ANDROID 6.0 RUNTIME
PERMISSIONS

(A CODE LAB)

CODE LAB OBJECTIVE

EXPERIMENT WITH ANDROID 6.0 RUNTIME PERMISSIONS

e You do the experimenting!

e Or, let the presenter do the experimenting, while you sit
back and relax, as why should you do all the work?

RUNTIME PERMISSIONS

LEGACY APPS
(targetSdkVersion<23)

e No code changes
e Behavior akin to "app ops"
» User can revoke dangerous permissions at runtime

= Affected APIs return bogus results

RUNTIME PERMISSIONS

MODERN APPS
(targetSdkVersion >=23)

e Same uses-permission elements
e Must request dangerous permissions
= Modal dialog-style Ul

= User can accept, deny, or deny with extreme prejudice

RUNTIME PERMISSION MECHANICS

checkSelfPermission()

e Context and ContextCompat

e Given name of permission, tells you if you have it

RUNTIME PERMISSION MECHANICS

requestPermissions()

e ActivityandActivityCompat

e Given array of permission names, prompts user to
accept/deny them

= One "pane" to dialog per permission group

» Getresultin onRequestPermissionsResult ()

RUNTIME PERMISSION MECHANICS

shouldShowRequestPermissionRationale()

e ActivityandActivityCompat
e Given permission name, returns trueif...
= ...you have never asked for this permission, or...

= ...you asked, the user denied it, but the user has not
blocked further requests

e Use: educate user about upcoming permission request

POSSIBLE RUNTIME PERMISSION
STATES

We have never asked for the permission

We asked for the permission, and it was granted

We asked for the permission, and it was denied

We asked for the permission, and it was denied, and the
user took out a restraining order against us

CODE LAB TIME!

CODE LAB RESOURCES

e Starter project
e PDF with instructions

e Finished project...if you just want to see the results

TASK #0: INSTALL THE ANDROID 6.0
SDK

If you have done this already, great!
If you have not done this already... just sit back and watch!

TASK #1: IMPORT THE STARTER
PROJECT

e RuntimePermTutorial. zip file
e Unzip in some likely spot

e File>New...>Import Project from Android Studio

REVIEWING THE SAMPLE APP

e |andscape and portrait layouts, two big buttons
= Take a picture
= Record avideo
e Dependencies
= |con button library
= CWAC-Cam2 for camera stuff

TASK #2: UPGRADE GRADLE FOR
ANDROID 6.0

e compileSdkVersion 23
e pbuildToolsVersion "23.0.0"
e targetSdkVersion 23

SO, WHAT ARE WE GONNA DO
ABOUT PERMISSIONS?

e Ask for CAMERA and WRITE EXTERNAL STORAGE on
first run, as the app is totally useless without them

e Ask for RECORD AUDIO when they click the "Record
Video" button, as we will not need it before then

e Ask for whatever permissions we do not hold when they
click a button that needs them

e If they deny permissions, then click a button, explain why
we are going to ask for the permissions again

TASK #3: ADD FIELDS FOR FIRST-
RUN DETECTION

TASK #4: INITIALIZE THE
PREFERENCES

Add the following to onCreate():

prefs=PreferenceManager.getDefaultSharedPreferences (this);

TASK #5: USE THE PREFERENCES TO
TRACK THE FIRST RUN

private boolean isFirstRun () {

boolean result=prefs.getBoolean (PREF IS FIRST RUN,

true) ;

if (result) {

prefs.edit () .putBoolean (PREF IS FIRST RUN,

false) .apply () ;
}

return (result) ;

}

TASK #6: CHECK FOR FIRST RUN

Add the following to the bottom of onCreate():

TASK #7: ADD SOME STATIC
IMPORTS

import static android.Manifest.permission.CAMERA;

import static android.Manifest.permission.RECORD AUDIO;
import static android.Manifest.permission.WRITE EXTERNAL STORAGE;

TASK #8: LIST OUR TAKE-PICTURE
PERMISSIONS

TASK #9: ADD OUR TAKE-PICTURE
PERMISSION RESULT CODE

TASK #10: ADD THE SUPPORT
LIBRARY FOR PERMISSION
COMPATIBILITY CODE

TASK #11: ASK FOR PERMISSION

if (isFirstRun()) {
ActivityCompat.requestPermissions (this, PERMS TAKE PICTURE,

RESULT PERMS INITIAL);

TASK ;

:

:

t12: ADD PERMISSION

CALLBACK STUB

@Override

public void onRequestPermissionsResult (int requestCode,

String[] permissions, int[] grantResults) {
// TODO

}

TASK #13: TRY IT OUT!

Run the app ...and it should prompt you for permissions

Press BACK

Run the app again ...and it should not prompt you for
Dermissions

Uninstall the app ...so we start from scratch with
permissions on the next run

TASK #14: CREATE A PERMISSION-
CHECK HELPER METHOD

private boolean hasPermission (String perm) {
return (ContextCompat.checkSelfPermission(this, perm)==

PackageManager.PERMISSION GRANTED) ;

}

TASK #15: SEE IF WE CAN TAKE A
PICTURE

private boolean canTakePicture () {
return (hasPermission (CAMERA) &&

hasPermission (WRITE EXTERNAL STORAGE)) ;

TASK #16: NO, | MEAN SEE IF WE CAN
TAKE A PICTURE

TASK #17: SEE IF WE SHOULD SHOW
SOME RATIONALE

private boolean shouldShowTakePictureRationale() {
return (ActivityCompat.shouldShowRequestPermissionRationale (this,
CAMERA) ||

ActivityCompat.shouldShowRequestPermissionRationale (this,
WRITE EXTERNAL STORAGE)) ;

TASK #18: USE THAT NEW METHOD,
ASIT IS LONELY

public void takePicture (View v) {
if (canTakePicture()) {
takePictureForRealz () ;

}

else if (shouldShowTakePictureRationale()) {
// TODO
}

}

TASK #19: ADD A TEXTVIEW AS OUR
"BREADCRUST"

e @+1d/breadcrust

e Visibilitysettogone
e Add to both layout and Llayout-land

TASK #20: FIND OUR BREADCRUST

e private TextView breadcrust; asfield

e breadcrust=
(TextView)findViewById(R.1d.breadcrust);
inonCreate()

TASK #21: DEFINE A PICTURE
RATIONALE MESSAGE

<string name="msg take picture">You need to grant us

permission! Tap the Take Picture button again, and we will ask
for permission.</string>

TASK #22: DEFINE ANOTHER RESULT
CODE

TASK #23: NET THE PERMISSIONS

e requestPermissions () prompts user for everything
we ask for ...even if they granted the permission to us
before

e Thisis an icky method, too big for this slide

TASK #24: SHOW RATIONALE WHEN
NEEDED

"What is it that you want?"
"I want the code!"
"You can't handle the code!"
(...or at least this slide can't)

TASK #25: DEAL WITH THE RESULTS

e If we requested permissions, and we can take a picture,
g0 ahead

e If we requested permissions, cannot take a picture, but
should show rationale, do that

e Otherwise, we're stuck

e (and, yes, the code is too long for the slide here too)

TASK #26: TRY IT OUT!

Run the app, reject one of the permissions

Tap the picture button, get rationale

Tap the picture button again, reject the permission again

Uninstall the app

TASK #27: ONCE MORE, FROM THE
TOP, WITH VIDEO

TASK #28: ONLY RECORD IF WE CAN

public void recordVideo (View v) {
if (canRecordVideo()) {

recordVideoForRealz () ;

}

}

TASK #29: U CAN NEEDZ VIDEO
RATIONALE?

private boolean shouldShowRecordVideoRationale () {
return (shouldShowTakePictureRationale () ||

ActivityCompat.shouldShowRequestPermissionRationale (this,
RECORD_AUDIO)) ;

TASK #30: ASK ALL THE
PERMISSIONS! AND, UM, RESULTS
TOO!

private static final String[] PERMS ALL={
CAMERA,
WRI TE_EXTERNAL_S TORAGE,

RECORD AUDIO
I
private static final int RESULT PERMS RECORD VIDEO=1341;

TASK #31: REALLY RECORD THE
VIDEO. REALLY.

(pretend that there is some code here)

TASK #32: HANDLE THE RESULTS

(did I mention that runtime permissions are tedious?)

TASK #33: CONFIGURATION
CHANGES. UGH.

private static final String STATE BREADCRUST=
"com.commonsware.android.perm.tutorial.breadcrust";

@Override
protected void onSavelnstanceState (Bundle outState) {
super.onSavelnstanceState (outState);

if (breadcrust.getVisibility()==View.VISIBLE) {
outState.putCharSequence (STATE BREADCRUST,
breadcrust.getText ()) ;

TASK #33%2: CONFIGURATION
CHANGES. UGH.

@Override
protected void onRestorelnstanceState (Bundle savedInstanceState) {
super .onRestorelInstanceState (savedInstanceState) ;

CharSequence cs=savedInstanceState.getCharSequence (STATE BREADCRUS

if (cs!=null) {
breadcrust.setVisibility (View.VISIBLE) ;
breadcrust.setText (cs) ;

