
Crash Reporting Using ACRA

When you wrote your app, you intended for it to work.

Alas, the road to a very warm place is paved with good intentions.

Hence, it is fairly likely that your app will crash in the hands of your users. In order
to be able to fix the underlying problems, you need to learn about the crashes and
the state of the app at the time of the crash.

There are any number of solutions to this problem. This chapter will outline a few of
them and focus on one open source solution: Application Crash Reports for
Android, better known as ACRA.

Prerequisites
Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate. Having read the chapter on
notifications is also a good idea, though not absolutely essential.

What Happens When Things Go “Boom”?
In development, when your app crashes, you get a little dialog box indicating that
the app crashed, and you get your Java stack trace in LogCat.

In production, little of that does you any good. In particular, you have no way of
seeing LogCat from end user devices. Instead, you need to have some means of
capturing that stack trace, along with perhaps additional data, and collect it
somewhere.

3275

Excerpt released under the Creative Commons BY-NC-SA 4.0 License

https://en.wikipedia.org/wiki/The_road_to_hell_is_paved_with_good_intentions

App distribution channels may offer this as part of their feature set. The Play Store,
in particular, offers its own crash reporting, where crashes “in the field” get reported
to you by means of your Developer Console on the Web. However:

• You might not be distributing through the Play Store at all, let alone
exclusively, and so the Play Store reporting does not help you for all your
users

• The Play Store’s approach makes reporting the crash optional, as the user
can elect to not send a report, meaning that you don’t find out about every
crash

• You have no control over what data is and is not collected, both for ensuring
that you have enough information to have a shot at fixing the bug and for
minimizing extraneous data that might have privacy implications

• Google gets a copy of the crash data, which you may or may not find to be
appropriate

Various other services, from Crashlytics to Crittercism, offer their own crash
reporting as part of a larger suite of features. However, once again, you may not have
control over what data is collected, and you certainly have no control over who all
gets the data.

For the privacy-minded app developer, you want something along these lines, but
where you can control to a fine degree of detail what gets collected and where the
data is sent solely to you, not to some third party.

And that’s where ACRA comes in.

Introducing ACRA
ACRA has been around since 2010, originally on Google Code, and now on GitHub. It
comes in the form of a library that you add to your app, with code that will get
control when an unhandled exception occurs inside your app. There, ACRA carefully
will collect information about the crash (e.g., the stack trace) and the environment
(e.g., what version of Android the app was running on). ACRA can then deliver that
information to you by any number of means, plus optionally provide feedback to the
user about the crash itself.

Since you control what ACRA collects and you control where ACRA sends the data,
you can minimize how much information gets into the hands of third parties. The
cost is in convenience, as either you have to:

CRASH REPORTING USING ACRA

3276

Excerpt released under the Creative Commons BY-NC-SA 4.0 License

https://www.crashlytics.com/
http://www.crittercism.com/
https://github.com/ACRA/acra

• Fuss with managing your own server for receiving the crashes, or
• Use a third-party service for that server, reducing some of the privacy, or
• Use options that are clunky for everyone involved, such as the user sending

emails containing crash reports

Where ACRA Reports Crashes
In the beginning, ACRA logged crashes to a Google Docs spreadsheet. Eventually,
Google grumbled about this, and so that option is now deprecated.

That limitation notwithstanding, ACRA supports a range of possible ways for crash
reports to get from the user’s device to your eyes, so that you can try to fix whatever
problems ail your app.

An Existing Crash Logging Service

Some crash logging services allow you to use ACRA in your code, rather than rely
upon some proprietary library. You simply configure ACRA to send the data to their
servers, which then notify you about crashes and give you dashboards and such to
visualize how much your app is crashing.

[HockeyApp]*(http://support.hockeyapp.net/kb/client-integration-android/how-to-
use-acra-with-hockeyapp) and Splunk Mint are two such services.

The advantage here is convenience coupled with control over the client side.
However, you are still sharing crash details with third parties, potentially raising
privacy or security issues.

Acralyzer

The official ACRA reporting server is Acralyzer. This, along with its acra-storage
companion, are CouchApps, powered by Apache CouchDB. You upload the Acralyzer
and acra-storage CouchApps into your own CouchDB instance, then configure
ACRA in your app to talk to those apps.

Acralyzer and acra-storage are open source, as is CouchDB. You can either host a
CouchDB instance on your own server or use various CouchDB hosting providers.

CRASH REPORTING USING ACRA

3277

Excerpt released under the Creative Commons BY-NC-SA 4.0 License

https://mint.splunk.com/
https://github.com/ACRA/acralyzer

This solution offers the best blend of analysis features and user privacy and security.
However, it does require you to learn enough about CouchDB to be able to set up
and maintain an instance.

Email

The easiest solution to set up is the most awkward for everything else: have the user
send you an email. In this model, ACRA prepares a report, then uses ACTION_SENDTO
to lead the user to an email app to send the report to an email address that you
configure in your app. The user can then just send the prepared email from their
email client (e.g., Gmail), and the report shows up in the inbox for this email
address.

You do not need to set up some sort of server, let alone maintain it. Your app does
not even need the INTERNET permission.

However:

• The user might not send the email, choosing instead to abandon the mail
client

• The user might not use their device for email, and therefore have no good
means of getting you the report

• While you get the raw crash data, you do not get any of the nifty charts and
such that you can get from a full-fledged crash reporting server

A Host for Testing

The protocol used by ACRA to communicate with a Web server is blissfully simple.
Handling ACRA crash reports yourself does not require that much server-side code,
in case you wanted to integrate this capability into the rest of your REST-style Web
services.

For example, this trivial Ruby script implements an ACRA-compatible endpoint:

require 'fileutils'
require 'sinatra'
require 'json'

LOG_ROOT='/tmp/ACRAfier'

put '/reports/:id' dodo
acra=JSON.parse(request.body.read)
FileUtils.mkdir_p(LOG_ROOT) ifif !File.exist?(LOG_ROOT)

CRASH REPORTING USING ACRA

3278

Excerpt released under the Creative Commons BY-NC-SA 4.0 License

https://github.com/ACRA/acralyzer/wiki/usermanual

f=File.join(LOG_ROOT, params[:id]+'.json')
File.open(f, 'w') {|io| io.write(JSON.pretty_generate(acra))}

endend

As we will see later in this chapter, you can configure ACRA to use a simple HTTP
PUT request to submit a crash report to the server. This Ruby script implements a
small REST-style Web service using Sinatra, where crash reports are pushed to a
/reports/.../ URL, where ... is an ACRA-generated unique ID for the report. This
script just logs the JSON that we get from ACRA to a file in a designated directory.
With a few more lines of code, you could have it generate a human-readable report
and email it to you, along with the JSON as an email attachment. Or, you could do
whatever you want.

This Ruby script can be found as stub_server.rb in the book’s GitHub repo If you
have Ruby installed, just install the sinatra and json gems, then run rubyruby
stub_server.rbstub_server.rb to fire up the server.

In practice, you would need a bit more smarts on a publicly-visible Web service, to
help prevent people from maliciously flooding your crash reporting server with
bogus data. However, the minimal requirements for ACRA are very straightforward
and could be implemented in any reasonable server-side Web framework.

ACRA Integration Basics
Given that you have identified how you want to receive the crash reports, the next
step is to add ACRA to your project and configure it to send crash reports to your
chosen location.

The ACRA/Simple sample project demonstrates a fairly simple ACRA integration.

Adding the Dependency

ACRA is distributed through standard Maven-style artifact repositories and should
be automatically picked up when you add the appropriate compile directive to your
dependencies:

dependencies {
compile 'ch.acra:acra:4.6.2'

}

Note that this project is using ACRA 4.6.2, due to an outstanding issue with ACRA
4.7.0.

CRASH REPORTING USING ACRA

3279

Excerpt released under the Creative Commons BY-NC-SA 4.0 License

http://github.com/commonsguy/cw-omnibus/tree/master/ACRA/Simple/stub_server.rb
http://github.com/commonsguy/cw-omnibus/tree/master/ACRA/Simple
http://github.com/commonsguy/cw-omnibus/tree/master/ACRA/Simple
https://github.com/ACRA/acra/issues/332
https://github.com/ACRA/acra/issues/332

Build Types, Product Flavors, and ACRA

It is very likely that you will want to have different ACRA configurations based upon
build types and/or product flavors:

• Have the debug build not use ACRA, but have the jenkins build by your CI
server use ACRA to collect crashes and integrate them into the test results,
and have the release build use your production ACRA server

• Skip ACRA for your Play Store distribution (because you decide you would
rather just use the Play Store’s crash reporting), but use ACRA for your
amazon product flavor (the version of your app that you distribute through
the Amazon AppStore for Android)

• And so on

buildConfigField is a great way to manage this. Use your build.gradle file to
establish values for some constants, then use them in the ACRA configuration code
in Java later on.

The sample app defines two such fields for BuildConfig:

• ACRA_INSTALL, a boolean that will be true if we should use ACRA, false
otherwise

• ACRA_URL, a String that will point to the server to which we wish to push the
ACRA-collected crash data

The sample app defines the same values for both fields in both build types (debug
and release), simply because you are probably playing around with the sample in a
debug build:

buildTypes {
debug {

buildConfigField "String", "ACRA_URL", '"http://10.0.2.2:4567/reports"'
buildConfigField "boolean", "ACRA_INSTALL", 'true'

}

release {
buildConfigField "String", "ACRA_URL", '"http://10.0.2.2:4567/reports"'
buildConfigField "boolean", "ACRA_INSTALL", 'true'

}
}

The URL used for ACRA_URL points to 10.0.2.2, the IP address on an Android
emulator that refers back to the localhost of your developer machine. In particular,
this URL is set up for the server Ruby script mentioned previously in this chapter. If

CRASH REPORTING USING ACRA

3280

Excerpt released under the Creative Commons BY-NC-SA 4.0 License

you wish to use a different server, not only will you need to consider changing this
URL, but you will need to make some other adjustments to the Java code, in all
likelihood, as will be seen in the next couple of sections.

Creating a Custom Application

ACRA needs some one-time initialization, and it is set up to do that by means of a
custom Application subclass. Most likely, you do not already have one of these,
though some libraries will require you to create one, perhaps inheriting from some
library-supplied Application subclass.

Regardless, you will need a subclass of Application in your project, and you will
need to have the android:name attribute of your <application> element in the
manifest point to that Application subclass:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest

package="com.commonsware.android.button"
xmlns:android="http://schemas.android.com/apk/res/android"
android:versionCode="1"
android:versionName="1.0">>

<uses-permission<uses-permission android:name="android.permission.INTERNET"/>/>

<uses-sdk<uses-sdk
android:minSdkVersion="21"
android:targetSdkVersion="21"/>/>

<application<application
android:name=".ACRAApplication"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme">>
<activity<activity

android:name=".ButtonDemoActivity"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
<activity<activity

android:name="org.acra.CrashReportDialog"
android:excludeFromRecents="true"
android:finishOnTaskLaunch="true"
android:launchMode="singleInstance"
android:process=":error_report"
android:theme="@style/AppTheme.Dialog"/>/>

</application></application>

</manifest></manifest>

CRASH REPORTING USING ACRA

3281

Excerpt released under the Creative Commons BY-NC-SA 4.0 License

Here, android:name points to an ACRAApplication class that we will examine
shortly.

Also note that the manifest has a <uses-permission> element, asking for the
INTERNET permission. Unless you use ACRA’s built-in support for sending crash
reports via the user’s email app, you will need the INTERNET permission for getting
crash reports to some server.

We will cover what that org.acra.CrashReportDialog <activity> is a bit later in
this chapter. For the moment, ignore it.

Implementing the Application

The Application subclass that you create needs two items to configure ACRA:

1. A @ReportsCrashes annotation, providing the actual ACRA configuration
itself

2. A call to ACRA.init() from onCreate(), to initialize the ACRA crash-
detection subsystem and have it use the annotation to configure what to do
when crashes occur

packagepackage com.commonsware.android.buttoncom.commonsware.android.button;

importimport android.app.Applicationandroid.app.Application;
importimport org.acra.ACRAorg.acra.ACRA;
importimport org.acra.annotation.ReportsCrashesorg.acra.annotation.ReportsCrashes;

@ReportsCrashes(
formUri=BuildConfig.ACRA_URL,
httpMethod=org.acra.sender.HttpSender.Method.PUT,
reportType=org.acra.sender.HttpSender.Type.JSON

)
publicpublic classclass ACRAApplicationACRAApplication extendsextends Application {

@Override
publicpublic void onCreate() {

supersuper.onCreate();

ifif (BuildConfig.ACRA_INSTALL) {
ACRA.init(thisthis);

}
}

}

@ReportsCrashes has many knobs to turn and switches to flip as part of configuring
how ACRA should behave. We will look at a number of them in this chapter. This
simple sample configures ACRA to:

CRASH REPORTING USING ACRA

3282

Excerpt released under the Creative Commons BY-NC-SA 4.0 License

• format the crash data as JSON
(reportType=org.acra.sender.HttpSender.Type.JSON)

• send it to the server indicated by the BuildConfig.ACRA_URL value we
configured in Gradle (formUri=BuildConfig.ACRA_URL)

• use an HTTP PUT operation to hand that JSON over to that server
(httpMethod=org.acra.sender.HttpSender.Method.PUT)

These values work great with the Ruby script profiled earlier in this chapter. If you
use some other server, you may need to change this configuration to match what
that server wants.

Note that the ACRA.init() call is inside a check of the BuildConfig.ACRA_INSTALL
boolean that we set up in the Gradle build files. If a particular build type or product
flavor sets ACRA_INSTALL to false, ACRA will not be enabled. For simpler projects,
rather than defining your own ACRA_INSTALL-style flag, you could just use
!BuildConfig.DEBUG, to only configure ACRA on release builds. While there is
nothing stopping you from using ACRA in development, you may find that it
interferes somewhat with how you are used to debugging your crashes.

Reporting Crashes

Good news! You’re done!

ACRA does not require you to litter your code with magic try/catch blocks to catch
and report exceptions. After all, some Android exceptions – even those triggered
from bugs in your code — are raised by Android framework code and your code
appears nowhere in the stack trace.

Instead, ACRA takes advantage of Thread and its
setDefaultUncaughtExceptionHandler() method, to get control when any
unhandled exception occurs. All those crashes that normally would shut down a
component or the whole app now go to ACRA and can be reported to your
designated server.

Occasionally, you may wish to add some crashes that you are handling yourself to
ACRA. For example, there may be some edge or corner cases that you are explicitly
handling but are uncertain if they ever would happen. You could arrange to pass the
Exception over to ACRA, which it will treat the same as any other crash that it
intercepts.

CRASH REPORTING USING ACRA

3283

Excerpt released under the Creative Commons BY-NC-SA 4.0 License

To do this, call getErrorReporter() on the ACRA class, and call either
handleException() or handleSilentException() on the error reporter. The
difference is that handleSilentException() always reports the error silently, while
handleException() will process this exception like any other, possibly alerting the
user to the crash, as will be seen in the next section.

What the User Sees
The Simple sample app has ACRA configured, but this does us little good if we do
not crash. So, the UI for the activity has a Button, and tapping that button will
trigger a RuntimeException:

packagepackage com.commonsware.android.buttoncom.commonsware.android.button;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;

publicpublic classclass ButtonDemoActivityButtonDemoActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

}

publicpublic void earthShatteringKaboom(View v) {
throwthrow newnew RuntimeException(getString(R.string.msg_kaboom));

}
}

…whose message is tied to a string resource:

<string<string name="msg_kaboom">>Where7456318086ed0133722914feb5bc72a7#39;s the kaboom?
There was supposed to be an Earth-shattering kaboom!</string></string>

(with apologies to a certain Martian)

When you click the Button, ACRA will send a crash report to your designated server.
What the user perceives, though, varies based upon configuration.

Default: “Silent”

If you do not specify otherwise in your ACRA configuration, the default behavior
will be “silent”. In this case, “silent” means “the user is not told that a report is being
sent via ACRA”. Instead, the user sees the traditional Android crash dialog, for
whatever version of Android the app is running on:

CRASH REPORTING USING ACRA

3284

Excerpt released under the Creative Commons BY-NC-SA 4.0 License

http://www.imdb.com/character/ch0030547/quotes

Figure 918: ACRA-Reported Crash, Silent Mode

However, there are several options that you can use instead of “silent” mode, if you
so choose. One — showing a Toast — is not an especially good idea, as the user
might not be looking at the screen right then and might not see the message.

Dialog

Another option is the “dialog” approach, where the user is shown a dialog-themed
activity, indicating what happened and allowing the user to provide some additional
information.

Figure 919: ACRA-Reported Crash, Dialog Mode

CRASH REPORTING USING ACRA

3285

Excerpt released under the Creative Commons BY-NC-SA 4.0 License

On the plus side, this is more transparent to the user, and the user can provide a bit
more detail that might be useful to you. However, the user can also cancel out of the
dialog, in which case you do not receive a crash report at all.

To set this up, you need to add a few more options to your ACRA configuration. You
can see this in ACRADialogApplication in the sample project, which is a clone of
ACRAApplication, set up for dialog-style reporting:

packagepackage com.commonsware.android.buttoncom.commonsware.android.button;

importimport android.app.Applicationandroid.app.Application;
importimport org.acra.ACRAorg.acra.ACRA;
importimport org.acra.ReportingInteractionModeorg.acra.ReportingInteractionMode;
importimport org.acra.annotation.ReportsCrashesorg.acra.annotation.ReportsCrashes;

@ReportsCrashes(
formUri=BuildConfig.ACRA_URL,
mode = ReportingInteractionMode.DIALOG,
resToastText = R.string.msg_acra_toast,
resDialogText = R.string.msg_acra_dialog,
resDialogCommentPrompt = R.string.msg_acra_comment_prompt,
resDialogEmailPrompt = R.string.msg_acra_email_prompt,
httpMethod=org.acra.sender.HttpSender.Method.PUT,
reportType=org.acra.sender.HttpSender.Type.JSON

)
publicpublic classclass ACRADialogApplicationACRADialogApplication extendsextends Application {

@Override
publicpublic void onCreate() {

supersuper.onCreate();

ifif (BuildConfig.ACRA_INSTALL) {
ACRA.init(thisthis);

}
}

}

What turns on dialog mode is the mode = ReportingInteractionMode.DIALOG entry
in the @ReportsCrashes annotation. This requires one additional entry,
resDialogText, pointing to a string resource that is the message to display towards
the top of the dialog.

You have a number of other optional settings to use to further customize the dialog.
ACRADialogApplication demonstrates:

• resToastText, a string resource that will be shown in a Toast after the crash
occurs and before the dialog appears. It takes ACRA a few seconds to collect
the data for the crash report, and ACRA does not display the dialog until
that data is collected. The Toast lets the user know that something is going
on during this window of time.

CRASH REPORTING USING ACRA

3286

Excerpt released under the Creative Commons BY-NC-SA 4.0 License

• resDialogCommentPrompt, a string resource which, if included in
@ReportsCrashes, enables a large EditText widget where the user can type
in some comments about what they were doing at the time of the crash. The
string resource serves as a label for this EditText.

• resDialogEmailPrompt, a string resource which, if included in
@ReportsCrashes, enables an EditText widget where the user can type in an
email address or other means of contacting the user. This value is saved in an
ACRA-specific SharedPrefererences value, and so it may already be filled in
for the user, if the user had supplied a value previously. This, along with the
comments, is included in the crash report for your use. The string resource
serves as a label for this EditText.

You can also configure an icon for the dialog (resDialogIcon), a title to go across the
top of the dialog (resDialogText), and the text for a Toast to be shown when the
user taps OK (resDialogIkToast).

Of course, your android:name attribute of your <application> element in the
manifest will need to point to this Application subclass. If you wish to try the dialog
in the sample app, you will need to modify the sample app’s manifest to point to
ACRADialogApplication instead of ACRAApplication.

Beyond this, you will need to have the org.acra.CrashReportDialog <activity>
element in your manifest, as mentioned above:

<activity<activity
android:name="org.acra.CrashReportDialog"
android:excludeFromRecents="true"
android:finishOnTaskLaunch="true"
android:launchMode="singleInstance"
android:process=":error_report"
android:theme="@style/AppTheme.Dialog"/>/>

Most of this is boilerplate (and, ideally, would come from manifest merger from
ACRA, though that is not an option for some reason). The big thing that you need to
do is set up dialog themes that the CrashReportDialog activity will use. This sample
app only runs on API Level 21+ (as it depends upon Theme.Material for the main
UI), so we only need to provide one theme definition, here called AppTheme.Dialog:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<style<style name="AppTheme" parent="android:Theme.Material">>
<item<item name="android:colorPrimary">>@color/primary</item></item>
<item<item name="android:colorPrimaryDark">>@color/primary_dark</item></item>
<item<item name="android:colorAccent">>@color/accent</item></item>

</style></style>

CRASH REPORTING USING ACRA

3287

Excerpt released under the Creative Commons BY-NC-SA 4.0 License

<style<style
name="AppTheme.Dialog"
parent="@android:style/Theme.DeviceDefault.Dialog"/>/>

</resources></resources>

Here, we follow ACRA’s advice and have AppTheme.Dialog inherit from
Theme.DeviceDefault.Dialog. DeviceDefault is a theme based on the core theme
for the Android OS version (Material for Android 5.0+), but one that can be tailored
by device manufacturers and custom ROM developers. By extending
Theme.DeviceDefault.Dialog, we are saying that we want our dialog to be styled
like other system dialogs.

Theme.DeviceDefault.Dialog should be a fine base theme for API Level 11+. If you
are supporting older Android devices than that, for those older API levels, use
Theme.Dialog instead.

Notification

While the dialog mode is great, it is unsuitable for crashes that may occur in the
background. You do not want to pop a dialog box up unexpectedly, as users may not
appreciate the interruption.

The default “silent” mode, for crashes originating in the background, will not show a
dialog. This is far more suitable for background work, but it does not let the user
know that a crash occurred.

The Notification mode serves as middle ground. When a crash occurs in the
background, ACRA raises a Notification. Tapping on that Notification, in turn,
brings up the same dialog that the dialog mode uses.

To use this, switch your mode to ReportingInteractionMode.NOTIFICATION in the
@ReportsCrashes annotation. Then, in addition to all the dialog configuration, add
three more string resource references:

• resNotifTickerText, shown as the “ticker text” of the Notification on
Android 4.4 and below

• resNotifTitle, shown as the title of the Notification in its tile in the
notification tray

• resNotifText, shown as the text of the Notification in its tile in the
notification tray

CRASH REPORTING USING ACRA

3288

Excerpt released under the Creative Commons BY-NC-SA 4.0 License

Optionally, you can also set resNotifIcon to a particular drawable resource to use
for the icon for the Notification.

The sample app has an ACRANotificationApplication that demonstrates this:

packagepackage com.commonsware.android.buttoncom.commonsware.android.button;

importimport android.app.Applicationandroid.app.Application;
importimport org.acra.ACRAorg.acra.ACRA;
importimport org.acra.ReportingInteractionModeorg.acra.ReportingInteractionMode;
importimport org.acra.annotation.ReportsCrashesorg.acra.annotation.ReportsCrashes;

@ReportsCrashes(
formUri=BuildConfig.ACRA_URL,
mode = ReportingInteractionMode.NOTIFICATION,
resToastText = R.string.msg_acra_toast,
resDialogText = R.string.msg_acra_dialog,
resDialogCommentPrompt = R.string.msg_acra_comment_prompt,
resDialogEmailPrompt = R.string.msg_acra_email_prompt,
resNotifTickerText = R.string.msg_acra_notify_ticker,
resNotifTitle = R.string.msg_acra_notify_title,
resNotifText = R.string.msg_acra_notify_text,
httpMethod=org.acra.sender.HttpSender.Method.PUT,
reportType=org.acra.sender.HttpSender.Type.JSON

)
publicpublic classclass ACRANotificationApplicationACRANotificationApplication extendsextends Application {

@Override
publicpublic void onCreate() {

supersuper.onCreate();

ifif (BuildConfig.ACRA_INSTALL) {
ACRA.init(thisthis);

}
}

}

If you switch the android:name of the <application> manifest element over to point
to ACRANotificationApplication, crashing the app will bring up the Notification:

Figure 920: ACRA-Reported Crash, Notification Mode

(pro tip: use short strings)

Limitations

The big limitation is that you get exactly one reporting mode for your app, for
automatically-collected crashes. This means that your choice of reporting mode will

CRASH REPORTING USING ACRA

3289

Excerpt released under the Creative Commons BY-NC-SA 4.0 License

be dictated by whether or not you are doing work in the background, while you do
not have a UI in the foreground (e.g., a Service):

• If you are not doing background work, use the dialog or silent modes
• If you are doing background work, use the notification or silent modes

What You See
The sample app asks ACRA to send the crash data over in a JSON structure. That
JSON contains all sorts of information by default, including USER_COMMENT and
USER_EMAIL properties if you chose the dialog or notification modes.

Here is what we get from a crash of the sample app, using the dialog notification
mode:

{
"REPORT_ID""REPORT_ID": "7583e142-024d-4596-ba83-1a2cb6ae266d",
"APP_VERSION_CODE""APP_VERSION_CODE": 1,
"APP_VERSION_NAME""APP_VERSION_NAME": "1.0",
"PACKAGE_NAME""PACKAGE_NAME": "com.commonsware.android.button",
"FILE_PATH""FILE_PATH": "/data/user/0/com.commonsware.android.button/files",
"PHONE_MODEL""PHONE_MODEL": "Android SDK built for x86",
"ANDROID_VERSION""ANDROID_VERSION": "6.0",
"BUILD""BUILD": {

"BOARD""BOARD": "unknown",
"BOOTLOADER""BOOTLOADER": "unknown",
"BRAND""BRAND": "generic_x86",
"CPU_ABI""CPU_ABI": "x86",
"CPU_ABI2""CPU_ABI2": "",
"DEVICE""DEVICE": "generic_x86",
"DISPLAY""DISPLAY": "sdk_phone_x86-eng 6.0 MASTER 2401146 test-keys",
"FINGERPRINT""FINGERPRINT": "generic_x86/sdk_phone_x86/generic_x86:6.0/MASTER/...",
"HARDWARE""HARDWARE": "goldfish",
"HOST""HOST": "kpfj8.cbf.corp.google.com",
"ID""ID": "MASTER",
"IS_DEBUGGABLE""IS_DEBUGGABLE": truetrue,
"MANUFACTURER""MANUFACTURER": "unknown",
"MODEL""MODEL": "Android SDK built for x86",
"PRODUCT""PRODUCT": "sdk_phone_x86",
"RADIO""RADIO": "unknown",
"SERIAL""SERIAL": "unknown",
"SUPPORTED_32_BIT_ABIS""SUPPORTED_32_BIT_ABIS": "[x86]",
"SUPPORTED_64_BIT_ABIS""SUPPORTED_64_BIT_ABIS": "[]",
"SUPPORTED_ABIS""SUPPORTED_ABIS": "[x86]",
"TAGS""TAGS": "test-keys",
"TIME""TIME": 1446737966000,
"TYPE""TYPE": "eng",
"UNKNOWN""UNKNOWN": "unknown",
"USER""USER": "android-build",
"VERSION""VERSION": {

"ACTIVE_CODENAMES""ACTIVE_CODENAMES": "[]",
"BASE_OS""BASE_OS": "",

CRASH REPORTING USING ACRA

3290

Excerpt released under the Creative Commons BY-NC-SA 4.0 License

"CODENAME""CODENAME": "REL",
"INCREMENTAL""INCREMENTAL": 2401146,
"PREVIEW_SDK_INT""PREVIEW_SDK_INT": 0,
"RELEASE""RELEASE": "6.0",
"RESOURCES_SDK_INT""RESOURCES_SDK_INT": 23,
"SDK""SDK": 23,
"SDK_INT""SDK_INT": 23,
"SECURITY_PATCH""SECURITY_PATCH": "2015-10-01"

}
},
"BRAND""BRAND": "generic_x86",
"PRODUCT""PRODUCT": "sdk_phone_x86",
"TOTAL_MEM_SIZE""TOTAL_MEM_SIZE": 567640064,
"AVAILABLE_MEM_SIZE""AVAILABLE_MEM_SIZE": 442961920,
"BUILD_CONFIG""BUILD_CONFIG": {

"ACRA_INSTALL""ACRA_INSTALL": truetrue,
"ACRA_URL""ACRA_URL": "http://10.0.2.2:4567/reports",
"APPLICATION_ID""APPLICATION_ID": "com.commonsware.android.button",
"BUILD_TYPE""BUILD_TYPE": "debug",
"DEBUG""DEBUG": truetrue,
"FLAVOR""FLAVOR": "",
"VERSION_CODE""VERSION_CODE": 1,
"VERSION_NAME""VERSION_NAME": ""

},
"CUSTOM_DATA""CUSTOM_DATA": {
},
"STACK_TRACE""STACK_TRACE": "java.lang.IllegalStateException: Could not execute ...",
"INITIAL_CONFIGURATION""INITIAL_CONFIGURATION": {

"compatScreenHeightDp""compatScreenHeightDp": 509,
"compatScreenWidthDp""compatScreenWidthDp": 320,
"compatSmallestScreenWidthDp""compatSmallestScreenWidthDp": 320,
"densityDpi""densityDpi": 240,
"fontScale""fontScale": "1.0",
"hardKeyboardHidden""hardKeyboardHidden": "HARDKEYBOARDHIDDEN_NO",
"keyboard""keyboard": "KEYBOARD_QWERTY",
"keyboardHidden""keyboardHidden": "KEYBOARDHIDDEN_NO",
"locale""locale": "en_US",
"mcc""mcc": 310,
"mnc""mnc": 260,
"navigation""navigation": "NAVIGATION_NONAV",
"navigationHidden""navigationHidden": "NAVIGATIONHIDDEN_YES",
"orientation""orientation": "ORIENTATION_PORTRAIT",
"screenHeightDp""screenHeightDp": 509,
"screenLayout""screenLayout": "SCREENLAYOUT_SIZE_NORMAL+SCREENLAYOUT_LONG_YES+...",
"screenWidthDp""screenWidthDp": 320,
"seq""seq": 5,
"smallestScreenWidthDp""smallestScreenWidthDp": 320,
"touchscreen""touchscreen": "TOUCHSCREEN_FINGER",
"uiMode""uiMode": "UI_MODE_TYPE_NORMAL+UI_MODE_NIGHT_NO",
"userSetLocale""userSetLocale": falsefalse

},
"CRASH_CONFIGURATION""CRASH_CONFIGURATION": {

"compatScreenHeightDp""compatScreenHeightDp": 509,
"compatScreenWidthDp""compatScreenWidthDp": 320,
"compatSmallestScreenWidthDp""compatSmallestScreenWidthDp": 320,
"densityDpi""densityDpi": 240,
"fontScale""fontScale": "1.0",
"hardKeyboardHidden""hardKeyboardHidden": "HARDKEYBOARDHIDDEN_NO",
"keyboard""keyboard": "KEYBOARD_QWERTY",
"keyboardHidden""keyboardHidden": "KEYBOARDHIDDEN_NO",

CRASH REPORTING USING ACRA

3291

Excerpt released under the Creative Commons BY-NC-SA 4.0 License

"locale""locale": "en_US",
"mcc""mcc": 310,
"mnc""mnc": 260,
"navigation""navigation": "NAVIGATION_NONAV",
"navigationHidden""navigationHidden": "NAVIGATIONHIDDEN_YES",
"orientation""orientation": "ORIENTATION_PORTRAIT",
"screenHeightDp""screenHeightDp": 509,
"screenLayout""screenLayout": "SCREENLAYOUT_SIZE_NORMAL+SCREENLAYOUT_LONG_YES+...",
"screenWidthDp""screenWidthDp": 320,
"seq""seq": 5,
"smallestScreenWidthDp""smallestScreenWidthDp": 320,
"touchscreen""touchscreen": "TOUCHSCREEN_FINGER",
"uiMode""uiMode": "UI_MODE_TYPE_NORMAL+UI_MODE_NIGHT_NO",
"userSetLocale""userSetLocale": falsefalse

},
"DISPLAY""DISPLAY": {

"0""0": {
"currentSizeRange""currentSizeRange": {

"smallest""smallest": "[480,444]",
"largest""largest": "[800,764]"

},
"flags""flags": "FLAG_SUPPORTS_PROTECTED_BUFFERS+FLAG_SECURE",
"height""height": 800,
"name""name": "Built-in Screen",
"orientation""orientation": 0,
"pixelFormat""pixelFormat": 1,
"getRealSize""getRealSize": "[480,800]",
"rectSize""rectSize": "[0,0,480,800]",
"refreshRate""refreshRate": 260.416,
"rotation""rotation": "ROTATION_0",
"getSize""getSize": "[480,800]",
"width""width": 480,
"isValid""isValid": truetrue

}
},
"USER_COMMENT""USER_COMMENT": "Something",
"USER_APP_START_DATE""USER_APP_START_DATE": "2015-11-29T09:14:49.000-05:00",
"USER_CRASH_DATE""USER_CRASH_DATE": "2015-11-29T09:14:58.000-05:00",
"DUMPSYS_MEMINFO""DUMPSYS_MEMINFO": "Permission Denial: can't dump meminfo from from ...",
"LOGCAT""LOGCAT": "11-29 09:01:46.322 D/ACRA (2076): Looking for error ...",
"INSTALLATION_ID""INSTALLATION_ID": "44fba689-c636-493c-b95e-07b81806b637",
"USER_EMAIL""USER_EMAIL": "foo@bar.com",
"DEVICE_FEATURES""DEVICE_FEATURES": {

"android.hardware.sensor.accelerometer""android.hardware.sensor.accelerometer": truetrue,
"android.hardware.faketouch""android.hardware.faketouch": truetrue,
"android.software.backup""android.software.backup": truetrue,
"android.hardware.touchscreen""android.hardware.touchscreen": truetrue,
"android.hardware.touchscreen.multitouch""android.hardware.touchscreen.multitouch": truetrue,
"android.software.print""android.software.print": truetrue,
"android.hardware.ethernet""android.hardware.ethernet": truetrue,
"android.software.voice_recognizers""android.software.voice_recognizers": truetrue,
"android.hardware.camera.autofocus""android.hardware.camera.autofocus": truetrue,
"android.hardware.audio.output""android.hardware.audio.output": truetrue,
"android.hardware.screen.portrait""android.hardware.screen.portrait": truetrue,
"android.software.home_screen""android.software.home_screen": truetrue,
"android.hardware.microphone""android.hardware.microphone": truetrue,
"android.hardware.sensor.compass""android.hardware.sensor.compass": truetrue,
"android.hardware.touchscreen.multitouch.jazzhand""android.hardware.touchscreen.multitouch.jazzhand": truetrue,
"android.software.app_widgets""android.software.app_widgets": truetrue,
"android.software.input_methods""android.software.input_methods": truetrue,

CRASH REPORTING USING ACRA

3292

Excerpt released under the Creative Commons BY-NC-SA 4.0 License

"android.software.device_admin""android.software.device_admin": truetrue,
"android.hardware.camera""android.hardware.camera": truetrue,
"android.hardware.screen.landscape""android.hardware.screen.landscape": truetrue,
"android.software.managed_users""android.software.managed_users": truetrue,
"android.software.webview""android.software.webview": truetrue,
"android.hardware.camera.any""android.hardware.camera.any": truetrue,
"android.software.connectionservice""android.software.connectionservice": truetrue,
"android.hardware.touchscreen.multitouch.distinct""android.hardware.touchscreen.multitouch.distinct": truetrue,
"android.hardware.location.network""android.hardware.location.network": truetrue,
"android.software.live_wallpaper""android.software.live_wallpaper": truetrue,
"android.software.midi""android.software.midi": truetrue,
"android.hardware.location""android.hardware.location": truetrue,
"glEsVersion""glEsVersion": "0.0"

},
"ENVIRONMENT""ENVIRONMENT": {

"getDataDirectory""getDataDirectory": "/data",
"getDownloadCacheDirectory""getDownloadCacheDirectory": "/cache",
"getExternalStorageDirectory""getExternalStorageDirectory": "/storage/1719-3917",
"getExternalStorageState""getExternalStorageState": "mounted",
"getLegacyExternalStorageDirectory""getLegacyExternalStorageDirectory": "/sdcard",
"getLegacyExternalStorageObbDirectory""getLegacyExternalStorageObbDirectory": "/sdcard/Android/obb",
"getOemDirectory""getOemDirectory": "/oem",
"getRootDirectory""getRootDirectory": "/system",
"getSecureDataDirectory""getSecureDataDirectory": "/data",
"getStorageDirectory""getStorageDirectory": "/storage",
"getSystemSecureDirectory""getSystemSecureDirectory": "/data/system",
"getVendorDirectory""getVendorDirectory": "/vendor",
"isEncryptedFilesystemEnabled""isEncryptedFilesystemEnabled": falsefalse,
"isExternalStorageEmulated""isExternalStorageEmulated": falsefalse,
"isExternalStorageRemovable""isExternalStorageRemovable": truetrue

},
"SETTINGS_SYSTEM""SETTINGS_SYSTEM": {

"ACCELEROMETER_ROTATION""ACCELEROMETER_ROTATION": 1,
"ALARM_ALERT""ALARM_ALERT": "content://media/internal/audio/media/9",
"DTMF_TONE_TYPE_WHEN_DIALING""DTMF_TONE_TYPE_WHEN_DIALING": 0,
"DTMF_TONE_WHEN_DIALING""DTMF_TONE_WHEN_DIALING": 1,
"HAPTIC_FEEDBACK_ENABLED""HAPTIC_FEEDBACK_ENABLED": 1,
"HEARING_AID""HEARING_AID": 0,
"LOCKSCREEN_SOUNDS_ENABLED""LOCKSCREEN_SOUNDS_ENABLED": 1,
"MODE_RINGER_STREAMS_AFFECTED""MODE_RINGER_STREAMS_AFFECTED": 422,
"MUTE_STREAMS_AFFECTED""MUTE_STREAMS_AFFECTED": 46,
"NOTIFICATION_LIGHT_PULSE""NOTIFICATION_LIGHT_PULSE": 1,
"NOTIFICATION_SOUND""NOTIFICATION_SOUND": "content://media/internal/audio/media/70",
"POINTER_SPEED""POINTER_SPEED": 0,
"RINGTONE""RINGTONE": "content://media/internal/audio/media/105",
"SCREEN_BRIGHTNESS""SCREEN_BRIGHTNESS": 102,
"SCREEN_BRIGHTNESS_MODE""SCREEN_BRIGHTNESS_MODE": 0,
"SCREEN_OFF_TIMEOUT""SCREEN_OFF_TIMEOUT": 60000,
"SOUND_EFFECTS_ENABLED""SOUND_EFFECTS_ENABLED": 1,
"TTY_MODE""TTY_MODE": 0,
"VIBRATE_WHEN_RINGING""VIBRATE_WHEN_RINGING": 0,
"VOLUME_ALARM""VOLUME_ALARM": 6,
"VOLUME_BLUETOOTH_SCO""VOLUME_BLUETOOTH_SCO": 7,
"VOLUME_MUSIC""VOLUME_MUSIC": 11,
"VOLUME_NOTIFICATION""VOLUME_NOTIFICATION": 5,
"VOLUME_RING""VOLUME_RING": 5,
"VOLUME_SYSTEM""VOLUME_SYSTEM": 7,
"VOLUME_VOICE""VOLUME_VOICE": 4

},
"SETTINGS_SECURE""SETTINGS_SECURE": {

CRASH REPORTING USING ACRA

3293

Excerpt released under the Creative Commons BY-NC-SA 4.0 License

"ACCESSIBILITY_DISPLAY_MAGNIFICATION_AUTO_UPDATE""ACCESSIBILITY_DISPLAY_MAGNIFICATION_AUTO_UPDATE": 1,
"ACCESSIBILITY_DISPLAY_MAGNIFICATION_ENABLED""ACCESSIBILITY_DISPLAY_MAGNIFICATION_ENABLED": 0,
"ACCESSIBILITY_DISPLAY_MAGNIFICATION_SCALE""ACCESSIBILITY_DISPLAY_MAGNIFICATION_SCALE": "2.0",
"ACCESSIBILITY_SCREEN_READER_URL""ACCESSIBILITY_SCREEN_READER_URL": "https://ssl.gstatic.com/...",
"ACCESSIBILITY_SCRIPT_INJECTION""ACCESSIBILITY_SCRIPT_INJECTION": 0,
"ACCESSIBILITY_SPEAK_PASSWORD""ACCESSIBILITY_SPEAK_PASSWORD": 0,
"ACCESSIBILITY_WEB_CONTENT_KEY_BINDINGS""ACCESSIBILITY_WEB_CONTENT_KEY_BINDINGS": "0x13=0x01000100; ...",
"ANDROID_ID""ANDROID_ID": "23f541e6fcb720b",
"BACKUP_ENABLED""BACKUP_ENABLED": 1,
"BACKUP_TRANSPORT""BACKUP_TRANSPORT": "android/com.android.internal.backup.LocalTransport",
"DEFAULT_INPUT_METHOD""DEFAULT_INPUT_METHOD": "com.android.inputmethod.latin/.LatinIME",
"DOUBLE_TAP_TO_WAKE""DOUBLE_TAP_TO_WAKE": 1,
"ENABLED_INPUT_METHODS""ENABLED_INPUT_METHODS": "com.android.inputmethod.latin/.LatinIME",
"IMMERSIVE_MODE_CONFIRMATIONS""IMMERSIVE_MODE_CONFIRMATIONS": "",
"INPUT_METHODS_SUBTYPE_HISTORY""INPUT_METHODS_SUBTYPE_HISTORY": "",
"INSTALL_NON_MARKET_APPS""INSTALL_NON_MARKET_APPS": 1,
"LOCK_SCREEN_ALLOW_PRIVATE_NOTIFICATIONS""LOCK_SCREEN_ALLOW_PRIVATE_NOTIFICATIONS": 1,
"LOCK_SCREEN_OWNER_INFO_ENABLED""LOCK_SCREEN_OWNER_INFO_ENABLED": 0,
"LOCK_SCREEN_SHOW_NOTIFICATIONS""LOCK_SCREEN_SHOW_NOTIFICATIONS": 1,
"LONG_PRESS_TIMEOUT""LONG_PRESS_TIMEOUT": 500,
"MOUNT_PLAY_NOTIFICATION_SND""MOUNT_PLAY_NOTIFICATION_SND": 1,
"MOUNT_UMS_AUTOSTART""MOUNT_UMS_AUTOSTART": 0,
"MOUNT_UMS_NOTIFY_ENABLED""MOUNT_UMS_NOTIFY_ENABLED": 1,
"MOUNT_UMS_PROMPT""MOUNT_UMS_PROMPT": 1,
"SCREENSAVER_ACTIVATE_ON_DOCK""SCREENSAVER_ACTIVATE_ON_DOCK": 1,
"SCREENSAVER_ACTIVATE_ON_SLEEP""SCREENSAVER_ACTIVATE_ON_SLEEP": 0,
"SCREENSAVER_COMPONENTS""SCREENSAVER_COMPONENTS": "com.google.android.deskclock/...",
"SCREENSAVER_DEFAULT_COMPONENT""SCREENSAVER_DEFAULT_COMPONENT": "com.google.android.deskclock/...",
"SCREENSAVER_ENABLED""SCREENSAVER_ENABLED": 1,
"SELECTED_INPUT_METHOD_SUBTYPE""SELECTED_INPUT_METHOD_SUBTYPE": "-1",
"SELECTED_SPELL_CHECKER""SELECTED_SPELL_CHECKER": "com.android.inputmethod.latin/...",
"SELECTED_SPELL_CHECKER_SUBTYPE""SELECTED_SPELL_CHECKER_SUBTYPE": 0,
"SHOW_NOTE_ABOUT_NOTIFICATION_HIDING""SHOW_NOTE_ABOUT_NOTIFICATION_HIDING": 0,
"SLEEP_TIMEOUT""SLEEP_TIMEOUT": "-1",
"TOUCH_EXPLORATION_ENABLED""TOUCH_EXPLORATION_ENABLED": 0,
"TRUST_AGENTS_INITIALIZED""TRUST_AGENTS_INITIALIZED": 1,
"USER_SETUP_COMPLETE""USER_SETUP_COMPLETE": 1,
"WAKE_GESTURE_ENABLED""WAKE_GESTURE_ENABLED": 1

},
"SETTINGS_GLOBAL""SETTINGS_GLOBAL": {

"AIRPLANE_MODE_ON""AIRPLANE_MODE_ON": 0,
"AIRPLANE_MODE_RADIOS""AIRPLANE_MODE_RADIOS": "cell,bluetooth,wifi,nfc,wimax",
"AIRPLANE_MODE_TOGGLEABLE_RADIOS""AIRPLANE_MODE_TOGGLEABLE_RADIOS": "bluetooth,wifi,nfc",
"ASSISTED_GPS_ENABLED""ASSISTED_GPS_ENABLED": 1,
"AUDIO_SAFE_VOLUME_STATE""AUDIO_SAFE_VOLUME_STATE": 1,
"AUTO_TIME""AUTO_TIME": 1,
"AUTO_TIME_ZONE""AUTO_TIME_ZONE": 1,
"BLUETOOTH_ON""BLUETOOTH_ON": 0,
"CALL_AUTO_RETRY""CALL_AUTO_RETRY": 0,
"CAR_DOCK_SOUND""CAR_DOCK_SOUND": "/system/media/audio/ui/Dock.ogg",
"CAR_UNDOCK_SOUND""CAR_UNDOCK_SOUND": "/system/media/audio/ui/Undock.ogg",
"CDMA_CELL_BROADCAST_SMS""CDMA_CELL_BROADCAST_SMS": 1,
"CDMA_SUBSCRIPTION_MODE""CDMA_SUBSCRIPTION_MODE": 1,
"DATA_ROAMING""DATA_ROAMING": 0,
"DEFAULT_INSTALL_LOCATION""DEFAULT_INSTALL_LOCATION": 0,
"DESK_DOCK_SOUND""DESK_DOCK_SOUND": "/system/media/audio/ui/Dock.ogg",
"DESK_UNDOCK_SOUND""DESK_UNDOCK_SOUND": "/system/media/audio/ui/Undock.ogg",
"DEVICE_NAME""DEVICE_NAME": "Android SDK built for x86",
"DEVICE_PROVISIONED""DEVICE_PROVISIONED": 1,
"DOCK_AUDIO_MEDIA_ENABLED""DOCK_AUDIO_MEDIA_ENABLED": 1,

CRASH REPORTING USING ACRA

3294

Excerpt released under the Creative Commons BY-NC-SA 4.0 License

"DOCK_SOUNDS_ENABLED""DOCK_SOUNDS_ENABLED": 0,
"EMERGENCY_TONE""EMERGENCY_TONE": 0,
"ENHANCED_4G_MODE_ENABLED""ENHANCED_4G_MODE_ENABLED": 1,
"GUEST_USER_ENABLED""GUEST_USER_ENABLED": 1,
"HEADS_UP_NOTIFICATIONS_ENABLED""HEADS_UP_NOTIFICATIONS_ENABLED": 1,
"LOCK_SOUND""LOCK_SOUND": "/system/media/audio/ui/Lock.ogg",
"LOW_BATTERY_SOUND""LOW_BATTERY_SOUND": "/system/media/audio/ui/LowBattery.ogg",
"LOW_BATTERY_SOUND_TIMEOUT""LOW_BATTERY_SOUND_TIMEOUT": 0,
"MOBILE_DATA""MOBILE_DATA": 1,
"MODE_RINGER""MODE_RINGER": 2,
"MULTI_SIM_DATA_CALL_SUBSCRIPTION""MULTI_SIM_DATA_CALL_SUBSCRIPTION": 1,
"MULTI_SIM_SMS_SUBSCRIPTION""MULTI_SIM_SMS_SUBSCRIPTION": 1,
"MULTI_SIM_VOICE_CALL_SUBSCRIPTION""MULTI_SIM_VOICE_CALL_SUBSCRIPTION": 1,
"NETSTATS_ENABLED""NETSTATS_ENABLED": 1,
"NETWORK_SCORING_PROVISIONED""NETWORK_SCORING_PROVISIONED": 1,
"PACKAGE_VERIFIER_ENABLE""PACKAGE_VERIFIER_ENABLE": 1,
"POWER_SOUNDS_ENABLED""POWER_SOUNDS_ENABLED": 1,
"PREFERRED_NETWORK_MODE""PREFERRED_NETWORK_MODE": 0,
"SET_INSTALL_LOCATION""SET_INSTALL_LOCATION": 0,
"STAY_ON_WHILE_PLUGGED_IN""STAY_ON_WHILE_PLUGGED_IN": 1,
"THEATER_MODE_ON""THEATER_MODE_ON": 0,
"TRUSTED_SOUND""TRUSTED_SOUND": "/system/media/audio/ui/Trusted.ogg",
"UNLOCK_SOUND""UNLOCK_SOUND": "/system/media/audio/ui/Unlock.ogg",
"USB_MASS_STORAGE_ENABLED""USB_MASS_STORAGE_ENABLED": 1,
"WIFI_COUNTRY_CODE""WIFI_COUNTRY_CODE": "us",
"WIFI_DISPLAY_ON""WIFI_DISPLAY_ON": 0,
"WIFI_MAX_DHCP_RETRY_COUNT""WIFI_MAX_DHCP_RETRY_COUNT": 9,
"WIFI_NETWORKS_AVAILABLE_NOTIFICATION_ON""WIFI_NETWORKS_AVAILABLE_NOTIFICATION_ON": 1,
"WIFI_ON""WIFI_ON": 0,
"WIFI_SCAN_ALWAYS_AVAILABLE""WIFI_SCAN_ALWAYS_AVAILABLE": 0,
"WIFI_SLEEP_POLICY""WIFI_SLEEP_POLICY": 2,
"WIFI_WATCHDOG_ON""WIFI_WATCHDOG_ON": 1,
"WIRELESS_CHARGING_STARTED_SOUND""WIRELESS_CHARGING_STARTED_SOUND": "/system/media/audio/ui/..."

},
"SHARED_PREFERENCES""SHARED_PREFERENCES": {

"default""default": {
"acra""acra": {

"lastVersionNr""lastVersionNr": 1
}

},
"""": truetrue

}
}

(note: some property values were truncated with ..., as they were much too long to
try to display in a book)

Your server can parse this and use it to take appropriate action.

Note that the Java stack trace (STACK_TRACE property) is formatted with embedded
Java-style/C-style control characters (\n for newlines, \t for tabs). Your server can
convert that into plain text with appropriate formatting.

CRASH REPORTING USING ACRA

3295

Excerpt released under the Creative Commons BY-NC-SA 4.0 License

Customizing Where Reports Go
The sample app uses one particular approach for sending crash-reports off-device:
use an HTTP PUT operation, applied to a server configured in @ReportsCrashes.

That is not your only option.

HTTP

httpMethod=org.acra.sender.HttpSender.Method.PUT in @ReportsCrashes is what
steers ACRA to use an HTTP PUT request to submit the crash report. Without this,
by default, it will use an HTTP POST request.

However, with POST, it treats the URL (in the formUri property) a bit differently:

• For a PUT, the UUID of the crash report is appended to the URL
(`http://localhost:10.0.2.2/reports/f4a411b0-7a5a-0133-dd79-14feb5bc72a7)

• For a POST, the URL is used directly without modification
(http://localhost:10.0.2.2/reports), where the UUID only appears as
the REPORT_ID value in the crash report

reportType=org.acra.sender.HttpSender.Type.JSON in @ReportsCrashes is what
tells ACRA to generate a JSON document and submit that as a crash report. If you
are using PUT, you probably want JSON. However, the default (no reportType) is a
classic Web form encoded string, which would be a more natural choice for POST
requests, as your server probably already has logic to convert a Web form into more
convenient variables in your desired Web app framework and language.

If your server requires HTTP Basic authentication, formUriBasicAuthLogin and
formUriBasicAuthPassword are available as @ReportsCrashes properties. Those are
of somewhat limited utility, as anyone who can see the whole URL probably can see
those HTTP headers without much additional work, and they have to be hard-coded
into your app.

Email

Replacing formUri and the other HTTP @ReportsCrashes properties with mailTo
(mailTo=omgomgomg@foo.com) will cause ACRA to not attempt to deliver the crash
report directly. Instead, it will use ACTION_SENDTO with a mailto Uri, pointing at
your requested email address, to try to bring up an email client. If the user does not

CRASH REPORTING USING ACRA

3296

Excerpt released under the Creative Commons BY-NC-SA 4.0 License

have a configured email client, or if the user chooses not to send the email, you do
not get the crash report.

DIY

If none of the stock ACRA delivery options works for you, you are welcome to add
your own. You can create an implementation of the ReportSender interface,
complete with a send() method that will be called to actually send the crash report.
As part of initializing ACRA in your Application subclass’ onCreate() method, you
can create an instance of your ReportSender and register it via
ACRA.getErrorReporter().setReportSender().

It is up to you to then get the crash report somewhere useful to you, by one means
or another.

Adding Additional Data
As demonstrated in the preceding section, ACRA throws a lot of data into the crash
report. However, you can add more than that, if you wish, to either better diagnose
problems or to provide more individualized assistance.

Adding Stock Data to Emails

With any of the HTTP options, the crash report contains, by default, a lot of
information. For email, though, rather than have an attachment with the full report,
ACRA only sends along a few bits of data, such as the stack trace.

The customReportContent property on @ReportsCrashes allows you to tailor this,
expanding it to include other report fields. There is a ReportField class that defines
a series of constants that you use to indicate what should be in the report.

LogCat and Other Logs

ACRA uses some undocumented and unsupported means of collecting LogCat data
and including it in the crash report. However, for most Android devices (those
running Android 4.1+), this will only contain log lines from your app’s process, due
to some Android changes, for privacy reasons.

If you have elected to do your own logging elsewhere, you can teach ACRA to
incorporate its logs into the crash report:

CRASH REPORTING USING ACRA

3297

Excerpt released under the Creative Commons BY-NC-SA 4.0 License

• Add ReportField.APPLICATION_LOG to the list of report fields in the
customReportContent property on @ReportsCrashes

• Add an applicationLogFile property on @ReportsCrashes to indicate where
the log file is

• Optionally add an applicationLogFileLines property on @ReportsCrashes
to indicate how many lines from the log file to include in the crash report
(where it defaults to 100)

Note, though, that it is unclear how you express the path to the log file (for
applicationLogFile), as the actual filesystem path may vary by device and user.

Device Identifier

If your app has the READ_PHONE_STATE permission, ACRA will try to include a
telephony hardware identifier (e.g., IMEI for GSM phones) in the crash report.
However:

• This has privacy implications, and so ACRA has a way to allow the user to
control whether this value is included, as will be covered later in this
chapter.

• READ_PHONE_STATE is a dangerous permission, requiring you to request that
permission at runtime on Android 6.0+ devices, if your targetSdkVersion is
23 or higher. You will not be in position to request this permission at the
time of the crash, and so you will need to ask for it at some other point (e.g.,
on first run of your app).

If your objective is merely to correlate crash reports coming from the same
installation of your app, consider storing a UUID in SharedPreferences (initialized
on first run), as that will be included in your crash report, as is covered in the next
section.

Additional SharedPreferences

If you use PreferenceManager.getDefaultSharedPreferences(), everything inside
of there is included in your ACRA crash report.

If you use other SharedPreferences files (e.g., via getSharedPreferences()), and
you want those SharedPreferences included in the crash report, add an
additionalSharedPreferences property to @ReportsCrashes, supplying a list of the
preferences filenames:

CRASH REPORTING USING ACRA

3298

Excerpt released under the Creative Commons BY-NC-SA 4.0 License

additionalSharedPreferences={"game_stats"}

Here, game_stats is the SharedPreferences filename, passed in as the first
parameter to getSharedPreferences().

Your Own Data

ACRA also maintains a process-level LinkedHashMap that you can add to, where its
contents are included in the crash report. Simply call
ACRA.getErrorReporter().putCustomData(), supplying the key and value as String
objects.

Because this is a LinkedHashMap, calling putCustomData() for some key will replace
any past value for that key. The use of LinkedHashMap means that the data will be
saved (and reported) in alphabetical order. Hence, you are welcome to generate
unique keys if you want, perhaps based on SystemClock.uptimeMillis(), to use this
custom data as an ersatz log.

However, since all of this data is kept in heap space, you will need to be judicious
about its use. You are better served using actual file-based logs (whether LogCat or
your own) for true logging, reserving this “custom data” for transient state or values
that are non-changing.

Note that there is also removeCustomData(), which removes a value from the
LinkedHashMap, given its key. In addition, getCustomData() returns the current
value given its key, in case you wish to use this LinkedHashMap as the master copy of
some data, in addition to having that data included in the crash report.

Removing Data
Conversely, you may wish to remove data from the ACRA crash reports. One key
reason would be privacy, if there are specific things that you see showing up in the
ACRA data that you think users might not like being disclosed. Another reason
would be bandwidth, as there is little point in transferring data to be discarded over
the Internet, adding load to your servers and perhaps costing your users money on
their metered data connections.

CRASH REPORTING USING ACRA

3299

Excerpt released under the Creative Commons BY-NC-SA 4.0 License

Report Fields

As mentioned earlier in this chapter, the customReportContent property on
@ReportsCrashes can be used to add fields to email-based crash reports, which
normally only include a small subset of the actual available data.

Conversely, for HTTP-based crash reports — where customReportContent defaults
to “everything” — customReportContent can be used to restrict what is included in
the report.

SharedPreference Values

If there are specific SharedPreferences values that you would like to be excluded
from crash reports, for privacy or security reasons, you can do that via an
excludeMatchingSharedPreferencesKeys property on @ReportsCrashes. For
example, if you use SharedPreferences to store some limited-life authorization
token from a server, it is probably best to exclude that from the crash report.

excludeMatchingSharedPreferencesKeys takes a list of regular expression patterns,
following the regular expression syntax used by Java’s Pattern class. If you do not
use any Pattern-specific control characters, the default is basically a plain string
match.

So, for example, if you have a serverToken SharedPreferences value that you would
like to exclude, use:

excludeMatchingSharedPreferencesKeys={"serverToken"}

in your @ReportsCrashes annotation.

End-User Configuration
ACRA monitors certain default SharedPreferences values and configures its
behavior based upon them. By exposing those preferences in your own
PreferenceFragment or PreferenceActivity, you can allow the user to control
ACRA’s behavior.

The following table outlines the options:

CRASH REPORTING USING ACRA

3300

Excerpt released under the Creative Commons BY-NC-SA 4.0 License

http://developer.android.com/reference/java/util/regex/Pattern.html
http://developer.android.com/reference/java/util/regex/Pattern.html

Preference Key Role
Data
Type

Preference Type

acra.disable
Enable or disable ACRA

reporting outright
booleanCheckBoxPreference

acra.syslog.enable
Include LogCat data in crash

reports
booleanCheckBoxPreference

acra.deviceid.enable
Include device ID (e.g., IMEI)

in crash reports
booleanCheckBoxPreference

acra.user.email
Email address to include in

reports
String EditTextPreference

acra.alwaysaccept
If true, reports are always sent,
even for dialog or notification

modes
booleanCheckBoxPreference

Note that acra.disable has an acra.enable counterpart. Only use one of these. A
value of true for acra.disable is equivalent to false for acra.enable.

CRASH REPORTING USING ACRA

3301

Excerpt released under the Creative Commons BY-NC-SA 4.0 License

