constant to MainActivity:

privateprivate staticstatic finalfinal int RESULT_PERMS_INITIAL=1339;

Then, update the if block in onCreate() of MainActivity to look like:

ifif (isFirstRun()) {
requestPermissions(PERMS_TAKE_PICTURE, RESULT_PERMS_INITIAL);

}

Here, we are asking Android to collect our permissions, if this is the first run of our
app.

However, we have a problem: this app’s minSdkVersion is 15. We cannot call
requestPermissions() on older devices, as that method does not exist. In fact, a lot
of what we are doing in this tutorial will only be relevant on API Level 23+ devices.

With that in mind, add the following method to MainActivity:

privateprivate boolean useRuntimePermissions() {
returnreturn(Build.VERSION.SDK_INT>Build.VERSION_CODES.LOLLIPOP_MR1);

}

This will return true if we need the runtime permission system, false otherwise.

Then, amend the if block in onCreate() to take this into account:

ifif (isFirstRun() && useRuntimePermissions()) {
requestPermissions(PERMS_TAKE_PICTURE, RESULT_PERMS_INITIAL);

}

TUTORIAL: RUNTIME PERMISSION SUPPORT

506

Subscribe to updates at https://commonsware.com/Android Special Creative Commons BY-NC-SA 4.0 Edition

The corresponding callback for requestPermissions() is
onRequestPermissionsResult(). So, add a stub implementation of this callback to
MainActivity:

@Override
publicpublic void onRequestPermissionsResult(int requestCode,

String[] permissions,
int[] grantResults) {

// TODO
}

As before, we will be replacing that // TODO a bit later in the tutorial.

At this point, run the app on your Android 6.0 environment. Immediately, you
should be prompted for the permissions:

Figure 245: Tutorial App, Showing CAMERA Permission Request

TUTORIAL: RUNTIME PERMISSION SUPPORT

507

Subscribe to updates at https://commonsware.com/Android Special Creative Commons BY-NC-SA 4.0 Edition

Figure 246: Tutorial App, Showing WRITE_EXTERNAL_STORAGE Permission
Request

Then, uninstall the app. That way, no matter whether you accepted or declined those
permissions, the next time you run the app, you are “starting from a clean slate”.

Step #6: Check for Permissions Before Taking a
Picture
If we are lucky, our users will grant us the permissions that we requested. We will
not always be lucky; some users will reject our request. Furthermore, some users
might change these permissions for our app in Settings, granting or revoking them
as those users see fit.

So, when the user taps the “Take Picture” button, we need to double-check to see if
we actually have the permissions that we need. If we do not, we cannot go ahead and
take the picture “for realz”, as we will crash with a SecurityException, because we
lack the permission.

With that in mind, add the following method to MainActivity:

privateprivate boolean hasPermission(String perm) {
ifif (useRuntimePermissions()) {

TUTORIAL: RUNTIME PERMISSION SUPPORT

508

Subscribe to updates at https://commonsware.com/Android Special Creative Commons BY-NC-SA 4.0 Edition

returnreturn(checkSelfPermission(perm)==PackageManager.PERMISSION_GRANTED);
}

returnreturn(truetrue);
}

This is a convenience method that will call checkSelfPermission() for a given
permission, seeing if that returns PERMISSION_GRANTED or not. hasPermission() also
takes the API level into account, only trying to call that method on suitable devices,
using the useRuntimePermissions() method that we added earlier. If we are on an
older device, and useRuntimePermissions() returns false, hasPermission()
returns true, because we always have our requested permissions, if our app’s code is
running.

Next, add the following method to MainActivity:

privateprivate boolean canTakePicture() {
returnreturn(hasPermission(CAMERA) &&

hasPermission(WRITE_EXTERNAL_STORAGE));
}

Here, canTakePicture() simply checks to see if we can take a picture, by checking
whether we have the CAMERA and WRITE_EXTERNAL_STORAGE permissions.

Then, modify the takePicture() method of MainActivity to look like this:

publicpublic void takePicture(View v) {
ifif (canTakePicture()) {

takePictureForRealz();
}

}

Here, we only try taking the picture if we have the permissions.

Of course, if we do not have the permissions, right now we are ignoring the user
clicks on our “Take Picture” button. We really should offer more feedback here, and
we will be tackling that little problem in later steps of this tutorial.

Now, run the app on an Android 6.0 environment. When Android prompts you for
the permissions, accept them. Then, tap the “Take Picture” button, and you should
be able to take a picture.

Then, uninstall the app and run it again, this time rejecting the permissions when
asked. Then, tap the “Take Picture” button, and you should get no response from the
app.

TUTORIAL: RUNTIME PERMISSION SUPPORT

509

Subscribe to updates at https://commonsware.com/Android Special Creative Commons BY-NC-SA 4.0 Edition

Finally, uninstall the app.

Step #7: Detect If We Should Show Some Rationale
Having no response to tapping the “Take Picture” button, when we do not have the
requisite permissions, is not a very good user experience. We should ask again for
those permissions… if there is a chance that the user will actually grant them to us.

That chance will be improved if we explain to them, a bit more, why we keep asking
for these permissions. Android 6.0 has a shouldShowRequestPermissionRationale()
that we can use to decide whether we should show some UI (and then later ask for
the permissions again) or whether the user has checked the “don’t ask again”
checkbox and we should leave them alone.

With that in mind, add the following method to MainActivity:

privateprivate boolean shouldShowRationale(String perm) {
ifif (useRuntimePermissions()) {

returnreturn(!hasPermission(perm) &&
shouldShowRequestPermissionRationale(perm));

}

returnreturn(falsefalse);
}

This shouldShowRationale() method, given a permission name, will return true if
we do not already have the permission and if
shouldShowRequestPermissionRationale() itself returns true. The exception is if
we are on an older version of Android than 6.0 (useRuntimePermissions() is true)
— in that case, we probably should not even be calling shouldShowRationale() in
the first place, but we definitely should not be changing our UI.

Then, add the following method to MainActivity:

privateprivate boolean shouldShowTakePictureRationale() {
returnreturn(shouldShowRationale(CAMERA) ||

shouldShowRationale(WRITE_EXTERNAL_STORAGE));
}

This shouldShowTakePictureRationale() simply checks to see if we need to show
rationale for any of the permissions required to take a picture.

Finally, modify the existing takePicture() method to look like this:

TUTORIAL: RUNTIME PERMISSION SUPPORT

510

Subscribe to updates at https://commonsware.com/Android Special Creative Commons BY-NC-SA 4.0 Edition

publicpublic void takePicture(View v) {
ifif (canTakePicture()) {

takePictureForRealz();
}
elseelse ifif (shouldShowTakePictureRationale()) {

// TODO
}

}

So, now we are checking to see if we should show the user an explanation for the
permissions… though we are not doing that just yet. We will get to that in the next
step.

Step #8: Add a Rationale UI and Re-Request
Permissions
We need to do something to explain to the user why we need these permissions.

A poor choice would be to display a Toast. Those are time-limited and so are not
good for showing longer messages.

We might display a dialog or a snackbar… but we have not talked about how to do
either of those just yet in this book.

We might display something from our help system, or go through the introductory
tutorial again, or something like that… but this app does not have any of those
things.

So, we will instead take a very crude UI approach: adding a hidden panel with our
message that we will show when needed. Since this is not nearly as refined as a
Toast, we will call this panel the breadcrust.

With that as background, let’s add a TextView to our res/layout/main.xml file that
is the breadcrust itself:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

<TextView<TextView
android:id="@+id/breadcrust"
android:layout_width="match_parent"

TUTORIAL: RUNTIME PERMISSION SUPPORT

511

Subscribe to updates at https://commonsware.com/Android Special Creative Commons BY-NC-SA 4.0 Edition

android:layout_height="0dp"
android:layout_weight="1"
android:background="@color/accent"
android:gravity="center"
android:padding="8dp"
android:textAppearance="?android:attr/textAppearanceLarge"
android:visibility="gone"/>/>

<com.phillipcalvin.iconbutton.IconButton<com.phillipcalvin.iconbutton.IconButton
android:id="@+id/take_picture"
android:layout_width="match_parent"
android:layout_height="0dp"
android:layout_margin="4dp"
android:layout_weight="1"
android:drawableRight="@drawable/ic_camera_black_48dp"
android:onClick="takePicture"
android:text="Take Picture"
android:textAppearance="?android:attr/textAppearanceLarge"
app:iconPadding="16dp"/>/>

<com.phillipcalvin.iconbutton.IconButton<com.phillipcalvin.iconbutton.IconButton
android:id="@+id/record_video"
android:layout_width="match_parent"
android:layout_height="0dp"
android:layout_margin="4dp"
android:layout_weight="1"
android:drawableRight="@drawable/ic_videocam_black_48dp"
android:onClick="recordVideo"
android:text="Record Video"
android:textAppearance="?android:attr/textAppearanceLarge"
app:iconPadding="16dp"/>/>

</LinearLayout></LinearLayout>

Here, we are having it take up its share of the space, the same as the two buttons
(android:layout_weight="1") and giving it a yellow backgorund
(android:background="@color/accent"). The
android:textAppearance="?android:attr/textAppearanceLarge" is Android’s
cumbersome way of saying “use the standard large-type font”. Finally,
android:visibility="gone" means that this TextView actually will not be seen,
until we make it visible ourselves in Java code.

We need to add a similar TextView to the res/layout-land/main.xml file, simply
inverting the axes for the width, height, and weight:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="horizontal">>

<TextView<TextView

TUTORIAL: RUNTIME PERMISSION SUPPORT

512

Subscribe to updates at https://commonsware.com/Android Special Creative Commons BY-NC-SA 4.0 Edition

android:id="@+id/breadcrust"
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_weight="1"
android:background="@color/accent"
android:gravity="center"
android:padding="8dp"
android:textAppearance="?android:attr/textAppearanceLarge"
android:visibility="gone"/>/>

<com.phillipcalvin.iconbutton.IconButton<com.phillipcalvin.iconbutton.IconButton
android:id="@+id/take_picture"
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_margin="4dp"
android:layout_weight="1"
android:drawableRight="@drawable/ic_camera_black_48dp"
android:onClick="takePicture"
android:text="Take Picture"
android:textAppearance="?android:attr/textAppearanceLarge"
app:iconPadding="16dp"/>/>

<com.phillipcalvin.iconbutton.IconButton<com.phillipcalvin.iconbutton.IconButton
android:id="@+id/record_video"
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_margin="4dp"
android:layout_weight="1"
android:drawableRight="@drawable/ic_videocam_black_48dp"
android:onClick="recordVideo"
android:text="Record Video"
android:textAppearance="?android:attr/textAppearanceLarge"
app:iconPadding="16dp"/>/>

</LinearLayout></LinearLayout>

Next, add a data member for the breadcrust to MainActivity:

privateprivate TextView breadcrust;

Then, in onCreate() of MainActivity, after the calls to findViewById() to look up
the takePicture and recordVideo buttons, add a third call to findViewById() to
look up the breadcrust:

takePicture=findViewById(R.id.take_picture);
recordVideo=findViewById(R.id.record_video);
breadcrust=(TextView)findViewById(R.id.breadcrust);

Next, in res/values/strings.xml, add in a string resource for the message we want
to show in the breadcrust when we are going to ask the user (again) for permission
to take pictures:

<string<string name="msg_take_picture">>You need to grant us permission! Tap the Take
Picture button again, and we will ask for permission.</string></string>

TUTORIAL: RUNTIME PERMISSION SUPPORT

513

Subscribe to updates at https://commonsware.com/Android Special Creative Commons BY-NC-SA 4.0 Edition

So, what we want to have happen when the user taps the “Take Picture” button is:

• If we have permission to take the picture, take the picture
• If we do not have permission, but the user can see the breadcrust (and so

can see our rationale for requesting the permission), request the permissions
again

• If we do not have permission, and the breadcrust is not visible, then we
need to show the breadcrust with our rationale message

To that end, modify takePicture() on MainActivity to look like this:

publicpublic void takePicture(View v) {
ifif (canTakePicture()) {

takePictureForRealz();
}
elseelse ifif (breadcrust.getVisibility()==View.VISIBLE) {

breadcrust.setVisibility(View.GONE);
requestPermissions(netPermissions(PERMS_TAKE_PICTURE),

RESULT_PERMS_TAKE_PICTURE);
}
elseelse ifif (shouldShowTakePictureRationale()) {

breadcrust.setText(R.string.msg_take_picture);
breadcrust.setVisibility(View.VISIBLE);

}
elseelse {

throwthrow newnew IllegalStateException(getString(R.string.msg_state));
}

}

If breadcrust is visible, we make it GONE again and call requestPermissions. If
breadcrust is not visible, we make it VISIBLE and set its message to the string
resource that we defined.

Your IDE should complain that RESULT_PERMS_TAKE_PICTURE is not defined, so add
that as another constant on MainActivity:

privateprivate staticstatic finalfinal int RESULT_PERMS_TAKE_PICTURE=1340;

Your IDE will also yell about R.string.msg_state not being defined, so add that to
res/values/strings.xml:

<string<string name="msg_state">>And you may ask yourself: well... how did I get
here?</string></string>

Your IDE also should be complaining that there is no netPermissions() method,
which we need to add to MainActivity:

TUTORIAL: RUNTIME PERMISSION SUPPORT

514

Subscribe to updates at https://commonsware.com/Android Special Creative Commons BY-NC-SA 4.0 Edition

privateprivate String[] netPermissions(String[] wanted) {
ArrayList<String> result=newnew ArrayList<String>();

forfor (String perm : wanted) {
ifif (!hasPermission(perm)) {

result.add(perm);
}

}

returnreturn(result.toArray(newnew String[result.size()]));
}

This chunk of code iterates over our input string array of permissions and filters out
those that we already hold. This is needed because a call to requestPermissions()
requests every permission that we ask for… even permissions that the user has
already granted.

For example, suppose that on the initial run of our app, the user granted the
WRITE_EXTERNAL_STORAGE permission but declined to grant the CAMERA permission.
We only want to ask the user for the CAMERA permission. Ideally,
requestPermissions() would look at our array and filter out those permissions that
we were already granted, asking the user for the remainder. Unfortunately,
requestPermissions() does not do that, so we have to do the filtering ourselves, as
we are in netPermissions().

If we call requestPermissions() and the user grants the permissions, we should go
ahead and take the picture. To do that, we need to add some more logic to the
onRequestPermissionsResult() callback method in MainActivity, so alter yours to
look like this:

@Override
publicpublic void onRequestPermissionsResult(int requestCode,

String[] permissions,
int[] grantResults) {

ifif (requestCode==RESULT_PERMS_TAKE_PICTURE) {
ifif (canTakePicture()) {

takePictureForRealz();
}

}
}

Here, if the requestCode is the one we used in our call to requestPermissions()
(RESULT_PERMS_TAKE_PICTURE), and if we have permission now to take a picture, we
take the picture.

TUTORIAL: RUNTIME PERMISSION SUPPORT

515

Subscribe to updates at https://commonsware.com/Android Special Creative Commons BY-NC-SA 4.0 Edition

Now, run the app on your Android 6.0 environment. When the app asks for
permissions on the first run, reject at least one of them. Then, tap the “Take Picture”
button, and you should see the breadcrust appear:

Figure 247: Tutorial App, Showing Breadcrust

If you tap the “Take Picture” button again, the breadcrust will go away, and you will
be prompted for any permissions you did not grant previously. If you reject any
permissions here, you are back where you were; if you accept all permissions, the
app will allow you to take a picture.

Then, uninstall the app.

Step #9: Check for Permissions Before Recording
a Video
So far, we have ignored the “Record Video” button, so let’s start wiring up support for
it as well. The big difference with this button — besides recording a video instead of
taking a picture — is that we are not asking for the RECORD_AUDIO permission up
front.

TUTORIAL: RUNTIME PERMISSION SUPPORT

516

Subscribe to updates at https://commonsware.com/Android Special Creative Commons BY-NC-SA 4.0 Edition

However, that does not change some of the basics, like seeing if we have permission
to record videos and only trying to record videos if we do.

First, add the following method to MainActivity:

privateprivate boolean canRecordVideo() {
returnreturn(canTakePicture() && hasPermission(RECORD_AUDIO));

}

This canRecordVideo() method will return true if we can take a picture and have the
RECORD_AUDIO permission. canTakePicture() already checks the CAMERA and
WRITE_EXTERNAL_STORAGE permissions, so we are just chaining on the additional
permission check.

Then, modify recordVideo() in MainActivity to use this:

publicpublic void recordVideo(View v) {
ifif (canRecordVideo()) {

recordVideoForRealz();
}

}

If you run the sample app, and you tap the “Record Video” button, you should get no
response, as we have never asked for the RECORD_AUDIO permission, so
canRecordVideo() should return false. Then, uninstall the app.

Step #10: Detect If We Should Show Some
Rationale (Again)
We also need to arrange to show the breadcrust, with a video-related message, if we
do not have permission to take a video but could get it.

So, add the following method to MainActivity:

privateprivate boolean shouldShowRecordVideoRationale() {
returnreturn(shouldShowTakePictureRationale() ||

shouldShowRationale(RECORD_AUDIO));
}

Once again, we are checking to see if we need to show a rationale either because of
camera-related permissions (shouldShowTakePictureRationale()) or because of the
RECORD_AUDIO permission.

Then, add a couple of additional branches to the recordVideo() method:

TUTORIAL: RUNTIME PERMISSION SUPPORT

517

Subscribe to updates at https://commonsware.com/Android Special Creative Commons BY-NC-SA 4.0 Edition

publicpublic void recordVideo(View v) {
ifif (canRecordVideo()) {

recordVideoForRealz();
}
elseelse ifif (shouldShowRecordVideoRationale()) {

breadcrust.setText(R.string.msg_record_video);
breadcrust.setVisibility(View.VISIBLE);

}
elseelse {

throwthrow newnew IllegalStateException(getString(R.string.msg_state));
}

}

This will require you to add another string resource to res/values/strings.xml:

<string<string name="msg_record_video">>You need to grant us permission! Tap the Record
Video button again, and we will ask for permission.</string></string>

Step #11: Determine If We Have Ever Asked for
Recording Permission
Of course, we still do not have any code to ask for the RECORD_AUDIO permission.

Importantly, shouldShowRequestPermissionRationale() will return false in two
scenarios:

1. We asked the user for permission and the user declined, while checking the
“don’t ask again” checkbox

2. We never asked the user for the permission

Ideally, Android would help us distinguish between those two cases. Alas, Android
does not. So, we need to track that ourselves. We can do this via another
SharedPreference boolean value, to note when we have asked for the RECORD_AUDIO
permission.

With that in mind, add the following constant to MainActivity:

privateprivate staticstatic finalfinal String PREF_HAVE_REQUESTED_AUDIO="audio";

This will serve as our key for the boolean SharedPrefernces value, much as
PREF_IS_FIRST_RUN is our key for seeing if we have run before.

Then, add the following two methods to MainActivity:

TUTORIAL: RUNTIME PERMISSION SUPPORT

518

Subscribe to updates at https://commonsware.com/Android Special Creative Commons BY-NC-SA 4.0 Edition

privateprivate boolean haveRequestedAudioPermission() {
returnreturn(prefs.getBoolean(PREF_HAVE_REQUESTED_AUDIO, falsefalse));

}

privateprivate void markRequestedAudioPermission() {
prefs.edit().putBoolean(PREF_HAVE_REQUESTED_AUDIO, truetrue).apply();

}

haveRequestedAudioPermission() simply looks up PREF_HAVE_REQUESTED_AUDIO,
with a default of false (meaning we have not asked for permission ever), while
markRequestedAudioPermission() flips that SharedPreferences value to true.

Step #12: (Re-)Request Permissions
Now we can complete the logic for recordVideo() in MainActivity:

publicpublic void recordVideo(View v) {
ifif (canRecordVideo()) {

recordVideoForRealz();
}
elseelse ifif (!haveRequestedAudioPermission() ||

breadcrust.getVisibility()==View.VISIBLE) {
breadcrust.setVisibility(View.GONE);
markRequestedAudioPermission();
requestPermissions(netPermissions(PERMS_ALL),

RESULT_PERMS_RECORD_VIDEO);
}
elseelse ifif (shouldShowRecordVideoRationale()) {

breadcrust.setText(R.string.msg_record_video);
breadcrust.setVisibility(View.VISIBLE);

}
elseelse {

throwthrow newnew IllegalStateException(getString(R.string.msg_state));
}

}

Here, we will request our permissions if either we have never asked before or the
breadcrust is showing. Note that we are not distinguishing between the two uses of
the breadcrust — if the user taps “Take Picture” and the breadcrust appears, and
then the user taps “Record Video”, we will ask for the permissions needed for
recording a video.

Your IDE will complain that you are missing two constants. One is PERMS_ALL, the
list of permissions needed to record a video, so add that to MainActivity:

privateprivate staticstatic finalfinal String[] PERMS_ALL={
CAMERA,
WRITE_EXTERNAL_STORAGE,
RECORD_AUDIO

};

TUTORIAL: RUNTIME PERMISSION SUPPORT

519

Subscribe to updates at https://commonsware.com/Android Special Creative Commons BY-NC-SA 4.0 Edition

Also, we need to add RESULT_PERMS_RECORD_VIDEO to MainActivity:

privateprivate staticstatic finalfinal int RESULT_PERMS_RECORD_VIDEO=1341;

Finally, modify onRequestPermissionsResult() in MainActivity to record the video
if we now have permission to do so:

@Override
publicpublic void onRequestPermissionsResult(int requestCode,

String[] permissions,
int[] grantResults) {

ifif (requestCode==RESULT_PERMS_TAKE_PICTURE) {
ifif (canTakePicture()) {

takePictureForRealz();
}

}
elseelse ifif (requestCode==RESULT_PERMS_RECORD_VIDEO) {

ifif (canRecordVideo()) {
recordVideoForRealz();

}
}

}

If you run the app and tap the “Record Video” button, you should be asked for all
required permissions right away, as we have never asked you for RECORD_AUDIO. If
you decline one or more of the permissions, and tap “Record Video” a second time,
the breadcrust should appear. If you tap “Record Video” a third time, the
breadcrust should vanish and you should be prompted for the permissions again.
Then, uninstall the app.

Step #13: Update the Button Status
If through “Take Picture” or “Record Video” taps, when you are prompted to grant
permissions, you check the “don’t ask again” checkbox… you crash with an
IllegalStateException, which is not exactly ideal. Basically, we fall through all the
cases in takePicture() or recordVideo() and hit the final else block. We really
should fix that.

The best way to fix it would be to disable the buttons once there is no hope of
getting the permissions, short of the user visiting the Settings app and toggling on
those permissions for us.

With that in mind, add the following method to MainActivity:

TUTORIAL: RUNTIME PERMISSION SUPPORT

520

Subscribe to updates at https://commonsware.com/Android Special Creative Commons BY-NC-SA 4.0 Edition

privateprivate boolean wasPermissionRejected(String perm) {
returnreturn(!hasPermission(perm) && !shouldShowRationale(perm));

}

wasPermissionRejected(), for a given permission, will return true if we do not hold
the permission and we should not show the rationale for the permission. true would
mean that we have no means of getting the permission. The exception is if we never
asked for the permission in the first place, which we will have to deal with for
RECORD_AUDIO ourselves.

Next, add the following method to MainActivity:

privateprivate boolean couldPossiblyTakePicture() {
returnreturn(!wasPermissionRejected(CAMERA) &&

!wasPermissionRejected(WRITE_EXTERNAL_STORAGE));
}

couldPossiblyTakePicture() will return true if both the CAMERA or
WRITE_EXTERNAL_STORAGE permissions are still in play. It will return false if either
one of them can no longer be obtained.

Then, add the following method to MainActivity:

privateprivate boolean wasAudioRejected() {
returnreturn(!hasPermission(RECORD_AUDIO) &&

!shouldShowRationale(RECORD_AUDIO) &&
haveRequestedAudioPermission());

}

wasAudioRejected() is a permission-specific rendition of wasPermissionRejected()
with one big difference: we also see if we have ever asked for this permission, via the
haveRequestedAudioPermission() method we added earlier.

Now we can add a couldPossiblyRecordVideo() method to MainActivity to use
that:

privateprivate boolean couldPossiblyRecordVideo() {
returnreturn(couldPossiblyTakePicture() && !wasAudioRejected());

}

Next, we can use all of this to disable our buttons, via an updateButtons() method
that you can add to MainActivity:

privateprivate void updateButtons() {
takePicture.setEnabled(couldPossiblyTakePicture());
recordVideo.setEnabled(couldPossiblyRecordVideo());

}

TUTORIAL: RUNTIME PERMISSION SUPPORT

521

Subscribe to updates at https://commonsware.com/Android Special Creative Commons BY-NC-SA 4.0 Edition

Finally, we need to call that updateButtons() method. One obvious place to call it is
in onRequestPermissionsResult(), as we know that there is a decent chance that
our mix of available permissions will have changed. So, add a call to
updateButtons() to onRequestPermissionsResult() of MainActivity:

@Override
publicpublic void onRequestPermissionsResult(int requestCode,

String[] permissions,
int[] grantResults) {

updateButtons();

ifif (requestCode==RESULT_PERMS_TAKE_PICTURE) {
ifif (canTakePicture()) {

takePictureForRealz();
}

}
elseelse ifif (requestCode==RESULT_PERMS_RECORD_VIDEO) {

ifif (canRecordVideo()) {
recordVideoForRealz();

}
}

}

We also need to handle our initial state, when we launch the app, particularly for
when we launch the app the second or later times (and so will not be asking for
permissions up front). onResume() is a reasonable spot for that, so add an
onResume() method to MainActivity:

@Override
protectedprotected void onResume() {

supersuper.onResume();

updateButtons(); // Settings does not terminate process
// if permission granted, only if revoked

}

The code comment is a reminder that while the Settings app will terminate our
process if the user revokes one of our permissions, Settings will not terminate our
process if the user grants one of our permissions that was previously declined or
revoked. This is another reason to check in onResume() (versus onCreate()): the
user might leave our app, go to Settings, grant us our permissions, and return to our
app.

If you install the app, reject the permissions at the outset, tap either button, and
reject the permissions a second time, checking the “don’t ask again” checkbox, the
buttons should disable. Then, uninstall the app.

TUTORIAL: RUNTIME PERMISSION SUPPORT

522

Subscribe to updates at https://commonsware.com/Android Special Creative Commons BY-NC-SA 4.0 Edition

Step #14: Support Configuration Changes
The final thing that we need to do is take configuration changes into account.

Specifically, we need to track whether the breadcrust is visible, and if so, what
message is displayed. That way, when our activity is destroyed and recreated on a
configuration change, we can restore the breadcrust to its last state as well.

Add the following constant to MainActivity:

privateprivate staticstatic finalfinal String STATE_BREADCRUST=
"com.commonsware.android.perm.tutorial.breadcrust";

We will use STATE_BREADCRUST as the key to the Bundle value that we will store in
the saved instance state.

Then, add onSaveInstanceState() and onRestoreInstanceState() methods to
MainActivity:

@Override
protectedprotected void onSaveInstanceState(Bundle outState) {

supersuper.onSaveInstanceState(outState);

ifif (breadcrust.getVisibility()==View.VISIBLE) {
outState.putCharSequence(STATE_BREADCRUST, breadcrust.getText());

}
}

@Override
protectedprotected void onRestoreInstanceState(Bundle savedInstanceState) {

supersuper.onRestoreInstanceState(savedInstanceState);

CharSequence cs=savedInstanceState.getCharSequence(STATE_BREADCRUST);

ifif (cs!=nullnull) {
breadcrust.setVisibility(View.VISIBLE);
breadcrust.setText(cs);

}
}

If the breadcrust is visible, we save the message from the breadcrust in the Bundle.
In onRestoreInstanceState(), we make the breadcrust be visible if we have a
message, where we also put that message into the breadcrust.

NOTE: This is a sloppy approach that works only because this app only supports one
language. Otherwise, in case of a locale change, we would be saving the message in
the old language in the Bundle and reapplying it, while the rest of our UI is in the

TUTORIAL: RUNTIME PERMISSION SUPPORT

523

Subscribe to updates at https://commonsware.com/Android Special Creative Commons BY-NC-SA 4.0 Edition

new language. A better implementation would track which of the two messages we
need (e.g., via int string resource IDs) so we can reapply the resources, pulling in
the proper translations. That requires a bit more bookkeeping, and this sample is
already annoyingly long. However, just bear in mind that how we are saving the state
here is crude and only effective for this limited scenario.

If you run the app one last time and get the breadcrust to appear, rotating the
device or otherwise triggering a configuration change will not lose the breadcrust,
even though our activity will be destroyed and recreated along the way.

At this point, your MainActivity should resemble the following:

packagepackage com.commonsware.android.perm.tutorialcom.commonsware.android.perm.tutorial;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.content.SharedPreferencesandroid.content.SharedPreferences;
importimport android.content.pm.PackageManagerandroid.content.pm.PackageManager;
importimport android.os.Buildandroid.os.Build;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.Environmentandroid.os.Environment;
importimport android.preference.PreferenceManagerandroid.preference.PreferenceManager;
importimport android.view.Viewandroid.view.View;
importimport android.widget.TextViewandroid.widget.TextView;
importimport android.widget.Toastandroid.widget.Toast;
importimport com.commonsware.cwac.cam2.CameraActivitycom.commonsware.cwac.cam2.CameraActivity;
importimport com.commonsware.cwac.cam2.VideoRecorderActivitycom.commonsware.cwac.cam2.VideoRecorderActivity;
importimport java.io.Filejava.io.File;
importimport java.util.ArrayListjava.util.ArrayList;
importimport staticstatic android.Manifest.permission.CAMERA;
importimport staticstatic android.Manifest.permission.RECORD_AUDIO;
importimport staticstatic android.Manifest.permission.WRITE_EXTERNAL_STORAGE;

publicpublic classclass MainActivityMainActivity extendsextends Activity {
privateprivate staticstatic finalfinal String[] PERMS_ALL={

CAMERA,
WRITE_EXTERNAL_STORAGE,
RECORD_AUDIO

};
privateprivate staticstatic finalfinal String[] PERMS_TAKE_PICTURE={

CAMERA,
WRITE_EXTERNAL_STORAGE

};
privateprivate staticstatic finalfinal int RESULT_PICTURE_TAKEN=1337;
privateprivate staticstatic finalfinal int RESULT_VIDEO_RECORDED=1338;
privateprivate staticstatic finalfinal int RESULT_PERMS_INITIAL=1339;
privateprivate staticstatic finalfinal int RESULT_PERMS_TAKE_PICTURE=1340;
privateprivate staticstatic finalfinal int RESULT_PERMS_RECORD_VIDEO=1341;
privateprivate staticstatic finalfinal String PREF_IS_FIRST_RUN="firstRun";
privateprivate staticstatic finalfinal String PREF_HAVE_REQUESTED_AUDIO="audio";
privateprivate staticstatic finalfinal String STATE_BREADCRUST=

"com.commonsware.android.perm.tutorial.breadcrust";
privateprivate File rootDir;

TUTORIAL: RUNTIME PERMISSION SUPPORT

524

Subscribe to updates at https://commonsware.com/Android Special Creative Commons BY-NC-SA 4.0 Edition

privateprivate View takePicture;
privateprivate View recordVideo;
privateprivate TextView breadcrust;
privateprivate SharedPreferences prefs;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

prefs=PreferenceManager.getDefaultSharedPreferences(thisthis);

takePicture=findViewById(R.id.take_picture);
recordVideo=findViewById(R.id.record_video);
breadcrust=(TextView)findViewById(R.id.breadcrust);

File downloads=Environment
.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWNLOADS);

rootDir=newnew File(downloads, "RuntimePermTutorial");
rootDir.mkdirs();

ifif (isFirstRun() && useRuntimePermissions()) {
requestPermissions(PERMS_TAKE_PICTURE, RESULT_PERMS_INITIAL);

}
}

@Override
protectedprotected void onResume() {

supersuper.onResume();

updateButtons(); // Settings does not terminate process
// if permission granted, only if revoked

}

@Override
protectedprotected void onSaveInstanceState(Bundle outState) {

supersuper.onSaveInstanceState(outState);

ifif (breadcrust.getVisibility()==View.VISIBLE) {
outState.putCharSequence(STATE_BREADCRUST, breadcrust.getText());

}
}

@Override
protectedprotected void onRestoreInstanceState(Bundle savedInstanceState) {

supersuper.onRestoreInstanceState(savedInstanceState);

CharSequence cs=savedInstanceState.getCharSequence(STATE_BREADCRUST);

ifif (cs!=nullnull) {
breadcrust.setVisibility(View.VISIBLE);
breadcrust.setText(cs);

}
}

@Override
protectedprotected void onActivityResult(int requestCode, int resultCode,

TUTORIAL: RUNTIME PERMISSION SUPPORT

525

Subscribe to updates at https://commonsware.com/Android Special Creative Commons BY-NC-SA 4.0 Edition

Intent data) {
Toast t=nullnull;

ifif (resultCode==RESULT_OK) {
ifif (requestCode==RESULT_PICTURE_TAKEN) {

t=Toast.makeText(thisthis, R.string.msg_pic_taken,
Toast.LENGTH_LONG);

}
elseelse ifif (requestCode==RESULT_VIDEO_RECORDED) {

t=Toast.makeText(thisthis, R.string.msg_vid_recorded,
Toast.LENGTH_LONG);

}

t.show();
}

}

@Override
publicpublic void onRequestPermissionsResult(int requestCode,

String[] permissions,
int[] grantResults) {

updateButtons();

ifif (requestCode==RESULT_PERMS_TAKE_PICTURE) {
ifif (canTakePicture()) {

takePictureForRealz();
}

}
elseelse ifif (requestCode==RESULT_PERMS_RECORD_VIDEO) {

ifif (canRecordVideo()) {
recordVideoForRealz();

}
}

}

publicpublic void takePicture(View v) {
ifif (canTakePicture()) {

takePictureForRealz();
}
elseelse ifif (breadcrust.getVisibility()==View.VISIBLE) {

breadcrust.setVisibility(View.GONE);
requestPermissions(netPermissions(PERMS_TAKE_PICTURE),

RESULT_PERMS_TAKE_PICTURE);
}
elseelse ifif (shouldShowTakePictureRationale()) {

breadcrust.setText(R.string.msg_take_picture);
breadcrust.setVisibility(View.VISIBLE);

}
elseelse {

throwthrow newnew IllegalStateException(getString(R.string.msg_state));
}

}

publicpublic void recordVideo(View v) {
ifif (canRecordVideo()) {

recordVideoForRealz();
}
elseelse ifif (!haveRequestedAudioPermission() ||

TUTORIAL: RUNTIME PERMISSION SUPPORT

526

Subscribe to updates at https://commonsware.com/Android Special Creative Commons BY-NC-SA 4.0 Edition

breadcrust.getVisibility()==View.VISIBLE) {
breadcrust.setVisibility(View.GONE);
markRequestedAudioPermission();
requestPermissions(netPermissions(PERMS_ALL),

RESULT_PERMS_RECORD_VIDEO);
}
elseelse ifif (shouldShowRecordVideoRationale()) {

breadcrust.setText(R.string.msg_record_video);
breadcrust.setVisibility(View.VISIBLE);

}
elseelse {

throwthrow newnew IllegalStateException(getString(R.string.msg_state));
}

}

privateprivate boolean isFirstRun() {
boolean result=prefs.getBoolean(PREF_IS_FIRST_RUN, truetrue);

ifif (result) {
prefs.edit().putBoolean(PREF_IS_FIRST_RUN, falsefalse).apply();

}

returnreturn(result);
}

privateprivate boolean haveRequestedAudioPermission() {
returnreturn(prefs.getBoolean(PREF_HAVE_REQUESTED_AUDIO, falsefalse));

}

privateprivate void markRequestedAudioPermission() {
prefs.edit().putBoolean(PREF_HAVE_REQUESTED_AUDIO, truetrue).apply();

}

privateprivate void updateButtons() {
takePicture.setEnabled(couldPossiblyTakePicture());
recordVideo.setEnabled(couldPossiblyRecordVideo());

}

privateprivate boolean hasPermission(String perm) {
ifif (useRuntimePermissions()) {

returnreturn(checkSelfPermission(perm)==PackageManager.PERMISSION_GRANTED);
}

returnreturn(truetrue);
}

privateprivate boolean shouldShowRationale(String perm) {
ifif (useRuntimePermissions()) {

returnreturn(!hasPermission(perm) &&
shouldShowRequestPermissionRationale(perm));

}

returnreturn(falsefalse);
}

privateprivate boolean wasPermissionRejected(String perm) {
returnreturn(!hasPermission(perm) && !shouldShowRationale(perm));

}

TUTORIAL: RUNTIME PERMISSION SUPPORT

527

Subscribe to updates at https://commonsware.com/Android Special Creative Commons BY-NC-SA 4.0 Edition

privateprivate boolean wasAudioRejected() {
returnreturn(!hasPermission(RECORD_AUDIO) &&

!shouldShowRationale(RECORD_AUDIO) &&
haveRequestedAudioPermission());

}

privateprivate boolean canTakePicture() {
returnreturn(hasPermission(CAMERA) &&

hasPermission(WRITE_EXTERNAL_STORAGE));
}

privateprivate boolean canRecordVideo() {
returnreturn(canTakePicture() && hasPermission(RECORD_AUDIO));

}

privateprivate boolean shouldShowTakePictureRationale() {
returnreturn(shouldShowRationale(CAMERA) ||

shouldShowRationale(WRITE_EXTERNAL_STORAGE));
}

privateprivate boolean shouldShowRecordVideoRationale() {
returnreturn(shouldShowTakePictureRationale() ||

shouldShowRationale(RECORD_AUDIO));
}

privateprivate boolean couldPossiblyTakePicture() {
returnreturn(!wasPermissionRejected(CAMERA) &&

!wasPermissionRejected(WRITE_EXTERNAL_STORAGE));
}

privateprivate boolean couldPossiblyRecordVideo() {
returnreturn(couldPossiblyTakePicture() && !wasAudioRejected());

}

privateprivate String[] netPermissions(String[] wanted) {
ArrayList<String> result=newnew ArrayList<String>();

forfor (String perm : wanted) {
ifif (!hasPermission(perm)) {

result.add(perm);
}

}

returnreturn(result.toArray(newnew String[result.size()]));
}

privateprivate boolean useRuntimePermissions() {
returnreturn(Build.VERSION.SDK_INT>Build.VERSION_CODES.LOLLIPOP_MR1);

}

privateprivate void takePictureForRealz() {
Intent i=newnew CameraActivity.IntentBuilder(MainActivity.this)

.to(newnew File(rootDir, "test.jpg"))

.updateMediaStore()

.build();

startActivityForResult(i, RESULT_PICTURE_TAKEN);

TUTORIAL: RUNTIME PERMISSION SUPPORT

528

Subscribe to updates at https://commonsware.com/Android Special Creative Commons BY-NC-SA 4.0 Edition

}

privateprivate void recordVideoForRealz() {
Intent i=newnew VideoRecorderActivity.IntentBuilder(MainActivity.this)

.quality(VideoRecorderActivity.Quality.HIGH)

.sizeLimit(5000000)

.to(newnew File(rootDir, "test.mp4"))

.updateMediaStore()

.forceClassic()

.build();

startActivityForResult(i, RESULT_VIDEO_RECORDED);
}

}

TUTORIAL: RUNTIME PERMISSION SUPPORT

529

Subscribe to updates at https://commonsware.com/Android Special Creative Commons BY-NC-SA 4.0 Edition

