
Copyright © 2014 CommonsWare, LLC

Top Ten Memory 
Management and 

Tuning Tips

Samsung Developers Conference 2014



Copyright © 2014 CommonsWare, LLC

#1: Understand the Problem

● Symptom: Crashing on a Large Allocation
● Example: loading a bitmap

● Cause: Heap Fragmentation
● Dalvik VM does not coalesce free space, unlike Java 

VM
● Eventually, you no longer have access to a large 

enough free block for your allocation



Copyright © 2014 CommonsWare, LLC

A “Moving” Garbage Collector

A B C

In the beginning, there was heap,
and it was good...

The story of “The Three Little Blocks
and the Big Bad OutOfMemoryError”

C Trash compactor



Copyright © 2014 CommonsWare, LLC

Dalvik: Not Moving Quite So Much

A B C

In the beginning, there was heap,
and it was good...

The story of “The Three Little Blocks
and the Big Bad OutOfMemoryError”

Where, o where has my heap space
gone? O where, o where can it be?

B



Copyright © 2014 CommonsWare, LLC

#1: Understand the Problem

● Symptom: Crashing on a Small Allocation
● Example: creating a fairly ordinary object

● Cause: Heap Exhaustion
● Most objects are fairly small
● If you cannot allocate one of those, you truly are 

out of memory



Copyright © 2014 CommonsWare, LLC

“We have to make this fit into 
the hole made for this, using 

nothing but that.”

(from Apollo 13, 1995)



Copyright © 2014 CommonsWare, LLC

#2: Design for Low RAM

● Focus on the Art of the Possible
● ...and get to the impossible sometime after lunch

● Examples
● Massive scrolling lists
● Pre-fetching content to caches
● Panning through huge images



Copyright © 2014 CommonsWare, LLC

#3: Design For Even Lower RAM
● Not All Devices Are Created Equal

● Example: Android One
● Graceful Degradation/Progressive Enhancement

● Work for the low end
● Work well for the high end

● Example: Maps



Copyright © 2014 CommonsWare, LLC

#4: Grok Your Heap

● Key Questions
● How much heap are you using?
● How many instances of your classes are floating 

around?
– ...and why are they still there? Shouldn't they have gone 

home by now?
● What are your objects holding onto?



Copyright © 2014 CommonsWare, LLC

Head to the MAT

● Memory Analysis Tool (MAT)
● Used to examine heap dumps

– From DDMS
– From Debug#dumpHprofData()

● Available as standalone GUI or as Eclipse plugin
● Uses

– Understanding what's using up your heap
– Finding memory leaks



Copyright © 2014 CommonsWare, LLC

Head to the MAT
● Know Your Heap

● What are you allocating and holding onto long-term?
● IOW, what are your key GC roots?

– Static data members
– Threads
– Long-running services

● What can you do to minimize what they reference?



Copyright © 2014 CommonsWare, LLC

Head to the MAT
● Look for Leak Candidates

● Instances of your classes that should not be around
● Bitmaps and byte arrays

● Trace Your GC Roots
● “GC Roots” = “what the @#$%&! is holding onto this 

&%&$ thing?!?”



Copyright © 2014 CommonsWare, LLC

#5: Allocate Only What You Need

● Understand the Use of the Data
● “Data” = bitmaps, database contents, etc.

● Find Ways to Obtain the Required Subset of the 
Data
● “Required” = what you need now, more than what 

you might need sometime later



Copyright © 2014 CommonsWare, LLC

Ponder Bitmap Sizes
● Load the Size You Need
● Example: ListView rows

● Load thumbnails, using inSampleSize on 
BitmapFactory.Options

● Only load full-size image for the ones the user clicks 
upon and brings up some sort of details 
fragment/activity/whatever



Copyright © 2014 CommonsWare, LLC

Ponder Bitmap Pixels
● Default: ARGB_8888

● 4 bytes per pixel
● Alternative: RBG_565

● 2 bytes per pixel = half the memory for same resolution
● No transparency

● Example: ListView rows
● Thumbnails perhaps can get away with less color

depth



Copyright © 2014 CommonsWare, LLC

#6: Avoid Leaks

● “Leak” = Unintended Retained Data
● “Retained” = reachable from a root

– Static data member
– Thread
– Application singleton, ContentProvider, etc.

● “Unintended” = “gosh, that's a lot of stuff”



Copyright © 2014 CommonsWare, LLC

Libraries Over DIY

● Common Subsystems That Might Leak
● Image Loaders
● ORM
● Event Buses

● Use Something Tested Over Something New



Copyright © 2014 CommonsWare, LLC

Choose the Right Context

● Beware of a Custom Application Class
● Singleton, so anything it holds onto cannot be GC'd

● Use Application in the Right Places
● If you are holding onto things in static data 

members that might be associated with a Context, 
use Application, as it is “pre-leaked”

● Failure to do so: leak activities, etc.



Copyright © 2014 CommonsWare, LLC

Watch Your Threads
● Threads = GC Roots

● Anything reachable by a thread cannot be GC'd
● Tips

● Leaking threads = leaking heap
● Ensure threads in pools null out data members
● Beware the everlasting service!

– Its threads, and anything else, cannot be GC'd
– Also screws up multitasking, etc.



Copyright © 2014 CommonsWare, LLC

#7: Scale All Your Caches
● Use ActivityManager and getMemoryClass()

● Plus algorithm for capping your caches to certain 
portion of possible heap

● On top of using weak or soft references
● Beware Multiple Caches

● Library A has a cache, Library B has a cache, etc.
● Sum of all caches must be reasonable



Copyright © 2014 CommonsWare, LLC

Clean Up with onTrimMemory()
● Called On Your Components

● Activity, Service, ContentProvider, Application, etc.
● Objective: Release Some Heap Space



Copyright © 2014 CommonsWare, LLC

Clean Up with onTrimMemory()
● You Are Safe (But Please Be Kind to Others)

● TRIM_MEMORY_RUNNING_MODERATE
● TRIM_MEMORY_RUNNING_LOW
● TRIM_MEMORY_RUNNING_CRITICAL

● You Are Invisible
● TRIM_MEMORY_UI_HIDDEN



Copyright © 2014 CommonsWare, LLC

Clean Up with onTrimMemory()
● Your Time is Running Out

● TRIM_MEMORY_BACKGROUND
● TRIM_MEMORY_MODERATE
● TRIM_MEMORY_COMPLETE

– Also available as onLowMemory() for sub-API Level 14 
devices



Copyright © 2014 CommonsWare, LLC

#8: Recycling is Good For Your Environment

● Object Pools
● Collection of some common resource (objects, 

threads, etc.)
● Access patterns to acquire and release
● Pre-allocated minimum pool contents
● Cap on maximum pool size

– Grow as need to limit, release resources to shrink
– Acquire blocks if needed for other thread to release



Copyright © 2014 CommonsWare, LLC

(Not) Everybody Into the Pool

● Good News!
● Avoid heap fragmentation!
● Slight heap compacting effect via pre-allocation
● Reduce GC processing time
● Minimize constructor CPU time

● Bad News!
● Shades of malloc() and free()



Copyright © 2014 CommonsWare, LLC

Use inBitmap

● BitmapFactory.Options field
● Specifies Bitmap to reuse

● API Level 19+: must be same size or larger than 
bitmap to be loaded

● API Level 18 and lower: must match exactly
● Great for thumbnails, other scenarios with 

constant bitmap sizes



Copyright © 2014 CommonsWare, LLC

#9: Let Your Process Go
● Nuke Your Entire Heap From Orbit

● It's the only way to be sure that you're going to get a 
nice clean heap again

● Avoid the “Must Keep Process Running” Syndrome
● Or use a second process for focused heap for long-

running stuff (but that's cheatin')



Copyright © 2014 CommonsWare, LLC

#10: Cheat with Integrity

● “Cheat” = Cause Problems Elsewhere to Solve 
Heap Pressures

● “with Integrity” = Use as Stop-Gap
● Have a plan for reverting the cheating



Copyright © 2014 CommonsWare, LLC

Cheat: Request Large Heap

● android:largeHeap in <application>
● Probably gives you a larger heap on API Level 

11+
● Depends a bit on device capabilities

● Use getLargeMemoryClass() to determine 
how large your heap is



Copyright © 2014 CommonsWare, LLC

Cheat: Multiple Processes
● Reason #1: More Heap

● Use second process for specific memory-intensive 
operations

● Workaround for pre-Honeycomb devices
● Reason #2: Focused Heap

● Use second process for long-running background services
● May be able to accomplish same basic end with 
onTrimMemory()



Copyright © 2014 CommonsWare, LLC

Cheat: NDK

● Native allocations do not count against Dalvik 
heap

● Use native code for memory-intensive 
operations
● Particularly where you could gain some 

performance from native code
● Example: image processing



Copyright © 2014 CommonsWare, LLC

The Costs of Cheating

● Larger system RAM consumption
● More likely to get blamed by OS, users
● More likely to have background process 

terminated
● Multiple processes = IPC

● CPU and battery consumption
● Keep your protocol relatively coarse-grained



Copyright © 2014 CommonsWare, LLC

The ART of Memory Management

● ART = Android Runtime for 5.0+
● Moving Garbage Collector

● When we're in the background, to coalesce free 
space

● Large Object Space
● Faster releasing of unused bitmaps

● Net = Fewer OutOfMemoryError messages



Copyright © 2014 CommonsWare, LLC

Summary
● Understand the 

Problem
● Design for Low RAM
● Design for Lower RAM
● Grok Your Heap
● Allocate Only What 

You Need

● Avoid Leaks
● Scale All Your Caches
● Let Your Process Go
● Recycling is Good for 

Your Environment
● Cheat with Integrity


