
NetCipher

NetCipher is a library from the Guardian Project to improve the privacy and
security of HTTP network communications. In particular, it makes it easier for your
app to integrate with Orbot, an Android proxy server that forwards HTTP requests
via Tor.

This is a very long chapter. Most likely, you do not need all of it.

It is divided into four main parts:

• An introduction to Tor, Orbot, and NetCipher
• An explanation of how to use a fairly simple API layered atop NetCipher to

add its functionality to your app
• An explanation of the more extensive builder API that is included as part of

this chapter’s set of samples
• An explanation of how that builder API is implemented, showing

NetCipher’s “raw” API

Prerequisites
This chapter assumes that you have read the core chapters of the book, particularly
the one on Internet access. Having read the chapter on SSL is also a very good idea.

Network Security’s Got Onions
Maintaining privacy and security on the Internet, in the face of so-called “advanced
persistent threats”, is a continuous challenge facing many people, particularly those
under threats from hostile forces, ranging from organized crime syndicates to your

2275

https://github.com/guardianproject/NetCipher
https://guardianproject.info/apps/orbot/
https://torproject.org/

average rampaging warlord. Tor was created to help deal with this sort of problem;
Orbot was created to extend Tor to Android.

A Quick Primer on Tor

Originally named The Onion Router, Tor was created by researchers in the US
Naval Research Laboratory back in the mid-1990’s, with an eye towards protecting
US intelligence communications. In 2006, the technology spun out into an
independent non-profit organization, which has continued to improve upon the
core Tor software and expand the reach of Tor. Through packages like the Tor
Browser Bundle, it is fairly easy for at-risk people to start using Tor to help shroud
their communications.

Without getting into the full technical details of Tor — which are well beyond the
scope of this chapter — Tor basically works by routing a request through a series of
relay servers, through a process known as onion routing. Requests are secured
through layers of encryption, to keep any two connected relays from knowing the
full details of the communications. Some relays serve as “exit nodes”, for requests
being made of ordinary Web servers. Certain servers — Tor hidden services — are
only reachable through Tor; requests made of these servers never leave the Tor
network.

Of course, technology like Tor is agnostic in terms of its users and usages, and there
have been plenty of examples of people using Tor for illicit purposes, such as the
Silk Road. This has a tendency to obscure Tor’s benefits to people who need to
remain somewhat hidden online, whether from stalkers or other harassers or from
the security forces of dictatorships.

Introducing Orbot

The entry path into Tor is usually via some sort of proxy server, that a regular
Internet client can connect to. Orbot is one such proxy server, that runs on
Android. Apps can use Orbot’s HTTP or SOCKS proxies to route requests; those
requests will then wind up traversing the Tor network to the end site, whether that
site is on the public Internet (reached from a Tor exit node) or a Tor hidden service.

By default, Orbot is limited to localhost use, meaning that it does not have open
ports that can be reached from other devices on the local WiFi LAN segment (or
some subnet of the mobile carrier, if not on WiFi). For an Android app on the same
device, this is not a problem, and it in fact simplifies things a fair bit, as there is no

NETCIPHER

2276

https://en.wikipedia.org/wiki/Silk_Road_(marketplace)

guesswork as to what the IP address should be for the proxy. As we will see, though,
finding out exactly how to connect to Orbot is a bit tricky, though with some helper
code it is not too bad.

What NetCipher Provides

NetCipher serves two primary roles:

• Make it easier for app developers to tie into Orbot, and Tor by extension
• Provide other stock improvements to network security, particularly

surrounding SSL certificates

Bridge to Orbot

While we know that Orbot will be listening on localhost, we do not necessarily
know the port that it is using for its HTTP proxy. Partly, that is because the user
might configure it manually. Partly, that is because there are occasional conflicts
with Orbot’s default port.

Hence, NetCipher contains some code that will help you find out:

• Is Orbot installed? (and, if not, help get it installed)
• Is Orbot running? (and, if not, help get it running)
• What port is used for the HTTP proxy?

Access to Debian Root Certificate Store

SSL validation relies upon being able to take the SSL certificate for a given HTTP
request and trace it back to a known good “root” certificate. For a self-signed SSL
certificate, it is its own root, which is why you have to teach HTTP APIs about that
self-signed certificate. For more conventional SSL certificates, there is a certificate
“chain” from the one you get in an HTTP response that eventually should lead to a
root certificate.

The problem is that Android root certificates are part of the OS and therefore are
not updated all that frequently, except perhaps on devices that are getting monthly
security updates. However, root certificates change, either because new trusted
ones get created or because previously trusted ones get removed due to security
concerns. While desktop Web browsers often get these changes quickly, apps on
Android have two choices:

NETCIPHER

2277

1. Rely on the system-supplied roster of root certificates and hope for the best
2. Package their own roster of root certificates, and make sure to keep them

updated

NetCipher ships with its own copy of the root certificates used by the Debian
distribution of Linux, and it will use those root certificates by default. These are
newer than the certificates on most Android devices. There are also hooks for you
to supply your own root certificate store, in case you want to update the certificates
frequently but not necessarily update NetCipher itself frequently (e.g., due to
changing APIs).

The Easy API
The Internet/HTTPStacks sample application for this chapter serves two roles.
First, as with most of the book samples, it illustrates how to use certain APIs.
Second, it creates wrapper APIs that simplify the use of NetCipher considerably.
Those wrapper APIs are in the form of separate library modules that you could use
in other apps if so desired.

There are two sample apps in the project: bigsample and tinysample.

This chapter will review the tinysample app, which is based off of prior samples
that show the latest android Stack Overflow questions in a ListView. In this case,
we will use NetCipher to obtain those questions by way of Orbot and Tor, using
HttpURLConnection.

The bigsample app also shows the latest Stack Overflow questions about Android.
However, it does this using a ViewPager with ten different tabs:

• Four examples of using plain HTTP stacks (HttpURLConnection, an
independent packaging of HttpClient, OkHttp3, and Volley)

• Four examples of using those in concert with NetCipher
• Two examples using Retrofit with OkHttp3, one with and one without

NetCipher

Hence, bigsample is a rather complex app, given the sheer number of HTTP stacks
involved and trying to minimize the code duplication between them. Also,
bigsample handles some things that tinysample does not, such as confirming that
our HTTP connection is indeed going by way of Tor (for the NetCipher editions).
The book does not review bigsample, due to sheer size.

NETCIPHER

2278

http://github.com/commonsguy/cw-omnibus/tree/master/Internet/HTTPStacks
http://github.com/commonsguy/cw-omnibus/tree/master/Internet/HTTPStacks

With that in mind, let’s review tinysample and see how to hook into NetCipher
using the library modules in the overall project.

Choose an HTTP Stack

The sample project offers simplified NetCipher configuration for four major HTTP
client implementations (a.k.a., “HTTP stacks”):

• HttpURLConnection
• OkHttp3
• Apache’s independent HttpClient package
• Volley

There are corresponding library modules for each of those HTTP stacks:

HTTP Stack Library Module

HttpURLConnection netcipher-hurl

OkHttp3 netcipher-okhttp3

HttpClient netcipher-httpclient

Volley netcipher-volley

The netcipher-hurl library module not only supports HttpURLConnection, but it
also is a dependency for the other three modules, so if you choose one of those, you
will also need netcipher-hurl. However, that will be added for you automatically
via transitive dependencies, assuming that you have copied the modules (and the
libnetcipher module) into your project.

Add the Dependencies

Given that the project has the necessary modules, you can add a compile
project() statement to your dependencies closure to pull in the NetCipher HTTP
stack integration, along with NetCipher itself.

The tinysample uses HttpURLConnection, so it pulls in :netcipher-hurl as a
dependency:

apply plugin: 'com.android.application'

repositories {
maven {

url "https://s3.amazonaws.com/repo.commonsware.com"
}

}

NETCIPHER

2279

dependencies {
debugCompile 'com.squareup.leakcanary:leakcanary-android:1.4-beta1'
releaseCompile 'com.squareup.leakcanary:leakcanary-android-no-op:1.4-beta1'
compile 'com.google.code.gson:gson:2.5'
compile project(':netcipher-hurl')

}

android {
compileSdkVersion 23
buildToolsVersion "23.0.1"

defaultConfig {
applicationId "com.commonsware.android.http.tiny"

}
}

(from Internet/HTTPStacks/tinysample/build.gradle)

tinysample will use Gson for JSON parsing, plus it uses LeakCanary to check for
leaks, so those are listed as dependencies as well.

Set up OrbotInitializer

OrbotInitializer is a singleton that manages a lot of the asynchronous
communication between your app and Orbot. It is designed to be initialized fairly
early on in your app’s lifecycle. One likely candidate is to have a custom
Application subclass, where you override onCreate() and set up
OrbotInitializer.

tinysample does this in a custom SampleApplication class:

packagepackage com.commonsware.android.http;

importimport android.app.Applicationandroid.app.Application;
importimport com.squareup.leakcanary.LeakCanarycom.squareup.leakcanary.LeakCanary;
importimport info.guardianproject.netcipher.hurl.OrbotInitializerinfo.guardianproject.netcipher.hurl.OrbotInitializer;

publicpublic classclass SampleApplicationSampleApplication extendsextends Application {
@Override
publicpublic void onCreate() {

supersuper.onCreate();

LeakCanary.install(thisthis);
OrbotInitializer.get(thisthis).init();

}
}

(from Internet/HTTPStacks/tinysample/src/main/java/com/commonsware/android/http/SampleApplication.java)

This custom Application also sets up LeakCanary.

NETCIPHER

2280

https://github.com/commonsguy/cw-omnibus/tree/v7.2/Internet/HTTPStacks/tinysample/build.gradle
https://github.com/commonsguy/cw-omnibus/tree/v7.2/Internet/HTTPStacks/tinysample/src/main/java/com/commonsware/android/http/SampleApplication.java

SampleApplication is then tied into the app via the android:name attribute on the
<application> element in the manifest:

<application<application
android:name=".SampleApplication"
android:allowBackup="true"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/Theme.Apptheme">>

(from Internet/HTTPStacks/tinysample/src/main/AndroidManifest.xml)

Choose a Builder

Each module defines a corresponding builder class that can be used to configure
NetCipher for use with that stack, with names based on the classes used with those
HTTP stacks:

HTTP Stack Builder Class

HttpURLConnection StrongConnectionBuilder

OkHttp3 StrongOkHttpClientBuilder

HttpClient StrongHttpClientBuilder

Volley StrongVolleyQueueBuilder

Create a Builder

You will need an instance of your chosen builder class. The simplest way to do that
is to call the forMaxSecurity() static method on the builder class.
forMaxSecurity() takes a Context as a parameter, though it only holds onto the
Application singleton internally, so any Context is safe. forMaxSecurity() returns
a builder configured for the best protection that NetCipher can offer.

Get a Connection

Then, call build() on the builder object. It will take a StrongBuilder.Callback
object as a parameter, typed for whatever HTTP stack you chose. So, for example, if
you went with StrongConnectionBuilder, your callback will be a
StrongBuilder.Callback<HttpURLConnection>.

HTTP Stack Builder Class Connection Class

HttpURLConnection StrongConnectionBuilder HttpURLConnection

OkHttp3 StrongOkHttpClientBuilder OkHttpClient

NETCIPHER

2281

https://github.com/commonsguy/cw-omnibus/tree/v7.2/Internet/HTTPStacks/tinysample/src/main/AndroidManifest.xml

HTTP Stack Builder Class Connection Class

HttpClient StrongHttpClientBuilder HttpClient

Volley StrongVolleyQueueBuilder RequestQueue

You will need to implement three methods on that Callback:

• onConnected() will be passed an instance of your connection class (e.g., an
HttpURLConnection instance), ready for your use, configured to hook into
NetCipher

• onConnectionException() will be passed an IOException, if one of those
occurs while trying to set up your connection

• onTimeout() will be called if Orbot is not installed or we could not connect
to it within 30 seconds

Seeing the Builder in Action

The MainActivity in tinysample creates a StrongConnectionBuilder in
onCreate() and calls build() on it to set up a secured HttpURLConnection:

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

trytry {
StrongConnectionBuilder

.forMaxSecurity(thisthis)

.connectTo(SO_URL)

.build(thisthis);
}
catchcatch (Exception e) {

Toast
.makeText(thisthis, R.string.msg_crash, Toast.LENGTH_LONG)
.show();

Log.e(getClass().getSimpleName(),
"Exception loading SO questions", e);

finish();
}

}

(from Internet/HTTPStacks/tinysample/src/main/java/com/commonsware/android/http/MainActivity.java)

StrongConnectionBuilder also requires that you call connectTo(), before build(),
to indicate the specific URL for which you want an HttpURLConnection. This is
unique among the builders. These sorts of per-builder differences are discussed
later in this chapter.

NETCIPHER

2282

https://github.com/commonsguy/cw-omnibus/tree/v7.2/Internet/HTTPStacks/tinysample/src/main/java/com/commonsware/android/http/MainActivity.java

build() is passed this, referencing MainActivity itself, which is implementing the
StrongBuilder.Callback interface:

publicpublic classclass MainActivityMainActivity extendsextends ListActivity implementsimplements
StrongBuilder.Callback<HttpURLConnection> {

(from Internet/HTTPStacks/tinysample/src/main/java/com/commonsware/android/http/MainActivity.java)

SO_URL, passed into connectTo(), is a Web service request URL from the Stack
Exchange API, looking for Stack Overflow questions tagged with the android tag:

String SO_URL=
"https://api.stackexchange.com/2.1/questions?"

+ "order=desc&sort=creation&site=stackoverflow&tagged=android";

(from Internet/HTTPStacks/tinysample/src/main/java/com/commonsware/android/http/MainActivity.java)

Because MainActivity implements the StrongBuilder.Callback interface, we have
three methods that we need to implement. Two are for error conditions:
onConnectionException() and onTimeout():

@Override
publicpublic void onConnectionException(IOException e) {

Toast
.makeText(thisthis, R.string.msg_crash, Toast.LENGTH_LONG)
.show();

Log.e(getClass().getSimpleName(),
"Exception loading SO questions", e);

finish();
}

@Override
publicpublic void onTimeout() {

Toast
.makeText(thisthis, R.string.msg_timeout, Toast.LENGTH_LONG)
.show();

finish();
}

(from Internet/HTTPStacks/tinysample/src/main/java/com/commonsware/android/http/MainActivity.java)

The more positive case is onConnected(), where we are handed our
HttpURLConnection set up for NetCipher, and we can retrieve our Web service
results. Note that onConnected() will be called on the main application thread, so
you will need to get your connection over to whatever background thread will be
doing your work. In this case, we create a background thread right here to retrieve
the JSON, parse it, and use runOnUiThread() to update the ListActivity with an
ItemsAdapter to show the parsed Stack Overflow questions:

@Override
publicpublic void onConnected(finalfinal HttpURLConnection conn) {

NETCIPHER

2283

https://github.com/commonsguy/cw-omnibus/tree/v7.2/Internet/HTTPStacks/tinysample/src/main/java/com/commonsware/android/http/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.2/Internet/HTTPStacks/tinysample/src/main/java/com/commonsware/android/http/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.2/Internet/HTTPStacks/tinysample/src/main/java/com/commonsware/android/http/MainActivity.java

newnew Thread() {
@Override
publicpublic void run() {

trytry {
InputStream in=conn.getInputStream();
BufferedReader reader=

newnew BufferedReader(newnew InputStreamReader(in));

finalfinal SOQuestions result=
newnew Gson().fromJson(reader, SOQuestions.class);

runOnUiThread(newnew Runnable() {
@Override
publicpublic void run() {

setListAdapter(newnew ItemsAdapter(result.items));
}

});

reader.close();
}
catchcatch (IOException e) {

onConnectionException(e);
}
finallyfinally {

conn.disconnect();
}

}
}.start();

}

(from Internet/HTTPStacks/tinysample/src/main/java/com/commonsware/android/http/MainActivity.java)

Other than initializing OrbotInitializer, setting up the builder, and
implementing StrongBuilder.Callback somewhere to handle the results, the rest
of the code is tied to application logic, not NetCipher itself.

The Rest of the Builder API
The API shown above for getting a NetCipher-secured connection via your favorite
HTTP stack is designed for ease of use. However, as shown, it is not very flexible.

The rest of the builder API offers that flexibility, at the cost of some additional
code.

Common Configuration Methods

The StrongBuilder interface defines the common public API for all four of the
builder classes:

packagepackage info.guardianproject.netcipher.hurl;

NETCIPHER

2284

https://github.com/commonsguy/cw-omnibus/tree/v7.2/Internet/HTTPStacks/tinysample/src/main/java/com/commonsware/android/http/MainActivity.java

importimport android.content.Intentandroid.content.Intent;
importimport java.io.IOExceptionjava.io.IOException;
importimport java.security.KeyManagementExceptionjava.security.KeyManagementException;
importimport java.security.KeyStorejava.security.KeyStore;
importimport java.security.KeyStoreExceptionjava.security.KeyStoreException;
importimport java.security.NoSuchAlgorithmExceptionjava.security.NoSuchAlgorithmException;
importimport java.security.UnrecoverableKeyExceptionjava.security.UnrecoverableKeyException;
importimport java.security.cert.CertificateExceptionjava.security.cert.CertificateException;

publicpublic interfaceinterface StrongBuilderStrongBuilder<T extendsextends StrongBuilder, C> {
/**
* Callback to get a connection handed to you for use,
* already set up for NetCipher.
*
* @param <C> the type of connection created by this builder
*/

interfaceinterface CallbackCallback<C> {
/**
* Called when the NetCipher-enhanced connection is ready
* for use.
*
* @param connection the connection
*/

void onConnected(C connection);

/**
* Called if we tried to connect through to Orbot but failed
* for some reason
*
* @param e the reason
*/

void onConnectionException(IOException e);

/**
* Called if our attempt to get a status from Orbot failed
* after a defined period of time. See statusTimeout() on
* OrbotInitializer.
*/

void onTimeout();
}

/**
* Call this to configure the Tor proxy from the results
* returned by Orbot, using the best available proxy
* (SOCKS if possible, else HTTP)
*
* @return the builder
*/

T withBestProxy();

/**
* @return true if this builder supports HTTP proxies, false
* otherwise
*/

boolean supportsHttpProxy();

/**
* Call this to configure the Tor proxy from the results
* returned by Orbot, using the HTTP proxy.
*

NETCIPHER

2285

* @return the builder
*/
T withHttpProxy();

/**
* @return true if this builder supports SOCKS proxies, false
* otherwise
*/
boolean supportsSocksProxy();

/**
* Call this to configure the Tor proxy from the results
* returned by Orbot, using the SOCKS proxy.
*
* @return the builder
*/

T withSocksProxy();

/**
* Replaces system-supplied keystore with one based on Debian.
* Use this if you are keeping your app up to date with the
* latest NetCipher library and are supporting older devices
* (e.g., Android 4.4 and lower).
*
* @return the builder
* @throws CertificateException
* @throws NoSuchAlgorithmException
* @throws KeyStoreException
* @throws IOException
* @throws UnrecoverableKeyException
* @throws KeyManagementException
*/

T withDefaultKeystore()
throwsthrows CertificateException, NoSuchAlgorithmException,
KeyStoreException, IOException, UnrecoverableKeyException,
KeyManagementException;

/**
* Applies your own custom keystore, instead of either the
* system-supplied keystore or the default NetCipher keystore.
*
* @param keystore a loaded KeyStore ready for use
* @return the builder
*/

T withKeystore(KeyStore keystore)
throwsthrows KeyStoreException, NoSuchAlgorithmException,
IOException, CertificateException,
UnrecoverableKeyException, KeyManagementException;

/**
* Call this if you want a weaker set of supported ciphers,
* because you are running into compatibility problems with
* some server due to a cipher mismatch. The better solution
* is to fix the server.
*
* @return the builder
*/

T withWeakCiphers();

/**

NETCIPHER

2286

* Builds a connection, applying the configuration already
* specified in the builder.
*
* @param status status Intent from OrbotInitializer
* @return the connection
* @throws IOException
*/

C build(Intent status) throwsthrows IOException;

/**
* Asynchronous version of build(), one that uses OrbotInitializer
* internally to get the status.
*
* @param callback Callback to get a connection handed to you
* for use, already set up for NetCipher
*/

void build(Callback<C> callback);
}

(from Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/StrongBuilder.java)

Proxy Configuration

Five of the methods are tied into choosing what proxy protocol should be used with
Orbot.

forMaxSecurity(), under the covers, uses withBestProxy(), which chooses the
best proxy for the situation. Right now, the implementation chooses the SOCKS
proxy where that is supported, falling back to the HTTP proxy where it is not.

The supportsHttpProxy() and supportsSocksProxy() methods indicate whether a
given builder supports these proxy types.

The withHttpProxy() and withSocksProxy() methods tell the builder that you
want to use that specific proxy. Use these with care, making sure that the proxy you
want is supported. withBestProxy() is a far better choice overall.

Other Configuration

forMaxSecurity() also calls withDefaultKeystore(), indicating that we should try
to use NetCipher’s built-in roster of root certificates. If you prefer, you can call
withKeystore() and supply your own KeyStore of root certificates to use. Note that
you will be responsible for initializing this KeyStore yourself, which usually
involves baking a password into your app.

withWeakCiphers() expands the roster of SSL ciphers that NetCipher allows the
HTTPS connection to use. Normally, NetCipher tries to avoid ciphers with known

NETCIPHER

2287

https://github.com/commonsguy/cw-omnibus/tree/v7.2/Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/StrongBuilder.java

security issues. However, that may cause problems with some servers, if NetCipher
and the server cannot negotiate a common cipher. withWeakCiphers() allows
NetCipher to use more ciphers, to perhaps overcome the negotiation problem, with
the cost of possibly weaker security.

Differences Between the Stacks

While each of the builders supports the StrongBuilder API, there are some
differences between the implementations.

StrongConnectionBuilder

As noted previously, before calling build(), you need to call connectTo() to supply
the URL (as a String or URL) that you want to connect to. The other builders give
you objects that you can reuse across many requests (e.g., OkHttp3’s
OkHttpClient), but that was not possible with HttpURLConnection.

To help make this a bit easier, StrongConnectionBuilder supports the copy
constructor. You can create a master StrongConnectionBuilder with your base
configuration, then make a copy, call connectTo() on the copy, then call build()
on the copy, throwing away the copy when you are done.

StrongHttpClientBuilder

The builder for Apache’s independent packaging of HttpClient for Android extends
Apache’s own HttpClientBuilder. As a result, you can call all the normal
HttpClientBuilder methods in addition to calling the StrongBuilder methods.
The noteworthy exception is that the standard zero-parameter build() offered by
HttpClientBuilder is not supported.

StrongOkHttpClientBuilder

OkHttp3 does not support SOCKS proxies. Hence, supportsSocksProxy() returns
false, causing withBestProxy() to fall back to the HTTP proxy.

StrongVolleyQueueBuilder

This builder class adheres to the StrongBuilder API without any changes.

NETCIPHER

2288

https://github.com/square/okhttp/issues/2315

Inside the Builder API
If all you want to do is use that code, you are set.

If you want to understand how that code works, or you want to understand more
about NetCipher’s own API, this section is for you.

What We Need to Do to Use NetCipher

There are two key steps to plug your code into NetCipher: adding the root
certificate keystore and adding the Orbot proxy to your HTTP client for whatever
HTTP implementation that you are using (e.g., an OkHttpClient for OkHttp3).
Adding the proxy is a bit involved, simply because Orbot is a separate app, which
may or may not be installed or running at the present time.

Adding the Keystore

First, you need to add a keystore that contains those Debian root certificates. This
involves creating a TrustManager that is based on those certificates. But, as
developers have become aware, it is important to create a TrustManager that is
well-written, as Google is kicking insecure implementations out of the Play Store.

The Debian root certificate keystore, at the moment, is packaged as a raw resource
in NetCipher. This poses some problems for other library modules that try to use
NetCipher due to the way that R values get generated. The sample app for this
project has a separate copy of that keystore in assets/, to make it easier for both
application and library modules to reference this keystore.

The problem is that this keystore will itself become out of date. It will be important
for you to keep NetCipher up to date, so your copy of the keystore can be current
with respect to any new or removed root certificates.

I Can Haz Orbot?

Orbot may not be installed. In that case, you cannot use it, unless the user elects to
install it.

NetCipher’s OrbotHelper class has an isOrbotInstalled() static method that
returns a simple boolean indicating whether or not Orbot is installed.

NETCIPHER

2289

https://commonsware.com/blog/2016/02/22/about-x509trustmanager-emails.html

If it is not, OrbotHelper has another static method, getOrbotInstallIntent(),
that returns an Intent that you can use with startActivity() to help the user
install Orbot from the Play Store or F-Droid.

So, for example, if Orbot is installed, you continue to set it up, but if Orbot is not
installed, you offer an action bar item or a Preference that, when tapped, triggers
the install Intent to go install Orbot.

Getting the Proxy Port

If Orbot is installed, it may or may not be running, and even if it is running, it may
or may not be fully connected yet to Tor. Orbot takes a while to establish a Tor
connection, which is a common issue with Tor clients.

Orbot supports a status broadcast. If you send this broadcast, Orbot will send
broadcasts back to you based on the changes in Orbot’s status.

Once Orbot has a Tor connection, the status return broadcast will tell you the
proxy port, based on user configuration and any dynamic changes that were needed
to avoid collisions with other apps.

OrbotHelper has a requestStartTor() static method that sends the broadcast.
OrbotInitializer uses a different approach, to improve upon OrbotHelper in a few
ways:

• Managing the BroadcastReceiver needed to listen for the response(s) from
Orbot

• Caching the Orbot status across configuration changes
• Confirming that the installed copy of Orbot is indeed really Orbot, and not

a hacked version signed with the wrong signing key

We will explore the implementation of OrbotInitializer later in this chapter.

Confirming the Connection

Given that Orbot is running and says that it has a Tor connection, and given that
you have a port number for the Orbot proxy server, you can teach your HTTP client
API about that proxy. The details of that vary by HTTP client, and we will explore
those details later in the chapter.

NETCIPHER

2290

https://f-droid.org/

However, for your user’s sake, it would be a good idea to try to confirm that you
have all of this set up properly and that your HTTP client will be communicating
over Tor.

There does not appear to be a formal way of going about this, unfortunately. The
bigsample sample app demonstrates hitting a Tor status URL that returns a JSON
payload, indicating whether or not your request came via Tor.

Inside OrbotInitializer

To understand the builders, we must first understand OrbotInitializer.
OrbotInitializer can:

• install Orbot if it is not available
• start Orbot if it is available
• get the status information about Orbot, including proxy ports to use

These things require IPC, such as a broadcast to Orbot to start it up (if needed) and
get its status. IPC in Android is largely asynchronous, and that gets to be a pain
when it comes to configuration changes destroying and recreating our activities
and fragments.

The Interfaces

OrbotInitializer relies upon two interfaces for notifying builders (or other
clients) about our connection with Orbot.

One is StatusCallback, for overall status events:

packagepackage info.guardianproject.netcipher.hurl;

importimport android.content.Intentandroid.content.Intent;

/**
* Callback interface used for reporting Orbot status
*/

publicpublic interfaceinterface StatusCallbackStatusCallback {
/**
* Called when Orbot is operational
*
* @param statusIntent an Intent containing information about
* Orbot, including proxy ports
*/

void onEnabled(Intent statusIntent);

/**

NETCIPHER

2291

* Called when Orbot reports that it is starting up
*/

void onStarting();

/**
* Called when Orbot reports that it is shutting down
*/

void onStopping();

/**
* Called when Orbot reports that it is no longer running
*/

void onDisabled();

/**
* Called if our attempt to get a status from Orbot failed
* after a defined period of time. See statusTimeout() on
* OrbotInitializer.
*/

void onStatusTimeout();

/**
* Called if Orbot is not yet installed. Usually, you handle
* this by checking the return value from init() on OrbotInitializer
* or calling isInstalled() on OrbotInitializer. However, if
* you have need for it, if a callback is registered before
* an init() call determines that Orbot is not installed, your
* callback will be called with onNotYetInstalled().
*/

void onNotYetInstalled();
}

(from Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/StatusCallback.java)

The three callback methods that will concern developers most here are
onEnabled() (Orbot is ready to go), onStatusTimeout() (Orbot is installed but we
did not get a response in a timely fashion), and onNotYetInstalled() (Orbot does
not exist on the device).

There is also InstallCallback, an inner interface of OrbotInitializer, that
handles events related to the Orbot installation process:

/**
* Callback interface used for reporting the results of an
* attempt to install Orbot
*/

publicpublic interfaceinterface InstallCallbackInstallCallback {
void onInstalled();
void onInstallTimeout();

}

(from Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java)

NETCIPHER

2292

https://github.com/commonsguy/cw-omnibus/tree/v7.2/Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/StatusCallback.java
https://github.com/commonsguy/cw-omnibus/tree/v7.2/Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java

Setting up OrbotInitializer

OrbotInitializer is a singleton:

privateprivate staticstatic volatilevolatile OrbotInitializer INSTANCE;

(from Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java)

Clients access that singleton via the static get() method, which lazy-creates the
OrbotInitializer if needed:

synchronizedsynchronized publicpublic staticstatic OrbotInitializer get(Context ctxt) {
ifif (INSTANCE==nullnull) {

INSTANCE=newnew OrbotInitializer(ctxt);
}

returnreturn(INSTANCE);
}

(from Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java)

The OrbotInitializer private constructor holds onto the Application singleton
(for use as non-leakable Context) and a Handler tied to the main application
thread. You can set that up by calling getMainLooper() on the Looper class
(returning the Looper tied to the main application thread), then passing that
Looper instance to the Handler constructor:

privateprivate OrbotInitializer(Context ctxt) {
thisthis.ctxt=ctxt.getApplicationContext();
thisthis.handler=newnew Handler(Looper.getMainLooper());

}

(from Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java)

OrbotInitializer maintains collections of StatusCallback and InstallCallback
implementations:

privateprivate WeakSet<StatusCallback> statusCallbacks=newnew WeakSet<>();
privateprivate WeakSet<InstallCallback> installCallbacks=newnew WeakSet<>();

(from Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java)

Here, WeakSet is a utility class that wraps a HashSet and holds onto all of its
elements through WeakReferences:

packagepackage info.guardianproject.netcipher.hurl;

importimport java.lang.ref.WeakReferencejava.lang.ref.WeakReference;
importimport java.util.HashSetjava.util.HashSet;
importimport java.util.Iteratorjava.util.Iterator;

NETCIPHER

2293

https://github.com/commonsguy/cw-omnibus/tree/v7.2/Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java
https://github.com/commonsguy/cw-omnibus/tree/v7.2/Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java
https://github.com/commonsguy/cw-omnibus/tree/v7.2/Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java
https://github.com/commonsguy/cw-omnibus/tree/v7.2/Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java

importimport java.util.Setjava.util.Set;

// inspired by https://github.com/explodes/easy-android/blob/master/src/io/explod/android/collections/weak/
WeakList.java

/**
* Weak implementation of a set. Elements are held weakly and
* therefore may vanish due to GC, but that is all hidden by the
* implementation.
*
* @param <T> The type of data that the set "holds"
*/

publicpublic classclass WeakSetWeakSet<T> implementsimplements Iterable<T> {
privateprivate finalfinal Set<WeakReference<T>> items=

newnew HashSet<WeakReference<T>>();

/**
* Add an item to the set. Under the covers, this gets wrapped
* in a WeakReference.
*
* @param item item to add
* @return true if added successfully, false otherwise
*/

publicpublic boolean add(T item) {
returnreturn(items.add(newnew WeakReference<T>(item)));

}

/**
* Removes an item from the set. Under the covers, uses
* the WeakIterator to find this, also cleaning out dead
* wood along the way.
*
* @param item item to remove
* @return true if item removed successfully, false otherwise
*/

publicpublic boolean remove(T item) {
finalfinal Iterator<T> iterator=iterator();

whilewhile (iterator.hasNext()) {
ifif (iterator.next()==item) {

iterator.remove();

returnreturn(truetrue);
}

}

returnreturn(falsefalse);
}

/**
* Used to support Iterable, so a WeakSet can be used in
* Java enhanced for syntax
*
* @return a WeakIterator on the set contents
*/

@Override
publicpublic Iterator<T> iterator() {

returnreturn(newnew WeakIterator());
}

NETCIPHER

2294

// inspired by https://github.com/explodes/easy-android/blob/master/src/io/explod/android/collections/
weak/WeakIterator.java

/**
* Iterator over the contents of the WeakSet, skipping over
* GC'd items
*/

classclass WeakIteratorWeakIterator implementsimplements Iterator<T> {
privateprivate finalfinal Iterator<WeakReference<T>> itemIterator;
privateprivate T nextItem=nullnull;

/**
* Constructor. Creates the itemIterator that is the
* "real" iterator for the underlying collection. Calls
* moveToNext() to set the iterator (and nextItem) to the
* first non-GC'd entry.
*/

WeakIterator() {
itemIterator=items.iterator();
moveToNext();

}

/**
* @return true if we have data, false otherwise
*/

@Override
publicpublic boolean hasNext() {

returnreturn(nextItem!=nullnull);
}

/**
* Moves to the next item, skipping over GC'd items.
*
* @return the current item before the move
*/

@Override
publicpublic T next() {

T result=nextItem;

moveToNext();

returnreturn(result);
}

/**
* Removes whatever was last returned by next()
*/

@Override
publicpublic void remove() {

itemIterator.remove();
}

privateprivate void moveToNext() {
nextItem=nullnull;

whilewhile (nextItem==nullnull && itemIterator.hasNext()) {
nextItem=itemIterator.next().get();

ifif (nextItem==nullnull) {
remove();

NETCIPHER

2295

}
}

}
}

}

(from Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/WeakSet.java)

This way, even if a client of OrbotInitializer fails to unregister a listener, we will
not have a memory leak.

OrbotInitializer then has add/remove methods to manipulate those collections
of callbacks. removeStatusCallback(), addInstallCallback() and
removeInstallCallback() just update the collections using add() and remove().
addStatusCallback() does that and a little bit more, as we will see in the next
section.

There are also statusTimeout() and installTimeout() configuration methods, to
override the default timeouts for status checks and installations:

/**
* Sets how long of a delay, in milliseconds, after trying
* to get a status from Orbot before we give up.
* Defaults to 30000ms = 30 seconds = 0.000347222 days
*
* @param timeoutMs delay period in milliseconds
* @return the singleton, for chaining
*/

publicpublic OrbotInitializer statusTimeout(long timeoutMs) {
statusTimeoutMs=timeoutMs;

returnreturn(thisthis);
}

/**
* Sets how long of a delay, in milliseconds, after trying
* to install Orbot do we assume that it's not happening.
* Defaults to 60000ms = 60 seconds = 1 minute = 1.90259e-6 years
*
* @param timeoutMs delay period in milliseconds
* @return the singleton, for chaining
*/

publicpublic OrbotInitializer installTimeout(long timeoutMs) {
installTimeoutMs=timeoutMs;

returnreturn(thisthis);
}

(from Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java)

NETCIPHER

2296

https://github.com/commonsguy/cw-omnibus/tree/v7.2/Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/WeakSet.java
https://github.com/commonsguy/cw-omnibus/tree/v7.2/Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java

Monitoring Orbot Status

The key method of OrbotInitializer is init(), designed to be called as part of
setting up OrbotInitializer at the outset:

/**
* Initializes the connection to Orbot, revalidating that it
* is installed and requesting fresh status broadcasts.
*
* @return true if initialization is proceeding, false if
* Orbot is not installed
*/

publicpublic boolean init() {
Intent orbot=OrbotHelper.getOrbotStartIntent(ctxt);
ArrayList<String> hashes=newnew ArrayList<String>();

hashes.add("A4:54:B8:7A:18:47:A8:9E:D7:F5:E7:0F:BA:6B:BA:96:F3:EF:29:C2:6E:09:81:20:4F:E3:47:BF:23:1D:FD:5B");

hashes.add("A7:02:07:92:4F:61:FF:09:37:1D:54:84:14:5C:4B:EE:77:2C:55:C1:9E:EE:23:2F:57:70:E1:82:71:F7:CB:AE");

orbot=
SignatureUtils.validateBroadcastIntent(ctxt, orbot,

hashes, falsefalse);

ifif (orbot!=nullnull) {
isInstalled=truetrue;
handler.postDelayed(onStatusTimeout, statusTimeoutMs);
ctxt.registerReceiver(orbotStatusReceiver,

newnew IntentFilter(OrbotHelper.ACTION_STATUS));
ctxt.sendBroadcast(orbot);

}
elseelse {

isInstalled=falsefalse;

forfor (StatusCallback cb : statusCallbacks) {
cb.onNotYetInstalled();

}
}

returnreturn(isInstalled);
}

(from Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java)

NetCipher’s OrbotHelper class has a getOrbotStartIntent() method that
constructs an Intent designed to start up Orbot and get its status.

We then use SignatureUtils, from the CWAC-Security library, to validate that
Orbot is installed and, more importantly, that it is the real Orbot, and not some
hacked-and-repackaged edition that somebody installed by accident from
somewhere. validateBroadcastIntent() takes:

NETCIPHER

2297

https://github.com/commonsguy/cw-omnibus/tree/v7.2/Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java

• a Context
• the Intent that you would like to broadcast, typically with
setPackageName() to narrow it down to a particular app (here, handled by
getOrbotStartIntent())

• the SHA-256 hash (or hashes) of the public signing key for the app
• a boolean indicating what you want to have happen if a signature mismatch

is found, where true means “throw a SecurityException” and false means
“just ignore it”

There are three possible responses from validateBroadcastIntent():

• a SecurityException, if you passed true for the fourth parameter, which
would mean an invalid copy of Orbot was installed

• null, which means we could not find Orbot (or, if you passed false, we
could not find a valid copy of Orbot)

• a copy of the original Intent, augmented with the ComponentName of the
actual BroadcastReceiver that should receive this “broadcast”

In that latter case, we know that Orbot is installed and properly signed.

For many apps, there will be only one SHA-256 hash of the signing key, in which
case you just pass the String of that hash. However, some distribution channels for
you to use different signing keys. Amazon is one, as they will sign it with their own
key. F-Droid is another, as they want to build the app from source, and therefore
wind up signing it with their key. Orbot is distributed through the Play Store and F-
Droid, and so there are two hashes to consider.

If Orbot is installed and validated, we:

• note that Orbot is installed; clients can call isOrbotInstalled() to check
this

• use the Handler to get control after the designed timeout
• register a BroadcastReceiver to get the response from Orbot
• send the broadcast using the refined Intent from
validateBroadcastIntent()

Conversely, if Orbot is not installed, we note that fact and call
onNotYetInstalled() on any StatusCallback objects that are registered at present.

NETCIPHER

2298

init() returns a boolean, indicating if Orbot was installed. Between that and
isOrbotInstalled(), clients can know whether or not Orbot needs to be installed.
We will see how to install Orbot in the next section.

Ideally, we get our status broadcast delivered to the orbotStatusReceiver:

privateprivate BroadcastReceiver orbotStatusReceiver=newnew BroadcastReceiver() {
@Override
publicpublic void onReceive(Context ctxt, Intent intent) {

ifif (TextUtils.equals(intent.getAction(),
OrbotHelper.ACTION_STATUS)) {
String status=intent.getStringExtra(OrbotHelper.EXTRA_STATUS);

ifif (status.equals(OrbotHelper.STATUS_ON)) {
lastStatusIntent=intent;
handler.removeCallbacks(onStatusTimeout);

forfor (StatusCallback cb : statusCallbacks) {
cb.onEnabled(intent);

}
}
elseelse ifif (status.equals(OrbotHelper.STATUS_OFF)) {

forfor (StatusCallback cb : statusCallbacks) {
cb.onDisabled();

}
}
elseelse ifif (status.equals(OrbotHelper.STATUS_STARTING)) {

forfor (StatusCallback cb : statusCallbacks) {
cb.onStarting();

}
}
elseelse ifif (status.equals(OrbotHelper.STATUS_STOPPING)) {

forfor (StatusCallback cb : statusCallbacks) {
cb.onStopping();

}
}

}
}

};

(from Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java)

If this is the status Intent, and the status is STATUS_ON, we:

• cache this Intent for later use
• cancel the timeout
• call onEnabled() on the StatusCallback objects

This receiver may be called with other statuses, indicating that Orbot is warming
up and such. Those are passed along to the StatusCallback objects using
appropriate methods (e.g., onStarting()).

NETCIPHER

2299

https://github.com/commonsguy/cw-omnibus/tree/v7.2/Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java

If we do not get response by the time of the timeout, the onStatusTimeout
Runnable is triggered by the Handler and our postDelayed() call:

privateprivate Runnable onStatusTimeout=newnew Runnable() {
@Override
publicpublic void run() {

ctxt.unregisterReceiver(orbotStatusReceiver);

forfor (StatusCallback cb : statusCallbacks) {
cb.onStatusTimeout();

}
}

};

(from Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java)

Here, we just unregister the receiver (as we assume Orbot is not going to respond)
and call onStatusTimeout() on all the StatusCallback objects.

If Orbot is ready to go, when we call onEnabled() on the StatusCallback objects,
we pass along the Intent itself that was sent to us via the broadcast. That Intent
contains extras that detail the proxy ports that are available. There is a build()
method on StrongBuilder that takes the Intent and configures the HTTP
connection, using that proxy information. We will examine that method, and the
rest of the StrongBuilder family of builders, later in this chapter.

Installing Orbot

If desired, the app can call installOrbot() on the OrbotInitializer singleton, to
kick off installation of Orbot:

publicpublic void installOrbot(Activity host) {
handler.postDelayed(onInstallTimeout, installTimeoutMs);

IntentFilter filter=
newnew IntentFilter(Intent.ACTION_PACKAGE_ADDED);

filter.addDataScheme("package");

ctxt.registerReceiver(orbotInstallReceiver, filter);
host.startActivity(OrbotHelper.getOrbotInstallIntent(ctxt));

}

(from Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java)

Here, we:

• set up a separate timeout

NETCIPHER

2300

https://github.com/commonsguy/cw-omnibus/tree/v7.2/Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java
https://github.com/commonsguy/cw-omnibus/tree/v7.2/Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java

• register a receiver for ACTION_PACKAGE_ADDED, so we can watch for newly-
installed apps during the period before the timeout

• start up the Play Store or F-Droid using an OrbotHelper-supplied Intent

Note that for ACTION_PACKAGE_ADDED and related package broadcasts, you have to
have addDataScheme("package") in the IntentFilter. Otherwise, you will not
receive the broadcast.

With luck, the user will install Orbot, and we will find out about that in
orbotInstallReceiver:

privateprivate BroadcastReceiver orbotInstallReceiver=newnew BroadcastReceiver() {
@Override
publicpublic void onReceive(Context ctxt, Intent intent) {

ifif (TextUtils.equals(intent.getAction(),
Intent.ACTION_PACKAGE_ADDED)) {
String pkgName=intent.getData().getEncodedSchemeSpecificPart();

ifif (OrbotHelper.ORBOT_PACKAGE_NAME.equals(pkgName)) {
isInstalled=truetrue;
handler.removeCallbacks(onInstallTimeout);
ctxt.unregisterReceiver(orbotInstallReceiver);

forfor (InstallCallback cb : installCallbacks) {
cb.onInstalled();

}

init();
}

}
}

};

(from Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java)

If this is the right broadcast, and if the package that was installed is Orbot, we:

• cancel the timeout
• unregister the receiver
• call onInstalled() on all of the InstallCallback objects
• call init() to try to get Orbot running and get its status

But, if the timeout is reached first, onInstallTimeout gets triggered:

privateprivate Runnable onInstallTimeout=newnew Runnable() {
@Override
publicpublic void run() {

ctxt.unregisterReceiver(orbotInstallReceiver);

forfor (InstallCallback cb : installCallbacks) {
cb.onInstallTimeout();

NETCIPHER

2301

https://github.com/commonsguy/cw-omnibus/tree/v7.2/Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java

}
}

};

(from Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java)

Here, we just unregister the receiver and call onInstallTimeout() on the
InstallCallback objects, letting the caller know that the user elected not to install
Orbot (or perhaps got distracted by a kitten).

Inside the NetCipher Builders

You may have chosen some other HTTP stack, beyond the ones shown here. Or,
you may have other reasons why you want to understand the “nuts and bolts” of
attaching NetCipher to an HTTP stack. The following sections will review the
Strong...Builder family of classes, to explain what is done in each to teach that
HTTP stack how to use the Orbot proxy and how to use NetCipher’s root certificate
store.

Each of the HTTP stack NetCipher integrations is isolated in its own library module
in the sample project. Each depends on a central libnetcipher library module,
containing the latest master branch of NetCipher itself. Ideally, the library modules
would rely upon a NetCipher artifact. However, the most recent such artifact
(info.guardianproject.netcipher:netcipher:1.2) was released in June 2015 and
is significantly behind the master branch.

Each of those library modules also depends on the HTTP stack itself, with the
exception of the HttpURLConnection code, as HttpURLConnection is part of the
Android SDK.

StrongBuilderBase

Three out of the four Strong...Builder classes extend from a StrongBuilderBase
class, supplied in netcipher-hurl. The exception is StrongHttpClientBuilder, as
it extends HttpClient’s own HttpClientBuilder and uses the delegate pattern to
wrap a StrongBuilderBase:

packagepackage info.guardianproject.netcipher.hurl;

importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport java.io.IOExceptionjava.io.IOException;
importimport java.io.InputStreamjava.io.InputStream;
importimport java.net.InetSocketAddressjava.net.InetSocketAddress;
importimport java.net.Proxyjava.net.Proxy;

NETCIPHER

2302

https://github.com/commonsguy/cw-omnibus/tree/v7.2/Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java

importimport java.security.KeyManagementExceptionjava.security.KeyManagementException;
importimport java.security.KeyStorejava.security.KeyStore;
importimport java.security.KeyStoreExceptionjava.security.KeyStoreException;
importimport java.security.NoSuchAlgorithmExceptionjava.security.NoSuchAlgorithmException;
importimport java.security.UnrecoverableKeyExceptionjava.security.UnrecoverableKeyException;
importimport java.security.cert.CertificateExceptionjava.security.cert.CertificateException;
importimport javax.net.ssl.SSLContextjavax.net.ssl.SSLContext;
importimport javax.net.ssl.SSLSocketFactoryjavax.net.ssl.SSLSocketFactory;
importimport javax.net.ssl.TrustManagerFactoryjavax.net.ssl.TrustManagerFactory;
importimport info.guardianproject.netcipher.proxy.OrbotHelperinfo.guardianproject.netcipher.proxy.OrbotHelper;

/**
* Builds an HttpUrlConnection that connects via Tor through
* Orbot.
*/

abstractabstract publicpublic classclass
StrongBuilderBaseStrongBuilderBase<T extendsextends StrongBuilderBase, C>
implementsimplements StrongBuilder<T, C> {
privateprivate finalfinal staticstatic String PROXY_HOST="127.0.0.1";
privateprivate finalfinal staticstatic String TRUSTSTORE_TYPE="BKS";
privateprivate finalfinal staticstatic String TRUSTSTORE_PASSWORD="changeit";
protectedprotected finalfinal Context ctxt;
protectedprotected Proxy.Type proxyType;
protectedprotected SSLContext sslContext=nullnull;
protectedprotected boolean useWeakCiphers=falsefalse;

/**
* Standard constructor.
*
* @param ctxt any Context will do; the StrongBuilderBase
* will hold onto the Application singleton
*/

publicpublic StrongBuilderBase(Context ctxt) {
thisthis.ctxt=ctxt.getApplicationContext();

}

/**
* Copy constructor.
*
* @param original builder to clone
*/

publicpublic StrongBuilderBase(StrongBuilderBase original) {
thisthis.ctxt=original.ctxt;
thisthis.proxyType=original.proxyType;
thisthis.sslContext=original.sslContext;
thisthis.useWeakCiphers=original.useWeakCiphers;

}

/**
* {@inheritDoc}
*/

@Override
publicpublic T withBestProxy() {

ifif (supportsSocksProxy()) {
returnreturn(withSocksProxy());

}
elseelse {

returnreturn(withHttpProxy());
}

}

NETCIPHER

2303

/**
* {@inheritDoc}
*/

@Override
publicpublic boolean supportsHttpProxy() {

returnreturn(truetrue);
}

/**
* {@inheritDoc}
*/

@Override
publicpublic T withHttpProxy() {

proxyType=Proxy.Type.HTTP;

returnreturn((T)thisthis);
}

/**
* {@inheritDoc}
*/

@Override
publicpublic boolean supportsSocksProxy() {

returnreturn(truetrue);
}

/**
* {@inheritDoc}
*/

@Override
publicpublic T withSocksProxy() {

proxyType=Proxy.Type.SOCKS;

returnreturn((T)thisthis);
}

/**
* {@inheritDoc}
*/

@Override
publicpublic T withDefaultKeystore()

throwsthrows CertificateException, NoSuchAlgorithmException,
KeyStoreException, IOException, UnrecoverableKeyException,
KeyManagementException {

/*
NOTE: Trying to use the raw resource from netcipher
itself proved to be extremely troublesome. This module
has a copy of the same keystore BKS file in assets/, and
this code pulls that keystore from that location.

*/

InputStream in=ctxt
.getResources()
.getAssets()
.open("debiancacerts.bks");

KeyStore trustStore=KeyStore.getInstance(TRUSTSTORE_TYPE);

NETCIPHER

2304

trustStore.load(in, TRUSTSTORE_PASSWORD.toCharArray());

returnreturn(withKeystore(trustStore));
}

/**
* {@inheritDoc}
*/

@Override
publicpublic T withKeystore(KeyStore keystore)

throwsthrows KeyStoreException, NoSuchAlgorithmException,
IOException, CertificateException,
UnrecoverableKeyException, KeyManagementException {

TrustManagerFactory tmf=TrustManagerFactory
.getInstance(TrustManagerFactory.getDefaultAlgorithm());

tmf.init(keystore);
sslContext=SSLContext.getInstance("TLSv1");
sslContext.init(nullnull, tmf.getTrustManagers(), nullnull);

returnreturn((T)thisthis);
}

/**
* {@inheritDoc}
*/

@Override
publicpublic T withWeakCiphers() {

useWeakCiphers=truetrue;

returnreturn((T)thisthis);
}

publicpublic SSLContext getSSLContext() {
returnreturn(sslContext);

}

publicpublic int getSocksPort(Intent status) {
ifif (status.getStringExtra(OrbotHelper.EXTRA_STATUS)

.equals(OrbotHelper.STATUS_ON)) {
returnreturn (status.getIntExtra(OrbotHelper.EXTRA_PROXY_PORT_SOCKS,

9050));
}

returnreturn(-1);
}

publicpublic int getHttpPort(Intent status) {
ifif (status.getStringExtra(OrbotHelper.EXTRA_STATUS)

.equals(OrbotHelper.STATUS_ON)) {
returnreturn (status.getIntExtra(OrbotHelper.EXTRA_PROXY_PORT_HTTP,

8118));
}

returnreturn(-1);
}

protectedprotected SSLSocketFactory buildSocketFactory() {
SSLSocketFactory result=

NETCIPHER

2305

newnew SniFriendlySocketFactory(sslContext.getSocketFactory(),
useWeakCiphers);

returnreturn(result);
}

publicpublic Proxy buildProxy(Intent status) {
Proxy result=nullnull;

ifif (status.getStringExtra(OrbotHelper.EXTRA_STATUS)
.equals(OrbotHelper.STATUS_ON)) {
ifif (proxyType==Proxy.Type.SOCKS) {

result=newnew Proxy(Proxy.Type.SOCKS,
newnew InetSocketAddress(PROXY_HOST, getSocksPort(status)));

}
elseelse ifif (proxyType==Proxy.Type.HTTP) {

result=newnew Proxy(Proxy.Type.HTTP,
newnew InetSocketAddress(PROXY_HOST, getHttpPort(status)));

}
}

returnreturn(result);
}

@Override
publicpublic void build(finalfinal Callback<C> callback) {

OrbotInitializer.get(ctxt).addStatusCallback(
newnew OrbotInitializer.SimpleStatusCallback() {

@Override
publicpublic void onEnabled(Intent statusIntent) {

OrbotInitializer.get(ctxt).removeStatusCallback(thisthis);
trytry {

callback.onConnected(build(statusIntent));
}
catchcatch (IOException e) {

callback.onConnectionException(e);
}

}

@Override
publicpublic void onNotYetInstalled() {

OrbotInitializer.get(ctxt).removeStatusCallback(thisthis);
callback.onTimeout();

}

@Override
publicpublic void onStatusTimeout() {

OrbotInitializer.get(ctxt).removeStatusCallback(thisthis);
callback.onTimeout();

}
});

}
}

(from Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/StrongBuilderBase.java)

The declaration of the class is rather unusual: StrongBuilderBase uses Java
generics to declare that it has a template class T… that extends from itself. This is

NETCIPHER

2306

https://github.com/commonsguy/cw-omnibus/tree/v7.2/Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/StrongBuilderBase.java

because StrongBuilderBase implements the builder API pattern and we want
subclasses to also be able to add builder-style methods. The problem with the
builder API and a statically-typed language like Java is that if the builder methods
on StrongBuilderBase simply return this, that is typed as an instance of
StrongBuilderBase, not the concrete subclass. This “type erasure” means that you
may not be able to call builder methods in the order you want. Specifically, if you
tried calling a subclass’ builder method after calling a StrongBuilderBase builder
method, the compiler would complain, as it would not recognize the subclass’
builder method as being available on an instance of StrongBuilderBase. The T
extends StrongBuilderBase declaration, and having the StrongBuilderBase
builder methods return (T)this, ensures that we do not lose the subclass’ type
when we call builder methods. In other words, welcome to Java.

The withHttpProxy() and withSocksProxy() methods simply note what you want,
for later use in the build() methods. Similarly, withWeakCiphers() simply notes
the fact that you want this setting for later use.

The withDefaultKeystore() method loads the NetCipher default Debian-based
root certificate keystore, to use to configure our SSL connections. In libnetcipher,
this keystore is a raw resource. However, using resources from one library to
another can be a problem. In particular, the author of this book could not get
Gradle and Android Studio to expose R values from libnetcipher in the other
library modules. To work around this, netcipher-hurl and netcipher-httpclient
have a copy of the same keystore as an asset, which does not rely on R values and
therefore can be accessed without issue. withDefaultKeystore() gets an
InputStream on that asset and uses it to initialize a KeyStore, using a hardcoded
password.

withDefaultKeystore() then delegates to a withKeystore() method. You might
use this yourself, instead of withDefaultKeystore(). For example, if NetCipher is
not updated sufficiently frequently, you might elect to have your own keystore of
known-safe root certificates; you could load those into the Strong...Builder
classes using withKeystore(). withKeystore() sets up a TrustManagerFactory,
initializes from the KeyStore, then creates an SSLContext and initializes it from the
TrustManager array supplied from the TrustManagerFactory. Later on, we can use
that SSLContext when configuring the HTTP stacks.

getSocksPort() and getHttpPort() look inside the status Intent and return the
ports for those proxies, defaulting to 9050 and 8118, respectively.

NETCIPHER

2307

buildSocketFactory() creates an SSLSocketFactory based on the SSLContext and
the useWeakCiphers flag. However, rather than use a stock SSLSocketFactory
implementation, buildSocketFactory() returns an SniFriendlySocketFactory.
This wraps around an SSLSocketFactory and adds in smarts to allow Server Name
Indication (SNI) to work on Android. SniFriendlySocketFactory also extends a
NetCipher-supplied TlsOnlySocketFactory, which handles the cipher negotiation
process, including whether or not to support weaker ciphers based on
configuration.

buildProxy() configures a Proxy object based on the preferred proxy type, the port
for that proxy, and whether Orbot is actually up and running. This, along with
buildSocketFactory(), gets used by the subclasses of StrongBuilderBase for
configuring the various HTTP stacks.

The asynchronous build() implementation does not depend upon a particular
HTTP stack, and so it is implemented in StrongBuilderBase. It uses
OrbotInitializer to get the status Intent. OrbotInitializer will call
onEnabled() immediately if the status Intent was retrieved earlier and cached;
otherwise, it will call onEnabled() once we have a status Intent to use.
onEnabled(), in turn, uses the stack-specific build() method to provide the
connection to the Callback.

HttpURLConnection

The netcipher-hurl library module only depends upon libnetcipher, since
HttpURLConnection is a part of the Android SDK.

StrongConnectionBuilder extends the StrongBuilderBase class from the previous
section:

packagepackage info.guardianproject.netcipher.hurl;

importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport java.io.IOExceptionjava.io.IOException;
importimport java.net.HttpURLConnectionjava.net.HttpURLConnection;
importimport java.net.MalformedURLExceptionjava.net.MalformedURLException;
importimport java.net.Proxyjava.net.Proxy;
importimport java.net.URLjava.net.URL;
importimport java.net.URLConnectionjava.net.URLConnection;
importimport java.security.KeyManagementExceptionjava.security.KeyManagementException;
importimport java.security.KeyStoreExceptionjava.security.KeyStoreException;
importimport java.security.NoSuchAlgorithmExceptionjava.security.NoSuchAlgorithmException;
importimport java.security.UnrecoverableKeyExceptionjava.security.UnrecoverableKeyException;
importimport java.security.cert.CertificateExceptionjava.security.cert.CertificateException;
importimport javax.net.ssl.HttpsURLConnectionjavax.net.ssl.HttpsURLConnection;

NETCIPHER

2308

importimport javax.net.ssl.SSLSocketFactoryjavax.net.ssl.SSLSocketFactory;

/**
* Builds an HttpUrlConnection that connects via Tor through
* Orbot.
*/

publicpublic classclass StrongConnectionBuilderStrongConnectionBuilder
extendsextends StrongBuilderBase<StrongConnectionBuilder, HttpURLConnection> {
privateprivate URL url;

/**
* Creates a StrongConnectionBuilder using the strongest set
* of options for security. Use this if the strongest set of
* options is what you want; otherwise, create a
* builder via the constructor and configure it as you see fit.
*
* @param ctxt any Context will do
* @return a configured StrongConnectionBuilder
* @throws Exception
*/

staticstatic publicpublic StrongConnectionBuilder forMaxSecurity(Context ctxt)
throwsthrows Exception {
returnreturn(newnew StrongConnectionBuilder(ctxt)

.withDefaultKeystore()

.withBestProxy());
}

/**
* Creates a builder instance.
*
* @param ctxt any Context will do; builder will hold onto
* Application context
*/

publicpublic StrongConnectionBuilder(Context ctxt) {
supersuper(ctxt);

}

/**
* Copy constructor.
*
* @param original builder to clone
*/

publicpublic StrongConnectionBuilder(StrongConnectionBuilder original) {
supersuper(original);
thisthis.url=original.url;

}

/**
* Sets the URL to build a connection for.
*
* @param url the URL
* @return the builder
* @throws MalformedURLException
*/

publicpublic StrongConnectionBuilder connectTo(String url)
throwsthrows MalformedURLException {
connectTo(newnew URL(url));

returnreturn(thisthis);
}

NETCIPHER

2309

/**
* Sets the URL to build a connection for.
*
* @param url the URL
* @return the builder
*/

publicpublic StrongConnectionBuilder connectTo(URL url) {
thisthis.url=url;

returnreturn(thisthis);
}

/**
* {@inheritDoc}
*/

@Override
publicpublic HttpURLConnection build(Intent status) throwsthrows IOException {

URLConnection result;
Proxy proxy=buildProxy(status);

ifif (proxy==nullnull) {
result=url.openConnection();

}
elseelse {

result=url.openConnection(proxy);
}

ifif (result instanceofinstanceof HttpsURLConnection && sslContext!=nullnull) {
SSLSocketFactory tlsOnly=buildSocketFactory();
HttpsURLConnection https=(HttpsURLConnection)result;

https.setSSLSocketFactory(tlsOnly);
}

returnreturn((HttpURLConnection)result);
}

}

(from Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/StrongConnectionBuilder.java)

There are two flavors of the connectTo() method, one taking a simple String, the
other taking a URL. The String edition simply creates a URL and delegates to the URL
edition, which holds onto your chosen URL.

The reason why we need the URL comes from how we use the Proxy. We have to
supply that via a call to openConnection() on a URL, which implies that we have a
URL to work with. That is handled in the build() method, which also calls
setSSLSocketFactory() on the HttpsURLConnection (for SSL requests), so we can
handle the cipher negotiation and enable SNI support.

NETCIPHER

2310

https://github.com/commonsguy/cw-omnibus/tree/v7.2/Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/StrongConnectionBuilder.java

OkHttp3/Retrofit

The netcipher-okhttp library module depends on:

• the libnetcipher library module, for NetCipher
• the netcipher-hurl library module, for some code sharing with the
HttpURLConnection implementation

• OkHttp3 itself (com.squareup.okhttp3:okhttp)

StrongOkHttpClientBuilder extends from the StrongBuilderBase described
above:

packagepackage info.guardianproject.netcipher.okhttp3;

importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport info.guardianproject.netcipher.hurl.StrongBuilderBaseinfo.guardianproject.netcipher.hurl.StrongBuilderBase;
importimport okhttp3.OkHttpClientokhttp3.OkHttpClient;

/**
* Creates an OkHttpClient using NetCipher configuration. Use
* build() if you have no other OkHttpClient configuration
* that you need to perform. Or, use applyTo() to augment an
* existing OkHttpClient.Builder with NetCipher.
*/

publicpublic classclass StrongOkHttpClientBuilderStrongOkHttpClientBuilder extendsextends
StrongBuilderBase<StrongOkHttpClientBuilder, OkHttpClient> {
/**
* Creates a StrongOkHttpClientBuilder using the strongest set
* of options for security. Use this if the strongest set of
* options is what you want; otherwise, create a
* builder via the constructor and configure it as you see fit.
*
* @param ctxt any Context will do
* @return a configured StrongOkHttpClientBuilder
* @throws Exception
*/

staticstatic publicpublic StrongOkHttpClientBuilder forMaxSecurity(Context ctxt)
throwsthrows Exception {
returnreturn(newnew StrongOkHttpClientBuilder(ctxt)

.withDefaultKeystore()

.withBestProxy());
}

/**
* Creates a builder instance.
*
* @param ctxt any Context will do; builder will hold onto
* Application context
*/

publicpublic StrongOkHttpClientBuilder(Context ctxt) {
supersuper(ctxt);

}

NETCIPHER

2311

/**
* Copy constructor.
*
* @param original builder to clone
*/

publicpublic StrongOkHttpClientBuilder(StrongOkHttpClientBuilder original) {
supersuper(original);

}

/**
* OkHttp3 does not support SOCKS proxies:
* https://github.com/square/okhttp/issues/2315
*
* @return false
*/

@Override
publicpublic boolean supportsSocksProxy() {

returnreturn(falsefalse);
}

/**
* {@inheritDoc}
*/

@Override
publicpublic OkHttpClient build(Intent status) {

returnreturn(applyTo(newnew OkHttpClient.Builder(), status).build());
}

/**
* Adds NetCipher configuration to an existing OkHttpClient.Builder,
* in case you have additional configuration that you wish to
* perform.
*
* @param builder a new or partially-configured OkHttpClient.Builder
* @return the same builder
*/

publicpublic OkHttpClient.Builder applyTo(OkHttpClient.Builder builder, Intent status) {
returnreturn(builder

.sslSocketFactory(buildSocketFactory())

.proxy(buildProxy(status)));
}

}

(from Internet/HTTPStacks/netcipher-okhttp3/src/main/java/info/guardianproject/netcipher/okhttp3/StrongOkHttpClientBuilder.java)

Note that since OkHttp3 does not support SOCKS proxies, supportsSocksProxy()
is overridden to return false.

StrongOkHttpClientBuilder adds just two builder methods:

• build() returns an OkHttpClient using a stock OkHttpClient.Builder. Use
this if you do not need to configure anything else on OkHttp3.

• applyTo() returns an OkHttpClient by adding configuration to a supplied
OkHttpClient.Builder. Specifically, we use sslSocketFactory() to use the

NETCIPHER

2312

https://github.com/commonsguy/cw-omnibus/tree/v7.2/Internet/HTTPStacks/netcipher-okhttp3/src/main/java/info/guardianproject/netcipher/okhttp3/StrongOkHttpClientBuilder.java

SSLContext for our root certificates, and we use proxy() to set up the Orbot
proxy.

Volley

The netcipher-volley library module depends on:

• the libnetcipher library module, for NetCipher
• the netcipher-hurl library module, for some code sharing with the
HttpURLConnection implementation

• the officialy packaged version of Volley, as Google still is not shipping this
themselves (com.mcxiaoke.volley:library)

The Volley code is set up a bit differently than the other two. Volley already has the
notion of separating out its HTTP implementation. By default, Volley will use its
HurlStack class on Android 2.3+ and its HttpStack class on older devices. Those, in
turn, use HttpURLConnection and Android’s built-in HttpClient implementation,
respectively. However, the newRequestQueue() method on the Volley class has a
version that takes a stack implementation as a parameter, so you can substitute in
your own implementation.

So, we have StrongHurlStack, which extends HurlStack and does the same sort of
work as we did with HttpURLConnection back in StrongConnectionBuilder:

packagepackage info.guardianproject.netcipher.volley;

importimport com.android.volley.toolbox.HurlStackcom.android.volley.toolbox.HurlStack;
importimport java.io.IOExceptionjava.io.IOException;
importimport java.net.HttpURLConnectionjava.net.HttpURLConnection;
importimport java.net.Proxyjava.net.Proxy;
importimport java.net.URLjava.net.URL;
importimport javax.net.ssl.SSLSocketFactoryjavax.net.ssl.SSLSocketFactory;

/**
* Volley HurlStack subclass that adds in NetCipher protections.
* It is simplest to create one through StrongVolleyQueueBuilder.
*/

publicpublic classclass StrongHurlStackStrongHurlStack extendsextends HurlStack {
privateprivate finalfinal Proxy proxy;

StrongHurlStack(SSLSocketFactory sslSocketFactory, Proxy proxy) {
supersuper(nullnull, sslSocketFactory);

thisthis.proxy=proxy;
}

@Override
protectedprotected HttpURLConnection createConnection(URL url)

throwsthrows IOException {

NETCIPHER

2313

HttpURLConnection result;

ifif (proxy==nullnull) {
result=(HttpURLConnection)url.openConnection();

}
elseelse {

result=(HttpURLConnection)url.openConnection(proxy);
}

// following from original HurlStack
// Workaround for the M release HttpURLConnection not observing the
// HttpURLConnection.setFollowRedirects() property.
// https://code.google.com/p/android/issues/detail?id=194495
result.setInstanceFollowRedirects(HttpURLConnection.getFollowRedirects());

returnreturn(result);
}

}

(from Internet/HTTPStacks/netcipher-volley/src/main/java/info/guardianproject/netcipher/volley/StrongHurlStack.java)

StrongVolleyQueueBuilder then uses newRequestQueue() to opt into using
StrongHurlStack:

packagepackage info.guardianproject.netcipher.volley;

importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport com.android.volley.RequestQueuecom.android.volley.RequestQueue;
importimport com.android.volley.toolbox.Volleycom.android.volley.toolbox.Volley;
importimport info.guardianproject.netcipher.hurl.StrongBuilderBaseinfo.guardianproject.netcipher.hurl.StrongBuilderBase;

/**
* Builds an HttpUrlConnection that connects via Tor through
* Orbot.
*/

publicpublic classclass StrongVolleyQueueBuilderStrongVolleyQueueBuilder extendsextends
StrongBuilderBase<StrongVolleyQueueBuilder, RequestQueue> {
/**
* Creates a StrongVolleyQueueBuilder using the strongest set
* of options for security. Use this if the strongest set of
* options is what you want; otherwise, create a
* builder via the constructor and configure it as you see fit.
*
* @param ctxt any Context will do
* @return a configured StrongVolleyQueueBuilder
* @throws Exception
*/

staticstatic publicpublic StrongVolleyQueueBuilder forMaxSecurity(Context ctxt)
throwsthrows Exception {
returnreturn(newnew StrongVolleyQueueBuilder(ctxt)

.withDefaultKeystore()

.withBestProxy());
}

/**
* Creates a builder instance.
*

NETCIPHER

2314

https://github.com/commonsguy/cw-omnibus/tree/v7.2/Internet/HTTPStacks/netcipher-volley/src/main/java/info/guardianproject/netcipher/volley/StrongHurlStack.java

* @param ctxt any Context will do; builder will hold onto
* Application context
*/

publicpublic StrongVolleyQueueBuilder(Context ctxt) {
supersuper(ctxt);

}

/**
* Copy constructor.
*
* @param original builder to clone
*/

publicpublic StrongVolleyQueueBuilder(StrongVolleyQueueBuilder original) {
supersuper(original);

}

/**
* {@inheritDoc}
*/

@Override
publicpublic RequestQueue build(Intent status) {

returnreturn(Volley.newRequestQueue(ctxt,
newnew StrongHurlStack(buildSocketFactory(), buildProxy(status))));

}
}

(from Internet/HTTPStacks/netcipher-volley/src/main/java/info/guardianproject/netcipher/volley/StrongVolleyQueueBuilder.java)

HttpClient

StrongHttpClientBuilder is more complicated:

• Partly because the HttpClient API is extremely verbose
• Partly because StrongHttpClientBuilder extends HttpClientBuilder,

adding in StrongBuilder support via delegation
• Partly because it is based on existing NetCipher code of indeterminate

utility

packagepackage info.guardianproject.netcipher.httpclient;

importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport java.io.IOExceptionjava.io.IOException;
importimport java.security.KeyManagementExceptionjava.security.KeyManagementException;
importimport java.security.KeyStorejava.security.KeyStore;
importimport java.security.KeyStoreExceptionjava.security.KeyStoreException;
importimport java.security.NoSuchAlgorithmExceptionjava.security.NoSuchAlgorithmException;
importimport java.security.UnrecoverableKeyExceptionjava.security.UnrecoverableKeyException;
importimport java.security.cert.CertificateExceptionjava.security.cert.CertificateException;
importimport cz.msebera.android.httpclient.HttpHostcz.msebera.android.httpclient.HttpHost;
importimport cz.msebera.android.httpclient.client.HttpClientcz.msebera.android.httpclient.client.HttpClient;
importimport cz.msebera.android.httpclient.config.Registrycz.msebera.android.httpclient.config.Registry;
importimport cz.msebera.android.httpclient.config.RegistryBuildercz.msebera.android.httpclient.config.RegistryBuilder;
importimport cz.msebera.android.httpclient.conn.HttpClientConnectionManagercz.msebera.android.httpclient.conn.HttpClientConnectionManager;
importimport cz.msebera.android.httpclient.conn.socket.ConnectionSocketFactorycz.msebera.android.httpclient.conn.socket.ConnectionSocketFactory;

NETCIPHER

2315

https://github.com/commonsguy/cw-omnibus/tree/v7.2/Internet/HTTPStacks/netcipher-volley/src/main/java/info/guardianproject/netcipher/volley/StrongVolleyQueueBuilder.java

importimport cz.msebera.android.httpclient.conn.socket.PlainConnectionSocketFactorycz.msebera.android.httpclient.conn.socket.PlainConnectionSocketFactory;
importimport cz.msebera.android.httpclient.impl.client.CloseableHttpClientcz.msebera.android.httpclient.impl.client.CloseableHttpClient;
importimport cz.msebera.android.httpclient.impl.client.HttpClientBuildercz.msebera.android.httpclient.impl.client.HttpClientBuilder;
importimport cz.msebera.android.httpclient.impl.conn.PoolingHttpClientConnectionManagercz.msebera.android.httpclient.impl.conn.PoolingHttpClientConnectionManager;
importimport info.guardianproject.netcipher.hurl.OrbotInitializerinfo.guardianproject.netcipher.hurl.OrbotInitializer;
importimport info.guardianproject.netcipher.hurl.StrongBuilderinfo.guardianproject.netcipher.hurl.StrongBuilder;
importimport info.guardianproject.netcipher.hurl.StrongBuilderBaseinfo.guardianproject.netcipher.hurl.StrongBuilderBase;

/**
* Subclass of HttpClientBuilder that adds configuration
* options and defaults for NetCipher, improving the security
* of socket connections.
*/

publicpublic classclass StrongHttpClientBuilderStrongHttpClientBuilder extendsextends HttpClientBuilder implementsimplements
StrongBuilder<StrongHttpClientBuilder, HttpClient> {
finalfinal staticstatic String PROXY_HOST="127.0.0.1";
privateprivate Simple netCipher;
privateprivate finalfinal Context ctxt;

/**
* Creates a StrongHttpClientBuilder using the strongest set
* of options for security. Use this if the strongest set of
* options is what you want; otherwise, create a
* builder via the constructor and configure it as you see fit.
*
* @param ctxt any Context will do
* @return a configured StrongHttpClientBuilder
* @throws Exception
*/

staticstatic publicpublic StrongHttpClientBuilder forMaxSecurity(Context ctxt)
throwsthrows Exception {
returnreturn(newnew StrongHttpClientBuilder(ctxt)

.withDefaultKeystore());
}

/**
* Standard constructor
*
* @param ctxt any Context will do; we hold onto the Application
* singleton
*/

publicpublic StrongHttpClientBuilder(Context ctxt) {
thisthis.ctxt=ctxt.getApplicationContext();
netCipher=newnew Simple(ctxt);

}

/**
* Copy constructor.
*
* @param original builder to clone
*/

publicpublic StrongHttpClientBuilder(StrongHttpClientBuilder original) {
thisthis.netCipher=newnew Simple(original.netCipher);
thisthis.ctxt=original.ctxt;

}

@Override
publicpublic CloseableHttpClient build() {

throwthrow newnew IllegalStateException(
"Use a one-parameter build() method please");

NETCIPHER

2316

}

/**
* {@inheritDoc}
*/

@Override
publicpublic HttpClient build(Intent status) throwsthrows IOException {

init(status);

returnreturn(supersuper.build());
}

@Override
publicpublic void build(finalfinal Callback<HttpClient> callback) {

OrbotInitializer.get(ctxt).addStatusCallback(
newnew OrbotInitializer.SimpleStatusCallback() {

@Override
publicpublic void onEnabled(Intent statusIntent) {

OrbotInitializer.get(ctxt).removeStatusCallback(thisthis);
trytry {

callback.onConnected(build(statusIntent));
}
catchcatch (IOException e) {

callback.onConnectionException(e);
}

}

@Override
publicpublic void onStatusTimeout() {

OrbotInitializer.get(ctxt).removeStatusCallback(thisthis);
callback.onTimeout();

}
});

}

/**
* {@inheritDoc}
*/

@Override
publicpublic StrongHttpClientBuilder withBestProxy() {

netCipher.withBestProxy();

returnreturn(thisthis);
}

/**
* {@inheritDoc}
*/

@Override
publicpublic boolean supportsHttpProxy() {

returnreturn(truetrue);
}

/**
* {@inheritDoc}
*/

@Override
publicpublic StrongHttpClientBuilder withHttpProxy() {

netCipher.withHttpProxy();

NETCIPHER

2317

returnreturn(thisthis);
}

/**
* {@inheritDoc}
*/

@Override
publicpublic boolean supportsSocksProxy() {

returnreturn(truetrue);
}

/**
* {@inheritDoc}
*/

@Override
publicpublic StrongHttpClientBuilder withSocksProxy() {

netCipher.withSocksProxy();

returnreturn(thisthis);
}

/**
* {@inheritDoc}
*/

@Override
publicpublic StrongHttpClientBuilder withDefaultKeystore()

throwsthrows CertificateException, NoSuchAlgorithmException,
KeyStoreException, IOException, UnrecoverableKeyException,
KeyManagementException {
netCipher.withDefaultKeystore();

returnreturn(thisthis);
}

/**
* {@inheritDoc}
*/

@Override
publicpublic StrongHttpClientBuilder withKeystore(KeyStore keystore)

throwsthrows KeyStoreException, NoSuchAlgorithmException,
IOException, CertificateException,
UnrecoverableKeyException, KeyManagementException {
netCipher.withKeystore(keystore);

returnreturn(thisthis);
}

/**
* {@inheritDoc}
*/

@Override
publicpublic StrongHttpClientBuilder withWeakCiphers() {

netCipher.withWeakCiphers();

returnreturn(thisthis);
}

protectedprotected void init(Intent status) {
StrongSSLSocketFactory sFactory;
int socksPort=netCipher.getSocksPort(status);

NETCIPHER

2318

ifif (socksPort==-1) {
int httpPort=netCipher.getHttpPort(status);

ifif (httpPort!=-1) {
setProxy(newnew HttpHost(PROXY_HOST, httpPort));

}

sFactory=
newnew StrongSSLSocketFactory(netCipher.getSSLContext());

}
elseelse {

sFactory=
newnew StrongSSLSocketFactory(netCipher.getSSLContext(),

socksPort);
}

setSSLSocketFactory(sFactory);

Registry<ConnectionSocketFactory> registry=
RegistryBuilder.<ConnectionSocketFactory>create()

.register("http", PlainConnectionSocketFactory.getSocketFactory())

.register("https", sFactory)

.build();

HttpClientConnectionManager ccm=
newnew PoolingHttpClientConnectionManager(registry);

setConnectionManager(ccm);
}

privateprivate staticstatic classclass SimpleSimple extendsextends StrongBuilderBase<Simple, HttpClient> {
publicpublic Simple(Context ctxt) {

supersuper(ctxt);
}

publicpublic Simple(
StrongBuilderBase original) {
supersuper(original);

}

@Override
publicpublic HttpClient build(Intent status) throwsthrows IOException {

throwthrow newnew IllegalStateException("Um, don't use this, m'kay?");
}

}
}

(from Internet/HTTPStacks/netcipher-httpclient/src/main/java/info/guardianproject/netcipher/httpclient/
StrongHttpClientBuilder.java)

NETCIPHER

2319

https://github.com/commonsguy/cw-omnibus/tree/v7.2/Internet/HTTPStacks/netcipher-httpclient/src/main/java/info/guardianproject/netcipher/httpclient/StrongHttpClientBuilder.java
https://github.com/commonsguy/cw-omnibus/tree/v7.2/Internet/HTTPStacks/netcipher-httpclient/src/main/java/info/guardianproject/netcipher/httpclient/StrongHttpClientBuilder.java

