

Elements of Android Room

by Mark L. Murphy

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Elements of Android Room
by Mark L. Murphy

Copyright © 2019-2021 CommonsWare, LLC. All Rights Reserved.
Printed in the United States of America.

Printing History:
December 2021: FINAL Version

The CommonsWare name and logo, “Busy Coder's Guide”, and related trade dress are trademarks of CommonsWare,
LLC.

All other trademarks referenced in this book are trademarks of their respective firms.

The publisher and author(s) assume no responsibility for errors or omissions or for damages resulting from the use of the
information contained herein.

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Table of Contents
Headings formatted in bold-italic have changed since the last version.

• Preface
◦ The Book’s Prerequisites ... v
◦ Source Code and Its License .. vi
◦ Acknowledgments .. vi

• Room Basics
◦ Wrenching Relations Into Objects ... 1
◦ Room Requirements .. 2
◦ Room Furnishings .. 3
◦ Get a Room .. 8
◦ Testing Room .. 8

• The Dao of Entities
◦ Configuring Entities ... 13
◦ DAOs and Queries ... 29
◦ Dynamic Queries ... 37
◦ Other DAO Operations ... 39
◦ Transactions and Room ... 42

• Room and Custom Types
◦ Type Converters ... 45
◦ Embedded Types .. 51

• Room and Reactive Frameworks
◦ Room and the Main Application Thread ... 55
◦ Room and LiveData ... 57
◦ Room and Coroutines .. 59
◦ Room and RxJava ... 63
◦ Observable Queries ... 65
◦ Room and ListenableFuture .. 65
◦ Where Synchronous Room is Safe ... 66
◦ Being Evil ... 66

• Relations in Room
◦ The Classic ORM Approach .. 67
◦ A History of Threading Mistakes ... 68
◦ The Room Approach .. 69
◦ One-to-Many Relations .. 69
◦ Many-to-Many Relations ... 75
◦ Room Entities as DTOs ... 79

i

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

• The Support Database API
◦ “Can’t You See That This is a Facade?” ... 81
◦ When Will We Use This? .. 82
◦ Configuring Room’s Database Access ... 83

• Database Migrations
◦ What’s a Migration? .. 87
◦ When Do We Migrate? ... 88
◦ But First, a Word About Exporting Schemas 88
◦ Writing Migrations .. 91
◦ Employing Migrations ... 91
◦ How Room Applies Migrations ... 93
◦ Testing Migrations .. 94

• Polymorphic Entities
◦ Polymorphism With Separate Tables ... 103
◦ Polymorphism With a Single Table .. 109

• Default Values and Partial Entities
◦ Default Values, and the Other Default Values 115
◦ Default Values and Inserts ... 116
◦ Partial Entities .. 117

• Room and Full-Text Search
◦ What Is FTS? ... 121
◦ Applying FTS to Room ... 123
◦ Supported MATCH Syntax ... 132
◦ Migrating to FTS ... 132

• Room and Conflict Resolution
◦ Abort ... 136
◦ Fail .. 138
◦ Ignore ... 138
◦ Replace ... 139
◦ Rollback .. 140
◦ What Should You Use with Room? .. 140

• A Room With a View
◦ Defining a View ... 144
◦ Registering the View ... 145
◦ Querying a View ... 145
◦ OK, Why Bother? ... 146

• Room and PRAGMAs
◦ When To Make Changes ... 149
◦ Example: Turbo Boost Mode ... 150

• Packaged Databases
◦ Going Back In Time .. 153

ii

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

◦ The Room Mechanics .. 154
◦ Creating the Database Asset .. 155
◦ Dealing With Metadata and Upgrades ... 157
◦ Hybrid Data ... 157

• Backing Up Your Room
◦ Backup and Restore. Or, Import and Export. 159
◦ Choosing a Storage Target ... 160
◦ Thinking About Journal Modes .. 160
◦ Keeping It Closed .. 161
◦ Import and Export Mechanics .. 162
◦ The createFromFile() Alternative ... 165

• SQLite Clients
◦ Database Inspector .. 167
◦ DB Browser for SQLite ... 172
◦ Flipper ... 174

• SQLCipher for Android
◦ Introducing SQLCipher for Android ... 183
◦ But First, A To-Do Reminder .. 184
◦ The Basics of SQLCipher for Android .. 188
◦ The Costs of SQLCipher for Android ... 190

• SQLCipher and Passphrases
◦ Generating a Passphrase ... 193
◦ Collecting a Passphrase ... 198
◦ Multi-Factor Authentication .. 206
◦ The Risks of String ... 207

• Managing SQLCipher
◦ Backup and Restore .. 209
◦ Migrating to Encryption ... 221

• Paged Room Queries
◦ The Problem: Too Much Data ... 227
◦ Addressing the UX ... 228
◦ Enter the Paging Library ... 229
◦ Paging and Room ... 230

• Room Across Processes
◦ Room and Invalidation Tracking .. 237
◦ Invalidation Tracking and Processes .. 238
◦ Introducing enableMultiInstanceInvalidation() 238

• Triggers
◦ Trigger Basics ... 243
◦ Room and Triggers ... 244
◦ Triggers the Hard Way .. 244

iii

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

• What’s New in Room?
◦ Version 2.3.x ... 249

iv

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Preface

Thanks!

Thanks for your interest in Room! Room is Google’s solution for a high-level
database access API, for your local SQLite databases. As such, Room gets a lot of
attention and is reasonably popular.

Thanks also for your broader interest in Android app development! Android is the
most widely-used operating system on the planet, so we need to be able to rapidly
develop high-quality Android apps. Room can help with that.

And thanks for your interest in this book! Here, you can learn more about how to
work with Room, from the basics through more complex scenarios. And, along the
way, there may be a joke or two.

The Book’s Prerequisites
This book is designed for developers with at least a bit of Android app development
experience. If you are fairly new to Android, please consider reading Elements of
Android Jetpack, Exploring Android, or both, before continuing with this book.

Also note that this book’s examples are written in Kotlin. If you are unfamiliar with
Kotlin, you can still learn stuff about Room from this book, though it will be more
difficult. You might consider reading Elements of Kotlin, to familiarize yourself with
Kotlin.

v

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://commonsware.com/Jetpack
https://commonsware.com/Jetpack
https://commonsware.com/AndExplore
https://commonsware.com/Kotlin

Source Code and Its License
The source code in this book is licensed under the Apache 2.0 License, in case you
have the desire to reuse any of it.

Copying source code directly from the book, in the PDF editions, works best with
Adobe Reader, though it may also work with other PDF viewers. Some PDF viewers,
for reasons that remain unclear, foul up copying the source code to the clipboard
when it is selected.

Acknowledgments
The author would like to thank Daniel Rivera, Yiğit Boyar, and the rest of the
developers at Google responsible for Room.

The author would also like to thank Stephen Lombardo, Nick Parker, and the rest of
Zetetic, plus Nathan Frietas, Hans-Cristoph Steiner, and the rest of the Guardian
Project, for all their work on SQLCipher for Android and general Android app
security.

PREFACE

vi

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

http://www.apache.org/licenses/LICENSE-2.0.html

Introductory Room

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Room Basics

Google describes Room as providing “an abstraction layer over SQLite to allow fluent
database access while harnessing the full power of SQLite.”

In other words, Room aims to make your use of SQLite easier, through a lightweight
annotation-based implementation of an object-relational mapping (ORM) engine.

Wrenching Relations Into Objects
If you have ever worked with a relational database — like SQLite — from an object-
oriented language — like Java or Kotlin — undoubtedly you have encountered the
“object-relational impedance mismatch”. That is a very fancy way of saying “it’s a
pain getting stuff into and out of the database”.

In object-oriented programming, we are used to objects holding references to other
objects, forming some sort of object graph. However, traditional SQL-style relational
databases work off of tables of primitive data, using foreign keys and join tables to
express relationships. Figuring out how to get our classes to map to relational tables
is aggravating, and it usually results in a lot of boilerplate code.

Traditional Android development uses SQLiteDatabase for interacting with SQLite.
That, in turn, uses Cursor objects to represent the results of queries and
ContentValues objects to represent data to be inserted or updated. While Cursor
and ContentValues are objects, they are fairly generic, much in the way that a
HashMap or ArrayList is generic. In particular, neither Cursor nor ContentValues
has any of our business logic. We have to somehow either wrap that around those
objects or convert between those objects and some of ours.

That latter approach is what object-relational mapping engines (ORMs) take. A

1

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://en.wikipedia.org/wiki/Object-relational_mapping
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch

typical ORM works off of Java/Kotlin code and either generates a suitable database
structure or works with you to identify how the classes should map to some existing
table structure (e.g., a legacy one that you are stuck with). The ORM usually
generates some code for you, and supplies a library, which in combination hide
much of the database details from you.

The quintessential Java ORM is Hibernate. However, Hibernate was developed with
server-side Java in mind and is not well-suited for slim platfoms like Android
devices. However, a vast roster of Android ORMs and similar libraries have been
created over the years to try to fill that gap. Some of the more popular ones have
been:

• SQLDelight
• DBFlow
• greenDAO
• OrmLite
• Sugar ORM

Room also helps with the object-relational impedance mismatch. It is not as deep of
an ORM as some of the others, as you will be dealing with SQL a fair bit. However,
Room has one huge advantage: it is from Google, and therefore it will be deemed
“official” in the eyes of many developers and managers.

While this book is focused on Room, you may wish to explore other ORMs if you are
interested in using Java/Kotlin objects but saving the data in SQLite. Room is
popular, but it is far from the only option. In particular, if you are interested in
Kotlin/Multiplatform for cross-platform development, you will want to look at
SQLDelight, so your database operations can also be cross-platform.

Room Requirements
To use Room, you need two dependencies in your module’s build.gradle file:

1. The runtime library
2. An annotation processor

In a Kotlin project, those will be:

• room-ktx, to pull in the core Room runtime libraries plus some Kotlin-
specific extensions

ROOM BASICS

2

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

http://hibernate.org/
https://android-arsenal.com/tag/69?sort=created
https://github.com/cashapp/sqldelight
https://github.com/Raizlabs/DBFlow
https://github.com/greenrobot/greenDAO
https://github.com/j256/ormlite-android
http://satyan.github.io/sugar
https://github.com/cashapp/sqldelight

• room-compiler, used with kapt

For example, in the NoteBasicsmodule of the book’s primary sample project, we
have a build.gradle file that pulls in those two artifacts:

apply plugin: 'com.android.library'
apply plugin: 'kotlin-android'
apply plugin: 'kotlin-kapt'

android {
compileSdkVersion 31

defaultConfig {
minSdkVersion 21
targetSdkVersion 30
testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"
}

buildTypes {
release {
minifyEnabled falsefalse
proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro'

}
}

}

dependencies {
implementation "org.jetbrains.kotlin:kotlin-stdlib-jdk7:$kotlin_version"
implementation "androidx.appcompat:appcompat:1.3.1"
implementation "androidx.core:core-ktx:1.6.0"
implementation "androidx.constraintlayout:constraintlayout:2.1.1"
implementation "androidx.room:room-ktx:$room_version"
kapt "androidx.room:room-compiler:$room_version"

androidTestImplementation "androidx.test.ext:junit:1.1.3"
androidTestImplementation 'androidx.test:runner:1.4.0'
androidTestImplementation "androidx.arch.core:core-testing:2.1.0"
androidTestImplementation "com.natpryce:hamkrest:1.7.0.0"

}

(from NoteBasics/build.gradle)

Note that Room has a minSdkVersion requirement of API Level 15 or higher. If you
attempt to build with a lower minSdkVersion, you will get a build error. If you try to
override Room’s minSdkVersion using manifest merger elements, while the project
will build, expect Room to crash horribly.

Room Furnishings
Roughly speaking, your use of Room is dominated by three sets of classes:

1. Entities, which are simple classes that model the data you are transferring

ROOM BASICS

3

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/tree/master/NoteBasics
https://gitlab.com/commonsguy/cw-room/tree/master/NoteBasics
https://gitlab.com/commonsguy/cw-room
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/NoteBasics/build.gradle

into and out of the database
2. The data access object (DAO), that provides the description of the API that

you want for working with certain entities
3. The database, which ties together all of the entities and DAOs for a single

SQLite database

If you have used Square’s Retrofit, some of this will seem familiar:

• The DAO is roughly analogous to your Retrofit interface on which you
declare your Web service API

• Your entities are the POJOs that you are expecting Gson/Moshi/whatever to
create based on the Web service response

The NoteBasicsmodule mentioned above has a few classes related to a note-taking
application, exercised via instrumented tests.

Entities

In many ORM systems, the entity (or that system’s equivalent) is a simple class that
you happen to want to store in the database. It usually represents some part of your
overall domain model, so a payroll system might have entities representing
departments, employees, and paychecks.

With Room, a better description of entities is that they are classes representing:

• the data that you want to store into a table, and
• a typical unit of a result set that you are trying to retrieve from the database

That difference may sound academic. It starts to come into play a bit more when we
start thinking about relations.

However, it also more closely matches the way Retrofit maps to Web services. With
Retrofit, we are not describing the contents of the Web service’s database. Rather, we
are describing how we want to work with defined Web service endpoints. Those
endpoints have a particular set of content that we can work with, courtesy of
whoever developed the Web service. We are simply mapping those to methods and
classes, both for input and output. Room is somewhere in between a Retrofit-style
“we just take what the Web service gives us” approach and a full ORM-style “we
control everything about the database” approach.

From a coding standpoint, an entity is a Java/Kotlin class marked with the @Entity

ROOM BASICS

4

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://github.com/square/retrofit

annotation. For example, here is a NoteEntity class that serves as a Room entity:

packagepackage com.commonsware.room.notescom.commonsware.room.notes

importimport androidx.room.Entityandroidx.room.Entity
importimport androidx.room.PrimaryKeyandroidx.room.PrimaryKey

@Entity(tableName = "notes")
data classdata class NoteEntityNoteEntity(
@PrimaryKey valval id: StringString,
valval title: StringString,
valval text: StringString,
valval version: IntInt
)

(from NoteBasics/src/main/java/com/commonsware/room/notes/NoteEntity.kt)

There is no particular superclass required for entities, and the expectation is that
often they will be simple data classes, as we see here.

The @Entity annotation can have properties customizing the behavior of your entity
and how Room works with it. In this case, we have a tableName property. The default
name of the SQLite table is the same as the entity class name, but tableName allows
you to override that and supply your own table name. Here, we override the table
name to be notes.

Sometimes, your properties will be marked with annotations describing their roles.
In this example, the id field has the @PrimaryKey annotation, telling Room that this
is the unique identifier for this entity. Room will use that to know how to update
and delete Note objects by their primary key values. In Java, Room also requires that
any @PrimaryKey field of an object type — like String— be annotated with
@NonNull, as primary keys in SQLite cannot be null. In Kotlin, you can just use a
non-nullable type, such as String.

We will explore entities in greater detail in an upcoming chapter.

DAO

“Data access object” (DAO) is a fancy way of saying “the API into the data”. The idea
is that you have a DAO that provides methods for the database operations that you
need: queries, inserts, updates, deletes, and so on.

In Room, the DAO is identified by the @Dao annotation, applied to either an

ROOM BASICS

5

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/NoteBasics/src/main/java/com/commonsware/room/notes/NoteEntity.kt

abstract class or an interface. The actual concrete implementation will be code-
generated for you by the Room annotation processor.

The primary role of the @Dao-annotated abstract class or interface is to have one
or more methods, with their own Room annotations, identifying what you want to
do with the database and your entities. This serves the same role as the functions
annotated @GET or @POST in a Retrofit interface.

The sample app has a NoteStore that is our DAO:

packagepackage com.commonsware.room.notescom.commonsware.room.notes

importimport androidx.room.*androidx.room.*

@Dao
interfaceinterface NoteStoreNoteStore {
@Query("SELECT * FROM notes")
funfun loadAll(): ListList<NoteEntityNoteEntity>

@Insert
funfun insert(note: NoteEntityNoteEntity)

@Update
funfun update(note: NoteEntityNoteEntity)

@Delete
funfun delete(varargvararg notes: NoteEntityNoteEntity)
}

(from NoteBasics/src/main/java/com/commonsware/room/notes/NoteStore.kt)

Besides the @Dao annotation on the NoteStore interface, we have four functions,
each with their own annotations: @Query, @Insert, @Update, and @Delete, each
which map to the corresponding database operations.

The loadAll() function has the @Query annotation. Principally, @Query will be used
for SQL SELECT statements, where you put the actual SQL in the annotation itself.
Here, we are retrieving everything from the notes table.

The remaining three functions use the @Insert, @Update, and @Delete annotations,
mapped to functions of the same name. The actual function names do not matter —
they could be larry(), curly(), and moe() and work just as well. As you might
expect, @Insert inserts an entity into our table, @Update updates an existing table
row to reflect the supplied entity’s properties, and @Delete deletes table rows

ROOM BASICS

6

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/NoteBasics/src/main/java/com/commonsware/room/notes/NoteStore.kt

corresponding with the supplied entities’ primary keys. In this sample, insert() and
update() each take a single NoteEntity, while delete() takes a vararg of
NoteEntity. Room supports either pattern, as well as others, such as a List of
NoteEntity— choose what fits your needs.

We will explore the DAO in greater detail in an upcoming chapter.

Database

In addition to entities and DAOs, you will have at least one @Database-annotated
abstract class, extending a RoomDatabase base class. This class knits together the
database file, the entities, and the DAOs.

In the sample project, we have a NoteDatabase serving this role:

packagepackage com.commonsware.room.notescom.commonsware.room.notes

importimport androidx.room.Databaseandroidx.room.Database
importimport androidx.room.RoomDatabaseandroidx.room.RoomDatabase

@Database(entities = [NoteEntityNoteEntity::classclass], version = 1)
abstractabstract classclass NoteDatabaseNoteDatabase : RoomDatabaseRoomDatabase() {
abstractabstract funfun notes(): NoteStoreNoteStore
}

(from NoteBasics/src/main/java/com/commonsware/room/notes/NoteDatabase.kt)

The @Database annotation configures the code generation process, including:

• Identifying all of the entity classes that you care about in the entities
collection

• Identifying the schema version of the database (as you see with
SQLiteOpenHelper in conventional Android SQLite development)

Here, we are saying that we have just one entity class (NoteEntity), and that this is
schema version 1.

You also need abstract functions for each DAO class that return an instance of that
class. Here, we have a notes() function that returns NoteStore.

ROOM BASICS

7

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/NoteBasics/src/main/java/com/commonsware/room/notes/NoteDatabase.kt

Get a Room
Our NoteDatabase is an abstract class. Somewhere, though, we need to get an
instance of it, so we can call notes() and be able to start manipulating the database.

To create a NoteDatabase, you need a RoomDatabase.Builder. There are two
functions on the Room class for getting one:

• databaseBuilder(), and
• inMemoryDatabaseBuilder()

databaseBuilder() will help you create a database backed by a traditional SQLite
database file. inMemoryDatabaseBuilder() creates a SQLite database whose
contents are only stored in memory — as soon as the database is closed, the
memory holding the database contents gets freed.

Both functions take a Context and the Java Class object of your RoomDatabase
subclass as parameters. databaseBuilder() also takes the name of the database file
to use.

So, we could create a regular, file-backed NoteDatabase via:

privateprivate valval db =
RoomRoom.databaseBuilder(context, NoteDatabaseNoteDatabase::classclass.java, "notes.db").build()

(where context is a suitable Context, such as the Application singleton)

While there are some configuration methods that can be called on the
RoomDatabase.Builder, we skip those here, simply calling build() to build the
NoteDatabase, assigning it to the db property.

From there, we can:

• Call notes() on the NoteDatabase to retrieve the NoteStore DAO
• Call methods on the NoteStore to query, insert, update, or delete
NoteEntity objects

Testing Room
Once you have a RoomDatabase and its associated DAO(s) and entities set up, you

ROOM BASICS

8

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

should start testing it.

The good news is that testing Room is not dramatically different than is testing
anything else in Android. Room has a few characteristics that make it a bit easier
than some things to test, as it turns out.

You can learn more about testing in the "Testing Your Changes"
chapter of Elements of Android Jetpack!

Writing Instrumented Tests

On the whole, writing instrumented tests for Room — where the tests run on an
Android device or emulator — is unremarkable. You get an instance of your
RoomDatabase subclass and exercise it from there.

So, for example, here is an instrumented test case class to exercise the NoteDatabase:

packagepackage com.commonsware.room.notescom.commonsware.room.notes

importimport androidx.room.Roomandroidx.room.Room
importimport androidx.test.ext.junit.runners.AndroidJUnit4androidx.test.ext.junit.runners.AndroidJUnit4
importimport androidx.test.platform.app.InstrumentationRegistryandroidx.test.platform.app.InstrumentationRegistry
importimport com.natpryce.hamkrest.assertion.assertThatcom.natpryce.hamkrest.assertion.assertThat
importimport com.natpryce.hamkrest.equalTocom.natpryce.hamkrest.equalTo
importimport com.natpryce.hamkrest.hasSizecom.natpryce.hamkrest.hasSize
importimport com.natpryce.hamkrest.isEmptycom.natpryce.hamkrest.isEmpty
importimport org.junit.Testorg.junit.Test
importimport org.junit.runner.RunWithorg.junit.runner.RunWith
importimport java.util.*java.util.*

@RunWith(AndroidJUnit4AndroidJUnit4::classclass)
classclass NoteStoreTestNoteStoreTest {
privateprivate valval db = RoomRoom.inMemoryDatabaseBuilder(
InstrumentationRegistryInstrumentationRegistry.getInstrumentation().targetContext,
NoteDatabaseNoteDatabase::classclass.java
)
.build()
privateprivate valval underTest = db.notes()

@Test
funfun insertAndDelete() {
assertThat(underTest.loadAll(), isEmpty)

ROOM BASICS

9

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://commonsware.com/Jetpack

valval entity = NoteEntityNoteEntity(
id = UUIDUUID.randomUUID().toString(),
title = "This is a title",
text = "This is some text",
version = 1
)

underTest.insert(entity)

underTest.loadAll().let {
assertThat(it, hasSize(equalTo(1)))
assertThat(it[0], equalTo(entity))
}

underTest.delete(entity)

assertThat(underTest.loadAll(), isEmpty)
}

@Test
funfun update() {
valval entity = NoteEntityNoteEntity(
id = UUIDUUID.randomUUID().toString(),
title = "This is a title",
text = "This is some text",
version = 1
)

underTest.insert(entity)

valval updated = entity.copy(title = "This is new", text = "So is this")

underTest.update(updated)

underTest.loadAll().let {
assertThat(it, hasSize(equalTo(1)))
assertThat(it[0], equalTo(updated))
}
}
}

(from NoteBasics/src/androidTest/java/com/commonsware/room/notes/NoteStoreTest.kt)

Using In-Memory Databases

When testing a database, though, one of the challenges is in making those tests

ROOM BASICS

10

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/NoteBasics/src/androidTest/java/com/commonsware/room/notes/NoteStoreTest.kt

“hermetic”, or self-contained. One test method should not depend upon another test
method, and one test method should not affect the results of another test method
accidentally. This means that we want to start with a known starting point before
each test, and we have to consider how to do that.

One approach — the one taken in the above NoteStoreTest class — is to use an in-
memory database. The db property is initialized using
Room.inMemoryDatabaseBuilder(), so we get our fast, disposable in-memory
database. For a context, we use
InstrumentationRegistry.getInstrumentation().targetContext, a Context for
the code being tested. We then set up underTest to be the object that we are testing:
the NoteStore and its functions.

There are two key advantages for using an in-memory database for instrumented
testing:

1. It is intrinsically self-contained. Once the NoteDatabase is closed (or
garbage-collected), its memory is released, and if separate tests use separate
NoteDatabase instances, one will not affect the other.

2. Reading and writing to and from memory is much faster than is reading and
writing to and from disk, so the tests run much faster.

On the other hand, this means that the instrumented tests are useless for
performance testing, as (presumably) your production app will actually store its
database on disk. You could use Gradle command-line switches, custom build types
and buildConfigField, or other means to decide when tests are run whether they
should use memory or disk.

The Test Functions

Our test functions do things like:

• Creating NoteEntity instances, using a UUID for the id
• Calling insert(), update(), and delete() to manipulate the table contents
• Calling loadAll() to retrieve what is in the table

And, along the way, we use Hamkrest matchers to confirm that everything is
working as we expect.

ROOM BASICS

11

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://github.com/npryce/hamkrest

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

The Dao of Entities

In the previous chapter, we went through the basic steps for setting up Room:

• Create and annotate your entity classes
• Create, annotate, and define operator functions on your DAO(s)
• Create a subclass of RoomDatabase to tie the entities and DAO(s) together
• Create an instance of that RoomDatabase at some likely point in time,
• Use the RoomDatabase instance to retrieve your DAO and from there work

with your entities

However, we only scratched the surface of what can be configured on entities and
DAOs. In this chapter, we will start to explore the rest of the configuration for
entities and DAOs.

Many of the code snippets shown in this chapter come from the the MiscSamples
module of the book’s primary sample project, sample project. This is a library
module with a variety of entities and DAOs, all tied into a MiscDatabase, with
instrumented tests for each of the entities.

Configuring Entities
The only absolute requirements for a Room entity class is that it be annotated with
the @Entity annotation and have a field identified as the primary key, typically by
way of a @PrimaryKey annotation. Anything above and beyond that is optional.

However, there is a fair bit that is “above and beyond that”. Some — though probably
not all — of these features will be of interest in larger apps.

13

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/tree/master/MiscSamples
https://gitlab.com/commonsguy/cw-room/tree/master/MiscSamples
https://gitlab.com/commonsguy/cw-room/tree/master/MiscSamples
https://gitlab.com/commonsguy/cw-room

Primary Keys

If you have a single field that is the primary key for your entity, using the
@PrimaryKey annotation is simple and helps you clearly identify that primary key at
a later point.

However, you do have some other options.

Auto-Generated Primary Keys

In SQLite, if you have an INTEGER column identified as the PRIMARY KEY, you can
optionally have SQLite assign unique values for that column, by way of the
AUTOINCREMENT keyword.

In Room, if you have an Long property that is your @PrimaryKey, you can optionally
apply AUTOINCREMENT to the corresponding column by adding autoGenerate=true to
the annotation:

packagepackage com.commonsware.room.misccom.commonsware.room.misc

importimport androidx.room.*androidx.room.*

@Entity(tableName = "autoGenerate")
data classdata class AutoGenerateEntityAutoGenerateEntity(
@PrimaryKey(autoGenerate = truetrue)
varvar id: LongLong,
varvar text: StringString
) {
@Dao
abstractabstract classclass StoreStore {
@Query("SELECT * FROM autoGenerate")
abstractabstract funfun loadAll(): ListList<AutoGenerateEntityAutoGenerateEntity>

@Query("SELECT * FROM autoGenerate WHERE id = :id")
abstractabstract funfun findById(id: IntInt): AutoGenerateEntityAutoGenerateEntity

funfun insert(entity: AutoGenerateEntityAutoGenerateEntity): AutoGenerateEntityAutoGenerateEntity {
entity.id = _insert(entity)

returnreturn entity
}

@Insert

THE DAO OF ENTITIES

14

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

abstractabstract funfun _insert(entity: AutoGenerateEntityAutoGenerateEntity): LongLong
}
}

(from MiscSamples/src/main/java/com/commonsware/room/misc/AutoGenerateEntity.kt)

By default, autoGenerate is false. Setting that property to true gives you
AUTOINCREMENT in the generated CREATE TABLE statement:

CREATECREATE TABLETABLE IF NOTNOT EXISTSEXISTS autoGenerate (id INTEGER PRIMARYPRIMARY KEYKEY AUTOINCREMENT NOTNOT
NULLNULL, text TEXT NOTNOT NULLNULL)

However, this starts to get complicated in the app. You do not know your primary
key until you insert the entity into a database. Your @Insert-annotated functions
can return a Long result, and that will be the primary key for that inserted entity. In
the AutoGenerateEntity shown above, _insert() has the @Insert annotation, while
insert() wraps _insert() and sets the inserted entity’s id to be the Long returned
by _insert(). Hence, insert() updates the entity to have its primary key:

packagepackage com.commonsware.room.misccom.commonsware.room.misc

importimport androidx.room.Roomandroidx.room.Room
importimport androidx.test.platform.app.InstrumentationRegistryandroidx.test.platform.app.InstrumentationRegistry
importimport androidx.test.ext.junit.runners.AndroidJUnit4androidx.test.ext.junit.runners.AndroidJUnit4
importimport com.natpryce.hamkrest.assertion.assertThatcom.natpryce.hamkrest.assertion.assertThat
importimport com.natpryce.hamkrest.equalTocom.natpryce.hamkrest.equalTo
importimport com.natpryce.hamkrest.isEmptycom.natpryce.hamkrest.isEmpty

importimport org.junit.Testorg.junit.Test
importimport org.junit.runner.RunWithorg.junit.runner.RunWith

importimport org.junit.Assert.*org.junit.Assert.*

@RunWith(AndroidJUnit4AndroidJUnit4::classclass)
classclass AutoGenerateEntityTestAutoGenerateEntityTest {
privateprivate valval db = RoomRoom.inMemoryDatabaseBuilder(
InstrumentationRegistryInstrumentationRegistry.getInstrumentation().targetContext,
MiscDatabaseMiscDatabase::classclass.java
)
.build()
privateprivate valval underTest = db.autoGenerate()

@Test
funfun autoGenerate() {
assertThat(underTest.loadAll(), isEmpty)

valval original = AutoGenerateEntityAutoGenerateEntity(id = 0, text = "This will get its own ID")
valval inserted = underTest.insert(original)

assertTrue(original === inserted)
assertThat(inserted.id, !equalTo(0L))
}
}

THE DAO OF ENTITIES

15

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/AutoGenerateEntity.kt

(from MiscSamples/src/androidTest/java/com/commonsware/room/misc/AutoGenerateEntityTest.kt)

This presents “trickle-down” complications — for example, you cannot make the
primary key property be val, as then you cannot create an instance of an entity that
is not yet in the database.

Some of the samples in this book will use a UUID instead. While these take up much
more room than a simple Long, they can be uniquely generated outside of the
database. For your production apps, you will need to decide if the headaches
surrounding database-generated identifiers are worth their benefits.

Composite Primary Keys

In some cases, you may have a composite primary key, made up of two or more
columns in the database. This is particularly true if you are trying to design your
entities around an existing database structure, one that used a composite primary
key for one of its tables (for whatever reason).

If, logically, those are all part of a single object, you could combine them into a
single property, as we will see in the next chapter. However, it may be that they
should be individual properties in your entity, but they happen to combine to create
the primary key. In that case, you can skip the @PrimaryKey annotation and use the
primaryKeys property of the @Entity annotation.

One scenario for this is data versioning, where we are tracking changes to data over
time, the way a version control system tracks changes to source code and other files
over time. There are several ways of implementing data versioning. One approach
has all versions of the same entity in the same table, with a version code attached to
the “natural” primary key to identify a specific version of that content. In that case,
you could have something like:

packagepackage com.commonsware.room.misccom.commonsware.room.misc

importimport androidx.room.Daoandroidx.room.Dao
importimport androidx.room.Entityandroidx.room.Entity
importimport androidx.room.Insertandroidx.room.Insert
importimport androidx.room.Queryandroidx.room.Query

@Entity(tableName = "compositeKey", primaryKeys = ["id", "version"])
data classdata class CompositeKeyEntityCompositeKeyEntity(
valval id: StringString,
valval title: StringString,
valval text: StringString = "",

THE DAO OF ENTITIES

16

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/androidTest/java/com/commonsware/room/misc/AutoGenerateEntityTest.kt

valval version: IntInt = 1
) {
@Dao
interfaceinterface StoreStore {
@Query("SELECT * FROM compositeKey")
funfun loadAll(): ListList<CompositeKeyEntityCompositeKeyEntity>

@Query("SELECT * FROM compositeKey where id = :id AND version = :version")
funfun findByPrimaryKey(id: StringString, version: IntInt): CompositeKeyEntityCompositeKeyEntity

@Insert
funfun insert(entity: CompositeKeyEntityCompositeKeyEntity)
}
}

(from MiscSamples/src/main/java/com/commonsware/room/misc/CompositeKeyEntity.kt)

Room will then use the PRIMARY KEY keyword in the CREATE TABLE statement to set
up the composite primary key:

CREATECREATE TABLETABLE IF NOTNOT EXISTSEXISTS compositeKey (id TEXT NOTNOT NULLNULL, title TEXT NOTNOT NULLNULL, text
TEXT NOTNOT NULLNULL, versionversion INTEGER NOTNOT NULLNULL, PRIMARYPRIMARY KEYKEY(id, versionversion))

In our case, we set version to have a default value of 1, so we can create a
CompositeKeyEntity with just a string identifier, at least for its initial version:

packagepackage com.commonsware.room.misccom.commonsware.room.misc

importimport android.database.sqlite.SQLiteConstraintExceptionandroid.database.sqlite.SQLiteConstraintException
importimport androidx.room.Roomandroidx.room.Room
importimport androidx.test.ext.junit.runners.AndroidJUnit4androidx.test.ext.junit.runners.AndroidJUnit4
importimport androidx.test.platform.app.InstrumentationRegistryandroidx.test.platform.app.InstrumentationRegistry
importimport com.natpryce.hamkrest.assertion.assertThatcom.natpryce.hamkrest.assertion.assertThat
importimport com.natpryce.hamkrest.equalTocom.natpryce.hamkrest.equalTo
importimport com.natpryce.hamkrest.isEmptycom.natpryce.hamkrest.isEmpty
importimport org.junit.Testorg.junit.Test
importimport org.junit.runner.RunWithorg.junit.runner.RunWith
importimport java.util.*java.util.*

@RunWith(AndroidJUnit4AndroidJUnit4::classclass)
classclass CompositeKeyEntityTestCompositeKeyEntityTest {
privateprivate valval db = RoomRoom.inMemoryDatabaseBuilder(
InstrumentationRegistryInstrumentationRegistry.getInstrumentation().targetContext,
MiscDatabaseMiscDatabase::classclass.java
)
.build()
privateprivate valval underTest = db.compositeKey()

THE DAO OF ENTITIES

17

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/CompositeKeyEntity.kt

@Test
funfun compositeKey() {
assertThat(underTest.loadAll(), isEmpty)

valval original = CompositeKeyEntityCompositeKeyEntity(
id = UUIDUUID.randomUUID().toString(),
title = "A composite key entity"
)

underTest.insert(original)

underTest.loadAll().let {
assertThat(it.size, equalTo(1))
assertThat(it[0], equalTo(original))
}

assertThat(
underTest.findByPrimaryKey(
id = original.id,
version = original.version
), equalTo(original)
)
}

@Test(expected = SQLiteConstraintExceptionSQLiteConstraintException::classclass)
funfun duplicateCompositeKey() {
assertThat(underTest.loadAll(), isEmpty)

valval original = CompositeKeyEntityCompositeKeyEntity(
id = UUIDUUID.randomUUID().toString(),
title = "A composite key entity"
)

underTest.insert(original)

valval copy = original.copy(text = "This is different!")

underTest.insert(copy)
}
}

(from MiscSamples/src/androidTest/java/com/commonsware/room/misc/CompositeKeyEntityTest.kt)

If we try to insert entities with the same key twice, our @Insert-annotated function
will throw a SQLiteConstraintException.

THE DAO OF ENTITIES

18

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/androidTest/java/com/commonsware/room/misc/CompositeKeyEntityTest.kt

Adding Indexes

Your primary key is indexed automatically by SQLite. However, you may wish to set
up other indexes for other columns or collections of columns, to speed up queries.
To do that, you have two choices:

1. Use the indices property on @Entity. This property takes a list of nested
Index annotations, each of which declares an index.

2. Use the index property on @ColumnInfo, to add an index on a single
property.

The latter is simpler; the former handles more complex scenarios (e.g., an index
involving multiple properties).

Here, we have an entity with an index on a category property:

packagepackage com.commonsware.room.misccom.commonsware.room.misc

importimport androidx.room.*androidx.room.*

@Entity(tableName = "indexified")
data classdata class IndexedEntityIndexedEntity(
@PrimaryKey
valval id: StringString,
valval title: StringString,
@ColumnInfo(index = truetrue) valval category: StringString,
valval text: StringString? = nullnull,
valval version: IntInt = 1
) {
@Dao
interfaceinterface StoreStore {
@Query("SELECT * FROM indexified")
funfun loadAll(): ListList<IndexedEntityIndexedEntity>

@Query("SELECT * FROM indexified where category = :category")
funfun loadAllForCategory(category: StringString): ListList<IndexedEntityIndexedEntity>

@Insert
funfun insert(varargvararg entity: IndexedEntityIndexedEntity)
}
}

(from MiscSamples/src/main/java/com/commonsware/room/misc/IndexedEntity.kt)

Room will add the requested index:

THE DAO OF ENTITIES

19

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/IndexedEntity.kt

CREATECREATE TABLETABLE IF NOTNOT EXISTSEXISTS indexified (id TEXT NOTNOT NULLNULL, title TEXT NOTNOT NULLNULL,
category TEXT NOTNOT NULLNULL, text TEXT, versionversion INTEGER NOTNOT NULLNULL, PRIMARYPRIMARY KEYKEY(id))
CREATECREATE INDEXINDEX IF NOTNOT EXISTSEXISTS index_indexified_category ONON indexified (category)

Alternatively, we could have used indices on the @Entity annotation:

@Entity(tableName = "indexified", indices = [IndexIndex("category")])
classclass IndexedEntityIndexedEntity(
@PrimaryKey
valval id: StringString,
valval title: StringString,
valval category: StringString,
valval text: StringString? = nullnull,
valval version: IntInt = 1
)

If you have a composite index, consisting of two or more fields, the Index nested
annotation takes a comma-delimited list of column names and will generate the
composite index.

The index will be used by SQLite automatically if you execute queries that involve
the index. The loadAllForCategory() function queries on the indexed category
property, and so our index should be used when we call that function:

packagepackage com.commonsware.room.misccom.commonsware.room.misc

importimport androidx.room.Roomandroidx.room.Room
importimport androidx.test.platform.app.InstrumentationRegistryandroidx.test.platform.app.InstrumentationRegistry
importimport androidx.test.ext.junit.runners.AndroidJUnit4androidx.test.ext.junit.runners.AndroidJUnit4
importimport com.natpryce.hamkrest.assertion.assertThatcom.natpryce.hamkrest.assertion.assertThat
importimport com.natpryce.hamkrest.equalTocom.natpryce.hamkrest.equalTo
importimport com.natpryce.hamkrest.hasSizecom.natpryce.hamkrest.hasSize
importimport com.natpryce.hamkrest.isEmptycom.natpryce.hamkrest.isEmpty

importimport org.junit.Testorg.junit.Test
importimport org.junit.runner.RunWithorg.junit.runner.RunWith

importimport java.util.*java.util.*

@RunWith(AndroidJUnit4AndroidJUnit4::classclass)
classclass IndexedEntityTestIndexedEntityTest {
privateprivate valval db = RoomRoom.inMemoryDatabaseBuilder(
InstrumentationRegistryInstrumentationRegistry.getInstrumentation().targetContext,
MiscDatabaseMiscDatabase::classclass.java
)
.build()

THE DAO OF ENTITIES

20

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

privateprivate valval underTest = db.indexed()

@Test
funfun queryByCategory() {
assertThat(underTest.loadAll(), isEmpty)

valval funStuff = IndexedEntityIndexedEntity(
id = UUIDUUID.randomUUID().toString(),
title = "This is fun!",
category = "fun-stuff",
text = "words words words"
)
valval notAsFunStuff = IndexedEntityIndexedEntity(
id = UUIDUUID.randomUUID().toString(),
title = "Gloom, despair, and agony on me",
category = "un-fun-stuff"
)

underTest.insert(funStuff, notAsFunStuff)

underTest.loadAllForCategory("fun-stuff").let {
assertThat(it, hasSize(equalTo(1)))
assert(it[0] == funStuff)
}
}
}

(from MiscSamples/src/androidTest/java/com/commonsware/room/misc/IndexedEntityTest.kt)

If the index should also enforce uniqueness — only one entity can have the indexed
value — add unique = true to the Index annotation. This requires you to assign the
column(s) for the index to the value property, due to the way annotations work in
Kotlin:

packagepackage com.commonsware.room.misccom.commonsware.room.misc

importimport androidx.room.*androidx.room.*

@Entity(
tableName = "uniquelyIndexed",
indices = [IndexIndex(value = ["title"], unique = truetrue)]
)
data classdata class UniqueIndexEntityUniqueIndexEntity(
@PrimaryKey valval id: StringString,
valval title: StringString,
valval text: StringString = "",
valval version: IntInt = 1

THE DAO OF ENTITIES

21

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/androidTest/java/com/commonsware/room/misc/IndexedEntityTest.kt

) {
@Dao
interfaceinterface StoreStore {
@Query("SELECT * FROM uniquelyIndexed")
funfun loadAll(): ListList<UniqueIndexEntityUniqueIndexEntity>

@Insert
funfun insert(entity: UniqueIndexEntityUniqueIndexEntity)

@Insert(onConflict = OnConflictStrategyOnConflictStrategy.ABORTABORT)
funfun insertOrAbort(entity: UniqueIndexEntityUniqueIndexEntity)

@Insert(onConflict = OnConflictStrategyOnConflictStrategy.IGNOREIGNORE)
funfun insertOrIgnore(entity: UniqueIndexEntityUniqueIndexEntity)

@Insert(onConflict = OnConflictStrategyOnConflictStrategy.REPLACEREPLACE)
funfun insertOrReplace(entity: UniqueIndexEntityUniqueIndexEntity)
}
}

(from MiscSamples/src/main/java/com/commonsware/room/misc/UniqueIndexEntity.kt)

This causes Room to add the UNIQUE keyword to the CREATE INDEX statement:

CREATECREATE TABLETABLE IF NOTNOT EXISTSEXISTS uniquelyIndexed (id TEXT NOTNOT NULLNULL, title TEXT NOTNOT NULLNULL,
text TEXT NOTNOT NULLNULL, versionversion INTEGER NOTNOT NULLNULL, PRIMARYPRIMARY KEYKEY(id))
CREATECREATE UNIQUEUNIQUE INDEXINDEX IF NOTNOT EXISTSEXISTS index_uniquelyIndexed_title ONON uniquelyIndexed
(title)

While a regular index supports multiple values, a unique index does not, leading
once again to a SQLiteConstraintException if we try inserting a duplicate:

packagepackage com.commonsware.room.misccom.commonsware.room.misc

importimport android.database.sqlite.SQLiteConstraintExceptionandroid.database.sqlite.SQLiteConstraintException
importimport androidx.room.Roomandroidx.room.Room
importimport androidx.test.platform.app.InstrumentationRegistryandroidx.test.platform.app.InstrumentationRegistry
importimport androidx.test.ext.junit.runners.AndroidJUnit4androidx.test.ext.junit.runners.AndroidJUnit4
importimport com.natpryce.hamkrest.*com.natpryce.hamkrest.*
importimport com.natpryce.hamkrest.assertion.assertThatcom.natpryce.hamkrest.assertion.assertThat

importimport org.junit.Testorg.junit.Test
importimport org.junit.runner.RunWithorg.junit.runner.RunWith

importimport java.util.*java.util.*

privateprivate constconst valval TEST_TITLE = "A Tale of Two Entities"

THE DAO OF ENTITIES

22

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/UniqueIndexEntity.kt

@RunWith(AndroidJUnit4AndroidJUnit4::classclass)
classclass UniqueIndexEntityTestUniqueIndexEntityTest {
privateprivate valval db = RoomRoom.inMemoryDatabaseBuilder(
InstrumentationRegistryInstrumentationRegistry.getInstrumentation().targetContext,
MiscDatabaseMiscDatabase::classclass.java
)
.build()
privateprivate valval underTest = db.uniqueIndex()

@Test
funfun singleInsert() {
assertThat(underTest.loadAll(), isEmpty)

valval firstEntity = UniqueIndexEntityUniqueIndexEntity(
id = UUIDUUID.randomUUID().toString(),
title = TEST_TITLETEST_TITLE,
text = "This entity will get inserted successfully")

underTest.insert(firstEntity)

assertThat(
underTest.loadAll(),
allOf(hasSize(equalTo(1)), hasElement(firstEntity))
)
}

@Test(expected = SQLiteConstraintExceptionSQLiteConstraintException::classclass)
funfun duplicateFailure() {
singleInsert()

valval secondEntity = UniqueIndexEntityUniqueIndexEntity(
id = UUIDUUID.randomUUID().toString(),
title = TEST_TITLETEST_TITLE,
text = "This entity is doomed")

underTest.insert(secondEntity)
}
}

(from MiscSamples/src/androidTest/java/com/commonsware/room/misc/UniqueIndexEntityTest.kt)

Ignoring Properties

If there are properties in the entity class that should not be persisted, you can
annotate them with @Ignore:

THE DAO OF ENTITIES

23

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/androidTest/java/com/commonsware/room/misc/UniqueIndexEntityTest.kt

packagepackage com.commonsware.room.misccom.commonsware.room.misc

importimport androidx.room.*androidx.room.*

@Entity(tableName = "ignoredProperty")
data classdata class IgnoredPropertyEntityIgnoredPropertyEntity(
@PrimaryKey valval id: StringString,
valval title: StringString,
valval version: IntInt = 1
) {
@Ignore varvar text: StringString = ""
varvar moreText: StringString = ""

@Dao
interfaceinterface StoreStore {
@Query("SELECT * FROM ignoredProperty")
funfun loadAll(): ListList<IgnoredPropertyEntityIgnoredPropertyEntity>

@Query("SELECT * FROM ignoredProperty where id = :id")
funfun findByPrimaryKey(id: StringString): IgnoredPropertyEntityIgnoredPropertyEntity

@Insert
funfun insert(entity: IgnoredPropertyEntityIgnoredPropertyEntity)
}
}

(from MiscSamples/src/main/java/com/commonsware/room/misc/IgnoredPropertyEntity.kt)

You might think that you could skip that and use other techniques, such as by using
a private val property:

@Entity(tableName = "ignoredProperty")
data classdata class IgnoredPropertyEntityIgnoredPropertyEntity(
@PrimaryKey valval id: StringString,
valval title: StringString,
valval version: IntInt = 1
) {
privateprivate valval text: StringString = ""
varvar moreText: StringString = ""
}

Since the text property is private and has no setter, one could argue that Room
might ignore it automatically. Room, instead, generates a build error, as it cannot tell
if you want to ignore that property or if you simply forgot to add it properly.

Another option, instead of @Ignore, is to use @Transient, if that annotation fits your

THE DAO OF ENTITIES

24

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/IgnoredPropertyEntity.kt

needs better:

@Entity(tableName = "ignoredProperty")
data classdata class IgnoredPropertyEntityIgnoredPropertyEntity(
@PrimaryKey valval id: StringString,
valval title: StringString,
valval version: IntInt = 1
) {
@Transient varvar text: StringString = ""
varvar moreText: StringString = ""
}

A third option is to use ignoredColumns, a property in the @Entity annotation, that
takes an array of column names that should be ignored:

@Entity(
tableName = "ignoredProperty",
ignoredColumns = ["text"]
)
data classdata class IgnoredPropertyEntityIgnoredPropertyEntity(
@PrimaryKey valval id: StringString,
valval title: StringString,
valval version: IntInt = 1,
varvar text: StringString = ""
) {
varvar moreText: StringString = ""
}

Custom Column Names

By default, Room will generate names for your tables and columns based off of the
entity class names and property names. In general, it does a respectable job of this,
and so you may just leave them alone. However, you may find that you need to
control these names, particularly if you are trying to match an existing database
schema (e.g., you are migrating an existing Android app to use Room instead of
using SQLite directly). And for table names in particular, setting your own name can
simplify some of the SQL that you have to write for @Query-annotated functions.

As we have seen, to control the table name, use the tableName property on the
@Entity attribute, and give it a valid SQLite table name. To rename a column, add
the @ColumnInfo annotation to the property, with a name property that provides your
desired name for the column:

THE DAO OF ENTITIES

25

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

packagepackage com.commonsware.room.misccom.commonsware.room.misc

importimport android.database.Cursorandroid.database.Cursor
importimport androidx.room.*androidx.room.*

@Entity(tableName = "customColumn")
classclass CustomColumnNameEntityCustomColumnNameEntity(
@PrimaryKey
valval id: StringString,
valval title: StringString,
@ColumnInfo(name = "words") valval text: StringString? = nullnull,
valval version: IntInt = 1
) {
@Dao
interfaceinterface StoreStore {
@Query("SELECT * FROM customColumn")
funfun loadAll(): ListList<CustomColumnNameEntityCustomColumnNameEntity>

@Query("SELECT * FROM customColumn where id = :id")
funfun findByPrimaryKey(id: StringString): CustomColumnNameEntityCustomColumnNameEntity

@Query("SELECT * FROM customColumn where id IN (:ids)")
funfun findByPrimaryKeys(varargvararg ids: StringString): ListList<CustomColumnNameEntityCustomColumnNameEntity>

@Query("SELECT * FROM customColumn where id IN (:ids)")
funfun findByPrimaryKeys(ids: ListList<StringString>): ListList<CustomColumnNameEntityCustomColumnNameEntity>

@Query("SELECT * FROM customColumn LIMIT :limit")
funfun loadFirst(limit: IntInt): ListList<CustomColumnNameEntityCustomColumnNameEntity>

@Query("SELECT * FROM customColumn")
funfun loadCursor(): CursorCursor

@Insert
funfun insert(entity: CustomColumnNameEntityCustomColumnNameEntity)
}
}

(from MiscSamples/src/main/java/com/commonsware/room/misc/CustomColumnNameEntity.kt)

Here, we changed the text property’s column to words, along with specifying the
table name. The SQL will reflect that change:

CREATECREATE TABLETABLE IF NOTNOT EXISTSEXISTS customColumn (id TEXT NOTNOT NULLNULL, title TEXT NOTNOT NULLNULL, words
TEXT, versionversion INTEGER NOTNOT NULLNULL, PRIMARYPRIMARY KEYKEY(id))

…even though we still refer to the property by its regular Kotlin name:

THE DAO OF ENTITIES

26

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/CustomColumnNameEntity.kt

packagepackage com.commonsware.room.misccom.commonsware.room.misc

importimport androidx.room.Roomandroidx.room.Room
importimport androidx.test.platform.app.InstrumentationRegistryandroidx.test.platform.app.InstrumentationRegistry
importimport androidx.test.ext.junit.runners.AndroidJUnit4androidx.test.ext.junit.runners.AndroidJUnit4
importimport com.natpryce.hamkrest.assertion.assertThatcom.natpryce.hamkrest.assertion.assertThat
importimport com.natpryce.hamkrest.equalTocom.natpryce.hamkrest.equalTo
importimport com.natpryce.hamkrest.isEmptycom.natpryce.hamkrest.isEmpty

importimport org.junit.Testorg.junit.Test
importimport org.junit.runner.RunWithorg.junit.runner.RunWith

importimport org.junit.Assert.*org.junit.Assert.*
importimport java.util.*java.util.*

@RunWith(AndroidJUnit4AndroidJUnit4::classclass)
classclass CustomColumnNameEntityTestCustomColumnNameEntityTest {
privateprivate valval db = RoomRoom.inMemoryDatabaseBuilder(
InstrumentationRegistryInstrumentationRegistry.getInstrumentation().targetContext,
MiscDatabaseMiscDatabase::classclass.java
)
.build()
privateprivate valval underTest = db.customColumn()

@Test
funfun customColumnPersists() {
assertThat(underTest.loadAll(), isEmpty)

valval original = CustomColumnNameEntityCustomColumnNameEntity(
id = UUIDUUID.randomUUID().toString(),
title = "This space available for rent",
text = "This will be stored as words. Well, it will be stored in a column named 'words'."
)

underTest.insert(original)

valval retrieved = underTest.findByPrimaryKey(original.id)

assertThat(retrieved.id, equalTo(original.id))
assertThat(retrieved.title, equalTo(original.title))
assertThat(retrieved.text, equalTo(original.text))
}
}

(from MiscSamples/src/androidTest/java/com/commonsware/room/misc/CustomColumnNameEntityTest.kt)

Note, though, that many of the annotation attributes that Room uses refer to
column names, not property names. For example, suppose that instead of using * to
indicate that our queries should return all columns, we list the ones that we want…
and we use property names:

@Query("SELECT id, title, text, version FROM customColumn")
funfun loadAll(): ListList<CustomColumnNameEntityCustomColumnNameEntity>

THE DAO OF ENTITIES

27

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/androidTest/java/com/commonsware/room/misc/CustomColumnNameEntityTest.kt

Android Studio will be unhappy with you:

Figure 1: Android Studio, Showing Syntax Error

And, if you try ignoring Android Studio and building the project anyway, you will
get a build error:

error: There is a problem with the query: [SQLITE_ERROR] SQL error or missing
database (no such column: text)

public abstract
java.util.List<com.commonsware.room.misc.CustomColumnNameEntity> loadAll();

You need to use the column name instead:

@Query("SELECT id, title, words, version FROM customColumn")
funfun loadAll(): ListList<CustomColumnNameEntityCustomColumnNameEntity>

Also note that adding @ColumnInfo to a @Transient property means that this
property will be included when creating the table structure, despite the @Transient
annotation. By default, @Transient properties are ignored, but adding @ColumnInfo
indicates that you want that default behavior to be overridden.

Other @ColumnInfo Options

Beyond specifying the column name to use, you can configure other options on a
@ColumnInfo annotation. We saw using index = true earlier to add an index to a
column, but we have options beyond that as well.

Collation

You can specify a collate property to indicate the collation sequence to apply to
this column. Here, “collation sequence” is a fancy way of saying “comparison
function for comparing two strings”.

There are four options:

• BINARY and UNDEFINED, which are equivalent, the default value, and indicate
that case is sensitive

• NOCASE, which indicates that case is not sensitive (more accurately, that the

THE DAO OF ENTITIES

28

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

26 English letters are converted to uppercase)
• RTRIM, which indicates that trailing spaces should be ignored on a case-

sensitive collation

There is no full-UTF equivalent of NOCASE in SQLite.

Type Affinity

Normally, Room will determine the type to use on the column in SQLite based upon
the type of the property (e.g., Int properties create INTEGER columns). If, for some
reason, you wish to try to override this behavior, you can use the typeAffinity
property on @ColumnInfo to specify some other type to use.

Default Values

@ColumnInfo also has a defaultValue property. As you might guess from the name,
it provides a default value for the column in the table definition.

However, “out of the box”, it may be less useful than you think. If you @Insert an
entity, the value for this column from the entity will be used, not the default value.

We will explore defaultValue, and scenarios where it is useful, later in the book.

DAOs and Queries
One popular thing to do with a database is to get data out of it. For that, we add
@Query functions on our DAO.

Those do not have to be especially complex. The loadAll() functions in the samples
shown in this chapter are delightfully simple:

@Query("SELECT * FROM customColumn")
funfun loadAll(): ListList<CustomColumnNameEntityCustomColumnNameEntity>

(from MiscSamples/src/main/java/com/commonsware/room/misc/CustomColumnNameEntity.kt)

However, SQL queries with SQLite can get remarkably complicated. Room tries to
support a lot of the standard SQL syntax, but Room adds its own complexity, in
terms of trying to decipher how to interpret your @Query function’s arguments and
return type.

THE DAO OF ENTITIES

29

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/CustomColumnNameEntity.kt

Adding Parameters

As we saw with functions like findByPrimaryKey(), you can map function
arguments to query parameters by using : syntax. Put : before the argument name
and its value will be injected into the query:

@Query("SELECT * FROM customColumn where id = :id")
funfun findByPrimaryKey(id: StringString): CustomColumnNameEntityCustomColumnNameEntity

(from MiscSamples/src/main/java/com/commonsware/room/misc/CustomColumnNameEntity.kt)

WHERE Clause

Principally, your function arguments will be injected into your WHERE clause, such as
in the above example.

Note that Room has special support for IN in a WHERE clause, where you can query
using a vararg or List parameter:

@Query("SELECT * FROM customColumn where id IN (:ids)")
funfun findByPrimaryKeys(varargvararg ids: StringString): ListList<CustomColumnNameEntityCustomColumnNameEntity>

@Query("SELECT * FROM customColumn where id IN (:ids)")
funfun findByPrimaryKeys(ids: ListList<StringString>): ListList<CustomColumnNameEntityCustomColumnNameEntity>

(from MiscSamples/src/main/java/com/commonsware/room/misc/CustomColumnNameEntity.kt)

Here, the IN (:ids) SQL syntax will be expanded by Room to include all of the
values that you supply in the argument. In this case, you would retrieve all of the
entities matching any of those primary key values.

Other Clauses

Wherever SQLite allows ? placeholders, Room should allow function arguments to
be used instead.

So, for example, you can parameterize a LIMIT clause:

@Query("SELECT * FROM customColumn LIMIT :limit")
funfun loadFirst(limit: IntInt): ListList<CustomColumnNameEntityCustomColumnNameEntity>

(from MiscSamples/src/main/java/com/commonsware/room/misc/CustomColumnNameEntity.kt)

THE DAO OF ENTITIES

30

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/CustomColumnNameEntity.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/CustomColumnNameEntity.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/CustomColumnNameEntity.kt

What You Can Return

We have seen that a @Query can return a single entity (e.g., the single-ID
findByPrimaryKey() functions) or a collection of entities (e.g., loadAll() returning
a List of entities).

While those are simple, Room offers a fair bit more flexibility than that.

Returning CursorCursor

In addition to returning single objects or collections of objects, a Room @Query can
return a good old-fashioned Cursor:

@Query("SELECT * FROM customColumn")
funfun loadCursor(): CursorCursor

(from MiscSamples/src/main/java/com/commonsware/room/misc/CustomColumnNameEntity.kt)

This is particularly useful if you are migrating legacy code that uses CursorAdapter
or other Cursor-specific classes. Similarly, if you are looking to expose part of a
Room-defined database via a ContentProvider, it may be more convenient for you
to get your results in the form of a Cursor, so that you can just return that from the
provider’s query() function.

Note that, as with getting a Cursor from SQLiteDatabase, you are responsible for
closing the Cursor when you are done with it.

Non-Entity Results

For small entities, like the ones shown so far in this chapter, usually we will retrieve
all columns in the query. However, the real rule is: the core return object of the
@Query function must be something that Room knows how to fill in from the
columns that you request.

For wider tables with many columns, this is important. For example, perhaps for a
RecyclerView, you only need a couple of columns, but for all entities in the table. In
that case, it might be nice to only retrieve those specific columns. You have two ways
to do that:

1. Have your @Entity support only a subset of columns, allowing the rest to be
null or otherwise tracking the fact that we only retrieved a subset of

THE DAO OF ENTITIES

31

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/CustomColumnNameEntity.kt

columns from the table
2. Return something other than the entity that you have associated with this

table

If you look at your @Dao-annotated interface, you will notice that while functions
might refer to entities, its annotations do not. That is because the DAO is somewhat
independent of the entities. The entities describe the table, but the DAO is not
limited to using those entities. So long as the DAO can fulfill the contract stipulated
by the SQL, the function arguments, and the function return type, Room is perfectly
happy.

For example, suppose that you were making an app store client. While many
developers think that the Play Store is the only app store client, there are lots of
alternatives, such as F-Droid, which specializes in open source apps.

In your data model, you will need some sort of Room entity representing apps in the
store catalog. That may involve a lot of data, where you might need all of that data
for the app “display” screen in your app. However, when you are presenting a list of
apps — the whole catalog, some category of apps, or search results — you may need
just a subset of that data. For that, you can take advantage of Room’s query flexibility
and define a “list model” class that contains the subset of data that your lists need:

packagepackage com.commonsware.room.misccom.commonsware.room.misc

importimport androidx.room.*androidx.room.*

@Entity(tableName = "apps")
data classdata class AppEntityAppEntity(
@PrimaryKey
valval applicationId: StringString,
valval displayName: StringString,
valval shortDescription: StringString,
valval fullDescription: StringString,
valval latestVersionName: StringString,
valval lastUpdated: LongLong,
valval iconUrl: StringString,
valval packageUrl: StringString,
valval donationUrl: StringString
) {
@Dao
interfaceinterface StoreStore {
@Query("SELECT * FROM apps")
funfun loadAll(): ListList<AppEntityAppEntity>

@Query("SELECT applicationId, displayName, shortDescription, iconUrl FROM apps")
funfun loadListModels(): ListList<AppListModelAppListModel>

@Insert
funfun insert(entity: AppEntityAppEntity)
}

THE DAO OF ENTITIES

32

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://f-droid.org/

}

data classdata class AppListModelAppListModel(
valval applicationId: StringString,
valval displayName: StringString,
valval shortDescription: StringString,
valval iconUrl: StringString
)

(from MiscSamples/src/main/java/com/commonsware/room/misc/AppEntity.kt)

Here, AppEntity itself is unremarkable. However, we also define an AppListModel
class, with a subset of the AppEntity properties. AppEntity.Store not only defines a
loadAll() function that returns entities, but it has a loadListModels() function
that returns AppListModel objects. loadListModels() has a @Query annotation that
returns only the columns needed by AppListModel, and Room will happily pour that
data into AppListModel objects for us. The only connection between AppEntity and
AppListModel is that our loadListModels() query queries the apps table.

Now, app code that displays lists, or otherwise only needs this subset of the overall
entity data, can work with the “list models” instead:

packagepackage com.commonsware.room.misccom.commonsware.room.misc

importimport androidx.room.Roomandroidx.room.Room
importimport androidx.test.platform.app.InstrumentationRegistryandroidx.test.platform.app.InstrumentationRegistry
importimport androidx.test.ext.junit.runners.AndroidJUnit4androidx.test.ext.junit.runners.AndroidJUnit4
importimport com.natpryce.hamkrest.assertion.assertThatcom.natpryce.hamkrest.assertion.assertThat
importimport com.natpryce.hamkrest.equalTocom.natpryce.hamkrest.equalTo
importimport com.natpryce.hamkrest.hasSizecom.natpryce.hamkrest.hasSize
importimport com.natpryce.hamkrest.isEmptycom.natpryce.hamkrest.isEmpty

importimport org.junit.Testorg.junit.Test
importimport org.junit.runner.RunWithorg.junit.runner.RunWith

@RunWith(AndroidJUnit4AndroidJUnit4::classclass)
classclass AppEntityTestAppEntityTest {
privateprivate valval db = RoomRoom.inMemoryDatabaseBuilder(
InstrumentationRegistryInstrumentationRegistry.getInstrumentation().targetContext,
MiscDatabaseMiscDatabase::classclass.java
)
.build()
privateprivate valval underTest = db.apps()

@Test
funfun queryDisplayModels() {
assertThat(underTest.loadAll(), isEmpty)
assertThat(underTest.loadListModels(), isEmpty)

valval fdroid = AppEntityAppEntity(
applicationId = "org.fdroid.fdroid",
displayName = "F-Droid",
shortDescription = "An independent app store featuring open source Android apps",
fullDescription = "F-Droid is an installable catalogue of FOSS (Free and Open Source Software)

applications for the Android platform. The client makes it easy to browse, install, and keep track of

THE DAO OF ENTITIES

33

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/AppEntity.kt

updates on your device. Visit https://f-droid.org to learn more!",
lastUpdated = 1566652015000,
latestVersionName = "1.7.1",
donationUrl = "https://flattr.com/thing/343053/F-Droid-Repository",
packageUrl = "https://f-droid.org/FDroid.apk",
iconUrl = "https://gitlab.com/fdroid/fdroidclient/raw/master/app/src/main/res/drawable-hdpi/

ic_launcher.png?inline=true"
)

underTest.insert(fdroid)

underTest.loadAll().let {
assertThat(it, hasSize(equalTo(1)))
assert(it[0] == fdroid)
}

underTest.loadListModels().let {
assertThat(it, hasSize(equalTo(1)))

valval model = it[0]

assertThat(model.applicationId, equalTo(fdroid.applicationId))
assertThat(model.displayName, equalTo(fdroid.displayName))
assertThat(model.shortDescription, equalTo(fdroid.shortDescription))
assertThat(model.iconUrl, equalTo(fdroid.iconUrl))
}
}
}

(from MiscSamples/src/androidTest/java/com/commonsware/room/misc/AppEntityTest.kt)

Note that @ColumnInfo annotations can be used on any class, not just entities.
Frequently, if you use @ColumnInfo on a property in an entity, you will wind up using
that same @ColumnInfo on the corresponding property in any sort of “list model”-
style object, so that the property names line up with the column in the table.

Reactive Return Types

All of our DAO functions have returned values directly, whether those values are
entities, lists of entities, or something else (e.g., list of some “tuple” objects).

Those functions are synchronous. The query will be performed when we call the
function, and we get the results of the query returned to us.

That is very simple. It is also very annoying, as it means that we have to deal with
background threads ourselves. We do not want to be calling these DAO functions on
the main application thread, as database I/O can be slow. As a result, we will be
forced to use something else, such as a Java Executor, to be able to call the functions
from a background thread.

THE DAO OF ENTITIES

34

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/androidTest/java/com/commonsware/room/misc/AppEntityTest.kt

However, if you look at a lot of Room sample code, you will see that the
@Query-annotated functions often wrap the return values in… something else:

• LiveData
• Flow
• Single
• Observable
• Flowable
• and so on

These are classes from reactive frameworks. LiveData is part of the Android Jetpack,
Flow is from Kotlin coroutines, and the others are from RxJava. These frameworks
are designed to help simplify threading. They hide the complexity of doing the
actual database I/O on a background thread while getting the results to you on the
main application thread (or some other thread of interest to you).

We will explore these options, and threads with Room in general, in an upcoming
chapter.

Aggregate Functions

SQL supports aggregate functions, like COUNT and SUM. If you include these in a
query, you get those calculated values back, instead of (or perhaps in addition to)
actual data from a table.

Room also supports aggregate functions. However, by definition, there is no entity
whose properties are counts or sums. We have two options for getting our results
back for these calculations:

• If we need just a single value, we can have a @Query-annotated function
return an Int, Long, or other basic type that represents the result from the
aggregate function

• Otherwise, we use a variation on the approach from the preceding section,
where we create a data class or similar structure that Room can use to
return our results

packagepackage com.commonsware.room.misccom.commonsware.room.misc

importimport androidx.room.*androidx.room.*
importimport kotlin.random.Randomkotlin.random.Random

data classdata class CountAndSumResultCountAndSumResult(valval count: IntInt, valval sum: LongLong)

THE DAO OF ENTITIES

35

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

@Entity(tableName = "aggregate")
classclass AggregateEntityAggregateEntity(
@PrimaryKey(autoGenerate = truetrue)
valval id: LongLong = 0,
valval value: LongLong = RandomRandom.nextLong(1000000)
) {
@Dao
interfaceinterface StoreStore {
@Query("SELECT * FROM aggregate")
funfun loadAll(): ListList<AggregateEntityAggregateEntity>

@Query("SELECT COUNT(*) FROM aggregate")
funfun count(): IntInt

@Query("SELECT COUNT(*) as count, SUM(value) as sum FROM aggregate")
funfun countAndSum(): CountAndSumResultCountAndSumResult

@Insert
funfun insert(entities: ListList<AggregateEntityAggregateEntity>)
}
}

(from MiscSamples/src/main/java/com/commonsware/room/misc/AggregateEntity.kt)

Here, our entity just has an auto-generated primary key, plus some other randomly-
generated Long value (cunningly stored in a value property). In its associated
AggregateEntity.Store, in addition to our standard loadAll() function and an
insert() that accepts a List of entities, we have:

• count(), which returns an Int representing the count of rows in the table
• countAndSum(), which returns the count of rows and the sum of the values,

in the form of a CountAndSumResult.

Note that the SQL for countAndSum() uses the AS operator to put a specific name on
the returned values. Those need to map to the property names in your result type.

We can then use those functions just like any other @Dao functions. And, in the case
of countAndSum(), we can use Kotlin’s destructuring declarations to avoid having to
fuss with a CountAndSumResult:

packagepackage com.commonsware.room.misccom.commonsware.room.misc

importimport androidx.room.Roomandroidx.room.Room
importimport androidx.test.platform.app.InstrumentationRegistryandroidx.test.platform.app.InstrumentationRegistry

THE DAO OF ENTITIES

36

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/AggregateEntity.kt

importimport androidx.test.ext.junit.runners.AndroidJUnit4androidx.test.ext.junit.runners.AndroidJUnit4
importimport com.natpryce.hamkrest.assertion.assertThatcom.natpryce.hamkrest.assertion.assertThat
importimport com.natpryce.hamkrest.equalTocom.natpryce.hamkrest.equalTo
importimport com.natpryce.hamkrest.greaterThancom.natpryce.hamkrest.greaterThan
importimport com.natpryce.hamkrest.hasSizecom.natpryce.hamkrest.hasSize
importimport com.natpryce.hamkrest.isEmptycom.natpryce.hamkrest.isEmpty

importimport org.junit.Testorg.junit.Test
importimport org.junit.runner.RunWithorg.junit.runner.RunWith

importimport java.util.*java.util.*

@RunWith(AndroidJUnit4AndroidJUnit4::classclass)
classclass AggregateEntityTestAggregateEntityTest {
privateprivate valval db = RoomRoom.inMemoryDatabaseBuilder(
InstrumentationRegistryInstrumentationRegistry.getInstrumentation().targetContext,
MiscDatabaseMiscDatabase::classclass.java
)
.build()
privateprivate valval underTest = db.aggregate()

@Test
funfun aggregateFunctions() {
assertThat(underTest.loadAll(), isEmpty)

underTest.insert(ListList(100) { AggregateEntityAggregateEntity() })

assertThat(underTest.count(), equalTo(100))

valval (count, sum) = underTest.countAndSum()

assertThat(count, equalTo(100))
assertThat(sum, greaterThan(0L))
}
}

(from MiscSamples/src/androidTest/java/com/commonsware/room/misc/AggregateEntityTest.kt)

Dynamic Queries
Sometimes, you do not know the query at compile time.

One scenario for this is when you want to expose a Room-managed database via a
ContentProvider to third-party apps. You could document that you support a
limited set of options in your provider’s query() function, ones that you can map to
@Query functions on your DAO. Alternatively, you could generate a SQL statement

THE DAO OF ENTITIES

37

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/androidTest/java/com/commonsware/room/misc/AggregateEntityTest.kt

using SQLiteQueryBuilder that supports what your table offers, but then you need
to somehow execute that statement and get a Cursor back.

You have a few options for handling this sort of situation.

query()

RoomDatabase has a query() function that is analogous to rawQuery() on a
SQLiteDatabase. Pass it the SQL statement and an Object array of position
parameters, and RoomDatabase will give you a Cursor back.

The benefit is that this is quick and easy. The downside is that you wind up with a
Cursor, which is less convenient than the model objects that you get back from
@Query functions on your @Dao.

@RawQuery

Another option is @RawQuery. Like @Query, this is an annotation that you can add to
a function on your @Dao. And, like @Query, you can have that function return
instances of an @Entity or other POJO.

However, rather than supplying a fixed SQL statement in the annotation, you
provide a SupportSQLiteQuery object as a parameter to the @RawQuery function:

@RawQuery
funfun _findMeSomething(query: SupportSQLiteQuerySupportSQLiteQuery): ListList<FooFoo>

A SupportSQLiteQuery comes from the support database API, which is how Room
interacts with your SQLite database. Fortunately, for the purposes of using
@RawQuery, the only thing that you need from that API is SimpleSQLiteQuery. Its
constructor takes the same two parameters as does rawQuery() on a
SQLiteDatabase:

• The SQL statement to execute, and
• An Object array of values to use to replace positional placeholders

So, you can wrap your query and placeholder values in a SimpleSQLiteQuery, pass
that to your @RawQuery-annotated function, and Room will take care of the rest.

THE DAO OF ENTITIES

38

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Other DAO Operations
To get data out of a database, generally it is useful to put data into it. We have seen
basic @Insert, @Update, and @Delete DAO functions on NoteStore:

packagepackage com.commonsware.room.notescom.commonsware.room.notes

importimport androidx.room.*androidx.room.*

@Dao
interfaceinterface NoteStoreNoteStore {
@Query("SELECT * FROM notes")
funfun loadAll(): ListList<NoteEntityNoteEntity>

@Insert
funfun insert(note: NoteEntityNoteEntity)

@Update
funfun update(note: NoteEntityNoteEntity)

@Delete
funfun delete(varargvararg notes: NoteEntityNoteEntity)
}

(from NoteBasics/src/main/java/com/commonsware/room/notes/NoteStore.kt)

Generally speaking, these scenarios are simpler than @Query. The @Insert, @Update,
and @Delete set up simple functions for inserting, updating, or deleting entities
passed to their functions… and that is pretty much it. However, there are a few
additional considerations that we should explore.

Parameters

@Insert, @Update, and @Delete work with entities. In the above code, insert() and
update() each take a single entity. delete() takes a vararg of entities, so you can
pass one or several as you see fit.

You can also have a List of entities, as we saw in the insert() function in
AggregateEntity:

packagepackage com.commonsware.room.misccom.commonsware.room.misc

importimport androidx.room.*androidx.room.*
importimport kotlin.random.Randomkotlin.random.Random

THE DAO OF ENTITIES

39

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/NoteBasics/src/main/java/com/commonsware/room/notes/NoteStore.kt

data classdata class CountAndSumResultCountAndSumResult(valval count: IntInt, valval sum: LongLong)

@Entity(tableName = "aggregate")
classclass AggregateEntityAggregateEntity(
@PrimaryKey(autoGenerate = truetrue)
valval id: LongLong = 0,
valval value: LongLong = RandomRandom.nextLong(1000000)
) {
@Dao
interfaceinterface StoreStore {
@Query("SELECT * FROM aggregate")
funfun loadAll(): ListList<AggregateEntityAggregateEntity>

@Query("SELECT COUNT(*) FROM aggregate")
funfun count(): IntInt

@Query("SELECT COUNT(*) as count, SUM(value) as sum FROM aggregate")
funfun countAndSum(): CountAndSumResultCountAndSumResult

@Insert
funfun insert(entities: ListList<AggregateEntityAggregateEntity>)
}
}

(from MiscSamples/src/main/java/com/commonsware/room/misc/AggregateEntity.kt)

Return Values

Frequently, you just have these functions return nothing (technically, they return
Unit, though we can drop that in Kotlin).

However:

• For @Update and @Delete, you can have them return an Int, which will be
the number of rows affected by the update or delete operation

• For an @Insert function accepting a single entity, you can have it return a
Long which will be the ROWID of the entity (and, if you are using an auto-
increment int as your primary key, this will also be that key)

• For an @Insert function accepting multiple entities, you can have it return a
LongArray or a List of Long values, being the corresponding ROWID values for
those inserted entities

THE DAO OF ENTITIES

40

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/AggregateEntity.kt

Conflict Resolution

@Insert and @Update support an optional onConflict property. This maps to
SQLite’s ON CONFLICT clause and indicates what should happen if there is either a
uniqueness violation (e.g., duplicate primary keys) or a NOT NULL violation when the
insert or update should occur.

The value of onConflict is an OnConflictStrategy enum:

Value Meaning

OnConflictStrategy.ABORT
Cancels this statement but preserves prior

results in the transaction and keeps the
transaction alive

OnConflictStrategy.FAIL

Like ABORT, but accepts prior changes by this
specific statement (e.g., if we fail on the 50th
row to be updated, keep the changes to the

preceding 49)

OnConflictStrategy.IGNORE
Like FAIL, but continues processing this

statement (e.g., if we fail on the 50th row out of
100, keep the changes to the other 99)

OnConflictStrategy.REPLACE
For uniqueness violations, deletes other rows

that would cause the violation before executing
this statement

OnConflictStrategy.ROLLBACK Rolls back the current transaction

The default strategy for @Insert and @Update is ABORT.

We will explore these conflict strategies in greater detail much later in the book.

Other Operations

The primary problem with @Insert, @Update, and @Delete is that they need entities.
In part, that is so the DAO function knows what table to work against.

For anything else, use @Query. @Query not only works with operations that return

THE DAO OF ENTITIES

41

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://sqlite.org/lang_conflict.html
https://sqlite.org/lang_conflict.html

result sets, but with any SQL that you wish to execute, even if that SQL does not
return a result set.

So, for example, you could have:

@Query("DELETE FROM aliens")
funfun nukeFromOrbit() // it's the only way to be sure

…or INSERT INTO ... SELECT FROM ... syntax, or pretty much any other
combination that cannot be supported directly by @Insert, @Update, and @Delete
annotations.

Consider @Insert, @Update, and @Delete to be “convenience annotations” for entity-
based operations, where @Query is the backbone for your DAO functions.

Transactions and Room
By default, SQLite treats each individual SQL statement as an individual transaction.
To the extent that Room winds up generating multiple SQL statements in response
to our annotations, it is Room’s responsibility to wrap those statements in a suitable
transaction.

However, sometimes, you have business logic that requires a transaction, for
operations that require multiple DAO functions. For example, persisting an invoice
might involve inserting an Invoice and all of its InvoiceLineItem objects, and that
might require more than one DAO function to achieve.

Room offers two ways of setting up app-defined transactions: the @Transaction
annotation and some functions on RoomDatabase.

Using @Transaction

Your DAO can have one or more functions that have the @Transaction annotation.
Whatever a @Transaction-annotated function does is wrapped in a SQLite
transaction. The transaction will be committed if the @Transaction-annotated
function does not throw an exception. If it does, the transaction will be rolled back.

There are two places to apply @Transaction: custom open functions on an abstract
DAO class, or on @Query functions.

THE DAO OF ENTITIES

42

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Custom Functions

Here, the idea is that your @Transaction-annotated function would make multiple
DAO calls to other functions (e.g., ones with @Insert or @Query annotations), so
that the work performed in those other functions “succeed or fail as a whole”.

Given our fictitious Invoice example, we might have something like this:

@Dao
abstractabstract classclass InvoiceStoreInvoiceStore {
@Insert
funfun _insert(invoice: InvoiceInvoice)

@Insert
funfun _insertItems(lineItems: ListList<InvoiceLineItemInvoiceLineItem>)

@Transaction
openopen funfun insert(invoice: InvoiceInvoice) {
_insert(invoice)
_insertItems(invoice.getLineItems())
}
}

Here, we still use an insert() function to insert an Invoice, but we use that to wrap
two DAO calls to insert the Invoicemetadata and insert the InvoiceLineItem
objects.

Note that the function with @Transaction needs to be open. Room will generate a
concrete implementation of your DAO, either extending your abstract class or
implementing your interface. To make @Transaction work, Room code-generates an
overriding function that wraps a call to your implementation in a transaction.
However, in Kotlin, concrete functions cannot be overridden without the open
keyword. Leaving that keyword off may result in strange compile error messages.

On @Query Functions

It may seem odd to have to specifically request a transaction on a @Query-annotated
function. After all, the default behavior of SQLite is to have each individual SQL
statement be in its own transaction.

However, there are two scenarios called out in the documentation where
@Transaction would be a good idea. One is tied to @Relation, which we will cover

THE DAO OF ENTITIES

43

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://issuetracker.google.com/issues/146825846
https://developer.android.com/reference/kotlin/androidx/room/Transaction

later in the book.

The other is tied to a little-known issue with Android’s SQLite support: things get
weird when the result set of a query exceeds 1MB. In that case, using the regular
Android SQLiteDatabase API, the Cursor that you get back does not contain the full
result set. Instead, it contains a “window” of results, and if you position the Cursor
after that window, the query is re-executed to load in the next window. This can lead
to inconsistencies, if the database is changed in between those two database
requests to populate the window. Room, by default, will load the entire result set
into your entities, quickly moving through the windows as needed, but there is still
a chance that a database modification occurs while this is going on. Using
@Transaction would help ensure that this is not an issue, by having the entire query
— including traversing the windows — occur inside a transaction.

Using RoomDatabase

Alternatively, RoomDatabase offers the same beginTransaction(),
endTransaction(), and setTransactionSuccessful() functions that you see on
SQLiteDatabase, and so you use the same basic algorithm:

roomDb.beginTransaction()

trytry {
// bunch of DAO operations here
roomDb.setTransactionSuccessful()
}
finallyfinally {
roomDb.endTransaction()
}

The advantage to this approach is that you can put the transaction logic somewhere
other than the DAO, if that would be more convenient or make more sense for your
particular implementation. However, it is a bit more work.

THE DAO OF ENTITIES

44

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Room and Custom Types

So far, all of our properties have been basic primitives (such as Int) or String. There
is a good reason for that: those are all that Room understands “out of the box”.
Everything else requires some amount of assistance on our part.

Sometimes, a property in an entity will be related to another entity. Those are
relations, and we will consider those in the next chapter.

However, other times, a property in an entity does not map directly to primitives
and String types, or to another entity. For example:

• What do we do with a Java Date, Calendar, or Instant objects? Do we want
to store that as a milliseconds-since-the-Unix-epoch value as a Long? Do we
want to store a string representation in a standard format, for easier
readability (at the cost of disk space and other issues)?

• What do we do with a Location object? Here, we have two pieces: a latitude
and a longitude. Do we have two columns that combine into one property?
Do we convert the Location to and from a String representation?

• What do we do with collections of strings, such as lists of tags?
• What do we do with enums?

And so on.

In this chapter, we will explore two approaches for handling these things without
creating another entity class: type converters and embedded types.

Type Converters
Type converters are a pair of functions, annotated with @TypeConverter, that map

45

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

the type for a single database column to a type for a Kotlin property. So, for example,
we can:

• Map an Instant property to a Long, which can go in a SQLite INTEGER
column

• Map a Location property to a String, which can go in a SQLite TEXT column
• Map a collection of String values to a single String (e.g., comma-separated

values), which can go in a SQLite TEXT column
• Etc.

However, type converters offer only a 1:1 conversion: a single property to and from a
single SQLite column. If you have a single property that should map to several
SQLite columns, the @Embedded approach can handle that, as we will see later in this
chapter.

Setting Up a Type Converter

First, define a Kotlin class somewhere. The name, package, superclass, etc. do not
matter.

Next, for each type to be converted, create two functions that convert from one type
to the other. So for example, you would have one function that takes an Instant and
returns a Long (e.g., returning the milliseconds-since-the-Unix-epoch value), and a
counterpart function that takes a Long and returns an Instant. If the converter
function is passed null, the proper result is null. Otherwise, the conversion is
whatever you want, so long as the “round trip” works, so that the output of one
converter function, supplied as input to the other converter function, returns the
original value.

Then, each of those functions get the @TypeConverter annotation. The function
names do not matter, so pick a convention that works for you.

Finally, you add a @TypeConverters annotation, listing this and any other type
converter classes, to… something. What the “something” is controls the scope of
where that type converter can be used.

The simple solution is to add @TypeConverters to the RoomDatabase, which means
that anything associated with that database can use those type converters. However,
sometimes, you may have situations where you want different conversions between
the same pair of types, for whatever reason. In that case, you can put the
@TypeConverters annotations on narrower scopes:

ROOM AND CUSTOM TYPES

46

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

@TypeConverters@TypeConverters Location Affected Areas

Entity class all properties in the entity

Entity property that one property in the entity

DAO class all functions in the DAO

DAO function that one function in the DAO, for all parameters

DAO function parameter that one parameter on that one function

For example, the TransmogrifyingEntity file in the the MiscSamplesmodule of the
book’s primary sample project has not only TransmogrifyingEntity but also a
TypeTransmogrifier class. A transmogrifier is a ~30-year-old piece of advanced
technology that can convert one thing into another. TypeTransmogrifier has a set of
functions that turn one type into another — we will examine those functions in
upcoming sections. TransmogrifyingEntity itself has the @TypeConverters
annotation, indicating that the type converters on TypeTransmogrifier should be
used for that entity:

@Entity(tableName = "transmogrified")
@TypeConverters(TypeTransmogrifierTypeTransmogrifier::classclass)
data classdata class TransmogrifyingEntityTransmogrifyingEntity(
@PrimaryKey(autoGenerate = truetrue)
valval id: LongLong = 0,
valval creationTime: InstantInstant = InstantInstant.now(),
valval location: LocationLocation = LocationLocation(nullnull asas StringString?).apply {
latitude = 0.0
longitude = 0.0
},
valval tags: SetSet<StringString> = setOf()
) {
@Dao
interfaceinterface StoreStore {
@Query("SELECT * FROM transmogrified")
funfun loadAll(): ListList<TransmogrifyingEntityTransmogrifyingEntity>

@Insert
funfun insert(entity: TransmogrifyingEntityTransmogrifyingEntity)
}
}

(from MiscSamples/src/main/java/com/commonsware/room/misc/TransmogrifyingEntity.kt)

ROOM AND CUSTOM TYPES

47

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/tree/master/MiscSamples
https://gitlab.com/commonsguy/cw-room/tree/master/MiscSamples
https://gitlab.com/commonsguy/cw-room
https://gitlab.com/commonsguy/cw-room
http://calvinandhobbes.wikia.com/wiki/Transmogrifier
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/TransmogrifyingEntity.kt

Example: Dates and Times

A typical way of storing a date/time value in a database is to use the number of
milliseconds since the Unix epoch (i.e., the number of milliseconds since midnight, 1
January 1970). Instant has a getEpochMillis() function that returns this value.

The TypeTransmogrifier class has a pair of functions designed to convert between
an Instant and a Long:

@TypeConverter
funfun instantToLong(timestamp: InstantInstant?) = timestamp?.toEpochMilli()

@TypeConverter
funfun longToInstant(timestamp: LongLong?) =
timestamp?.let { InstantInstant.ofEpochMilli(it) }

(from MiscSamples/src/main/java/com/commonsware/room/misc/TransmogrifyingEntity.kt)

Each has the @TypeConverter annotation, so Room knows to examine those
functions when it has the need to convert between types, such as finding some
Room-native type into which we can convert an Instant.

TransmogrifyingEntity has an Instant property named creationTime:

valval creationTime: InstantInstant = InstantInstant.now(),

(from MiscSamples/src/main/java/com/commonsware/room/misc/TransmogrifyingEntity.kt)

Given that TransmogrifyingEntity has the @TypeConverters annotation pointing to
TypeTransmogrifier, Room will be able to find a way to convert that Instant to
something that it knows how to handle: a Long. As a result, our timestamp will be
stored in a SQLite INTEGER column.

Example: Locations

A Location object contains a latitude, longitude, and perhaps other values (e.g.,
altitude). If we only care about the latitude and longitude, we could save those in the
database in a single TEXT column, so long as we can determine a good format to use
for that string. One possibility is to have the two values separated by a semicolon.

That is what these two type converter functions on TypeTransmogrifier do:

ROOM AND CUSTOM TYPES

48

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/TransmogrifyingEntity.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/TransmogrifyingEntity.kt

@TypeConverter
funfun locationToString(location: LocationLocation?) =
location?.let { "${it.latitude};${it.longitude}" }

@TypeConverter
funfun stringToLocation(location: StringString?) = location?.let {
valval pieces = location.split(';')

ifif (pieces.size == 2) {
trytry {
LocationLocation(nullnull asas StringString?).apply {
latitude = pieces[0].toDouble()
longitude = pieces[1].toDouble()
}
} catchcatch (e: ExceptionException) {
nullnull
}
} elseelse {
nullnull
}
}

(from MiscSamples/src/main/java/com/commonsware/room/misc/TransmogrifyingEntity.kt)

Our entity class has a Location property:

valval location: LocationLocation = LocationLocation(nullnull asas StringString?).apply {
latitude = 0.0
longitude = 0.0
},

(from MiscSamples/src/main/java/com/commonsware/room/misc/TransmogrifyingEntity.kt)

Room will know how to convert a Location to and from a String, so our location
will be stored in a SQLite TEXT column.

However, the downside of using this approach is that we cannot readily search based
on location. If your location data is not a searchable property, and it merely needs to
be available when you load your entities from the database, using a type converter
like this is fine. Later in this chapter, we will see another approach (@Embedded) that
allows us to store the latitude and longitude as separate columns while still mapping
them to a single data class in Kotlin.

Example: Simple Collections

TEXT and BLOB columns are very flexible. So long as you can marshal your data into a

ROOM AND CUSTOM TYPES

49

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/TransmogrifyingEntity.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/TransmogrifyingEntity.kt

String or byte array, you can save that data in TEXT and BLOB columns. As with the
comma-separated values approach in the preceding section, though, columns used
this way are poor for searching.

So, suppose that you have a Set of String values that you want to store, perhaps
representing tags to associate with an entity. One approach is to have a separate Tag
entity and set up a relation. This is the best approach in many cases. But, perhaps
you do not want to do that for some reason.

You can use a type converter, but you need to decide how to represent your data in a
column. If you are certain that the tags will not contain some specific character (e.g.,
a comma), you can use the delimited-list approach demonstrated with locations in
the preceding section. If you need more flexibility than that, you can always use
JSON encoding, as these type converters do:

@TypeConverter
funfun stringSetToString(list: SetSet<StringString>?) = list?.let {
valval sw = StringWriterStringWriter()
valval json = JsonWriterJsonWriter(sw)

json.beginArray()
list.forEach { json.value(it) }
json.endArray()
json.close()

sw.buffer.toString()
}

@TypeConverter
funfun stringToStringSet(stringified: StringString?) = stringified?.let {
valval json = JsonReaderJsonReader(StringReaderStringReader(it))
valval result = mutableSetOf<StringString>()

json.beginArray()

whilewhile (json.hasNext()) {
result += json.nextString()
}

json.endArray()

result.toSet()
}

(from MiscSamples/src/main/java/com/commonsware/room/misc/TransmogrifyingEntity.kt)

ROOM AND CUSTOM TYPES

50

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/TransmogrifyingEntity.kt

Here, we use the JsonReader and JsonWriter classes that have been part of Android
since API Level 11. Alternatively, you could use a third-party JSON library (e.g., Gson,
Moshi).

Given these type conversion functions, we can use a Set of String values in
TransmogrifyingEntity:

valval tags: SetSet<StringString> = setOf()

(from MiscSamples/src/main/java/com/commonsware/room/misc/TransmogrifyingEntity.kt)

…where the tags will be stored in a TEXT column.

Embedded Types
With type converters, we are teaching Room how to deal with custom types, but we
are limited to mapping from one property to one column. That property might be
complex, but it still goes into one column in the table.

What happens, though, when we have multiple columns that should combine to
create a single property?

In that case, we can use the @Embedded annotation on some data class or other
simple Kotlin class, then use that class as a type in an entity.

Example: Locations

For example, as was noted earlier in this chapter, cramming a location into a single
TEXT column works, but we cannot readily query on the resulting column. If we want
to query for locations near some location in the database, it would be much more
convenient to have the latitude and longitude stored as individual REAL columns.
But, using type converters, we cannot map two columns to one property.

With @Embedded, we can, as we can see in the EmbeddedLocationEntity class in the
the MiscSamplesmodule:

packagepackage com.commonsware.room.misccom.commonsware.room.misc

importimport android.location.Locationandroid.location.Location
importimport android.util.JsonReaderandroid.util.JsonReader
importimport android.util.JsonWriterandroid.util.JsonWriter
importimport androidx.room.*androidx.room.*

ROOM AND CUSTOM TYPES

51

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/TransmogrifyingEntity.kt
https://gitlab.com/commonsguy/cw-room/tree/master/MiscSamples
https://gitlab.com/commonsguy/cw-room/tree/master/MiscSamples

importimport org.threeten.bp.Instantorg.threeten.bp.Instant
importimport java.io.StringReaderjava.io.StringReader
importimport java.io.StringWriterjava.io.StringWriter

data classdata class LocationColumnsLocationColumns(
valval latitude: DoubleDouble,
valval longitude: DoubleDouble
) {
constructorconstructor(loc: LocationLocation) : thisthis(loc.latitude, loc.longitude)
}

@Entity(tableName = "embedded")
data classdata class EmbeddedLocationEntityEmbeddedLocationEntity(
@PrimaryKey(autoGenerate = truetrue)
valval id: LongLong = 0,
valval name: StringString,
@Embedded
valval location: LocationColumnsLocationColumns
) {
@Dao
interfaceinterface StoreStore {
@Query("SELECT * FROM embedded")
funfun loadAll(): ListList<EmbeddedLocationEntityEmbeddedLocationEntity>

@Insert
funfun insert(entity: EmbeddedLocationEntityEmbeddedLocationEntity)
}
}

(from MiscSamples/src/main/java/com/commonsware/room/misc/EmbeddedLocationEntity.kt)

Here, we have a LocationColumns class that wraps our latitude and longitude. The
entity itself has a LocationColumns property, named location, marked with the
@Embedded annotation. Now, Room will use individual REAL columns for our latitude
and longitude:

CREATECREATE TABLETABLE IF NOTNOT EXISTSEXISTS embedded (id INTEGER PRIMARYPRIMARY KEYKEY AUTOINCREMENT NOTNOT NULLNULL,
name TEXT NOTNOT NULLNULL, latitude REAL NOTNOT NULLNULL, longitude REAL NOTNOT NULLNULL)

As a result, we could construct queries on those columns, if we wished.

Note that even though a class used in @Embedded, like LocationColumns, is not an
entity, you can still use @ColumnInfo annotations on it to rename columns, if
desired. Also, you are subject to the same rules for data types: the properties need to
be types that Room understands, natively or via type converters that you create.

ROOM AND CUSTOM TYPES

52

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/EmbeddedLocationEntity.kt

Simple vs. Prefixed

What happens if we need two locations, though? Perhaps we need officeLocation
and affiliateLocation, or something like that.

By default, Room generates column names based on the @Embedded class’ property
names, perhaps modified by @ColumnInfo annotations on those properties. In this
case, though, if we have two LocationColumns properties in the same entity class, we
would wind up with two latitude and two longitude columns, which neither Room
nor SQLite will support.

To address this, the @Embedded annotation accepts an optional prefix property:

@Embedded(prefix = "office_")
valval officeLocation: LocationColumnsLocationColumns

The columns for that entity will have the prefix added:

CREATECREATE TABLETABLE IF NOTNOT EXISTSEXISTS embedded (id INTEGER PRIMARYPRIMARY KEYKEY AUTOINCREMENT NOTNOT NULLNULL,
name TEXT NOTNOT NULLNULL, office_latitude REAL NOTNOT NULLNULL, office_longitude REAL NOTNOT NULLNULL)

Hence, having two LocationColumns simply means that one or both need to use
distinct prefix values.

However, bear in mind that this changes the column names, so you will also need to
adjust any @Query function that references those names, so that you use the
appropriate prefix.

ROOM AND CUSTOM TYPES

53

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Room and Reactive Frameworks

Database I/O can be slow, particularly for larger databases and unoptimized
operations. As a result, we invariably want to do that database I/O on background
threads.

There are many options for doing that, including simply spinning up your own
Thread or Executor that you use to make your DAO calls. However, the more
popular way of addressing this nowadays is to use “reactive frameworks”, which wrap
up threading and results delivery for you. In this chapter, we will examine Room’s
support for a few reactive options: LiveData, Kotlin coroutines, and RxJava.

But, first, a word from our UI.

Room and the Main Application Thread
You might not be worried so much about the speed of your database I/O. Maybe you
think that your database will never get large. Maybe you think that your users will all
be using expensive devices (and think that expensive devices means that they will
have fast database I/O). Maybe threads make your head hurt.

Hence, you might think that you can just go ahead and use Room on the main
application thread, despite the fact that it will freeze your UI while that database I/
O is going on. After all, in the code that we have seen so far in the book, we have not
used Thread, Executor, or any fancy reactive framework — we have just made the
database calls.

But that is because test functions are called on a background thread automatically.
We do not have to fork a background thread of our own.

55

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

To see how Room behaves on the main application thread, we have to write our test
to use the main application thread, such as via runOnMainSync():

packagepackage com.commonsware.room.misccom.commonsware.room.misc

importimport androidx.room.Roomandroidx.room.Room
importimport androidx.test.platform.app.InstrumentationRegistryandroidx.test.platform.app.InstrumentationRegistry
importimport androidx.test.ext.junit.runners.AndroidJUnit4androidx.test.ext.junit.runners.AndroidJUnit4
importimport com.natpryce.hamkrest.assertion.assertThatcom.natpryce.hamkrest.assertion.assertThat
importimport com.natpryce.hamkrest.equalTocom.natpryce.hamkrest.equalTo
importimport com.natpryce.hamkrest.isEmptycom.natpryce.hamkrest.isEmpty

importimport org.junit.Testorg.junit.Test
importimport org.junit.runner.RunWithorg.junit.runner.RunWith

importimport org.junit.Assert.*org.junit.Assert.*

@RunWith(AndroidJUnit4AndroidJUnit4::classclass)
classclass MainAppThreadGoBoomTestMainAppThreadGoBoomTest {
privateprivate valval db = RoomRoom.inMemoryDatabaseBuilder(
InstrumentationRegistryInstrumentationRegistry.getInstrumentation().targetContext,
MiscDatabaseMiscDatabase::classclass.java
)
.build()
privateprivate valval underTest = db.autoGenerate()

@Test
funfun goBoom() {
InstrumentationRegistryInstrumentationRegistry.getInstrumentation().runOnMainSync {
assertThat(underTest.loadAll(), isEmpty)

valval original = AutoGenerateEntityAutoGenerateEntity(id = 0, text = "This will get its own ID")
valval inserted = underTest.insert(original)

assertTrue(original === inserted)
assertThat(inserted.id, !equalTo(0L))
}
}
}

(from MiscSamples/src/androidTest/java/com/commonsware/room/misc/MainAppThreadGoBoomTest.kt)

This is a clone of the test we had for using @PrimaryKey(autoGenerate = true) on
an entity, except that the test code is wrapped in a call to runOnMainSync(), to force
it to run on the main application thread. While the original test succeeds, this one
crashes with:

java.lang.IllegalStateException: Cannot access database on the main thread since it
may potentially lock the UI for a long period of time.

The developers who created Room block Room usage on the main application
thread, as that is an anti-pattern.

ROOM AND REACTIVE FRAMEWORKS

56

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/androidTest/java/com/commonsware/room/misc/MainAppThreadGoBoomTest.kt

So, we need to do something to avoid this sort of crash.

Room and LiveDataLiveData

One “out of the box” option is to use LiveData.

You can learn more about LiveData in the "Thinking About
Threads and LiveData" chapter of Elements of Android Jetpack!

No special dependencies are required, other than Room itself. You can simply wrap
your DAO @Query return values in LiveData:

packagepackage com.commonsware.todo.repocom.commonsware.todo.repo

importimport androidx.lifecycle.LiveDataandroidx.lifecycle.LiveData
importimport androidx.room.*androidx.room.*
importimport kotlinx.coroutines.flow.Flowkotlinx.coroutines.flow.Flow
importimport org.threeten.bp.Instantorg.threeten.bp.Instant
importimport java.util.*java.util.*

@Entity(tableName = "todos", indices = [IndexIndex(value = ["id"])])
data classdata class ToDoEntityToDoEntity(
valval description: StringString,
@PrimaryKey
valval id: StringString = UUIDUUID.randomUUID().toString(),
valval notes: StringString = "",
valval createdOn: InstantInstant = InstantInstant.now(),
valval isCompleted: BooleanBoolean = falsefalse
) {
constructorconstructor(model: ToDoModelToDoModel) : thisthis(
id = model.id,
description = model.description,
isCompleted = model.isCompleted,
notes = model.notes,
createdOn = model.createdOn
)

funfun toModel(): ToDoModelToDoModel {
returnreturn ToDoModelToDoModel(
id = id,
description = description,
isCompleted = isCompleted,

ROOM AND REACTIVE FRAMEWORKS

57

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://commonsware.com/Jetpack

notes = notes,
createdOn = createdOn
)
}

@Dao
interfaceinterface StoreStore {
@Query("SELECT * FROM todos")
funfun all(): LiveDataLiveData<ListList<ToDoEntityToDoEntity>>

@Query("SELECT * FROM todos WHERE id = :modelId")
funfun find(modelId: StringString): LiveDataLiveData<ToDoEntityToDoEntity?>

@Insert(onConflict = OnConflictStrategyOnConflictStrategy.REPLACEREPLACE)
funfun save(varargvararg entities: ToDoEntityToDoEntity)

@Delete
funfun delete(varargvararg entities: ToDoEntityToDoEntity)
}
}

(from LiveData/src/main/java/com/commonsware/todo/repo/ToDoEntity.kt)

This ToDoEntity class is from the LiveDatamodule of the book’s primary sample
project.

You can learn more about the to-do application this module is
based on in the "What We Are Building" chapter of Exploring
Android!

We have a @Dao-annotated interface named ToDoEntity.Store. It has four functions,
two of which have @Query annotations (all() and find()). Instead of returning
entities directly, though, they return LiveData wrappers around those entities.

When we call all() or find(), we get a LiveData back immediately. The I/O will
not be performed until we observe() that LiveData. At that point, the database I/O
will be conducted on a Room-supplied background thread, but the results will be
delivered to our Observer on the main application thread (as with all uses of
LiveData).

Benefits of LiveDataLiveData

As with all of our reactive options, the database I/O gets offloaded to a background

ROOM AND REACTIVE FRAMEWORKS

58

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/LiveData/src/main/java/com/commonsware/todo/repo/ToDoEntity.kt
https://gitlab.com/commonsguy/cw-room/tree/master/LiveData
https://gitlab.com/commonsguy/cw-room/tree/master/LiveData
https://gitlab.com/commonsguy/cw-room
https://gitlab.com/commonsguy/cw-room
https://commonsware.com/AndExplore
https://commonsware.com/AndExplore

thread, so we do not need to fork such a thread ourselves. Yet, we still get the results
delivered to us on the main application thread, so we can easily apply those results
to our UI.

Also, LiveData does not require any additional dependencies, which can help to
keep the app a bit smaller.

Issues with LiveDataLiveData

LiveData is not an option for @Insert, @Update, or @Delete functions — you would
still need to manage your own background threads for those.

LiveData always delivers its results on the main application thread. This is great
when we want those results on the main application thread. This is a problem when
we do not want those results on the main application thread, such as performing
some database I/O in preparation for making a Web service request.

LiveData needs to be observed, and the typical way of observing a LiveData requires
that you pass a LifecycleOwner to observe(). This is annoying when you do not
have a LifecycleOwner to use, such as when using LiveData in some types of
services. You can use observeForever() to avoid the need for the LifecycleOwner,
but then you need to remember to remove your Observer, lest you accidentally wind
up with a memory leak.

And LiveData is lightweight by design. If you have complex background operations
to perform, such as combining results from multiple sources and converting those
results into specific object types, LiveData has limited facilities to help with that.
And, what it does have can be somewhat arcane to use (e.g., MediatorLiveData).

Room and Coroutines
For Kotlin developers, the leading reactive solution is Kotlin’s own coroutines
system. This is a direct extension of the programming language and offers the most
power with the least syntactic complexity.

You can learn more about coroutines in the "Introducing
Coroutines" chapter of Elements of Kotlin Coroutines!

ROOM AND REACTIVE FRAMEWORKS

59

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://commonsware.com/Coroutines

Room supports coroutines via the androidx.room:room-ktx dependency. Adding
that will pull in a compatible version of coroutines in addition to Room’s own code
for supporting coroutines in @Dao-annotated interfaces.

suspendsuspend

One advantage that Room’s coroutines support has over its LiveData support is that
you can use coroutines with @Insert, @Update, and @Delete. Simply add the suspend
keyword to the @Dao-annotated functions:

@Insert(onConflict = OnConflictStrategyOnConflictStrategy.REPLACEREPLACE)
suspendsuspend funfun save(varargvararg entities: ToDoEntityToDoEntity)

@Delete
suspendsuspend funfun delete(varargvararg entities: ToDoEntityToDoEntity)

(from Coroutines/src/main/java/com/commonsware/todo/repo/ToDoEntity.kt)

These functions are from a ToDoEntity.Store implementation in the Coroutines
module of the book’s primary sample project. This module is functionally the same
as the LiveDatamodule, except that it uses coroutines with Room.

These suspend functions can then be called from any suitable CoroutineScope, such
as the viewModelScope offered by Jetpack’s ViewModel system.

Just as the LiveData @Dao functions use a Room-supplied background thread, so too
do the suspend @Dao functions.

FlowFlow

For @Query-annotated functions, you have two choices. You could use a suspend
function, just as you can with @Insert, @Update, and @Delete. The closer equivalent
of using LiveData, though, is to use Flow:

@Dao
interfaceinterface StoreStore {
@Query("SELECT * FROM todos")
funfun all(): FlowFlow<ListList<ToDoEntityToDoEntity>>

@Query("SELECT * FROM todos WHERE id = :modelId")
funfun find(modelId: StringString): FlowFlow<ToDoEntityToDoEntity?>

@Insert(onConflict = OnConflictStrategyOnConflictStrategy.REPLACEREPLACE)

ROOM AND REACTIVE FRAMEWORKS

60

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/Coroutines/src/main/java/com/commonsware/todo/repo/ToDoEntity.kt
https://gitlab.com/commonsguy/cw-room/tree/master/Coroutines
https://gitlab.com/commonsguy/cw-room/tree/master/Coroutines
https://gitlab.com/commonsguy/cw-room/tree/master/Coroutines
https://gitlab.com/commonsguy/cw-room

suspendsuspend funfun save(varargvararg entities: ToDoEntityToDoEntity)

@Delete
suspendsuspend funfun delete(varargvararg entities: ToDoEntityToDoEntity)
}

(from Coroutines/src/main/java/com/commonsware/todo/repo/ToDoEntity.kt)

You can learn more about Flow in the "Introducing Flows and
Channels" chapter of Elements of Kotlin Coroutines!

Flow is a bit like LiveData, in that you can observe it (via functions like collect())
to receive your results. Like the rest of coroutines, you can control the dispatcher
that dictates what thread is used for receiving those results. Or, you can use the
asLiveData() extension function supplied by the androidx.lifecycle:lifecycle-
livedata-ktx artifact to convert a Flow into a LiveData for consumption by an
activity or fragment:

packagepackage com.commonsware.todo.ui.rostercom.commonsware.todo.ui.roster

importimport androidx.lifecycle.LiveDataandroidx.lifecycle.LiveData
importimport androidx.lifecycle.ViewModelandroidx.lifecycle.ViewModel
importimport androidx.lifecycle.asLiveDataandroidx.lifecycle.asLiveData
importimport androidx.lifecycle.viewModelScopeandroidx.lifecycle.viewModelScope
importimport com.commonsware.todo.repo.ToDoModelcom.commonsware.todo.repo.ToDoModel
importimport com.commonsware.todo.repo.ToDoRepositorycom.commonsware.todo.repo.ToDoRepository
importimport kotlinx.coroutines.flow.mapkotlinx.coroutines.flow.map
importimport kotlinx.coroutines.launchkotlinx.coroutines.launch

classclass RosterViewStateRosterViewState(
valval items: ListList<ToDoModelToDoModel> = listOf()
)

classclass RosterMotorRosterMotor(privateprivate valval repo: ToDoRepositoryToDoRepository) : ViewModelViewModel() {
valval states: LiveDataLiveData<RosterViewStateRosterViewState> =
repo.items().map { RosterViewStateRosterViewState(it) }.asLiveData()

funfun save(model: ToDoModelToDoModel) {
viewModelScope.launch {
repo.save(model)
}
}
}

ROOM AND REACTIVE FRAMEWORKS

61

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/Coroutines/src/main/java/com/commonsware/todo/repo/ToDoEntity.kt
https://commonsware.com/Coroutines

(from Coroutines/src/main/java/com/commonsware/todo/ui/roster/RosterMotor.kt)

This ViewModel (RosterMotor) is not using the Flow from our ToDoEntity.Store
directly. Rather, it is calling all() on a ToDoRepository, which in turn is using
ToDoEntity.Store. The all() on ToDoRepository takes advantage of the rich set of
operators on Flow to convert entities to model objects:

packagepackage com.commonsware.todo.repocom.commonsware.todo.repo

importimport kotlinx.coroutines.CoroutineScopekotlinx.coroutines.CoroutineScope
importimport kotlinx.coroutines.flow.Flowkotlinx.coroutines.flow.Flow
importimport kotlinx.coroutines.flow.mapkotlinx.coroutines.flow.map
importimport kotlinx.coroutines.withContextkotlinx.coroutines.withContext

classclass ToDoRepositoryToDoRepository(
privateprivate valval store: ToDoEntityToDoEntity.StoreStore,
privateprivate valval appScope: CoroutineScopeCoroutineScope
) {
funfun items(): FlowFlow<ListList<ToDoModelToDoModel>> =
store.all().map { all -> all.map { it.toModel() } }

funfun find(id: StringString): FlowFlow<ToDoModelToDoModel?> = store.find(id).map { it?.toModel() }

suspendsuspend funfun save(model: ToDoModelToDoModel) {
withContext(appScope.coroutineContext) {
store.save(ToDoEntityToDoEntity(model))
}
}

suspendsuspend funfun delete(model: ToDoModelToDoModel) {
withContext(appScope.coroutineContext) {
store.delete(ToDoEntityToDoEntity(model))
}
}
}

(from Coroutines/src/main/java/com/commonsware/todo/repo/ToDoRepository.kt)

Benefits of Coroutines

Room’s coroutines support covers all @Dao functions, whereas LiveData only works
for @Query.

Coroutines provides flexibility for the thread that you use to receive the results.
While often times you will use Dispatchers.Main to get the results on the main
application thread (for UI use), you have the option of using other dispatchers for

ROOM AND REACTIVE FRAMEWORKS

62

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/Coroutines/src/main/java/com/commonsware/todo/ui/roster/RosterMotor.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/Coroutines/src/main/java/com/commonsware/todo/repo/ToDoRepository.kt

other scenarios.

Coroutines overall are not tied to Android, the way that LiveData is. It will be more
common to see libraries expose a coroutines-based API than one based on LiveData.
As a result, for the overall Kotlin ecosystem, coroutines is likely to eclipse LiveData
in popularity, if it has not done so already.

Issues with Coroutines

Kotlin’s coroutines system is the youngest of the three main Room reactive
frameworks. As such, it has not been “beaten up” as much as, say, RxJava has.

Coroutines are tied to Kotlin. While there are ways to get Java code to interoperate
with Kotlin code that uses coroutines, it is rather clunky. If you expect to have a lot
of Java code needing to work with your @Dao, you may be better off with LiveData or
RxJava, until such time as you can move to coroutines.

Room and RxJava
The classic reactive solution for Java is RxJava. RxJava 2 is the most popular version,
and it offers a rich-but-complex set of types for reactive results delivery. Room, via
the androidx.room:room-rxjava2 artifact, supports many of these, including
Flowable, Observable, Single, Maybe, and Completable. Or, we can use an alpha
edition of androidx.room:room-rxjava3, for RxJava 3, which debuted in 2020.

Your results-returning @Dao functions might use something like Observable or
Maybe, while your other @Dao functions can use Completable:

@Dao
interfaceinterface StoreStore {
@Query("SELECT * FROM todos")
funfun all(): ObservableObservable<ListList<ToDoEntityToDoEntity>>

@Query("SELECT * FROM todos WHERE id = :modelId")
funfun find(modelId: StringString): MaybeMaybe<ToDoEntityToDoEntity>

@Insert(onConflict = OnConflictStrategyOnConflictStrategy.REPLACEREPLACE)
funfun save(varargvararg entities: ToDoEntityToDoEntity): CompletableCompletable

@Delete
funfun delete(varargvararg entities: ToDoEntityToDoEntity): CompletableCompletable
}

ROOM AND REACTIVE FRAMEWORKS

63

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

(from Rx/src/main/java/com/commonsware/todo/repo/ToDoEntity.kt)

Unlike with coroutines and LiveData, Room has intermittent support for
automatically putting your RxJava work on a scheduler with background threads.
Room will put your Observable work on its own scheduler, but not Maybe or
Completable, for example. For those, you will need to supply your own scheduler,
such as Schedulers.io():

packagepackage com.commonsware.todo.repocom.commonsware.todo.repo

importimport io.reactivex.Maybeio.reactivex.Maybe
importimport io.reactivex.Observableio.reactivex.Observable
importimport io.reactivex.schedulers.Schedulersio.reactivex.schedulers.Schedulers

classclass ToDoRepositoryToDoRepository(privateprivate valval store: ToDoEntityToDoEntity.StoreStore) {
funfun items(): ObservableObservable<ListList<ToDoModelToDoModel>> = store.all()
.map { all -> all.map { it.toModel() } }

funfun find(id: StringString): MaybeMaybe<ToDoModelToDoModel> = store.find(id)
.map { it.toModel() }
.subscribeOn(SchedulersSchedulers.io())

funfun save(model: ToDoModelToDoModel) = store.save(ToDoEntityToDoEntity(model))
.subscribeOn(SchedulersSchedulers.io())

funfun delete(model: ToDoModelToDoModel) = store.delete(ToDoEntityToDoEntity(model))
.subscribeOn(SchedulersSchedulers.io())

}

(from Rx/src/main/java/com/commonsware/todo/repo/ToDoRepository.kt)

Otherwise, you will get the “Cannot access database on the main thread” error.

Beyond that, though, you can then subscribe() to these RxJava types and consume
their results as you see fit.

Benefits of RxJava

RxJava is the most seasoned of these reactive solutions, so it is more likely that you
will find information about any problems that you encounter.

Like coroutines, RxJava gives you flexibility for supplying a scheduler on which to
observe the results. This is in contrast to LiveData, which always delivers its results
on the main application thread.

ROOM AND REACTIVE FRAMEWORKS

64

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/Rx/src/main/java/com/commonsware/todo/repo/ToDoEntity.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/Rx/src/main/java/com/commonsware/todo/repo/ToDoRepository.kt

Issues with RxJava

RxJava has a very steep learning curve. Either LiveData or coroutines will be simpler
for newcomers to pick up and use.

Observable Queries
For @Query-annotated functions returning LiveData, Flow, Observable, or Flowable,
Room will deliver changes over time. You will get one result from the query initially.
If you continue to observe the reactive data source, though, and you modify the
database via Room, you will get fresh results delivered to you automatically via the
reactive data source.

So, for example, if you have a fragment observing a query and using that data to
populate a list, and other code in that fragment inserts a new row into the database,
your fragment will get a fresh query result without having to manually re-request it.

This is very convenient in many cases. Bear in mind, though, that you just get a fresh
result without any context. So, in the example from the previous paragraph, while
you get a fresh query result, you are not told exactly what changed in that result… if
anything. For example, you might be inserting a row that is not included in the
query result because it failed to match a WHERE clause.

Conversely, you might get a new result delivered to you where nothing actually
changed. Suppose you have an outstanding query with WHERE price > 10 in the
SQL, and you insert a new row to that table where price is 5. Room will deliver you
a fresh result representing the data change in the table… but since this new row does
not match your WHERE clause, the “fresh” result will be the same as the last result.
You could use distinctUntilChanged() on Flow or Observable to filter out those
duplicate results, if desired.

Room and ListenableFutureListenableFuture

Room also supports an AndroidX edition of Guava’s ListenableFuture interface.
You can have DAO functions return a ListenableFuture instead of an RxJava
Single, for example. ListenableFuture allows you to register a callback to find out
when the work is completed.

This option is relatively obscure and has very little documentation. Unless you are

ROOM AND REACTIVE FRAMEWORKS

65

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://androidx.tech/artifacts/concurrent/concurrent-listenablefuture/
https://androidx.tech/artifacts/concurrent/concurrent-listenablefuture/

integrating with some framework that itself is based on Future and
ListenableFuture, the other reactive solutions presented in this chapter are
substantially more popular.

Where Synchronous Room is Safe
So long as you do your Room database I/O on a background thread, Room does not
care where that background thread came from. Room is not forcing you to use some
Room-supplied thread — it is just forcing you to use some background thread.

Hence, you are welcome to use non-reactive Room @Dao options from places where
you already have a background thread, such as a Worker for use with WorkManager or
a JobIntentService.

Being Evil
Some developers do not like to take “no” for an answer. When they are told that they
should not do database I/O on the main application thread — and that Room
actively blocks that behavior — they get angry.

For those developers, there is allowMainThreadQueries().

This is a method on RoomDatabase.Builder that you can call to turn off the ban on
Room DAO calls on the main application thread:

privateprivate valval db = RoomRoom.databaseBuilder(
myContext,
MiscDatabaseMiscDatabase::classclass.java,
DB_NAMEDB_NAME
)
.allowMainThreadQueries()
.build()

Now, db can be used on the main application thread, without complaints from
Room. However, there might be complaints from users, or management, or the QA
team, due to the app appearing to perform poorly.

ROOM AND REACTIVE FRAMEWORKS

66

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Relations in Room

SQLite is a relational database. So far, we have not talked about that, focusing
instead on standalone entities.

Room supports entities being related to other content in other tables. Room does
not support entities being directly related to other entities, though.

And if that sounds strange, there is “a method to the madness”.

(or, in Kotlin, “a function to the foolishness”)

In this chapter, we will explore how you implement relational structures with Room
and why Room has the restrictions that it does.

The Classic ORM Approach
Java ORMs have long supported entities having relations to other entities, though
not every ORM uses the “entity” term.

One Android ORM that does is greenDAO. It allows you to use annotations to
indicate relations, such as in this Java snippet:

@Entity
publicpublic classclass ThingyThingy {
@Id privateprivate LongLong id;

privateprivate long otherThingyId;

@ToOne(joinProperty="otherThingyId")
privateprivate OtherThingyOtherThingy otherThingy;

67

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

http://greenrobot.org/greendao

// other good stuff here
}

@Entity
publicpublic classclass OtherThingyOtherThingy {
@ID privateprivate LongLong id;
}

These annotations result in getOtherThingy() and setOtherThingy()methods to
be synthetically added to Thingy (or, more accurately, to a hidden subclass of
Thingy, but for the purposes of this section, we will ignore that). Which
OtherThingy our Thingy relates to is tied to that otherThingyId field, which is
stored as a column in the table. When you call getOtherThingy(), greenDAO will
query the database to load in the OtherThingy instance, assuming that it has not
been cached already.

That is where the threading problem creeps in.

A History of Threading Mistakes
In Android app development, we are constantly having to fight to keep disk I/O off
of the main application thread. Every millisecond that our code executes on the
main application thread is a millisecond that the main application thread is not
updating our UI. Our objective is to move as much disk I/O as possible off the main
application thread. That is why we use all those nice reactive solutions from the
preceding chapter.

The problem is that the nice encapsulation that we get from object-oriented
programming also encapsulates knowledge of whether disk I/O will be done when
we call a particular method.

Classic use of SQLiteDatabase encounters this with the rawQuery()/query() family
of methods. They return a Cursor. You might think — reasonably — that those
methods execute the SQL query that you request. In truth, they do not. All they do
is create a SQLiteCursor instance that holds onto the query and the
SQLiteDatabase. Later, when you call a method that requires the actual query result
(e.g., getCount(), to get the number of returned rows), then the query is executed
against the database. As a result, all the work that you do to call rawQuery() or
query() on a background thread gets wasted if you do not also do something to
force the query to be executed on that same background thread. Otherwise, you may

RELATIONS IN ROOM

68

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

wind up with the query being executed on the main application thread, with
impacts on the UI.

greenDAO relations can work the same way. If you retrieve your Thingy on a
background thread, then call getOtherThingy() on the main application thread,
depending on what else has all occurred, getOtherThingy()might need to perform
a database query… which you do not want on the main application thread.

The Room Approach
Room behaves a bit like other annotation-based Android ORMs, but when it comes
to relations, Room departs from norms, in an effort to reduce the likelihood of
threading problems.

Unlike the greenDAO example above, with Room, a Thingy cannot have a property
for an OtherThingy that Room is expected to manage. You could have a property for
an OtherThingymarked as @Ignore, but then you are on your own for dealing with
that property.

The implication of an entity referencing another entity directly is that developers
would expect that when Room retrieves the outer entity, that Room either will
automatically retrieve the inner entity or will retrieve it lazily later on. The former
approach avoids threading issues but runs the risk of loading more data than is
necessary. The latter approach runs the risk of trying to do disk I/O on the main
application thread.

This does not mean that you cannot have foreign keys. Room fully supports foreign
key relationships, by way of a @ForeignKey annotation. This sets up the foreign keys
in the appropriate tables… but that’s about it. Room also has a @Relation
annotation, to allow you to retrieve related data… but it does not involve entities as
much as you might think.

And all of that will (hopefully) make more sense with some examples, from the the
MiscSamplesmodule of the book’s primary sample project.

One-to-Many Relations
Let’s imagine that we are setting up an app for a book catalog. The catalog is divided
into categories, and categories can have books. So, we need a Category entity to
model the categories, and we need a Book entity to model the books. As part of this,

RELATIONS IN ROOM

69

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/tree/master/MiscSamples
https://gitlab.com/commonsguy/cw-room/tree/master/MiscSamples
https://gitlab.com/commonsguy/cw-room/tree/master/MiscSamples
https://gitlab.com/commonsguy/cw-room

we also need to model the one-to-many relationship between Category and Book.

In this case, Category itself does not need anything special. It is just an ordinary
Room entity:

packagepackage com.commonsware.room.misc.onetomanycom.commonsware.room.misc.onetomany

importimport androidx.room.Entityandroidx.room.Entity
importimport androidx.room.PrimaryKeyandroidx.room.PrimaryKey

@Entity(tableName = "categories")
data classdata class CategoryCategory(
@PrimaryKey
valval shortCode: StringString,
valval displayName: StringString
)

(from MiscSamples/src/main/java/com/commonsware/room/misc/onetomany/Category.kt)

Note, though, that it does not have a List or Array or other collection of Book
objects. You cannot ask a category for its books, at least not by asking the entity.

Configuring the Foreign Key

Book, and our DAO, are where things start to get interesting.

The Book class, in isolation, is about as plain as is Category:

data classdata class BookBook(
@PrimaryKey
valval isbn: StringString,
valval title: StringString,
@ColumnInfo(index = truetrue) varvar categoryShortCode: StringString
)

(from MiscSamples/src/main/java/com/commonsware/room/misc/onetomany/Book.kt)

The only thing interesting here is that we declare an index on categoryShortCode.
As the name suggests, this holds the shortCode primary key of the Category that is
associated with this Book. Note that Book does not have an actual property for the
Category, just its key.

When we scroll up the source code a bit and look at the @Entity annotation, we
encounter a @ForeignKey:

RELATIONS IN ROOM

70

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/onetomany/Category.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/onetomany/Book.kt

packagepackage com.commonsware.room.misc.onetomanycom.commonsware.room.misc.onetomany

importimport androidx.room.ColumnInfoandroidx.room.ColumnInfo
importimport androidx.room.Entityandroidx.room.Entity
importimport androidx.room.ForeignKeyandroidx.room.ForeignKey
importimport androidx.room.ForeignKey.CASCADEandroidx.room.ForeignKey.CASCADE
importimport androidx.room.PrimaryKeyandroidx.room.PrimaryKey

@Entity(
tableName = "books",
foreignKeys = [ForeignKeyForeignKey(
entity = CategoryCategory::classclass,
parentColumns = arrayOf("shortCode"),
childColumns = arrayOf("categoryShortCode"),
onDelete = CASCADECASCADE
)]
)
data classdata class BookBook(
@PrimaryKey
valval isbn: StringString,
valval title: StringString,
@ColumnInfo(index = truetrue) varvar categoryShortCode: StringString
)

(from MiscSamples/src/main/java/com/commonsware/room/misc/onetomany/Book.kt)

The @Entity annotation can have an array of @ForeignKey annotations (named
foreignKeys). Each @ForeignKey annotation has at least three primary properties:

• entity points to the entity class that represents the “one” side of the one-to-
many relation

• parentColumns identifies the column(s) in the parent table that represent
the primary key

• childColumns identifies the column(s) in the child table that represent the
parent’s primary key

In this case, Category has a simple single-property primary key, so parentColumns
points to that (shortCode), while childColumns points to the corresponding column
in the Book (categoryShortCode).

Cascades on Updates and Deletes

In addition, you can place onUpdate and onDelete properties on a @ForeignKey
annotation. These indicate what actions should be taken on this entity when the
parent of the foreign key relationship is updated or deleted. There are five

RELATIONS IN ROOM

71

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/onetomany/Book.kt

possibilities, denoted by ForeignKey constants:

Constant
Name

If the Parent Is Updated or Deleted…

NO_ACTION …do nothing

CASCADE …update or delete the child

RESTRICT
…fail the parent’s update or delete operation, unless there are no

children

SET_NULL …set the foreign key value to null

SET_DEFAULT …set the foreign key value to the column(s) default value

NO_ACTION is the default, though CASCADE will be a popular choice for onDelete. In
fact, we use CASCADE for onDelete in the Book entity’s @ForeignKey, so if the
Category is deleted, all of its associated Book rows are deleted from the books table.

Retrieving the Related Entities

For many things, our DAO can be no different than any other one we have seen so
far. We can insert, update, delete, and query our entities as we see fit. For example,
our Bookstore DAO has two @Insert functions to save categories and books:

@Insert
suspendsuspend funfun save(category: CategoryCategory)

@Insert
suspendsuspend funfun save(varargvararg books: BookBook)

(from MiscSamples/src/main/java/com/commonsware/room/misc/onetomany/Bookstore.kt)

However, from a property standpoint, books and categories only have keys, not
references to other entities. So, by default, if we have a @Query function that returns
a Book, we have to execute a separate @Query function to look up its Category via the
shortCode. And if we have a @Query function that returns a Category, we have to
have another @Query function to retrieve all books associated with that Category.

To work around this limitation to some extent, we can use @Relation.

RELATIONS IN ROOM

72

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/onetomany/Bookstore.kt

A @Query does not have to return entities. As we saw earlier, it can return other
things, such as an Int result from an aggregate function. So long as Room can figure
out how to map the columns in your query result to properties of some return type,
Room is happy.

So, we can declare a custom data class for a @Query response, such as this
CategoryAndBooks class:

data classdata class CategoryAndBooksCategoryAndBooks(
@Embedded
valval category: CategoryCategory,
@Relation(
parentColumn = "shortCode",
entityColumn = "categoryShortCode"
)
valval books: ListList<BookBook>
)

(from MiscSamples/src/main/java/com/commonsware/room/misc/onetomany/Bookstore.kt)

By using @Embedded, any columns that we return from the @Query that can go in a
Category will go into the category property.

The @Relation annotation says that, in addition to processing our direct query
(from a @Query annotation), Room should automatically make a second query to
retrieve related entities. Since our @Relation is tied to a property that is based
around Book, Room knows that it needs to query our books table. The parentColumn
and entityColumn annotation properties teach Room how to map data from our
direct query result to Book. Specifically, Room should:

• Get the value of shortCode for a Category returned by the @Query, and
• Query the books table to find all rows where categoryShortCodematches

that shortCode value

We can then use CategoryAndBooks in @Query functions:

packagepackage com.commonsware.room.misc.onetomanycom.commonsware.room.misc.onetomany

importimport androidx.room.*androidx.room.*

data classdata class CategoryAndBooksCategoryAndBooks(
@Embedded
valval category: CategoryCategory,
@Relation(

RELATIONS IN ROOM

73

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/onetomany/Bookstore.kt

parentColumn = "shortCode",
entityColumn = "categoryShortCode"
)
valval books: ListList<BookBook>
)

@Dao
interfaceinterface BookstoreBookstore {
@Insert
suspendsuspend funfun save(category: CategoryCategory)

@Insert
suspendsuspend funfun save(varargvararg books: BookBook)

@Transaction
@Query("SELECT * FROM categories")
suspendsuspend funfun loadAll(): ListList<CategoryAndBooksCategoryAndBooks>

@Transaction
@Query("SELECT * FROM categories WHERE shortCode = :shortCode")
suspendsuspend funfun loadByShortCode(shortCode: StringString): CategoryAndBooksCategoryAndBooks
}

(from MiscSamples/src/main/java/com/commonsware/room/misc/onetomany/Bookstore.kt)

The loadAll() and loadByShortCode() functions return CategoryAndBooks objects,
so we get categories and their associated books. Because Room needs to perform
multiple queries for this, we use the @Transaction annotation to ensure that Room
does all of those SQL calls inside a transaction.

We can then do things like create categories and books:

valval category =
CategoryCategory(shortCode = "stuff", displayName = "Books About Stuff")
valval bookOne = BookBook(
isbn = "035650056X",
title = "Feed",
categoryShortCode = category.shortCode
)
valval bookTwo = BookBook(
isbn = "0451459792",
title = "Dies the Fire",
categoryShortCode = category.shortCode
)

(from MiscSamples/src/androidTest/java/com/commonsware/room/misc/onetomany/OneToManyTest.kt)

RELATIONS IN ROOM

74

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/onetomany/Bookstore.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/androidTest/java/com/commonsware/room/misc/onetomany/OneToManyTest.kt

…save those to the database:

underTest.save(category)
underTest.save(bookOne, bookTwo)

(from MiscSamples/src/androidTest/java/com/commonsware/room/misc/onetomany/OneToManyTest.kt)

…and retrieve them later:

valval all = underTest.loadAll()

assertThat(all, hasSize(equalTo(1)))
assertThat(all[0].category, equalTo(category))
assertThat(
all[0].books,
allOf(hasSize(equalTo(2)), hasElement(bookOne), hasElement(bookTwo))
)

valval loaded = underTest.loadByShortCode(category.shortCode)

assertThat(loaded.category, equalTo(category))
assertThat(
loaded.books,
allOf(hasSize(equalTo(2)), hasElement(bookOne), hasElement(bookTwo))
)

(from MiscSamples/src/androidTest/java/com/commonsware/room/misc/onetomany/OneToManyTest.kt)

Representing No Relation

Sometimes, with one-to-many relations, the more correct model is “zero/one-to-
many”. For example, perhaps a Book has not yet been assigned to a Category.

For that, simply make the foreign key property (e.g., categoryShortCode) be
nullable, and let null represent the lack of a relationship.

Many-to-Many Relations
We can model one-to-many relations by having the “many” side (e.g., Book) have a
foreign key back to its corresponding “one” item (e.g., Category).

The traditional way to model many-to-many relations is through a “join table”,
where rows in that table represent the pairs of entities that are related. To change
the relationships, you add or remove join table rows.

RELATIONS IN ROOM

75

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/androidTest/java/com/commonsware/room/misc/onetomany/OneToManyTest.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/androidTest/java/com/commonsware/room/misc/onetomany/OneToManyTest.kt

That is how Room handles many-to-many relations, with the assistance of a
@Junction annotation.

Declaring the Join Table

Suppose that we want to say that a Book can be in more than one Category, such as
“Android Programming Books” and “Books Written By Balding Men”. That now
means that Book and Category have a many-to-many relationship, as we still want a
Category to have many Book objects.

Our Category does not need to change:

packagepackage com.commonsware.room.misc.manytomanycom.commonsware.room.misc.manytomany

importimport androidx.room.Entityandroidx.room.Entity
importimport androidx.room.PrimaryKeyandroidx.room.PrimaryKey

@Entity(tableName = "categoriesManyToMany")
data classdata class CategoryCategory(
@PrimaryKey
valval shortCode: StringString,
valval displayName: StringString
)

(from MiscSamples/src/main/java/com/commonsware/room/misc/manytomany/Category.kt)

Our Book no longer needs categoryShortCode, as that can only model a one-to-
many relationship:

packagepackage com.commonsware.room.misc.manytomanycom.commonsware.room.misc.manytomany

importimport androidx.room.Entityandroidx.room.Entity
importimport androidx.room.PrimaryKeyandroidx.room.PrimaryKey

@Entity(tableName = "booksManyToMany")
data classdata class BookBook(
@PrimaryKey
valval isbn: StringString,
valval title: StringString
)

(from MiscSamples/src/main/java/com/commonsware/room/misc/manytomany/Book.kt)

However, we now need a third entity, to model the join table (here called
BookCategoryJoin):

RELATIONS IN ROOM

76

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/manytomany/Category.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/manytomany/Book.kt

packagepackage com.commonsware.room.misc.manytomanycom.commonsware.room.misc.manytomany

importimport androidx.room.Entityandroidx.room.Entity
importimport androidx.room.ForeignKeyandroidx.room.ForeignKey
importimport androidx.room.ForeignKey.CASCADEandroidx.room.ForeignKey.CASCADE
importimport androidx.room.Indexandroidx.room.Index
importimport androidx.room.OnConflictStrategyandroidx.room.OnConflictStrategy

@Entity(
primaryKeys = ["isbn", "shortCode"],
indices = [IndexIndex("isbn"), IndexIndex("shortCode")],
foreignKeys = [
ForeignKeyForeignKey(
entity = BookBook::classclass,
parentColumns = arrayOf("isbn"),
childColumns = arrayOf("isbn"),
onDelete = CASCADECASCADE
), ForeignKeyForeignKey(
entity = CategoryCategory::classclass,
parentColumns = arrayOf("shortCode"),
childColumns = arrayOf("shortCode"),
onDelete = CASCADECASCADE
)
]
)
data classdata class BookCategoryJoinBookCategoryJoin(
valval isbn: StringString,
valval shortCode: StringString
)

(from MiscSamples/src/main/java/com/commonsware/room/misc/manytomany/BookCategoryJoin.kt)

The BookCategoryJoin class has our keys: isbn to point to a Book and shortCode to
point to a Category. Hence, each BookCategoryJoin instance (or row in its table)
represents one relationship between a Book and Category.

The @Entity annotation is more complex:

• We use the primaryKeys property to say that the combination of isbn and
shortCode is the primary key for our table

• We set up indices on each of those columns, as we will be querying this
table a lot to find all categories for a book or all books for a category

• We have two @ForeignKey annotations, tying this class to Book and
Category, and using onDelete = CASCADE to ensure that when we delete a
Book or Category that its corresponding join entry gets deleted

RELATIONS IN ROOM

77

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/manytomany/BookCategoryJoin.kt

Retrieving the Related Entities

In Bookstore, the @Relation annotation in CategoryAndBooks has a new property,
associateBy, that contains a @Junction annotation:

data classdata class CategoryAndBooksCategoryAndBooks(
@Embedded
valval category: CategoryCategory,
@Relation(
parentColumn = "shortCode",
entityColumn = "isbn",
associateBy = JunctionJunction(
value = BookCategoryJoinBookCategoryJoin::classclass,
parentColumn = "shortCode",
entityColumn = "isbn"
)
)
valval books: ListList<BookBook>
)

(from MiscSamples/src/main/java/com/commonsware/room/misc/manytomany/Bookstore.kt)

This teaches the @Relation about our join table and how to map columns in the
query’s result set to columns in the join table. This allows Room to be able to
retrieve the books for a category. And, if we wanted, we could create a
BookAndCategories class that handled the opposite case, wrapping a Book and a list
of its associated Category objects.

We can then use CategoryAndBooks in our DAO functions:

@Transaction
@Query("SELECT * FROM categoriesManyToMany")
abstractabstract suspendsuspend funfun loadAll(): ListList<CategoryAndBooksCategoryAndBooks>

@Transaction
@Query("SELECT * FROM categoriesManyToMany WHERE shortCode = :shortCode")
abstractabstract suspendsuspend funfun loadByShortCode(shortCode: StringString): CategoryAndBooksCategoryAndBooks

(from MiscSamples/src/main/java/com/commonsware/room/misc/manytomany/Bookstore.kt)

The @Transaction annotations are there because we will wind up with multiple
queries to populate our CategoryAndBooks objects, and Room will not automatically
set up a database transaction for us to ensure that those queries all work off of the
same edition of the data.

RELATIONS IN ROOM

78

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/manytomany/Bookstore.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/manytomany/Bookstore.kt

Room Entities as DTOs
This works, and it is not that difficult to set up. However, the resulting classes are
tightly coupled to the underlying SQLite table structure and give us a clunky object
model. A traditional object-oriented design usually does not involve separate objects
representing relations, the way BookCategoryJoin does, for example.

In addition, not only is our code a bit clunky today, but it might need to change in
the future in ways that make it worse. That could be due to changes in Room or due
to changes in the data model (e.g., adding a Library and BookLibraryJoin).

For simple apps, you might just live with the odd object model. For larger apps, it
may make sense to treat Room entities as “data transfer objects” (DTOs) that you
convert into a preferred object model. For example:

• We could have BookEntity, CategoryEntity, etc. that model our tables
• We could have Book and Category as our object model, where Book and
Category actually refer to each other

• A repository could use Room as a local data source and map between the
Room-structured entity classes and the “pure” object model represented by
Book and Category

You might already be doing some of this sort of mapping in other areas. For
example, larger apps often choose to use an object model that is separate from the
objects used in Web service calls, as the way the Web service API is structured might
be unnatural in the client app. Plus, the Web service API might be modified by the
server team, and it may be useful to minimize the impact of those changes on the
majority of your application code.

RELATIONS IN ROOM

79

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

The Support Database API

So far, this book has portrayed Room as being an ORM-style bridge between your
code and SQLite.

Technically, that is not accurate.

The Room artifacts, such as androidx.room:room-runtime, have transitive
dependencies on androidx.sqlite:sqlite and androidx.sqlite:sqlite-
framework. Room itself talks to an abstraction around SQLite provided by
androidx.sqlite:sqlite. This book will refer to this as “the support database API”.
androidx.sqlite:sqlite-framework provides the default implementation of that
abstraction, one that works with the built-in copy of SQLiteDatabase (part of the
“framework”). When we use RoomDatabase.Builder to set up our RoomDatabase, we
are using those “framework” classes for the database access.

In this chapter, we will explore in greater detail why this support database API exists
and how we can use it, because while most of the time we will be able to use Room-
generated code to work with the database, sometimes we cannot.

“Can’t You See That This is a Facade?”
To many developers, SQLite “is what it is”. Android ships with a SQLite
implementation, and we use it, either directly or via some form of wrapper library.

However, in truth, there are many SQLite implementations. After all, SQLite is a
library, and so there is nothing stopping people from using a separate, independent
copy of SQLite from what is in Android. Even in Android itself, what SQLite you get
depends on what device you run on:

81

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

• Different API levels integrate different versions of SQLite
• Device manufacturers sometimes replace the stock SQLite version with

another

And so, sometimes, we need a facade: an API that we can code to that supports a
pluggable implementation. The following sections outline some examples.

Requery

Requery is a Room-like object mapping library, one that works both on Android and
on the regular Java JVM. For plain Java (or Kotlin), Requery uses JDBC. For Android,
Requery integrates with the support database API. Beyond that, Requery offers its
own implementation of that API, wrapped around a standalone copy of SQLite. This
ensures that you are using a current version of SQLite, even on older devices.

SQLCipher for Android

One of the best-known alternative SQLite implementations for Android is Zetitec’s
SQLCipher for Android, which offers transparent encryption of database contents.
As of version 4.3.0, SQLCipher for Android offers an implementation of the support
database API. This allows you to use encrypted databases from Room. We will
explore this in greater detail later in the book.

SQLDelight

Just as Requery is an ORM that uses the support database API, so is SQLDelight. As
with Requery, SQLDelight works on the JVM and Android. However, SQLDelight is a
Kotlin/Multiplatform library, and it also supports Kotlin/Native for iOS and
Windows. So, SQLDelight lets you write your database access code once and use it
in multiple environments, and SQLDelight for Android lets you use the support
database API so you can use the framework database, Requery’s standalone SQLite,
or SQLCipher for Android as your actual database implementation.

When Will We Use This?
There are two broad categories of scenarios where the support database API comes
into play.

First is when you want to use a different SQLite implementation, such as wanting to
use SQLCipher for Android. Then, as part of setting up your RoomDatabase, you can

THE SUPPORT DATABASE API

82

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://developer.android.com/reference/android/database/sqlite/package-summary.html
https://stackoverflow.com/a/4377116/115145
https://stackoverflow.com/a/4377116/115145
https://en.wikipedia.org/wiki/Facade_pattern
https://github.com/requery/requery
https://github.com/requery/sqlite-android
https://github.com/requery/sqlite-android
https://www.zetetic.net/sqlcipher/sqlcipher-for-android/
https://www.zetetic.net/blog/2019/12/20/sqlcipher-430-release/
https://cashapp.github.io/sqldelight

provide it with the details of how to use that SQLite implementation, and Room will
work with it.

In addition, there are other places in the Room API where the Room abstractions
break down and the support database API peeks through, such as:

• When you need to migrate a database from one schema to another
• When you need to configure your database in ways beyond what Room

supports, such as directly invoking PRAGMA statements

Configuring Room’s Database Access
We have used RoomDatabase to set up our database and get access to our DAO(s) for
working with our entities. By default, RoomDatabase will use the “framework”
implementation of the support database APIs. However:

• We can tell it to use something else
• We can get control as part of the database setup, to configure the database

manually, regardless of what support database API implementation we use

Get a Factory

With the framework’s Android SQLite API, many developers elect to use
SQLiteOpenHelper as their entry point. This handles creating and upgrading the
database in a decent structured fashion. However, SQLiteOpenHelper is not a
requirement — developers could use static methods on SQLiteDatabase, such as
openOrCreateDatabase(), to work with a SQLiteDatabase without an associated
SQLiteOpenHelper.

The equivalent interface to SQLiteOpenHelper in the support database API is
SupportSQLiteOpenHelper. However, with the support database API, working with a
SupportSQLiteOpenHelper is unavoidable. Whether you use it, or Room uses it,
somebody sets up one of these. SupportSQLiteOpenHelper fills a role similar to that
of SQLiteOpenHelper, providing a single point of control for creating and upgrading
a database.

However, you do not create a SupportSQLiteOpenHelper directly yourself. Instead,
you ask a SupportSQLiteOpenHelper.Factory to do that for you. Each
implementation of the support database API should have a class that implements
the SupportSQLiteOpenHelper.Factory interface:

THE SUPPORT DATABASE API

83

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

• The default Room implementation is FrameworkSQLiteOpenHelperFactory,
from the androidx.sqlite:sqlite-framework artifact

• SQLCipher for Android has SupportFactory
• Requery has RequerySQLiteOpenHelperFactory
• And so on

How you get an instance of that factory is up to the implementation of the support
database API. In the case of FrameworkSQLiteOpenHelperFactory, you just create an
instance via a no-parameter constructor. SQLCipher for Android offers three
SupportFactory constructors, where the passphrase is among the various
parameters.

Regardless, one way or another, you will need to get an instance of a factory.

You can use the factory directly, bypassing all of Room. Other times, you will want to
use Room, but have Room use this support database API implementation.

For that, call openHelperFactory() on the RoomDatabase.Builder as part of setting
it up:

valval db = RoomRoom.databaseBuilder(ctxt, StuffDatabaseStuffDatabase.classclass, DB_NAMEDB_NAME)
.openHelperFactory(SupportFactorySupportFactory(passphrase))
.build()

Here, we are having Room use SupportFactory from SQLCipher for Android. Room
will now use SQLCipher for Android, via SupportFactory, for all of its actual
database I/O.

We will examine SQLCipher for Android, and its use with Room, more later in the
book.

Add a Callback

Regardless of whether we use openHelperFactory() or not, we can also call
addCallback() on the RoomDatabase.Builder to supply a RoomDatabase.Callback
to use. This callback can get control at two points:

• When the database file is created, via an onCreate() function on the
callback

• When the database file is opened, via an onOpen() function on the callback

THE SUPPORT DATABASE API

84

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

In each case, you get a SupportSQLiteDatabase object to use for manipulating the
database. Room itself may not be completely ready for use — particularly in the
onCreate() callback — which is why you are not passed your RoomDatabase
subclass. Instead, you have to work with the database using the support database
API directly.

We will see examples of this, in the context of running some PRAGMA statements,
later in the book.

THE SUPPORT DATABASE API

85

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Database Migrations

When you first ship your app, you think that your database schema is beautiful, a
true work of art.

Then, you wake up the next morning and realize that you need to make changes to
that schema.

During initial development — and for silly little book examples — you just go in and
make changes to your entities, and Room will rebuild your database for you.
However, it does so by dropping all of your existing tables, taking all the data with it.
In development, that may not be so bad. In production… well, users get somewhat
irritated when you lose their data.

And that is where migrations come into play.

What’s a Migration?
As mentioned in the preceding chapter, with traditional Android SQLite
development, we typically use SQLiteOpenHelper. This utility class manages a
SQLiteDatabase for us and addresses two key problems:

1. What happens when our app first runs on a device — or after the user has
cleared our app’s data — and we have no database at all?

2. What happens when we need to modify the database schema from what it
was to some new structure?

SQLiteOpenHelper accomplishes this by calling onCreate() and onUpgrade()
callbacks, where we could implement the logic to create the tables and adjust them
as the schemas change.

87

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

While onCreate() worked reasonably well, onUpgrade() could rapidly grow out of
control. Long-lived apps might have dozens of different schemas, evolving over time.
Because users are not forced to take on app updates, our apps need to be able to
transition from any prior schema to the latest-and-greatest one. This meant that
onUpgrade() would need to identify exactly what bits of code are needed to migrate
the database from the old to the new version, and this could get unwieldy.

Room addresses this somewhat through the Migration class. You create subclasses
of Migration— typically as Kotlin object implementations — that handle the
conversion from some older schema to a newer one. You pass a bunch of Migration
instances to Room, representing different pair-wise schema upgrade paths. Room
then determines which one(s) need to be used at any point in time, to update the
schema from whatever it was to whatever it needs to be.

When Do We Migrate?
On our RoomDatabase subclass, we have a @Database annotation. One of the
properties is version. This works like the version code that we would pass into the
SQLiteOpenHelper constructor. It is a monotonically increasing integer, with higher
numbers indicating newer schemas. The version in the code represents the schema
version that this code is expecting.

Once your app ships, any time you change your schema — mostly in the form of
modifying entity classes — you need to increment that version and create a
Migration that knows how to convert from the prior version to this new one.

Note that there is no requirement that you increment the version by 1, though that
is a common convention. If using a date-based format like YYYYMMDD (e.g., 20170627)
makes your life easier, you are welcome to do so!

But First, a Word About Exporting Schemas
One of the side-effects of using Room is that you do not write your own schema for
the database. Room generates it, based on your entity definitions. During the
ordinary course of programming, this is perfectly fine and saves you time and effort.

However, when it comes to migrations, now we have a problem. We cannot create
code to migrate from an old to a new schema without knowing what those schemas
are. And while schema information is baked into some code generated by Room’s
annotation processor, that is only for the current version of your entity classes (and,

DATABASE MIGRATIONS

88

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

hence, your current schema), not for any historical ones.

Fortunately, Room offers something that helps a bit: exported schemas. You can
teach Room’s annotation processor to not only generate Java code but also generate
a JSON document describing the schema. Moreover, it will do that for each schema
version, saving them to version-specific JSON files. If you hold onto these files — for
example, if you save them in Git or some other form of version control — you will
have a history of your schema and can use that information to write your migrations.

However, the real reason for those exported schemas is to help with testing your
migrations. As a result, the JSON format is not designed for developers to read.

To set this up, in the defaultConfig closure of your module’s build.gradle file, you
can add a javaCompileOptions closure:

defaultConfig {
minSdkVersion 21
targetSdkVersion 30
testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"

javaCompileOptions {
annotationProcessorOptions {
arguments = ["room.schemaLocation": "$projectDir/schemas".toString()]
}
}
}

(from Migration/build.gradle)

This teaches Room to save your schemas in a schemas/ directory off of the module
root directory. In principle, you could store them elsewhere by choosing a different
value for the room.schemaLocation argument.

The next time you (re-)build your project, that directory will be created.
Subdirectories with the fully-qualified class names of your RoomDatabase classes will
go inside there, and inside each of those will be a JSON file named after your schema
version (e.g., 1.json):

{
"formatVersion": 1,
"database": {
"version": 1,
"identityHash": "051fc3ca1ecb3344055fd77365a9bf8e",
"entities": [
{
"tableName": "notes",

DATABASE MIGRATIONS

89

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/Migration/build.gradle

"createSql": "CREATE TABLE IF NOT EXISTS `${TABLE_NAME}` (`id` TEXT NOT NULL, `title` TEXT NOT
NULL, `text` TEXT NOT NULL, `version` INTEGER NOT NULL, PRIMARY KEY(`id`))",

"fields": [
{
"fieldPath": "id",
"columnName": "id",
"affinity": "TEXT",
"notNull": truetrue
},
{
"fieldPath": "title",
"columnName": "title",
"affinity": "TEXT",
"notNull": truetrue
},
{
"fieldPath": "text",
"columnName": "text",
"affinity": "TEXT",
"notNull": truetrue
},
{
"fieldPath": "version",
"columnName": "version",
"affinity": "INTEGER",
"notNull": truetrue
}
],
"primaryKey": {
"columnNames": [
"id"
],
"autoGenerate": falsefalse
},
"indices": [],
"foreignKeys": []
}
],
"views": [],
"setupQueries": [
"CREATE TABLE IF NOT EXISTS room_master_table (id INTEGER PRIMARY KEY,identity_hash TEXT)",
"INSERT OR REPLACE INTO room_master_table (id,identity_hash) VALUES(42,

'051fc3ca1ecb3344055fd77365a9bf8e')"
]
}
}

(from Migration/schemas/com.commonsware.room.migration.NoteDatabase/1.json)

The JSON properties that will matter to you will be the createSql ones. There are
ones that create your tables and others that create your indexes. This is fairly normal
SQL, except that:

• The table name is injected at runtime, replacing the ${TABLE_NAME}
placeholder

• Backticks are wrapped around column names

DATABASE MIGRATIONS

90

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/Migration/schemas/com.commonsware.room.migration.NoteDatabase/1.json

Writing Migrations
A Migration itself has only one required method: migrate(). You are given a
SupportSQLiteDatabase, from the support database API covered in the preceding
chapter. You can use the SupportSQLiteDatabase to execute whatever SQL
statements you need to change the database schema to what you need.

The Migration constructor takes two parameters: the old schema version number
and the new schema version number. You will only ever need one instance of a
Migration for a given schema version pair, and usually the migrate()
implementation for that schema version pair will be unique. Hence, the typical
pattern is to implement each Migration as a Kotlin object, where you can provide
the migrate() function to use for migrating the schema between that particular pair
of schema versions.

To determine what needs to be done, you need to examine that schema JSON and
determine what is different between the old and the new. Someday, we may get
some tools to help with this. For now, you are largely stuck “eyeballing” the SQL. You
can then craft the ALTER TABLE or other statements necessary to change the schema,
much as you might have done in onUpgrade() of a SQLiteOpenHelper.

For example, the Migrationmodule of the book’s primary sample project has a
NoteDatabase akin to the NoteBasicsmodule that we saw earlier in the book. One
difference is that we have a MIGRATION_1_2 object that implements a Migration:

@VisibleForTesting
internalinternal valval MIGRATION_1_2 = objectobject : MigrationMigration(1, 2) {
overrideoverride funfun migrate(db: SupportSQLiteDatabaseSupportSQLiteDatabase) {
db.execSQL("ALTER TABLE notes ADD COLUMN andNowForSomethingCompletelyDifferent TEXT")
}
}

(from Migration/src/main/java/com/commonsware/room/migration/NoteDatabase.kt)

Our migrate() function executes an ALTER TABLE statement, using execSQL() on
the supplied SupportSQLiteDatabase object. The MIGRATION_1_2 object supplies 1
and 2 as the schema version pair to the Migration constructor, to identify what
version pair this migrate() will handle.

Employing Migrations
Simply creating a Migration as an object somewhere is necessary but not sufficient

DATABASE MIGRATIONS

91

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/tree/master/Migration
https://gitlab.com/commonsguy/cw-room/tree/master/Migration
https://gitlab.com/commonsguy/cw-room
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/Migration/src/main/java/com/commonsware/room/migration/NoteDatabase.kt

to have Room know about performing the migration. Instead, you need to use the
addMigrations()method on RoomDatabase.Builder to teach Room about your
Migration objects. addMigrations() accepts a varargs, and so you can pass in one or
several Migration objects as needed.

packagepackage com.commonsware.room.migrationcom.commonsware.room.migration

importimport android.content.Contextandroid.content.Context
importimport androidx.annotation.VisibleForTestingandroidx.annotation.VisibleForTesting
importimport androidx.room.Databaseandroidx.room.Database
importimport androidx.room.Roomandroidx.room.Room
importimport androidx.room.RoomDatabaseandroidx.room.RoomDatabase
importimport androidx.room.migration.Migrationandroidx.room.migration.Migration
importimport androidx.sqlite.db.SupportSQLiteDatabaseandroidx.sqlite.db.SupportSQLiteDatabase

@Database(entities = [NoteEntityNoteEntity::classclass], version = 2)
abstractabstract classclass NoteDatabaseNoteDatabase : RoomDatabaseRoomDatabase() {
companioncompanion objectobject {
funfun newTestDatabase(context: ContextContext) = RoomRoom.inMemoryDatabaseBuilder(
context,
NoteDatabaseNoteDatabase::classclass.java
)
.addMigrations(MIGRATION_1_2MIGRATION_1_2)
.build()

}

abstractabstract funfun notes(): NoteStoreNoteStore
}

@VisibleForTesting
internalinternal valval MIGRATION_1_2 = objectobject : MigrationMigration(1, 2) {
overrideoverride funfun migrate(db: SupportSQLiteDatabaseSupportSQLiteDatabase) {
db.execSQL("ALTER TABLE notes ADD COLUMN andNowForSomethingCompletelyDifferent TEXT")
}
}

(from Migration/src/main/java/com/commonsware/room/migration/NoteDatabase.kt)

This version of NoteDatabase has a companion object with a newTestDatabase()
function that our tests can use. As part of building the NoteDatabase instance, we
use addMigrations(MIGRATION_1_2) to teach Room about our Migration.

Also, note that the version in the @Database annotation is 2. In theory, this module
demonstrates an app that has been modified from its original. The code started with
the NoteBasics edition of NoteEntity:

packagepackage com.commonsware.room.notescom.commonsware.room.notes

importimport androidx.room.Entityandroidx.room.Entity
importimport androidx.room.PrimaryKeyandroidx.room.PrimaryKey

@Entity(tableName = "notes")

DATABASE MIGRATIONS

92

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/Migration/src/main/java/com/commonsware/room/migration/NoteDatabase.kt

data classdata class NoteEntityNoteEntity(
@PrimaryKey valval id: StringString,
valval title: StringString,
valval text: StringString,
valval version: IntInt
)

(from NoteBasics/src/main/java/com/commonsware/room/notes/NoteEntity.kt)

The Migrationmodule added a new nullable property to NoteEntity:

packagepackage com.commonsware.room.migrationcom.commonsware.room.migration

importimport androidx.room.Entityandroidx.room.Entity
importimport androidx.room.PrimaryKeyandroidx.room.PrimaryKey

@Entity(tableName = "notes")
data classdata class NoteEntityNoteEntity(
@PrimaryKey valval id: StringString,
valval title: StringString,
valval text: StringString,
valval version: IntInt,
valval andNowForSomethingCompletelyDifferent: StringString?
)

(from Migration/src/main/java/com/commonsware/room/migration/NoteEntity.kt)

That property is the column that we are adding in MIGRATION_1_2, to handle a user
that had been using our app with schema version 1 and now upgrades to a newer
copy of our app that uses schema version 2.

In principle, MIGRATION_1_2 could be private to NoteDatabase. However, we want to
be able to test our migration, so we have it marked as internal instead, with the
@VisibleForTesting annotation to help discourage unexpected use.

How Room Applies Migrations
When you create your RoomDatabase instance via the Migration-enhanced Builder,
Room will use SQLiteOpenHelper semantics to see if the schema version in the
existing database is older than the schema version that you declared in your
@Database annotation. If it is, Room will try to find a suitable Migration to use,
falling back to dropping all of your tables and rebuilding them from scratch, as
happens during ordinary development.

DATABASE MIGRATIONS

93

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/NoteBasics/src/main/java/com/commonsware/room/notes/NoteEntity.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/Migration/src/main/java/com/commonsware/room/migration/NoteEntity.kt

Much of the time, the schema will jump from one version to the next. If you are
using a simple numbering scheme starting at 1, the schema will then move to 2, then
3, then 4, and so on, for a given device. Hence, your primary Migration objects will
be ones that implement these incremental migrations.

However, some user might have skipped some app updates, so you need to skip a
schema version as part of an upgrade (e.g., go from schema version 1 to schema
version 3). Room is smart enough to find a chain of Migration objects to use, and so
if you have Migration objects for each incremental schema change, Room can
handle any combination of changes. For example, to go from 1 to 3, Room might first
use your (1,2)migration, then the (2,3)migration.

Sometimes, though, this can lead to unnecessary work. Suppose in schema version 2,
you created a bunch of new tables and stuff… then reverted those changes in schema
version 3. By using the incremental migrations, Room will create those tables and
then turn around and drop them right away.

However, all else being equal, Room will try to use the shortest possible chain.
Hence, you can create additional Migration objects where appropriate to streamline
particular upgrades. You could create a (1,3)migration that bypasses the obsolete
schema version 2, for example. This is optional but may prove useful from time to
time.

Testing Migrations
It would be nice if your migrations worked. Users, in particular, appreciate working
code… or, perhaps more correctly, they get rather angry with non-working code.

Hence, you might want to test the migrations.

This gets a bit tricky, though. The code-generated Room classes are expecting the
latest-and-greatest schema version, so you cannot use your DAO for testing older
schemas. Besides, RoomDatabase.Builder wants to set up your database with that
latest-and-greatest schema automatically.

Fortunately, Room ships with some testing code to help you test your schemas in
isolation… though you bypass most of Room to do that.

DATABASE MIGRATIONS

94

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Adding the Artifact

This testing code is in a separate androidx.room:room-testing artifact, one that you
can add via androidTestCompile to put in your instrumentation tests but leave out
of your production code:

dependencies {
implementation "org.jetbrains.kotlin:kotlin-stdlib-jdk7:$kotlin_version"
implementation "androidx.arch.core:core-runtime:2.1.0"
implementation "androidx.room:room-runtime:$room_version"
implementation "androidx.room:room-ktx:$room_version"
kapt "androidx.room:room-compiler:$room_version"
androidTestImplementation 'androidx.test:runner:1.4.0'
androidTestImplementation "androidx.test.ext:junit:1.1.3"
androidTestImplementation "androidx.arch.core:core-testing:2.1.0"
androidTestImplementation "androidx.room:room-testing:$room_version"
androidTestImplementation "com.natpryce:hamkrest:1.7.0.0"
}

(from Migration/build.gradle)

Adding the Schemas

Remember those exported schemas? While we used them for helping us write the
migrations, their primary use is for this testing support code.

By default, those schemas are stored outside of anything that goes into your app.
After all, you do not need those JSON files cluttering up your production builds.
However, this also means that those schemas are not available to your test code, by
default.

However, we can fix that, by adding those schemas to the assets/ used in the
androidTest source set, by having this closure in your android closure of your
module’s build.gradle file:

sourceSets {
androidTest.assets.srcDirs += files("$projectDir/schemas".toString())
}

(from Migration/build.gradle)

Here, "$projectDir/schemas".toString() is the same value that we used for the
room.schemaLocation annotation processor argument. This snippet tells Gradle to
include the contents of that schemas/ directory as part of our assets/.

DATABASE MIGRATIONS

95

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/Migration/build.gradle
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/Migration/build.gradle

The result is that our instrumentation test APK will have those directories named
after our RoomDatabase classes (e.g.,
com.commonsware.room.migration.NoteDatabase/) in the root of assets/. If you
have code that uses assets/, make sure that you are taking steps to ignore these
extra directories.

Creating a MigrationTestHelperMigrationTestHelper

The testing support comes in the form of a MigrationTestHelper that you can
employ in your instrumentation tests.

MigrationTestHelper is a JUnit4 rule, which you add to your test case class via the
@Rule annotation:

@getget:RuleRule
valval migrationTestHelper = MigrationTestHelperMigrationTestHelper(
InstrumentationRegistryInstrumentationRegistry.getInstrumentation(),
NoteDatabaseNoteDatabase::classclass.java.canonicalName
)

(from Migration/src/androidTest/java/com/commonsware/room/migration/MigrationTest.kt)

The MigrationTestHelper constructor takes two parameters, both of which are a bit
unusual.

First, it takes an Instrumentation object. We use those in our test code, but it is rare
that we pass them as a parameter. You get your Instrumentation by calling
getInstrumentation() on the InstrumentationRegistry.

Then, it takes what appears to be the fully-qualified class name of the RoomDatabase
whose migrations we wish to test. Technically speaking, this is actually the relative
path, inside of assets/, where the schema JSON files are for this particular
RoomDatabase. Given the above configuration, each database’s schemas are put into a
directory named after the fully-qualified class name of the RoomDatabase, which is
why this works. However, if you change the configuration to put the schemas
somewhere else in assets/, you would need to modify this parameter to match.

Creating a Database for a Schema Version

There are two main methods on MigrationTestHelper that we will use in testing.
One is createDatabase(). This creates the database, as a specific database file, for a
specific schema version… including any of our historical ones found in those schema

DATABASE MIGRATIONS

96

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/Migration/src/androidTest/java/com/commonsware/room/migration/MigrationTest.kt

JSON files. Here, we ask the helper to create a database named DB_NAME for schema
version 1:

valval initialDb = migrationTestHelper.createDatabase(DB_NAMEDB_NAME, 1)

(from Migration/src/androidTest/java/com/commonsware/room/migration/MigrationTest.kt)

This gives you a SupportSQLiteDatabase, not a Room database (e.g., NoteDatabase).
That is because you may be using a historical schema version, and the Room-
generated code only exists for the most recent schema version.

As part of testing a migration, you will need to add some sample data to the
database, using whatever schema you asked to be used, so that you can confirm that
the migration worked as expected and did not wreck the existing data. This code will
not be very Room-ish, but more like classic SQLite Android programming:

valval initialDb = migrationTestHelper.createDatabase(DB_NAMEDB_NAME, 1)

initialDb.execSQL(
"INSERT INTO notes (id, title, text, version) VALUES (?, ?, ?, ?)",
arrayOf(TEST_IDTEST_ID, TEST_TITLETEST_TITLE, TEST_TEXTTEST_TEXT, TEST_VERSIONTEST_VERSION)
)

initialDb.query("SELECT COUNT(*) FROM notes").use {
assertThat(it.count, equalTo(1))
it.moveToFirst()
assertThat(it.getInt(0), equalTo(1))
}

initialDb.close()

(from Migration/src/androidTest/java/com/commonsware/room/migration/MigrationTest.kt)

Testing a Migration

The other method of note on MigrationTestHelper is
runMigrationsAndValidate(). After you have set up a database in its starting
conditions via createDatabase() and CRUD operations,
runMigrationsAndValidate() will migrate that database from its original schema
version to the one that you specify:

valval db = migrationTestHelper.runMigrationsAndValidate(
DB_NAMEDB_NAME,
2,

DATABASE MIGRATIONS

97

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/Migration/src/androidTest/java/com/commonsware/room/migration/MigrationTest.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/Migration/src/androidTest/java/com/commonsware/room/migration/MigrationTest.kt

truetrue,
MIGRATION_1_2MIGRATION_1_2
)

(from Migration/src/androidTest/java/com/commonsware/room/migration/MigrationTest.kt)

You need to supply the same database name (DB_NAME), a higher schema version (2),
and the specific Migration that you want to use (MIGRATION_1_2).

Not only does this method perform the migration, but it validates the resulting
schema against what the entities have set up for that schema version, based on the
schema JSON files. If there is something wrong — your migration forgot a newly-
added column, for example — your test will fail with an assertion violation. The
true parameter shown above determines whether this schema validation will be
checked for un-dropped tables. truemeans that if you have unnecessary tables in
the database, the test fails; falsemeans that unnecessary tables are fine and will be
ignored.

However, all MigrationTestHelper can do is confirm that you set up the new
schema properly and give you a SupportSQLiteDatabase representing the migrated
database. It cannot determine whether the data is any good after the migration.
That you would need to test yourself:

valval db = migrationTestHelper.runMigrationsAndValidate(
DB_NAMEDB_NAME,
2,
truetrue,
MIGRATION_1_2MIGRATION_1_2
)

db.query("SELECT id, title, text, version, andNowForSomethingCompletelyDifferent FROM notes")
.use {
assertThat(it.count, equalTo(1))
it.moveToFirst()
assertThat(it.getInt(0), equalTo(TEST_IDTEST_ID))
assertThat(it.getString(1), equalTo(TEST_TITLETEST_TITLE))
assertThat(it.getString(2), equalTo(TEST_TEXTTEST_TEXT))
assertThat(it.getInt(3), equalTo(TEST_VERSIONTEST_VERSION))
assertThat(it.getString(4), absent())
}

(from Migration/src/androidTest/java/com/commonsware/room/migration/MigrationTest.kt)

In many cases, there is little to test, particularly if you are just setting up empty
tables as we are doing in this migration. However, if you had a complex table change,
perhaps requiring a temp table and statements like INSERT INTO ... SELECT FROM
..., you could write test code that confirms the data is OK. However, as shown
above, you cannot use the Room DAO for this either. Instead, you will use the

DATABASE MIGRATIONS

98

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/Migration/src/androidTest/java/com/commonsware/room/migration/MigrationTest.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/Migration/src/androidTest/java/com/commonsware/room/migration/MigrationTest.kt

SupportSQLiteDatabase and work with the tables “the old-fashioned way”, using
query() and Cursor and similar constructs.

DATABASE MIGRATIONS

99

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Intermediate Room

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Polymorphic Entities

Java and Kotlin programmers are used to polymorphism, where you can treat objects
as being of the same type, when in truth their concrete types differ. This could be
based on a common interface or a common base class (abstract or otherwise).

Those used to putting data into SQL databases are used to the fact that
polymorphism and a relational database do not work together naturally. This is just
“one of those things” that developers have to deal with, as part of “object-relational
impedance mismatch”.

There are a few strategies for dealing with polymorphic relations in relational
databases. This chapter outlines two of them, with an eye towards how they can be
implemented with Room.

Polymorphism With Separate Tables
One approach uses a separate table for instances of each concrete type. So, for
example if we have a CommentEntity class and a LinkEntity class, and they both
implement a common Note interface, we wind up with dedicated tables for
CommentEntity and LinkEntity. This keeps the database structure simple, as we still
have a 1:1 relationship between concrete class and table. However, it means that any
persistence code that deals with Note objects needs to handle the fact that a Note is
stored differently for different Note implementations, and that can add complexity.

The the MiscSamplesmodule of the book’s primary sample project has a poly sub-
package with classes that implement this strategy.

As depicted in the preceding paragraph, we have a Note interface:

103

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/tree/master/MiscSamples
https://gitlab.com/commonsguy/cw-room/tree/master/MiscSamples
https://gitlab.com/commonsguy/cw-room

packagepackage com.commonsware.room.misc.polycom.commonsware.room.misc.poly

interfaceinterface NoteNote {
valval displayText: CharSequenceCharSequence
}

(from MiscSamples/src/main/java/com/commonsware/room/misc/poly/Note.kt)

We also have CommentEntity and LinkEntity classes that implement that interface
and have slightly different contents:

packagepackage com.commonsware.room.misc.polycom.commonsware.room.misc.poly

importimport androidx.room.Entityandroidx.room.Entity
importimport androidx.room.PrimaryKeyandroidx.room.PrimaryKey

@Entity(tableName = "comments")
data classdata class CommentEntityCommentEntity(
@PrimaryKey
valval id: LongLong,
valval text: StringString
) : NoteNote {
overrideoverride valval displayText: CharSequenceCharSequence
getget() = text

}

(from MiscSamples/src/main/java/com/commonsware/room/misc/poly/CommentEntity.kt)

packagepackage com.commonsware.room.misc.polycom.commonsware.room.misc.poly

importimport androidx.core.text.HtmlCompatandroidx.core.text.HtmlCompat
importimport androidx.room.Entityandroidx.room.Entity
importimport androidx.room.PrimaryKeyandroidx.room.PrimaryKey

@Entity(tableName = "links")
data classdata class LinkEntityLinkEntity(
@PrimaryKey(autoGenerate = truetrue)
valval id: LongLong,
valval title: StringString,
valval url: StringString
) : NoteNote {
overrideoverride valval displayText: CharSequenceCharSequence
getget() = HtmlCompatHtmlCompat.fromHtml(
"""$title""",
HtmlCompatHtmlCompat.FROM_HTML_MODE_COMPACTFROM_HTML_MODE_COMPACT
)

}

POLYMORPHIC ENTITIES

104

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/poly/Note.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/poly/CommentEntity.kt

(from MiscSamples/src/main/java/com/commonsware/room/misc/poly/LinkEntity.kt)

All Note wants is a displayName CharSequence with a display representation of the
note. Comment just holds some text (text), so the displayName is just the text. Link
has a URL and a title, so the displayName is a clickable rendition of that link, here
generated by a snippet of HTML and HtmlCompat. A more efficient, but less readable,
approach would be to use a ClickableSpan with a SpannableStringBuilder to
create this clickable link.

PolyStore is our DAO for manipulating these objects. That needs to have functions
for working with our two entity classes:

@Query("SELECT * FROM comments")
funfun allComments(): ListList<CommentEntityCommentEntity>

@Insert
funfun insert(varargvararg comments: CommentEntityCommentEntity)

@Query("SELECT * FROM links")
funfun allLinks(): ListList<LinkEntityLinkEntity>

@Insert
funfun insert(varargvararg links: LinkEntityLinkEntity)

(from MiscSamples/src/main/java/com/commonsware/room/misc/poly/PolyStore.kt)

However, consumers of PolyStoremight prefer to work with Note objects, ignoring
the details of whether those notes are comments or links. For that, we have to write
our own concrete functions:

@Transaction
funfun allNotes() = allComments() + allLinks()

@Transaction
funfun insert(varargvararg notes: NoteNote) {
insert(*notes.filterIsInstance(CommentEntityCommentEntity::classclass.java).toTypedArray())
insert(*notes.filterIsInstance(LinkEntityLinkEntity::classclass.java).toTypedArray())
}

(from MiscSamples/src/main/java/com/commonsware/room/misc/poly/PolyStore.kt)

allNotes() simply combines the results of the allComments() and allLinks()
functions. The Note variant of insert() turns around and calls the CommentEntity
and LinkEntity variants of insert(), finding the CommentEntity and LinkEntity
instances in our vararg of Note objects. The fact that we are using varargmakes

POLYMORPHIC ENTITIES

105

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/poly/LinkEntity.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/poly/PolyStore.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/poly/PolyStore.kt

insert() a bit complicated, with spread operators (*) and toTypedArray() calls. If
we were using List instead of vararg, we would have somewhat simpler code:

@Transaction
funfun insert(notes: ListList<NoteNote>) {
insert(notes.filterIsInstance(CommentEntityCommentEntity::classclass.java))
insert(notes.filterIsInstance(LinkEntityLinkEntity::classclass.java))
}

Having the Note functions on PolyStore allows us to work with the concrete types
or the Note interface, as we see fit:

packagepackage com.commonsware.room.misc.polycom.commonsware.room.misc.poly

importimport androidx.room.Roomandroidx.room.Room
importimport androidx.test.ext.junit.runners.AndroidJUnit4androidx.test.ext.junit.runners.AndroidJUnit4
importimport androidx.test.platform.app.InstrumentationRegistryandroidx.test.platform.app.InstrumentationRegistry
importimport com.commonsware.room.misc.MiscDatabasecom.commonsware.room.misc.MiscDatabase
importimport com.natpryce.hamkrest.*com.natpryce.hamkrest.*
importimport com.natpryce.hamkrest.assertion.assertThatcom.natpryce.hamkrest.assertion.assertThat
importimport org.junit.Testorg.junit.Test
importimport org.junit.runner.RunWithorg.junit.runner.RunWith

@RunWith(AndroidJUnit4AndroidJUnit4::classclass)
classclass PolyStoreTestPolyStoreTest {
privateprivate valval db = RoomRoom.inMemoryDatabaseBuilder(
InstrumentationRegistryInstrumentationRegistry.getInstrumentation().targetContext,
MiscDatabaseMiscDatabase::classclass.java
)
.build()
privateprivate valval underTest = db.polyStore()

@Test
funfun comments() {
assertThat(underTest.allComments(), isEmpty)

valval firstComment = CommentEntityCommentEntity(1, "This is a comment")
valval secondComment = CommentEntityCommentEntity(2, "This is another comment")

underTest.insert(firstComment, secondComment)

assertThat(
underTest.allComments(),
allOf(
hasSize(equalTo(2)),
hasElement(firstComment),
hasElement(secondComment)

POLYMORPHIC ENTITIES

106

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

)
)

assertThat(
underTest.allNotes(),
allOf(
hasSize(equalTo(2)),
hasElement(firstComment asas NoteNote),
hasElement(secondComment asas NoteNote)
)
)
}

@Test
funfun links() {
assertThat(underTest.allLinks(), isEmpty)

valval firstLink = LinkEntityLinkEntity(1, "CommonsWare", "https://commonsware.com")
valval secondLink = LinkEntityLinkEntity(
2,
"Room Release Notes",
"https://developer.android.com/jetpack/androidx/releases/room"
)

underTest.insert(firstLink, secondLink)

assertThat(
underTest.allLinks(),
allOf(
hasSize(equalTo(2)),
hasElement(firstLink),
hasElement(secondLink)
)
)

assertThat(
underTest.allNotes(),
allOf(
hasSize(equalTo(2)),
hasElement(firstLink asas NoteNote),
hasElement(secondLink asas NoteNote)
)
)
}

@Test
funfun notes() {
assertThat(underTest.allNotes(), isEmpty)

POLYMORPHIC ENTITIES

107

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

valval firstComment = CommentEntityCommentEntity(1, "This is a comment")
valval secondComment = CommentEntityCommentEntity(2, "This is another comment")
valval firstLink = LinkEntityLinkEntity(1, "CommonsWare", "https://commonsware.com")
valval secondLink = LinkEntityLinkEntity(
2,
"Room Release Notes",
"https://developer.android.com/jetpack/androidx/releases/room"
)

underTest.insert(firstComment, secondComment, firstLink, secondLink)

assertThat(
underTest.allNotes(), allOf(
hasSize(equalTo(4)),
hasElement(firstLink asas NoteNote),
hasElement(secondLink asas NoteNote),
hasElement(firstComment asas NoteNote),
hasElement(secondComment asas NoteNote)
)
)
}
}

(from MiscSamples/src/androidTest/java/com/commonsware/room/misc/poly/PolyStoreTest.kt)

Can I JOINJOIN a UNIONUNION?

You might think that we could create allNotes() using the UNION support in SQLite.
This basically allows you to concatenate two queries and combine their results.

The theory would be that you could do something like this:

@Query("SELECT * FROM links UNION ALL SELECT * FROM comments")
funfun allNotes(): ListList<NoteNote>

However, this will not work.

In this specific case, links and comments do not have the same columns, as our
entities have different fields. This runs afoul of UNION regulations, as at minimum,
both halves of the UNION have to return the same number of columns.

Beyond that, Room has no way to know which rows are links and which rows are
comments, as there is nothing to distinguish them in the result set.

POLYMORPHIC ENTITIES

108

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/androidTest/java/com/commonsware/room/misc/poly/PolyStoreTest.kt

Finally, Room cannot create instances of Note, as that is an interface, and we want
LinkEntity and CommentEntity objects anyway. That would require Room to not
only know which rows are links and which are comments, but that rows that are
links should be turned into LinkEntity objects and that rows that are comments
should be turned into CommentEntity objects.

From a practical standpoint, both entities would need to have the same properties
and resulting schema. The result set (embodied in a Cursor) has only one set of
column names, based on the first query in the UNION. Room would need to be able to
determine how to populate entities from the second query using the first query’s
column names. In all likelihood, that would require the names to be the same in
both queries and in both entities.

Due to these limitations, it is unlikely that Room will get this capability, though it is
not impossible.

Polymorphism With a Single Table
We could go the other route: have a single table for all note objects, regardless of
whether they are a comment or a link. For small objects with few properties, with a
lot of overlap between the properties of the concrete types, this is manageable. It
becomes unwieldy for many concrete types with many disparate properties. It also
puts limits on your SQL, as the only practical NOT NULL columns are ones for which
you can supply values for every possible concrete type. You also need some way of
determining what concrete type to use for any given table row, and often that
requires yet another column.

But, it is an option.

The polysingle sub-package in the MiscSamplesmodule demonstrates this
approach. This time, the entity is NoteEntity:

packagepackage com.commonsware.room.misc.polysinglecom.commonsware.room.misc.polysingle

importimport androidx.room.Entityandroidx.room.Entity
importimport androidx.room.PrimaryKeyandroidx.room.PrimaryKey

@Entity(tableName = "notes")
openopen classclass NoteEntityNoteEntity(
@PrimaryKey(autoGenerate = truetrue)
valval id: LongLong,

POLYMORPHIC ENTITIES

109

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/tree/master/MiscSamples
https://gitlab.com/commonsguy/cw-room/tree/master/MiscSamples

valval title: StringString,
varvar url: StringString?
)

(from MiscSamples/src/main/java/com/commonsware/room/misc/polysingle/NoteEntity.kt)

It contains a superset of all columns from both our comments and links. In this case,
that just means that the URL is optional — a link has one, but a comment does not.
This approach will get a lot more messy if you have lots of entities and lots of
columns that exist only in a subset of those entity types, though.

Now, Comment and Link are subclasses of NoteEntity, implementing the Note
interface from the poly package and overriding displayText as needed for their
scenarios:

packagepackage com.commonsware.room.misc.polysinglecom.commonsware.room.misc.polysingle

importimport com.commonsware.room.misc.poly.Notecom.commonsware.room.misc.poly.Note

classclass CommentComment(id: LongLong, title: StringString) : NoteEntityNoteEntity(id, title, nullnull), NoteNote {
overrideoverride valval displayText: CharSequenceCharSequence
getget() = title

}

(from MiscSamples/src/main/java/com/commonsware/room/misc/polysingle/Comment.kt)

packagepackage com.commonsware.room.misc.polysinglecom.commonsware.room.misc.polysingle

importimport androidx.core.text.HtmlCompatandroidx.core.text.HtmlCompat
importimport com.commonsware.room.misc.poly.Notecom.commonsware.room.misc.poly.Note

classclass LinkLink(
id: LongLong,
title: StringString,
url: StringString
) : NoteEntityNoteEntity(id, title, url), NoteNote {
overrideoverride valval displayText: CharSequenceCharSequence
getget() = HtmlCompatHtmlCompat.fromHtml(
"""$title""",
HtmlCompatHtmlCompat.FROM_HTML_MODE_COMPACTFROM_HTML_MODE_COMPACT
)

}

(from MiscSamples/src/main/java/com/commonsware/room/misc/polysingle/Link.kt)

You might argue that NoteEntity should be abstract and define displayText there.
That could work, at the cost of not being able to load NoteEntity objects directly, as

POLYMORPHIC ENTITIES

110

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/polysingle/NoteEntity.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/polysingle/Comment.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/polysingle/Link.kt

Room cannot create instances of an abstract class.

PolySingleStore— the DAO for this scenario — is a bit simpler. We do not need
dedicated insert() functions for Link and Comment, as an insert() function for
NoteEntity covers both of those cases. allLinks() and allComments() can take
advantage of Room’s return type flexibility, having Room create Link and Comment
objects directly, with our query returning the proper rows based on whether we have
a url or not:

packagepackage com.commonsware.room.misc.polysinglecom.commonsware.room.misc.polysingle

importimport androidx.room.Daoandroidx.room.Dao
importimport androidx.room.Insertandroidx.room.Insert
importimport androidx.room.Queryandroidx.room.Query

@Dao
interfaceinterface PolySingleStorePolySingleStore {
@Query("SELECT * FROM notes")
funfun allNotes(): ListList<NoteEntityNoteEntity>

@Insert
funfun insert(varargvararg notes: NoteEntityNoteEntity)

@Query("SELECT * FROM notes WHERE url IS NOT NULL")
funfun allLinks(): ListList<LinkLink>

@Query("SELECT id, title FROM notes WHERE url IS NULL")
funfun allComments(): ListList<CommentComment>
}

(from MiscSamples/src/main/java/com/commonsware/room/misc/polysingle/PolySingleStore.kt)

And, once again, we have sufficient CRUD operations now to be able to manipulate
links and comments separately or treating them all as notes:

packagepackage com.commonsware.room.misc.polysinglecom.commonsware.room.misc.polysingle

importimport androidx.room.Roomandroidx.room.Room
importimport androidx.test.ext.junit.runners.AndroidJUnit4androidx.test.ext.junit.runners.AndroidJUnit4
importimport androidx.test.platform.app.InstrumentationRegistryandroidx.test.platform.app.InstrumentationRegistry
importimport com.commonsware.room.misc.MiscDatabasecom.commonsware.room.misc.MiscDatabase
importimport com.natpryce.hamkrest.anyOfcom.natpryce.hamkrest.anyOf
importimport com.natpryce.hamkrest.assertion.assertThatcom.natpryce.hamkrest.assertion.assertThat
importimport com.natpryce.hamkrest.equalTocom.natpryce.hamkrest.equalTo
importimport com.natpryce.hamkrest.hasSizecom.natpryce.hamkrest.hasSize
importimport com.natpryce.hamkrest.isEmptycom.natpryce.hamkrest.isEmpty

POLYMORPHIC ENTITIES

111

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/polysingle/PolySingleStore.kt

importimport org.junit.Testorg.junit.Test
importimport org.junit.runner.RunWithorg.junit.runner.RunWith

@RunWith(AndroidJUnit4AndroidJUnit4::classclass)
classclass PolySingleStoreTestPolySingleStoreTest {
privateprivate valval db = RoomRoom.inMemoryDatabaseBuilder(
InstrumentationRegistryInstrumentationRegistry.getInstrumentation().targetContext,
MiscDatabaseMiscDatabase::classclass.java
)
.build()
privateprivate valval underTest = db.polySingleStore()

@Test
funfun comments() {
assertThat(underTest.allComments(), isEmpty)

valval firstComment = CommentComment(1, "This is a comment")
valval secondComment = CommentComment(2, "This is another comment")

underTest.insert(firstComment, secondComment)

valval allComments = underTest.allComments()

assertThat(allComments, hasSize(equalTo(2)))
assertThat(
allComments[0].title,
anyOf(equalTo(firstComment.title), equalTo(secondComment.title))
)
assertThat(
allComments[1].title,
anyOf(equalTo(firstComment.title), equalTo(secondComment.title))
)

valval allNotes = underTest.allNotes()

assertThat(allNotes, hasSize(equalTo(2)))
assertThat(
allNotes[0].title,
anyOf(equalTo(firstComment.title), equalTo(secondComment.title))
)
assertThat(
allNotes[1].title,
anyOf(equalTo(firstComment.title), equalTo(secondComment.title))
)
}

@Test
funfun links() {

POLYMORPHIC ENTITIES

112

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

assertThat(underTest.allLinks(), isEmpty)

valval firstLink = LinkLink(1, "CommonsWare", "https://commonsware.com")
valval secondLink = LinkLink(
2,
"Room Release Notes",
"https://developer.android.com/jetpack/androidx/releases/room"
)

underTest.insert(firstLink, secondLink)

valval allLinks = underTest.allLinks()

assertThat(allLinks, hasSize(equalTo(2)))
assertThat(
allLinks[0].title,
anyOf(equalTo(firstLink.title), equalTo(secondLink.title))
)
assertThat(
allLinks[1].title,
anyOf(equalTo(firstLink.title), equalTo(secondLink.title))
)

valval allNotes = underTest.allNotes()

assertThat(allNotes, hasSize(equalTo(2)))
assertThat(
allNotes[0].title,
anyOf(equalTo(firstLink.title), equalTo(secondLink.title))
)
assertThat(
allNotes[1].title,
anyOf(equalTo(firstLink.title), equalTo(secondLink.title))
)
}

@Test
funfun notes() {
assertThat(underTest.allNotes(), isEmpty)

valval firstComment = CommentComment(1, "This is a comment")
valval secondComment = CommentComment(2, "This is another comment")
valval firstLink = LinkLink(3, "CommonsWare", "https://commonsware.com")
valval secondLink = LinkLink(
4,
"Room Release Notes",
"https://developer.android.com/jetpack/androidx/releases/room"
)

POLYMORPHIC ENTITIES

113

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

underTest.insert(firstComment, secondComment, firstLink, secondLink)

valval allNotes = underTest.allNotes()

assertThat(allNotes, hasSize(equalTo(4)))
assertThat(
allNotes[0].title,
anyOf(
equalTo(firstComment.title),
equalTo(secondComment.title),
equalTo(firstLink.title),
equalTo(secondLink.title)
)
)
assertThat(
allNotes[1].title,
anyOf(
equalTo(firstComment.title),
equalTo(secondComment.title),
equalTo(firstLink.title),
equalTo(secondLink.title)
)
)
assertThat(
allNotes[2].title,
anyOf(
equalTo(firstComment.title),
equalTo(secondComment.title),
equalTo(firstLink.title),
equalTo(secondLink.title)
)
)
assertThat(
allNotes[3].title,
anyOf(
equalTo(firstComment.title),
equalTo(secondComment.title),
equalTo(firstLink.title),
equalTo(secondLink.title)
)
)
}
}

(from MiscSamples/src/androidTest/java/com/commonsware/room/misc/polysingle/PolySingleStoreTest.kt)

POLYMORPHIC ENTITIES

114

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/androidTest/java/com/commonsware/room/misc/polysingle/PolySingleStoreTest.kt

Default Values and Partial Entities

We have already seen how Room supports Kotlin default values on properties:

classclass CustomColumnNameEntityCustomColumnNameEntity(
@PrimaryKey
valval id: StringString,
valval title: StringString,
@ColumnInfo(name = "words") valval text: StringString? = nullnull,
valval version: IntInt = 1
) {

(from MiscSamples/src/main/java/com/commonsware/room/misc/CustomColumnNameEntity.kt)

Here, text and version both have default values. Really, these have nothing to do
with Room — they are a pure Kotlin concept. However, in the end, if we create a
CustomColumnNameEntity instance without supplying text or version, we get those
defaults.

But, in Room 2.2.0, we got another option for default values… one that on the
surface seems pointless, as it does not work with @Insert operations. Principally,
this appears to be tied to another feature added in that same release: partial entity
support.

In this chapter, we will explore both of these features.

Default Values, and the Other Default Values
The new option for default values comes in the form of a defaultValue property on
the @ColumnInfo annotation:

115

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/CustomColumnNameEntity.kt

@Entity(tableName = "defaultValue")
classclass DefaultValueEntityDefaultValueEntity(
@PrimaryKey
valval id: StringString,
valval title: StringString,
@ColumnInfo(defaultValue = "something")
valval text: StringString? = nullnull,
@ColumnInfo(defaultValue = "123")
valval version: IntInt = 1
) {

(from MiscSamples/src/main/java/com/commonsware/room/misc/DefaultValueEntity.kt)

Here, as in the example shown earlier, we have text and version properties on an
entity (DefaultValueEntity), and in Kotlin, we have those properties default to null
and 1, respectively. However, we also have @ColumnInfo annotations on those, where
each has a defaultValue property. The one on text says the default value is
something, while the one on version says that the default value is 123. So, for each
property, we have two separate default values declared: one via Kotlin and one via
the defaultValue annotation property… and both are different.

The Kotlin default values are for Kotlin’s use. You can create instances of
DefaultValueEntity without supplying values for text and/or version.

The @ColumnInfo defaultValue properties are for SQLite’s use. If you attempt to
INSERT a value into the table without providing values for the text and/or version
columns, the defaultValue properties take effect. Basically, the defaultValue
properties are embedded directly in the CREATE TABLE SQL statement generated
from our @Entity declaration:

CREATECREATE TABLETABLE IF NOTNOT EXISTSEXISTS `defaultValue` (`id` TEXT NOTNOT NULLNULL, `title` TEXT NOTNOT NULLNULL,
`text` TEXT DEFAULTDEFAULT 'something', `version` INTEGER NOTNOT NULLNULL DEFAULTDEFAULT 123,
PRIMARYPRIMARY KEYKEY(`id`))

Default Values and Inserts
If we @Insert our entity, though, the values for all columns get specified via
properties on that entity. After all, regardless of whether or not we provide text or

DEFAULT VALUES AND PARTIAL ENTITIES

116

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/DefaultValueEntity.kt

version when we call the DefaultValueEntity constructor, the resulting object will
have values for those properties, just via the Kotlin defaults. So, our resulting INSERT
SQL statement will provide values for all of those properties, meaning that the SQL
default values will not be used.

So, once again:

However, @Insert is not the only option for executing INSERT statements in Room.
We can also do that using @Query:

@Insert
funfun insert(entity: DefaultValueEntityDefaultValueEntity)

@Query("INSERT INTO defaultValue (id, title) VALUES (:id, :title)")
funfun insertByQuery(id: StringString, title: StringString)

(from MiscSamples/src/main/java/com/commonsware/room/misc/DefaultValueEntity.kt)

Here we have two DAO functions for inserting into our defaultValue table. The first
uses @Insert. The second uses @Query, with a SQL INSERT statement that does not
provide values for text or version. So, when we call insertByQuery(), our resulting
database table row will contain the supplied id and title values, plus the SQL
default values for text and version.

Partial Entities
Prior to the introduction of support for SQL default values, we always had to provide
values for all columns in our INSERT statements. If you inserted solely via @Insert,
you might not notice this limitation. The fact that we now have SQL default value
support means that the “insert-by-@Query” option has greater flexibility: we do not
have to provide all values for all columns.

Related to that is partial entity support, where we can have ordinary @Insert DAO
functions also only supply a subset of properties to go into the to-be-inserted row.

We covered earlier in the book how we can use arbitrary POJOs or Kotlin data
classes for the output of @Query functions:

DEFAULT VALUES AND PARTIAL ENTITIES

117

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/DefaultValueEntity.kt

packagepackage com.commonsware.room.misccom.commonsware.room.misc

importimport androidx.room.*androidx.room.*
importimport kotlin.random.Randomkotlin.random.Random

data classdata class CountAndSumResultCountAndSumResult(valval count: IntInt, valval sum: LongLong)

@Entity(tableName = "aggregate")
classclass AggregateEntityAggregateEntity(
@PrimaryKey(autoGenerate = truetrue)
valval id: LongLong = 0,
valval value: LongLong = RandomRandom.nextLong(1000000)
) {
@Dao
interfaceinterface StoreStore {
@Query("SELECT * FROM aggregate")
funfun loadAll(): ListList<AggregateEntityAggregateEntity>

@Query("SELECT COUNT(*) FROM aggregate")
funfun count(): IntInt

@Query("SELECT COUNT(*) as count, SUM(value) as sum FROM aggregate")
funfun countAndSum(): CountAndSumResultCountAndSumResult

@Insert
funfun insert(entities: ListList<AggregateEntityAggregateEntity>)
}
}

(from MiscSamples/src/main/java/com/commonsware/room/misc/AggregateEntity.kt)

Here, we use CountAndSumResult to model the response from:

SELECTSELECT COUNTCOUNT(*) asas countcount, SUMSUM(value) asas sumsum FROMFROM aggregateaggregate

Similarly, we can use a POJO or Kotlin data class to model partial input to an
@Insert, @Update, or @Delete function:

packagepackage com.commonsware.room.misccom.commonsware.room.misc

importimport androidx.room.*androidx.room.*

data classdata class PartialDefaultValuePartialDefaultValue(
valval id: StringString,
valval title: StringString
)

DEFAULT VALUES AND PARTIAL ENTITIES

118

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/AggregateEntity.kt

@Entity(tableName = "defaultValue")
classclass DefaultValueEntityDefaultValueEntity(
@PrimaryKey
valval id: StringString,
valval title: StringString,
@ColumnInfo(defaultValue = "something")
valval text: StringString? = nullnull,
@ColumnInfo(defaultValue = "123")
valval version: IntInt = 1
) {
@Dao
interfaceinterface StoreStore {
@Query("SELECT * FROM defaultValue")
funfun loadAll(): ListList<DefaultValueEntityDefaultValueEntity>

@Query("SELECT * FROM defaultValue where id = :id")
funfun findByPrimaryKey(id: StringString): DefaultValueEntityDefaultValueEntity

@Insert
funfun insert(entity: DefaultValueEntityDefaultValueEntity)

@Query("INSERT INTO defaultValue (id, title) VALUES (:id, :title)")
funfun insertByQuery(id: StringString, title: StringString)

@Insert(entity = DefaultValueEntityDefaultValueEntity::classclass)
funfun insertPartial(partial: PartialDefaultValuePartialDefaultValue)
}
}

(from MiscSamples/src/main/java/com/commonsware/room/misc/DefaultValueEntity.kt)

In addition to the insert() and insertByQuery() DAO functions, we have
insertPartial(). This accepts a PartialDefaultValue object and uses that for an
INSERT into our table.

By default, this would fail at compile time, with the Room annotation processor
complaining that PartialDefaultValue is not an entity. However, on the @Insert
annotation for insertPartial(), we use an entity property to teach Room what
@Entity is associated with this @Insert operation:

@Insert(entity = DefaultValueEntityDefaultValueEntity::classclass)
funfun insertPartial(partial: PartialDefaultValuePartialDefaultValue)

(from MiscSamples/src/main/java/com/commonsware/room/misc/DefaultValueEntity.kt)

The POJO or Kotlin data class that you supply as input (PartialDataEntity) will be

DEFAULT VALUES AND PARTIAL ENTITIES

119

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/DefaultValueEntity.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/DefaultValueEntity.kt

used like the entity itself, based on individual property names. Room will look in the
supplied object for properties matching those of the entity class and use the ones
that it finds. For everything else — such as text and version in this case — Room
will rely on the underlying table either supporting NULL for the column… or having a
defaultValue supplied.

Many developers will not need these features. Kotlin property default values and an
ordinary @Insert will suffice. But, these features make it a bit easier to model classic
SQL database structures and may help in some scenarios.

DEFAULT VALUES AND PARTIAL ENTITIES

120

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Room and Full-Text Search

SQLite supports FTS virtual tables for full-text searching of content. As the SQLite
documentation puts it:

The most common (and effective) way to describe full-text searches is “what
Google, Yahoo, and Bing do with documents placed on the World Wide
Web”.

Originally, Room did not have any support for FTS, but in 2019 Google added FTS
support to Room 2.2.0. So, in current versions of Room, you can use FTS in your
Android app, for rich queries of long pieces of text.

In this chapter, we will explore more about this capability.

What Is FTS?
Standard SQL databases are great for ordinary queries. In particular, when it comes
to text, SQL databases are great for finding rows where a certain column value
matches a particular string. They are usually pretty good about finding when a
column value matches a particular string prefix, if there is an index on that column.
Things start to break down when you want to search for an occurrence of a string in
a column — “find all rows where the column prose contains the word vague” — as
this usually requires a “table scan” (i.e., iteratively examining each row to see if this
matches). And getting more complex than that is often impossible, or at least rather
difficult.

SQLite, in its stock form, inherits all those capabilities and limitations. However,
SQLite also offers full-text indexing, where we can search our database much like
how we use a search engine (e.g., “find all rows where this column has both foo and

121

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://sqlite.org/fts3.html

bar in it somewhere”). While a full-text index takes up additional disk space, the
speed of the full-text searching is quite impressive.

A Word About SQLite Versions

SQLite has evolved since Android’s initial production release in 2008.

In many cases, Android does not incorporate updates to third-party code, for
backwards-compatibility reasons (e.g., Apache’s HttpClient). In the case of SQLite,
newer Android versions do take on newer versions of SQLite… but the exact version
of SQLite that a given version of Android uses is undocumented. Worse, some
device manufacturers replace the stock SQLite for a version of Android with a
different one.

This Stack Overflow answer contains a mapping of Android OS releases to SQLite
versions, including various “anomalies” where manufacturers have elected to ship
something else.

In many cases, the SQLite version does not matter. Core SQLite capabilities will have
existed since the earliest days of Android. However, full-text indexing did not exist in
the first SQLite used by Android, meaning that you will have to pay attention to
your minSdkVersion and aim high enough that devices should support the full-text
indexing option you choose.

Note that you could use an external SQLite implementation, one that gives you a
newer SQLite engine than what might be on the device. For example, SQLCipher for
Android ships its own copy of SQLite (with the SQLCipher extensions compiled in),
one that is often newer than the one that is baked into the firmware of any given
device.

FTS3, FTS4, and FTS5

There are three full-text indexing options available in SQLite: FTS3, FTS4, and FTS5.
Google, with Room, offers support for FTS3 and FTS4, not FTS5. Presumably, Google
has determined that few device manufacturers enable FTS5. If you package your own
SQLite version, you could ensure that FTS5 is available to you. Perhaps in the future,
Google will add FTS5 support.

Comparing FTS3 and FTS4, FTS4 can be much faster on certain queries, though
overall the speed of the two implementations should be similar. FTS4 may take a bit
more disk space for its indexes, though.

ROOM AND FULL-TEXT SEARCH

122

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

http://stackoverflow.com/a/4377116/115145
https://www.sqlite.org/fts5.html
https://issuetracker.google.com/issues/146824830

Applying FTS to Room
The FTSmodule of the book’s primary sample project demonstrates the use of FTS4
in Room.

The app is a trivial e-book reader. In assets/, it contains a copy of the Project
Gutenberg edition of H. G. Wells’ “The Invisible Man”. This is saved in plain text
files, with blank lines serving as paragraph separators. The reader itself simply
displays the book in its entirety, one paragraph per row in a RecyclerView:

Figure 2: FTS Sample App, As Initially Launched

It also has a SearchView, and if you search on a term, you will be given snippets of
the book showing where that word was used.

This chapter will focus on the BookRepository and its associated Room classes that
handle storing the book content and conducting the searches.

Creating the FTS Table and Entity

While the book is packaged with the app in assets/ as plain text files, SQLite and

ROOM AND FULL-TEXT SEARCH

123

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/tree/master/FTS
https://gitlab.com/commonsguy/cw-room/tree/master/FTS
https://gitlab.com/commonsguy/cw-room
https://www.gutenberg.org/ebooks/35
https://www.gutenberg.org/ebooks/35

FTS have no way of searching that content. So, the app has a SQLite table and
associated Room entity for the text. Since the prose is divided into paragraphs, we
have a ParagraphEntity that models those:

packagepackage com.commonsware.room.ftscom.commonsware.room.fts

importimport androidx.room.Entityandroidx.room.Entity
importimport androidx.room.PrimaryKeyandroidx.room.PrimaryKey

@Entity(tableName = "paragraphs")
data classdata class ParagraphEntityParagraphEntity(
@PrimaryKey(autoGenerate = truetrue) valval id: LongLong,
valval sequence: IntInt,
valval prose: StringString
)

(from FTS/src/main/java/com/commonsware/room/fts/ParagraphEntity.kt)

Here, sequence is an integer showing where the paragraph appears in the book, with
lower numbers meaning earlier appearances. prose is the text of the paragraph itself.

There are a few SQLite strategies for creating and maintaining an FTS index. This
book goes with a parallel-table approach, where we not only have an entity and table
for the data, but a separate entity and table for the FTS index.

To that end, we not only have ParagraphEntity, but we have ParagraphFtsEntity:

packagepackage com.commonsware.room.ftscom.commonsware.room.fts

importimport androidx.room.Entityandroidx.room.Entity
importimport androidx.room.Fts4androidx.room.Fts4

@Fts4(contentEntity = ParagraphEntityParagraphEntity::classclass)
@Entity(tableName = "paragraphsFts")
data classdata class ParagraphFtsEntityParagraphFtsEntity(valval prose: StringString)

(from FTS/src/main/java/com/commonsware/room/fts/ParagraphFtsEntity.kt)

The FTS entity has the same properties as the main entity, for those columns that we
want to be indexed by FTS. In this case, that is only the prose.

The @Fts4 annotation indicates that this is an entity representing an FTS4 “shadow
table” for some other table. The contentEntity property of the annotation points
Room to the main entity (ParagraphEntity in this case).

ROOM AND FULL-TEXT SEARCH

124

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/FTS/src/main/java/com/commonsware/room/fts/ParagraphEntity.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/FTS/src/main/java/com/commonsware/room/fts/ParagraphFtsEntity.kt

Under the covers, Room and SQLite’s FTS4 will:

• Add a standard rowid column to the shadow table, matching the INTEGER ID
of the main table

• Add triggers, such that whenever changes are made to the main table, Room
can update the shadow table to match

As a result, while we will query using both tables, we will only insert content using
ParagraphEntity— ParagraphFtsEntity will be handled for us.

Querying Using FTS

Our DAO is BookStore:

packagepackage com.commonsware.room.ftscom.commonsware.room.fts

importimport androidx.room.Daoandroidx.room.Dao
importimport androidx.room.Insertandroidx.room.Insert
importimport androidx.room.Queryandroidx.room.Query

@Dao
abstractabstract classclass BookStoreBookStore {
@Insert
abstractabstract suspendsuspend funfun insert(paragraphs: ListList<ParagraphEntityParagraphEntity>)

@Query("SELECT prose FROM paragraphs ORDER BY sequence")
abstractabstract suspendsuspend funfun all(): ListList<StringString>

@Query("SELECT snippet(paragraphsFts) FROM paragraphs JOIN paragraphsFts "+
"ON paragraphs.id == paragraphsFts.rowid WHERE paragraphsFts.prose "+
"MATCH :search ORDER BY sequence")

abstractabstract suspendsuspend funfun filtered(search: StringString): ListList<StringString>
}

(from FTS/src/main/java/com/commonsware/room/fts/BookStore.kt)

As noted above, our only data-manipulation function — insert()— works with
ParagraphEntity rather than ParagraphFtsEntity. And, we are welcome to query
ParagraphEntity as normal, without having to deal with FTS, as we do in the all()
function to retrieve all the prose in sequential order.

However, we can also use the MATCH operator for queries against our FTS4 shadow
table. MATCH takes a search expression, which could be as simple as a word to find in
the indexed content.

ROOM AND FULL-TEXT SEARCH

125

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/FTS/src/main/java/com/commonsware/room/fts/BookStore.kt

For the moment, let’s pretend that the filtered() function on BookStore looked
like this:

@Query("SELECT prose FROM paragraphs JOIN paragraphsFts "+
"ON paragraphs.id == paragraphsFts.rowid WHERE paragraphsFts.prose "+
"MATCH :search ORDER BY sequence")

abstractabstract suspendsuspend funfun filtered(search: StringString): ListList<StringString>

The SELECT prose FROM paragraphs and the ORDER BY sequence parts are simple
SQL. Combined, they make up the query used in all(), to return all the prose, order
by sequence.

However, filtered() also uses JOIN to connect the paragraphsFts table with the
paragraphs table. The id of our ParagraphEntity will match the rowid of the
corresponding ParagraphsFtsEntity in its shadow table.

Finally, we use WHERE paragraphsFts.prose MATCH :search to apply an FTS4 search
against the FTS4-indexed prose in paragraphsFts. Through the JOIN, we can get
columns back from paragraphs for whatever rows in paragraphsFtsmatched the
FTS4 search expression.

As a result, calling this version of filtered() with an FTS4 search expression would
give us all the complete text of all the paragraphs that matched that search
expression.

Getting Snippets

However… the filtered() function shown above is not actually what BookStore has.
Instead, it has:

@Query("SELECT snippet(paragraphsFts) FROM paragraphs JOIN paragraphsFts "+
"ON paragraphs.id == paragraphsFts.rowid WHERE paragraphsFts.prose "+
"MATCH :search ORDER BY sequence")

abstractabstract suspendsuspend funfun filtered(search: StringString): ListList<StringString>

(from FTS/src/main/java/com/commonsware/room/fts/BookStore.kt)

Here, instead of retrieving prose from paragraphs, we have snippet(paragraphFts).

ROOM AND FULL-TEXT SEARCH

126

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/FTS/src/main/java/com/commonsware/room/fts/BookStore.kt

When you use Internet search engines like Google, DuckDuckGo, etc., usually their
search results are not just links, but snippets of text showing you the context around
your search term, often with a search keyword highlighted:

Figure 3: DuckDuckGo Search for CommonsWare, with Keyword Highlights

snippet() gives you the same effect. SQLite’s FTS engine will return to you a portion
of the text, with search keywords in boldface. The value passed to the snippet()
function is the name of the FTS table (in this case, paragraphFts).

The RecyclerView.ViewHolder renders that HTML using HtmlCompat:

packagepackage com.commonsware.room.ftscom.commonsware.room.fts

importimport android.view.Viewandroid.view.View
importimport android.widget.TextViewandroid.widget.TextView
importimport androidx.core.text.HtmlCompatandroidx.core.text.HtmlCompat
importimport androidx.recyclerview.widget.RecyclerViewandroidx.recyclerview.widget.RecyclerView

classclass RowHolderRowHolder(root: ViewView) : RecyclerViewRecyclerView.ViewHolderViewHolder(root) {
privateprivate valval prose = root.findViewById<TextViewTextView>(RR.id.prose)

funfun bind(paragraph: StringString) {
prose.text = HtmlCompatHtmlCompat.fromHtml(paragraph, HtmlCompatHtmlCompat.FROM_HTML_MODE_COMPACTFROM_HTML_MODE_COMPACT)
}
}

ROOM AND FULL-TEXT SEARCH

127

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

(from FTS/src/main/java/com/commonsware/room/fts/RowHolder.kt)

The effect is that the user’s chosen search term shows up in bold in the search
results:

Figure 4: FTS Sample App, Showing Search Results for ‘chair’

You do not have to use this feature, if you do not want, but it is available to you if it
would be of use to your users.

Populating the Database

Our BookDatabase does not need anything special for having FTS be a part of its
entity and DAO mix. However, ParagraphFtsEntity is an entity, so it needs to be
listed in the @Database annotation:

packagepackage com.commonsware.room.ftscom.commonsware.room.fts

importimport android.content.Contextandroid.content.Context
importimport androidx.room.Databaseandroidx.room.Database
importimport androidx.room.Roomandroidx.room.Room
importimport androidx.room.RoomDatabaseandroidx.room.RoomDatabase

ROOM AND FULL-TEXT SEARCH

128

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/FTS/src/main/java/com/commonsware/room/fts/RowHolder.kt

privateprivate constconst valval DB_NAME = "book.db"

@Database(
entities = [ParagraphEntityParagraphEntity::classclass, ParagraphFtsEntityParagraphFtsEntity::classclass],
version = 1
)
abstractabstract classclass BookDatabaseBookDatabase : RoomDatabaseRoomDatabase() {
abstractabstract funfun bookStore(): BookStoreBookStore

companioncompanion objectobject {
funfun newInstance(context: ContextContext) =
RoomRoom.databaseBuilder(context, BookDatabaseBookDatabase::classclass.java, DB_NAMEDB_NAME).build()

}
}

(from FTS/src/main/java/com/commonsware/room/fts/BookDatabase.kt)

Technically, BookRepository needs to know even less about FTS. However, somebody
has to have the job of adding the book to the database on first run, and in this case,
that job falls on BookRepository. Its all() function will be called when the app
launches, to populate the RecyclerView to show the book contents. So, we can see if
all() on BookStore returns an empty list — if it does, we can surmise that the
database is empty and we need to fill it:

suspendsuspend funfun all(): ListList<StringString> {
valval result = db.bookStore().all()

returnreturn ifif (result.isEmpty()) {
importimport()
db.bookStore().all()
} elseelse {
result
}
}

(from FTS/src/main/java/com/commonsware/room/fts/BookRepository.kt)

The import() function iterates over all of the book chapters (which are numbered so
their order can be maintained) and generates ParagraphEntity objects for each of
their paragraphs. The resulting List of entities then gets inserted into the database
via insert() on BookStore:

privateprivate suspendsuspend funfun import() = withContext(DispatchersDispatchers.IOIO) {
valval assets = context.assets

valval entities = assets.list(BOOK_DIRBOOK_DIR).orEmpty()
.sorted()

ROOM AND FULL-TEXT SEARCH

129

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/FTS/src/main/java/com/commonsware/room/fts/BookDatabase.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/FTS/src/main/java/com/commonsware/room/fts/BookRepository.kt

.map { paragraphs(assets.openopen("$BOOK_DIR/$it")) }

.flatten()

.mapIndexed { index, prose -> ParagraphEntityParagraphEntity(0, index, prose) }

db.bookStore().insert(entities)
}
}

// inspired by https://stackoverflow.com/a/10065920/115145

privateprivate funfun paragraphs(stream: InputStreamInputStream) =
paragraphs(stream.reader().readLines())

privateprivate funfun paragraphs(lines: ListList<StringString>) =
lines.fold(listOf<StringString>()) { roster, line ->
whenwhen {
line.isEmpty() -> roster + ""
roster.isEmpty() -> listOf(line)
elseelse -> roster.take(roster.size - 1) + (roster.last() + " ${line.trim()}")
}
}
.map { it.trim() }
.filter { it.isNotEmpty() }

(from FTS/src/main/java/com/commonsware/room/fts/BookRepository.kt)

Here, BOOK_DIR identifies the directory within assets/ where the chapters reside:

privateprivate constconst valval BOOK_DIR = "TheTimeMachine"

(from FTS/src/main/java/com/commonsware/room/fts/BookRepository.kt)

Dealing With Errors

It is possible that the user will type in an invalid search expression. SQLite has a
specific search language, and the user’s search expression might not adhere to that.

In this case, our filtered() DAO function, being a suspend function, will throw the
exception. We can catch that and handle it how we see fit.

The app has a SearchViewModel that calls filtered() on BookRepository and
surfaces the result via a LiveData:

packagepackage com.commonsware.room.ftscom.commonsware.room.fts

importimport android.content.Contextandroid.content.Context
importimport android.util.Logandroid.util.Log
importimport androidx.lifecycle.LiveDataandroidx.lifecycle.LiveData
importimport androidx.lifecycle.ViewModelandroidx.lifecycle.ViewModel
importimport androidx.lifecycle.liveDataandroidx.lifecycle.liveData

ROOM AND FULL-TEXT SEARCH

130

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/FTS/src/main/java/com/commonsware/room/fts/BookRepository.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/FTS/src/main/java/com/commonsware/room/fts/BookRepository.kt

classclass SearchViewModelSearchViewModel(
search: StringString,
repo: BookRepositoryBookRepository,
privateprivate valval context: ContextContext
) : ViewModelViewModel() {
valval paragraphs: LiveDataLiveData<ListList<StringString>> = liveData {
trytry {
emit(repo.filtered(search))
} catchcatch (t: ThrowableThrowable) {
LogLog.e("FTS", "Exception with search expression", t)
emit(listOf(context.getString(RR.string.search_error, search)))
}
}
}

(from FTS/src/main/java/com/commonsware/room/fts/SearchViewModel.kt)

We wrap our filtered() call in a try/catch. If we get an exception, we log its
details to Logcat, and we emit() a result with an error message for the user. In this
case, we are taking advantage of the fact that our UI is already displaying text to the
user — we just replace the normal search results with an error message in this case.

Alternatively, we could have paragraphs be a LiveData of some sealed class with
Content and Error implementations. Content could hold the paragraphs, while
Error could hold the error message. This would give the code that displays the
results (SearchFragment) more flexibility in displaying the error, albeit with
somewhat greater code complexity.

Why Are We Bothering?

Of course, you might wonder what all the fuss is about. In this sample, we are
loading the entire book into memory, via the all() functions on our BookStore and
BookRepository. If we want to search, we could do so purely in memory, without
any FTS stuff.

There are three reasons why we are implementing FTS here:

1. While we could do a simple keyword search easily enough ourselves, FTS
supports richer search expressions than that, and writing a whole search
expression parser and executor is going to be a lot of work

2. We would not have to load the entire book into memory, if we did not want
to — we will examine that more in a later chapter

3. It would be silly to have a chapter on FTS and then not show it

ROOM AND FULL-TEXT SEARCH

131

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/FTS/src/main/java/com/commonsware/room/fts/SearchViewModel.kt

Supported MATCHMATCH Syntax
The MATCH operator supports a range of query structures, including:

• Keyword matches (e.g., Android)
• Prefix matches (e.g., SQL*)
• Phrase matches (e.g., "open source")
• NEAR, AND, OR, and NOT operators (e.g., sqlite AND database)

The SQLite FTS3/FTS4 documentation has more on its supported query syntax.

Migrating to FTS
If you have already shipped your app, and you want to add an FTS index to an
existing table or add a new table with FTS, you will need to implement a migration,
as we discussed in a previous chapter.

In this case, your migration will be a bit more complicated. Not only will you need to
create your FTS table, but you will also need to define some triggers to keep your
main table and the FTS shadow table in sync.

If you set up Gradle to export your schemas, you will have access to the required
SQL. Partly, that will be in the createSql JSON property for your entity:

"createSql": "CREATE VIRTUAL TABLE IF NOT EXISTS `${TABLE_NAME}` USING FTS4(`prose`
TEXT NOT NULL, content=`paragraphs`)"

And, partly, that will be in the contentSyncTriggers JSON property, which holds a
list of SQL statements to be executed:

"contentSyncTriggers": [
"CREATE TRIGGER IF NOT EXISTS room_fts_content_sync_paragraphsFts_BEFORE_UPDATE
BEFORE UPDATE ON `paragraphs` BEGIN DELETE FROM `paragraphsFts` WHERE
`docid`=OLD.`rowid`; END",
"CREATE TRIGGER IF NOT EXISTS room_fts_content_sync_paragraphsFts_BEFORE_DELETE
BEFORE DELETE ON `paragraphs` BEGIN DELETE FROM `paragraphsFts` WHERE
`docid`=OLD.`rowid`; END",
"CREATE TRIGGER IF NOT EXISTS room_fts_content_sync_paragraphsFts_AFTER_UPDATE
AFTER UPDATE ON `paragraphs` BEGIN INSERT INTO `paragraphsFts`(`docid`, `prose`)
VALUES (NEW.`rowid`, NEW.`prose`); END",
"CREATE TRIGGER IF NOT EXISTS room_fts_content_sync_paragraphsFts_AFTER_INSERT

ROOM AND FULL-TEXT SEARCH

132

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://sqlite.org/fts3.html

AFTER INSERT ON `paragraphs` BEGIN INSERT INTO `paragraphsFts`(`docid`, `prose`)
VALUES (NEW.`rowid`, NEW.`prose`); END"
]

Your migration will need to include all of these, so your migrated database schema
matches the database schema that new users will use.

ROOM AND FULL-TEXT SEARCH

133

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Room and Conflict Resolution

For @Insert and @Updatemethods in your @Dao, you can have onConflict properties
in the annotations that stipulate what should happen if the insert or update results
in a violation of a few types of constraints:

• A unique index, including a duplicate primary key
• A NULL value being put into a NOT NULL column
• A CHECK constraint (which Room does not support presently)

Room gives you five OnConflictStrategy enum values to choose from for your
onConflict property. Each of those OnConflictStrategy values maps to an
equivalent SQLite keyword, and each of those strategies results is different behavior
in SQLite.

135

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Value Meaning

OnConflictStrategy.ABORT
Cancels this statement but preserves prior

results in the transaction and keeps the
transaction alive

OnConflictStrategy.FAIL

Like ABORT, but accepts prior changes by this
specific statement (e.g., if we fail on the 50th
row to be updated, keep the changes to the

preceding 49)

OnConflictStrategy.IGNORE
Like FAIL, but continues processing this

statement (e.g., if we fail on the 50th row out of
100, keep the changes to the other 99)

OnConflictStrategy.REPLACE
For uniqueness violations, deletes other rows

that would cause the violation before executing
this statement

OnConflictStrategy.ROLLBACK Rolls back the current transaction

However, they may not wind up with different behavior in Room, due to the way
that Room works with SQLite. As a result, two of these five (FAIL and ROLLBACK)
have been deprecated.

In this chapter, we will examine those five options and see what SQLite does and
what the resulting effects are in a Room-based app. As you will see, while there are
five official options, fewer are practical.

Abort
@Insert(onConflict = OnConflictStrategyOnConflictStrategy.ABORTABORT)

@Update(onConflict = OnConflictStrategyOnConflictStrategy.ABORTABORT)

What SQLite Does

This strategy maps to INSERT OR ABORT or UPDATE OR ABORT statements. If a
constraint violation would occur from this statement, the statement is skipped.
SQLiteDatabase throws a SQLiteConstraintException. However, if you have started

ROOM AND CONFLICT RESOLUTION

136

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

a transaction, that transaction remains open, so further statements in the
transaction can be executed.

Effects in Room

An individual @Insert or @Updatemethod that uses OnConflictStrategy.ABORT will
throw a SQLiteConstraintException if there is a constraint violation. In isolation,
this fits with what you might expect.

The problem comes with @Transaction.

Every method that Room generates in response to your @Dao-annotated methods has
the same basic structure:

@Override
publicpublic void whatever(SomeEntitySomeEntity... entities) {
__db.beginTransaction();
trytry {
// the real work for whatever whatever() does
__db.setTransactionSuccessful();
} finallyfinally {
__db.endTransaction();
}
}

This includes @Transaction-annotated methods, which just wrap that template
around a call to your real method:

@Override
publicpublic void whatever(SomeEntitySomeEntity... entities) {
__db.beginTransaction();
trytry {
supersuper.whatever(entities);
__db.setTransactionSuccessful();
} finallyfinally {
__db.endTransaction();
}
}

If anything in your @Transactionmethod throws an exception, of any kind, the
entire transaction gets rolled back, courtesy of the try/finally structure.

So, even though ABORT is supposed to keep the transaction open, Room rolls back
the transaction, so that your @Transaction is atomic.

ROOM AND CONFLICT RESOLUTION

137

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Fail
@Insert(onConflict = OnConflictStrategyOnConflictStrategy.FAILFAIL)

@Update(onConflict = OnConflictStrategyOnConflictStrategy.FAILFAIL)

What SQLite Does

This strategy maps to INSERT OR FAIL or UPDATE OR FAIL statements. These work
much like their ABORT counterparts, in that a SQLiteConstraintException is thrown,
but the transaction remains open.

The difference is in what happens if your UPDATE statement affects several rows. In
that case, rows that were changed prior to the constraint violation remain changed.
The row with the constraint violation, and any others after it, are unchanged.

Frankly, this does not seem like a particularly good idea. At least with ABORT, you
have consistent behavior. With FAIL, some arbitrary amount of data gets changed,
and the rest is not, and without doing your own post-FAIL analysis, you have no idea
what to expect.

Effects in Room

While Room used to support OnConflictStrategy.FAIL, it is now deprecated.
Google recommends that you use ABORT instead.

Ignore
@Insert(onConflict = OnConflictStrategyOnConflictStrategy.IGNOREIGNORE)

@Update(onConflict = OnConflictStrategyOnConflictStrategy.IGNOREIGNORE)

What SQLite Does

This strategy maps to INSERT OR IGNORE or UPDATE OR IGNORE statements. This has
two key differences to how FAIL works:

• It does not throw any sort of exception.
• It tries to process everything that the statement should affect. So, if there are

100 rows to be updated, and the 50th row winds up with a constraint

ROOM AND CONFLICT RESOLUTION

138

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

violation, that row is skipped, but SQLite continues to try to process any
not-yet-updated rows.

The result is that everything that can be inserted or updated is inserted or updated,
with individual rows being skipped where they fail on constraint violations.

This is risky, in that you may not necessarily have a good way of knowing that some
of your requested data manipulations did not take effect.

Effects in Room

Since IGNORE does not trigger an exception, Room will commit the transaction that
contains your @Insert or @Update work. Hence, this works, insofar as Room does not
reject changes that SQLite would otherwise accept because Room rolled back the
transaction. You still suffer from not knowing what exactly was changed by your
@Insert or @Updatemethod, though.

However, for SQL statements that you know will only affect one row, IGNORE is a
perfectly reasonable solution.

Replace
@Insert(onConflict = OnConflictStrategyOnConflictStrategy.REPLACEREPLACE)

@Update(onConflict = OnConflictStrategyOnConflictStrategy.REPLACEREPLACE)

What SQLite Does

This strategy maps to INSERT OR REPLACE or UPDATE OR REPLACE statements.

If SQLite encounters a row where a UNIQUE or PRIMARY KEY constraint conflicts with
the change requested via the INSERT OR REPLACE or UPDATE OR REPLACE statement,
SQLite deletes the existing data and proceeds with the statement. The net effect is
that you replace the old data with the new data.

If SQLite encounters a row where a NOT NULL constraint is violated, it will attempt to
replace the null value with the default value for that column, if there is one defined
in the table schema. If not, this strategy behaves like ABORT.

And for any other constraint violation, this strategy behaves like ABORT.

ROOM AND CONFLICT RESOLUTION

139

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

As a result, this is useful, but only in fairly controlled circumstances, and then
mostly for INSERT OR REPLACE. This guarantees that your desired row will wind up
in the table, either because it is new or because SQLite gets rid of the previous
edition of that row.

Effects in Room

This strategy, like IGNORE, works pretty much as SQLite intends, for the most
common use case: a duplicate on a UNIQUE or PRIMARY KEY constraint, resulting in
data replacement.

This strategy will have the same problems as ABORT in the cases where it behaves like
ABORT— Room will roll back the transaction once it sees the
SQLiteConstraintException.

Rollback
@Insert(onConflict = OnConflictStrategyOnConflictStrategy.ROLLBACKROLLBACK)

@Update(onConflict = OnConflictStrategyOnConflictStrategy.ROLLBACKROLLBACK)

What SQLite Does

This strategy maps to INSERT OR ROLLBACK or UPDATE OR ROLLBACK statements.

It rolls back the transaction, as you might expect given the name.

Effects in Room

As with FAIL, while Room used to support OnConflictStrategy.ROLLBACK, it is now
deprecated. Google recommends that you use ABORT instead.

What Should You Use with Room?
Given the deprecations, your options with Room now are very straightforward:

• If you want to replace the database contents with new data when there is a
conflict, use REPLACE

• If you want to keep the existing database contents when there is a conflict,
but not treat it as an error, use IGNORE

ROOM AND CONFLICT RESOLUTION

140

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

• If you want to keep the existing database contents when there is a conflict,
and you want an exception to be raised so you know about the problem, use
ABORT (or, do nothing, as ABORT is the default strategy)

ROOM AND CONFLICT RESOLUTION

141

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

A Room With a View

SQLite, like many SQL databases, not only supports CREATE TABLE for creating
tables, but CREATE VIEW for creating views. In this case, a database view has nothing
much to do with an Android View. Rather, a database view is a “view” onto other
data in the database. It amounts to a SQL query that you can in turn query against
as if it were a table.

For example, earlier in the book, we saw AppEntity:

packagepackage com.commonsware.room.misccom.commonsware.room.misc

importimport androidx.room.*androidx.room.*

@Entity(tableName = "apps")
data classdata class AppEntityAppEntity(
@PrimaryKey
valval applicationId: StringString,
valval displayName: StringString,
valval shortDescription: StringString,
valval fullDescription: StringString,
valval latestVersionName: StringString,
valval lastUpdated: LongLong,
valval iconUrl: StringString,
valval packageUrl: StringString,
valval donationUrl: StringString
) {
@Dao
interfaceinterface StoreStore {
@Query("SELECT * FROM apps")
funfun loadAll(): ListList<AppEntityAppEntity>

@Query("SELECT applicationId, displayName, shortDescription, iconUrl FROM apps")
funfun loadListModels(): ListList<AppListModelAppListModel>

@Insert
funfun insert(entity: AppEntityAppEntity)
}
}

143

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

data classdata class AppListModelAppListModel(
valval applicationId: StringString,
valval displayName: StringString,
valval shortDescription: StringString,
valval iconUrl: StringString
)

(from MiscSamples/src/main/java/com/commonsware/room/misc/AppEntity.kt)

We used that to demonstrate having a DAO function return a type other than the
entity itself, where loadListModels() returns a subset of the columns of the table,
and those get mapped to an AppListModel instead of an AppEntity.

Another way to have implemented that would be to define a database view on the
apps table that happens to return those four columns. We can then query that view
as if it were an actual table, with separate @Query functions.

Defining a View
Just as an entity is declared via an @Entity annotation, a database view is declared
via a @DatabaseView annotation. It takes two parameters:

• value, which is a SQL query like you might have in a @Query annotation,
though no parameters are allowed; and

• viewName, which is the equivalent of tableName on @Entity, supplying the
name to use for this view

viewName is optional; if you skip it, the view is named the same as the class on which
you are applying the @DatabaseView annotation.

AppView is a view on the AppEntity table (apps) that returns the four columns that
we were using with loadListModels() and AppListModel before:

@DatabaseView(
viewName = "appListView",
value = "SELECT applicationId, displayName, shortDescription, iconUrl FROM apps"
)
data classdata class AppViewAppView(
valval applicationId: StringString,
valval displayName: StringString,
valval shortDescription: StringString,
valval iconUrl: StringString
) {

(from MiscSamples/src/main/java/com/commonsware/room/misc/AppView.kt)

A ROOM WITH A VIEW

144

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/AppEntity.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/AppView.kt

Registering the View
Just as we have to teach our RoomDatabase about entities, we have to teach it about
database views. For entities, we have an entities array that we supply to the
@Database annotation. For database views, we have a view array that fills the same
role:

@Database(
entities = [
AutoGenerateEntityAutoGenerateEntity::classclass,
CompositeKeyEntityCompositeKeyEntity::classclass,
UniqueIndexEntityUniqueIndexEntity::classclass,
IgnoredPropertyEntityIgnoredPropertyEntity::classclass,
NullablePropertyEntityNullablePropertyEntity::classclass,
CustomColumnNameEntityCustomColumnNameEntity::classclass,
IndexedEntityIndexedEntity::classclass,
AppEntityAppEntity::classclass,
AggregateEntityAggregateEntity::classclass,
TransmogrifyingEntityTransmogrifyingEntity::classclass,
EmbeddedLocationEntityEmbeddedLocationEntity::classclass,
DefaultValueEntityDefaultValueEntity::classclass,
com.commonsware.room.misc.onetomany.BookBook::classclass,
com.commonsware.room.misc.onetomany.CategoryCategory::classclass,
com.commonsware.room.misc.manytomany.BookBook::classclass,
com.commonsware.room.misc.manytomany.CategoryCategory::classclass,
com.commonsware.room.misc.manytomany.BookCategoryJoinBookCategoryJoin::classclass,
LinkEntityLinkEntity::classclass,
CommentEntityCommentEntity::classclass,
NoteEntityNoteEntity::classclass,
AutoEnumEntityAutoEnumEntity::classclass
],
views = [
AppViewAppView::classclass
],
version = 1
)

(from MiscSamples/src/main/java/com/commonsware/room/misc/MiscDatabase.kt)

So, here, we tell MiscDatabase that we have a single @DatabaseView, named AppView.

Querying a View
And, just as we can have a @Dao class that works with AppEntity and its table, we can

A ROOM WITH A VIEW

145

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/MiscDatabase.kt

have a @Dao class that works with AppView and its database view:

packagepackage com.commonsware.room.misccom.commonsware.room.misc

importimport androidx.room.Daoandroidx.room.Dao
importimport androidx.room.DatabaseViewandroidx.room.DatabaseView
importimport androidx.room.Queryandroidx.room.Query

@DatabaseView(
viewName = "appListView",
value = "SELECT applicationId, displayName, shortDescription, iconUrl FROM apps"
)
data classdata class AppViewAppView(
valval applicationId: StringString,
valval displayName: StringString,
valval shortDescription: StringString,
valval iconUrl: StringString
) {
@Dao
interfaceinterface StoreStore {
@Query("SELECT * FROM appListView")
funfun loadListView(): ListList<AppViewAppView>

@Query("SELECT * FROM appListView WHERE applicationId = :applicationId")
funfun findById(applicationId: StringString): AppViewAppView?
}
}

(from MiscSamples/src/main/java/com/commonsware/room/misc/AppView.kt)

loadListView() on AppView.Store will return the exact same list as does
listListModels() on AppEntity.Store, as they both refer to the same query. We
reference appListView in @Query annotations just like we do tables like apps. The
available columns are determined by our value query in the @DatabaseView and our
properties on the class that we apply @DatabaseView to. Under the covers, when we
query appListView, SQLite will really query apps based on the value query and then
sub-select off of that based on the @Query against appListView.

We can also have queries against the view that apply constraints, as seen in
findById(). In the end, we treat the database view much like a table… for read
operations. We cannot @Insert, @Update, or @Delete data in a database view — for
those operations, we have to manipulate the table that is used by the view.

OK, Why Bother?
This seems a bit silly, as we did not gain much by having the database view instead
of just having the simple loadListModels() function on AppEntity.Store.

In a database server, database view implementations usually have two features:

A ROOM WITH A VIEW

146

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/AppView.kt

• They are read-only, and
• They can be secured separately from the underlying tables

As a result, you might expose database views as being something like a read-only
API to certain types of systems (e.g., report generators) that only need access to
some of the data.

SQLite’s views are read-only, but SQLite has no per-user security model the way that
a database server might. This limits the usefulness of database views.

However, it may be that there are certain subsets of columns, or certain WHERE
constraints, that you need to use a lot. Rather than duplicate them across many
separate @Query functions, you could centralize them in a database view. That way, if
the list of columns changes or the WHERE constraints need to be revised, you can do
so in one spot (the view definition) instead of having to ensure that you update lots
of individual queries.

A ROOM WITH A VIEW

147

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Room and PRAGMAs

Room covers a lot of what you will need when interacting with SQLite from your
app. Room might not cover everything of what you would like to use with SQLite,
though.

Some things — particularly anything involving table definitions — pretty much
requires Room itself to be upgraded in order to work. Anything that lies outside of
Room, though, is fair game, though you have to resort to classic SQLite approaches
to make it work.

One of those approaches is to execute a PRAGMA, as we will explore briefly in this
chapter.

When To Make Changes
You have two main events for when to make changes outside of Room to the
database: when it is created and when it is opened. Which you use depends on the
nature of your changes.

Changes that are persistent would be applied when the database is created, or
(eventually) via a Migration when the database schema is modified. For example,
using CREATE TRIGGER to create a trigger results in a persistent change to the
database, so you only need to do this when the database schema is created or
modified.

However, some PRAGMA statements are transient, living for the life of our connection
to the database. Once the connection is closed, the effects of those PRAGMA
statements go away. As a result, we have to apply these every time that the database
is opened.

149

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Example: Turbo Boost Mode
Some developers are desperate to wring every last bit of performance out of their
database, even to the point of risking data loss or corruption. Some PRAGMA
statements tie into performance this way.

For example, normally, many times when SQLite writes data to disk, it will use
fsync() or the equivalent to block until all of the bytes are confirmed to be written.
This is important in operating systems with write-caching filesystems, as otherwise
the data that you think that you wrote might actually just be in a buffer waiting to
be written in the future. Android, when using the ext4 filesystem, is one such OS.
However, PRAGMA synchronous = OFF tells SQLite to skip those fsync() calls. This
speeds up I/O, with increased risk of the database becoming corrupted if there is a
major system problem while that I/O is going on. This is a transient PRAGMA, only
affecting the current connection.

Even riskier is PRAGMA journal_mode = MEMORY. In effect, this says to keep the
transaction log of the database in memory, rather than writing it to disk. As the
documentation states, “if the application using SQLite crashes in the middle of a
transaction when the MEMORY journaling mode is set, then the database file will
very likely go corrupt”. But, some people would consider performance gains as being
a valid trade-off here. This is a persistent setting, and so it only needs to be applied
once.

The approach for both of these cases is to use a RoomDatabase.Callback, as seen in
the PragmaTest sample module from the book’s primary sample project.
RoomDatabase.Callback was introduced in the chapter on the support database API.

This is a tests-only module, one that tests importing a bunch of city population data
from a JSON file into a Room-powered database called CityDatabase.

The newInstance()method that we use to create an instance of our CityDatabase
uses a RoomDatabase.Builder as normal. However, based on a boolean parameter, it
may also use addCallback() to add a RoomDatabase.Callback to the builder:

packagepackage com.commonsware.room.pragmatestcom.commonsware.room.pragmatest

importimport android.content.Contextandroid.content.Context
importimport androidx.annotation.VisibleForTestingandroidx.annotation.VisibleForTesting
importimport androidx.room.Databaseandroidx.room.Database
importimport androidx.room.Roomandroidx.room.Room

ROOM AND PRAGMAS

150

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

http://sqlite.org/pragma.html#pragma_journal_mode
http://sqlite.org/pragma.html#pragma_journal_mode
https://gitlab.com/commonsguy/cw-room/tree/master/PragmaTest
https://gitlab.com/commonsguy/cw-room/tree/master/PragmaTest
https://gitlab.com/commonsguy/cw-room

importimport androidx.room.RoomDatabaseandroidx.room.RoomDatabase
importimport androidx.sqlite.db.SupportSQLiteDatabaseandroidx.sqlite.db.SupportSQLiteDatabase

@Database(entities = [CityCity::classclass], version = 1)
abstractabstract classclass CityDatabaseCityDatabase : RoomDatabaseRoomDatabase() {
abstractabstract funfun cityStore(): CityCity.StoreStore

companioncompanion objectobject {
@VisibleForTesting
constconst valval DB_NAME = "un.db"

funfun newInstance(ctxt: ContextContext, applyPragmas: BooleanBoolean): CityDatabaseCityDatabase {
valval builder = RoomRoom.databaseBuilder(
ctxt,
CityDatabaseCityDatabase::classclass.java,
DB_NAMEDB_NAME
)

ifif (applyPragmas) {
builder.addCallback(objectobject : CallbackCallback() {
overrideoverride funfun onCreate(db: SupportSQLiteDatabaseSupportSQLiteDatabase) {
supersuper.onCreate(db)
db.query("PRAGMA journal_mode = MEMORY")
}

overrideoverride funfun onOpen(db: SupportSQLiteDatabaseSupportSQLiteDatabase) {
supersuper.onOpen(db)
db.query("PRAGMA synchronous = OFF")
}
})
}

returnreturn builder.build()
}
}
}

(from PragmaTest/src/main/java/com/commonsware/room/pragmatest/CityDatabase.kt)

There are two methods that you can supply on a Callback implementation:
onCreate() and onOpen(). As the names suggest, they are called when the database
is created and opened, respectively. In each, you are handed a
SupportSQLiteDatabase instance, which has an API reminiscent of the framework’s
SQLiteDatabase. It has a query()method that works like rawQuery(), taking a
simple SQL statement (that might return a result set) and executing it. Since PRAGMA
might return a result set, we have to use query() instead of execSQL(). Here, we
invoke our PRAGMA statements at the appropriate times.

ROOM AND PRAGMAS

151

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/PragmaTest/src/main/java/com/commonsware/room/pragmatest/CityDatabase.kt

And, in truth, there does seem to be a performance gain:

Scenario
Use the
PRAGMAPRAGMAs?

Time
(milliseconds)

Inserting 1,063 cities via individual
insert() calls

No 1,135

Inserting 1,063 cities via individual
insert() calls

Yes 960

Inserting 1,063 cities in a single insert()
call

No 393

Inserting 1,063 cities in a single insert()
call

Yes 252

(tests conducted on a Google Pixel 4)

Proper use of transactions — such as doing all of the inserts at once rather than one
at a time — has a much bigger impact, though. Using these two PRAGMA statements
is a bit like using a holodeck with the safeties off: you may have some casualties.

ROOM AND PRAGMAS

152

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

http://memory-alpha.wikia.com/wiki/Holodeck_safety_protocol

Packaged Databases

We often tend to think of databases being populated at runtime:

• From user input
• From data retrieved from a server
• From device sensors or other local dynamic data sources

However, another scenario is to have the database be populated already when the
app is first run, with some initial data supplied by the app developer. We will explore
this sort of “packaged” database in this chapter.

Going Back In Time
Back in the chapter on full-text searching, we needed a database with something to
search. There, we used the text of H. G. Wells’ “The Time Machine”. The way that we
got the data into our database was:

• Read in text files that were packaged as assets
• Subdivide those files into paragraphs, based on blank lines as paragraph

separators
• Insert those paragraphs into our FTS-enhanced table

We did this manually on the first run of the app. Our BookRepository would detect
that the table was empty and arrange to import the paragraphs.

It works. It is clunky, but it works.

Room offers an alternative: packaging an entire SQLite database as an asset. We can
teach Room to use that database as a starting point. Then, when we first run the

153

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

app, Room will copy the database from assets/ instead of creating an empty
database with our schema. So, we could prepare a database that has our paragraphs
already in it and use that, rather than do all the text-file import work at runtime.

This approach eliminates the time and code necessary to do the data import. In this
particular case, the app actually gets bigger, because the SQLite database (with its
FTS index) is larger than the text files.

The Room Mechanics
The PackagedFTSmodule of the book’s primary sample project is a clone of the FTS
module, except that we now switch to using a packaged database.

In the original FTS project, we had assets/TheTimeMachine/ as a directory,
containing a series of text files representing chapters in the book. Now, we have
assets/TheTimeMachine.db, a SQLite database containing our paragraphs. We will
discuss later in the chapter where this database came from. For the moment, assume
that it was created using a magnetized needle and a steady hand.

When our BookDatabase newInstance() function uses Room.databaseBuilder() to
set up the database, we have an extra configuration call: createFromAsset(). This
provides a relative path within assets/ to the database that we want to use at the
outset:

packagepackage com.commonsware.room.ftscom.commonsware.room.fts

importimport android.content.Contextandroid.content.Context
importimport androidx.room.Databaseandroidx.room.Database
importimport androidx.room.Roomandroidx.room.Room
importimport androidx.room.RoomDatabaseandroidx.room.RoomDatabase

privateprivate constconst valval DB_NAME = "book.db"

@Database(
entities = [ParagraphEntityParagraphEntity::classclass, ParagraphFtsEntityParagraphFtsEntity::classclass],
version = 1
)
abstractabstract classclass BookDatabaseBookDatabase : RoomDatabaseRoomDatabase() {
abstractabstract funfun bookStore(): BookStoreBookStore

companioncompanion objectobject {
funfun newInstance(context: ContextContext) =
RoomRoom.databaseBuilder(context, BookDatabaseBookDatabase::classclass.java, DB_NAMEDB_NAME)

PACKAGED DATABASES

154

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/tree/master/PackagedFTS
https://gitlab.com/commonsguy/cw-room/tree/master/PackagedFTS
https://gitlab.com/commonsguy/cw-room
https://xkcd.com/378/

.createFromAsset("TheTimeMachine.db")

.build()
}
}

(from PackagedFTS/src/main/java/com/commonsware/room/fts/BookDatabase.kt)

For simple cases, that is all that we need.

In particular, BookRepository no longer needs all that code that we had to import
the text files. We can just have pass-through calls to the database:

packagepackage com.commonsware.room.ftscom.commonsware.room.fts

classclass BookRepositoryBookRepository(privateprivate valval db: BookDatabaseBookDatabase) {
suspendsuspend funfun all() = db.bookStore().all()

suspendsuspend funfun filtered(search: StringString): ListList<StringString> =
db.bookStore().filtered(search)

}

(from PackagedFTS/src/main/java/com/commonsware/room/fts/BookRepository.kt)

Everything else works as it did before, and if you run the app, it should behave as
does the original.

(Why did the FTSmodule bother with the whole import-the-text-files approach?
That chapter, and its sample app, were written before createFromAsset() was added
to Room.)

Creating the Database Asset
If you are going to use this approach in your app, you will need to get that packaged
database from somewhere. And, perhaps you do not own a magnetized needle or a
suitably-trained butterfly. Instead, you are going to need to use other approaches to
create the database and fill in your starter data.

Build In Android

The original approach used for PackagedFTS was simple: the author ran the FTS app
and used Device File Explorer to copy the populated database from that app over to
assets/ of the PackagedFTS project.

PACKAGED DATABASES

155

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/PackagedFTS/src/main/java/com/commonsware/room/fts/BookDatabase.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/PackagedFTS/src/main/java/com/commonsware/room/fts/BookRepository.kt

In other words, you can create your database using one app that you then package
into another app.

For example, you could:

• Have your Room entity classes in a library module
• Have your main app reference that library module
• Have a utility app also reference that library module
• Have the utility app contain the code to populate the database from some

data sources

You would then run the utility app and copy the database (using Device File
Explorer, adb pull, etc.) to the main app’s assets/ directory.

Build By Hand

There are plenty of SQLite client programs available, such as DB Browser for SQLite.
You could use one to hand-populate your database.

In this case, you would also need to consider your database schema. Room defines
what the tables are and what SQL statements are used to create them and related
structures (e.g., indices). If you have enabled automatic exporting of database
schemas, then you will have the SQL statements to use.

Build By Script

Another possibility is to write some software that creates and populates your
database, but have that software run on your development machine (or perhaps
some server), rather than on an Android device. SQLite client APIs are available for
many languages. You could:

• Create a standalone command-line program that you run manually
• Create a standalone command-line program that you run via a custom

Gradle task
• Create a Gradle plugin that creates the database
• Create the database directly in a custom Gradle task
• Etc.

PACKAGED DATABASES

156

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://sqlitebrowser.org/

Dealing With Metadata and Upgrades
Eventually, though, you may need a different database, either for schema changes or
content changes.

You can handle this via migrations as normal. However, not only are you responsible
for changing the schema but also for adjusting the content to take that new schema
into account. And, if you want new or modified content, you will need to handle that
as well.

An alternative is to add fallbackToDestructiveMigration() to the
Room.databaseBuilder() configuration. This says “if we cannot find migrations to
handle version changes, start over from scratch”. And, if you are using
createFromAsset(), this means that Room will delete the existing database and
make a new copy from the now-current asset. This works, though it has problems if
your database is not a simple copy of the asset, as we will see in the next section.

Room uses the room_master_table to track Room-specific metadata, along with
android_metadata that is set up and managed by the framework copy of
SQLiteDatabase. For an initial deployment, you do not need these tables — the copy
in PackagedFTS does not have them, for example. Room will create them
automatically.

Hybrid Data
Life is simple if all your data comes from packaged databases, or if all your data
comes from dynamic data sources (users, servers, etc.). Things get messy when your
data is a hybrid of both: partially packaged and partially dynamic.

One Database

You could put everything into one database. That database would start out being
copied from an asset, with empty tables for the dynamic data. Your app would then
add data to those tables using ordinary Room operations.

This works, but probably it eliminates the fallbackToDestructiveMigration()
option for dealing with database schema and content upgrades.
fallbackToDestructiveMigration() would start everything over from the now-
current asset, which will once again have empty tables for the dynamic data. You
would lose whatever is in the current database’s edition of those tables, and that

PACKAGED DATABASES

157

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

might make the user unhappy.

Instead, you would need to use migrations to carefully update your schema and
formerly-packaged content while leaving the dynamic data alone.

Separate Databases

One workaround for this is to use separate databases: one for the packaged data and
one for the dynamic data. You would have two RoomDatabase classes with entities,
DAOs, and so on. This means that changes that you make to one database, such as
replacing it with the current asset via fallbackToDestructiveMigration(), would
not affect the other database.

The downside is that these databases are completely independent. You cannot have
entities in one database have foreign keys to the other database, for example.
Instead, anything like that would need to be implemented in application code.
Depending on your database structure, this may be practical or insane.

Attached Databases

SQLite itself has a solution for this: attached databases. The ATTACH DATABASE
command tells SQLite to work with multiple databases at once, and you can have
SQL statements that pull from both of them. Used carefully, this could allow the
seamless integration seen in the single-database solution while still making it easy
to bulk-replace the packaged data using fallbackToDestructiveMigration().

Room, however, has no support for ATTACH DATABASE at the present time.

PACKAGED DATABASES

158

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://issuetracker.google.com/issues/117485018
https://issuetracker.google.com/issues/117485018

Backing Up Your Room

Users do not like it when their data vanishes, gets damaged, or otherwise becomes
unusable.

Fortunately, modern smartphone hardware is fairly reliable. Still, problems can
happen. Sometimes those problems come from the user, such as accidentally
deleting something that they would rather not have deleted.

While the OS offers “backups”, in reality Android’s “backup” mechanism is
embarrassing:

• Neither users nor developers strictly control when backups are taking place
• Neither users nor developers control where backups are stored
• Neither users nor developers control when backups get restored

In short, Android’s “backup” mechanism is for disaster recovery (e.g., user dropped
their phone in a toilet and replaced the phone). You may want to offer something
else that is more user-controlled. This chapter will explore how to do that.

Backup and Restore. Or, Import and Export.
“Backup” and “restore” imply making a copy of the data, such that in case of a
problem with the original data, we can replace the damaged original with the copy.

“Import” and “export” imply making a copy of the data, such that the user can
perhaps manipulate that data in some third-party tool. Later, the “import” implies
that we can take external data and add it to the app’s own data, or perhaps replace
the app’s own data outright.

159

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

The line dividing “backup/restore” and “import/export” is rather blurry. If you back
up data to a user-accessible spot, and the data is in an open format, “backup” and
“export” become identical, in effect. You may not intend for the user to use the data
in another piece of software, but you cannot stop it either.

Choosing a Storage Target
You could back up or export the data to some file on the filesystem. On newer
versions of Android, though, your ability to work with external storage starts to
become more restricted.

You could back up or export the data to some location that the user chooses through
the Storage Access Framework, such as via ACTION_CREATE_DOCUMENT.

You could back up the data to some server. In this case, the safest thing to do is to
back up the data to some file on the filesystem first, then upload the file. As we will
see later in the chapter, it is important for the database to be closed at the time you
are making the backup copy, so we want the backup process to be as fast as possible.
Directly streaming the data to some server will be a lot slower than making a local
copy, due to network speeds.

It may be that your repository can be oblivious (somewhat) to these decisions. If you
tell the repository to back up to a Uri, then whether that Uri points to a local file or
to a location from ACTION_CREATE_DOCUMENT is immaterial. Your UI and viewmodel
can make the decision of exactly where the copy is made.

Thinking About Journal Modes
If you examine your Room-enabled app’s portion of internal storage in Device File
Explorer, in the databases/ subdirectory you will find your actual Room database.
Frequently, though, it consists of three files:

• The actual database (whatever.db)
• A file with -shm appended (whatever.db-shm)
• A file with -wal appended (whatever.db-wal)

This indicates that the database was opened in a particular “journal mode” called
write-ahead logging (WAL) and has not been closed. Roughly speaking, in WAL
mode, database transactions primarily affect these secondary files and only get
merged into the main database at particular “checkpoints”. Such checkpoints occur

BACKING UP YOUR ROOM

160

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://sqlite.org/wal.html

automatically, and for most circumstances we do not really worry about them.
However, when it comes to making a backup or exporting a database, it is best if
everything gets merged into the main database file.

Primarily, the way we can do that is to close() our RoomDatabase. Once all
connections to our SQLite database are closed, SQLite will checkpoint the database,
merging everything into the main database file and removing the -shm and -wal
files.

You can disable WAL outright by calling setJournalMode() on your
RoomDatabase.Builder and opting into TRUNCATE as a journal mode.

Keeping It Closed
However, even if you were to opt out of WAL, it is important that your database be
closed when we are making a backup or exporting the data. SQLite will know
nothing about this backup/export operation. If part of your code is performing
database operations while another part of your code is making a copy of the
database file, you will wind up with a corrupted database copy. This is not unique to
SQLite: making a copy of a file while that file is being written to is asking for trouble.

In principle, this is not too hard to manage:

• Before making the copy of the database, call close() on the RoomDatabase
• Make the copy
• Before trying to work with the database again, re-open it using a
RoomDatabase.Builder

This makes a repository a bit more complicated, as now it will need to be able to
close and open databases as needed. Plus, your repository will be your primary “line
of defense” against bugs. For example, suppose that you have a WorkManager
scheduled task to synchronize your app with a Web service. If that task gets
executed while your backup is being made, you do not want to re-open the database
at that time. Somehow, the Worker will need to find out that the database is
unavailable, so it can reschedule that work.

The sample app, being a simple book sample, does not get into how to manage this,
as the details will vary widely by app.

BACKING UP YOUR ROOM

161

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Import and Export Mechanics
The ImportExportmodule of the book’s primary sample project demonstrates
copying databases for backup/restore or import/export purposes.

Its UI consists mostly of three big buttons:

• Add some random data to the database
• Export the database to a location that the user chooses via
ActivityResultContracts.CreateDocument

• Import the database from a location that the user chooses via
ActivityResultContracts.OpenDocument

Also, at the bottom, there is a TextView showing the number of rows in our one
database table and how old the oldest row is.

RandomRepository is the repository that not only mediates conventional database
operations but also handles import and export operations:

packagepackage com.commonsware.room.importexportcom.commonsware.room.importexport

importimport android.content.Contextandroid.content.Context
importimport android.net.Uriandroid.net.Uri
importimport kotlinx.coroutines.CoroutineScopekotlinx.coroutines.CoroutineScope
importimport kotlinx.coroutines.asCoroutineDispatcherkotlinx.coroutines.asCoroutineDispatcher
importimport kotlinx.coroutines.sync.Mutexkotlinx.coroutines.sync.Mutex
importimport kotlinx.coroutines.sync.withLockkotlinx.coroutines.sync.withLock
importimport kotlinx.coroutines.withContextkotlinx.coroutines.withContext
importimport java.util.concurrent.Executorsjava.util.concurrent.Executors
importimport kotlin.random.Randomkotlin.random.Random

classclass RandomRepositoryRandomRepository(
privateprivate valval context: ContextContext,
privateprivate valval appScope: CoroutineScopeCoroutineScope
) {
privateprivate valval mutex = MutexMutex()
privateprivate valval dispatcher =
ExecutorsExecutors.newSingleThreadExecutor().asCoroutineDispatcher()
privateprivate varvar db: RandomDatabaseRandomDatabase? = nullnull

suspendsuspend funfun summarize() =
withContext(dispatcher) {
mutex.withLock {
ifif (RandomDatabaseRandomDatabase.exists(context)) {

BACKING UP YOUR ROOM

162

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/tree/master/ImportExport
https://gitlab.com/commonsguy/cw-room/tree/master/ImportExport
https://gitlab.com/commonsguy/cw-room

db().randomStore().summarize()
} elseelse {
SummarySummary(count = 0)
}
}
}

suspendsuspend funfun populate() {
withContext(dispatcher + appScope.coroutineContext) {
mutex.withLock {
valval count = RandomRandom.nextInt(100) + 1

db().randomStore().insert((1..count).map { RandomEntityRandomEntity(0) })
}
}
}

suspendsuspend funfun export(uri: UriUri) {
withContext(dispatcher + appScope.coroutineContext) {
mutex.withLock {
db?.close() // ensure no more access and single database file
db = nullnull

context.contentResolver.openOutputStream(uri)?.use {
RandomDatabaseRandomDatabase.copyTo(context, it)
}
}
}
}

suspendsuspend funfun import(uri: UriUri) {
withContext(dispatcher + appScope.coroutineContext) {
mutex.withLock {
db?.close() // ensure no more access and single database file
db = nullnull

context.contentResolver.openInputStream(uri)?.use {
RandomDatabaseRandomDatabase.copyFrom(context, it)
}
}
}
}

privateprivate funfun db(): RandomDatabaseRandomDatabase {
ifif (db == nullnull) {
db = RandomDatabaseRandomDatabase.newInstance(context)
}

BACKING UP YOUR ROOM

163

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

returnreturn db!!
}
}

(from ImportExport/src/main/java/com/commonsware/room/importexport/RandomRepository.kt)

As with some of the other examples, this sample uses Kotlin coroutines.
RandomRepository get a Context and a CoroutineScope injected via Koin — the
Context is to open a RandomDatabase, while the latter is for ensuring that data
modification operations do not get canceled based on our MainActivity getting
destroyed.

Functions like summarize() (used to get the data for the TextView) and populate()
(used to insert some random rows into the database table) are mostly normal. They
have two differences compared to past samples:

1. Both wrap the database I/O in a Mutex. Mutex is the coroutines approach for
mutual exclusion. Only one bit of code can be operating inside of the Mutex
(and its withLock() function) at a time. We use this Mutex in our import()
and export() functions as well, and we use this to ensure that nothing tries
working with our database while the import or export operations are
ongoing. This is a crude approach, offering limited concurrency, and a more
sophisticated app might want to do something… well, more sophisticated.

2. Both call a db() function to get the RandomDatabase instance to use. db(), in
turn, lazy-creates the RandomDatabase, if it presently is null.

import() and export() also use the Mutex. However, inside of withLock(), they:

• close() our RandomDatabase, so our WAL files get cleared and we have a
single database file

• Set the db property to null, so db() knows to re-open the database on the
next regular bit of database I/O

• Copies the database to or from a location specified by a Uri, using
copyFrom() and copyTo() functions on RandomDatabase to handle the actual
copy operations:

packagepackage com.commonsware.room.importexportcom.commonsware.room.importexport

importimport android.content.Contextandroid.content.Context
importimport androidx.room.Databaseandroidx.room.Database
importimport androidx.room.Roomandroidx.room.Room
importimport androidx.room.RoomDatabaseandroidx.room.RoomDatabase
importimport androidx.room.TypeConvertersandroidx.room.TypeConverters
importimport java.io.InputStreamjava.io.InputStream
importimport java.io.OutputStreamjava.io.OutputStream

BACKING UP YOUR ROOM

164

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/ImportExport/src/main/java/com/commonsware/room/importexport/RandomRepository.kt

privateprivate constconst valval DB_NAME = "random.db"

@Database(entities = [RandomEntityRandomEntity::classclass], version = 1)
@TypeConverters(TypeTransmogrifierTypeTransmogrifier::classclass)
abstractabstract classclass RandomDatabaseRandomDatabase : RoomDatabaseRoomDatabase() {
abstractabstract funfun randomStore(): RandomStoreRandomStore

companioncompanion objectobject {
funfun newInstance(context: ContextContext) =
RoomRoom.databaseBuilder(context, RandomDatabaseRandomDatabase::classclass.java, DB_NAMEDB_NAME).build()

funfun exists(context: ContextContext) = context.getDatabasePath(DB_NAMEDB_NAME).exists()

funfun copyTo(context: ContextContext, stream: OutputStreamOutputStream) {
context.getDatabasePath(DB_NAMEDB_NAME).inputStream().copyTo(stream)
}

funfun copyFrom(context: ContextContext, stream: InputStreamInputStream) {
valval dbFile = context.getDatabasePath(DB_NAMEDB_NAME)

dbFile.delete()

stream.copyTo(dbFile.outputStream())
}
}
}

(from ImportExport/src/main/java/com/commonsware/room/importexport/RandomDatabase.kt)

The createFromFile()createFromFile() Alternative
In an earlier chapter, we explored createFromAsset() as a way to set up a Room
database from an existing database copy, in this case packaged as an asset.

There is also createFromFile(). This works just like createFromAsset(), but it
takes a File parameter that should point to a readable file containing the database
copy.

For restoring from a backup or importing from a database, this is more convenient
than is the manual-copy-from-a-stream approach used in this chapter’s sample.
However, it only works with files, which is an unfortunate limitation. The sample
uses Uri, not File, to identify the location of the backup, and so createFromFile()
is not an available alternative.

BACKING UP YOUR ROOM

165

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/ImportExport/src/main/java/com/commonsware/room/importexport/RandomDatabase.kt

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

SQLite Clients

Sometimes, it would be nice to look at what is in our Room-powered database. For
example, it might simplify tracking down a bug if we could peek inside our tables
and see what data is inside of them.

For that, you will need some form of SQLite client.

Fortunately, SQLite is open source and has been around for a long time. There are
quite a few clients available to you to choose from, to find one that meets your needs
and fits your workflow.

Database Inspector
A leading candidate, starting with Android Studio 4.1, is Android Studio itself,
through its Database Inspector tool.

Getting To Your Database

How you get to the Database Inspector varies by Android Studio version:

167

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

• For 4.1.x and 4.2.x, look for the “Database Inspector” tool, by default docked
on the bottom edge

• For Arctic Fox, look for the “App Inspection” tool, by default docked on the
bottom edge — “Database Inspector” is a tab in the resulting UI

Figure 5: Android Studio App Inspection Tool, Showing the Database Inspector

In the strip just below the title, you will see the particular app that Database
Inspector is offering to inspect, or “Select Process” if Database Inspector does not
know of a suitable process (e.g., your phone is not plugged in). You can switch to
something else by clicking on that entry and choosing the desired device (or
emulator) and process from drop-down menus.

Note that loading the database details seems to take far longer than it should — be
patient!

Database Inspector appears to look for databases in the stock location that Room
and most other apps place them — in this case, it shows stuff.db in the tree on the
left. Inside, it shows two tables:

• todos, akin to the ones in various samples in this book
• room_master_table, a table created by Room itself to help manage its work

SQLITE CLIENTS

168

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Seeing the Schema

The tree goes beyond the database and the tables in that database. Folding open a
table gives you the table’s schema:

Figure 6: Database Inspector, Showing Table Schema

Performing Operations

In the toolbar above that tree, the toolbar button that looks like a grid with a
magnifying glass will open a tab for you to be able to execute queries against the
selected database:

Figure 7: Database Inspector, With Query Toolbar Button Highlighted

SQLITE CLIENTS

169

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

The drop-down controls the database, and the field above it is where you can enter a
SQL expression. Clicking the “Run” button then executes your SQL expression, with
a grid showing you the results:

Figure 8: Database Inspector, Showing Query, Results, and Congratulatory Tooltip

Using Your DAO

The Database Inspector also ties into the Android source editor. For some queries on
your DAO classes, you can use a gutter icon to trigger the same query to run in the
Database Inspector:

Figure 9: Android Studio Editor, Showing Query Gutter Icons, Plus all() Results in
Database Inspector

SQLITE CLIENTS

170

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Those icons will only appear while the Database Inspector is running and is
inspecting your app’s database.

Updating the Output

A popular thing to do with databases is to change the data.

If you change the data within the app, you have two ways of seeing those results
reflected in the Database Inspector output.

The low-impact approach is simply to click the “Refresh table” button above your
query output (note: the “table” referred to in button caption is the UI table, not a
database table). This will re-query the database and update the output to match.

The alternative is to check the “Live updates” checkbox:

Figure 10: Database Inspector, With “Live updates” Checkbox Highlighted

This will hook into the same “invalidation tracker” that Room itself uses to know to
deliver new updates to your app via LiveData, Flow, etc. The table showing the
query results will update in near-real-time as your app makes changes to the data.

Updating the App

When “Live updates” is checked, a message appears below the output: “Results are
read-only”. You will see the same message when running one of your DAO functions,
or if you run a custom query yourself.

However, if you just double-click the table name in the tree on the left, that message
does not appear. And, in that case, the UI table is itself live — any changes that you
make there will be reflected, in near-real-time, in your app’s UI. Just double-click on

a cell, type in the revised value, and press Enter or Return .

This too ties into Room’s invalidation tracker. The data change that you make

SQLITE CLIENTS

171

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

triggers that tracker and in turn causes any of your reactive observers to get fresh
data from Room, reflecting whatever change you make.

Note, though, that the Database Inspector does not perform much data validation.
For example, a Boolean property maps to an INTEGER column in the table, with 0
meaning false and 1meaning true… but Database Inspector will be happy to let
you fill in 3 as the value. And, since in SQLite column types are hints, Database
Inspector will be happy to let you fill in foo as the value of an INTEGER column.
While Database Inspector is happy, Room might not be, so be careful when
modifying your app’s data via the Inspector this way.

DB Browser for SQLite
While there are a variety of standalone SQLite clients, in terms of desktop use, DB
Browser for SQLite is arguably the most popular. It is open source, available for
Linux/macOS/Windows, and is fairly easy to use.

Copying Your Database

It has no specific integration with Android or Android Studio, though, which means
that you will need to copy your database off of your device or emulator and onto
your development machine.

Ideally, your app’s process is terminated when you do this, so your app does not
attempt to use the database while the copy operation is ongoing.

If you are using ordinary Room, your database will be in the default location for
SQLite databases for your app. From the standpoint of development tools, for the
primary device user, that will be:

/data/data/.../databases/

…where ... is your application ID.

In there, you will find a database file, with the name that you gave it in your
RoomDatabase (e.g., stuff.db). Particularly if the app opened the database and did
not explicitly close it, you will also see two additional files, with the same name as
the database plus -shm and -wal extensions. You will need to copy all of these files to
your development machine, most likely using Device File Explorer from Android
Studio.

SQLITE CLIENTS

172

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://sqlitebrowser.org/
https://sqlitebrowser.org/

You can then open it in DB Browser for SQLite using the “Open Database” toolbar
button, selecting the database file itself (not the -shm or -wal files, if any).

Basic Database Operations

Like Database Inspector, DB Browser for SQLite gives you a tree of the various tables
in the “Database Structure” tab, where you can see the schema for a table:

Figure 11: DB Browser for SQLite, Showing Table Schema

The “Browse Data” tab gives you a tabular view of the contents of a selected table,
chosen via the drop-down in the tab’s own toolbar:

Figure 12: DB Browser for SQLite, Showing Table Contents

The “Execute SQL” tab lets you enter in your own queries or other operations (e.g.,
INSERT statements) and run them against your database. For queries or other
statements that return results, you get a table showing those results:

SQLITE CLIENTS

173

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Note, though, that if you modify the data and wish to persist those changes, you
need to click the “Write Changes” toolbar button.

When you are done, if you click the “Close Database” button, the SQLite database
will be closed cleanly, leaving you with just the database file and without any -shm or
-wal file.

If you wish, you could then copy the database back to the device, using Device File
Explorer. However:

• Be sure to terminate your app’s process before you do this, so you do not
replace SQLite files behind Room’s back

• If your app’s data has -shm and/or -wal files, and you used “Close Database”
to get a clean single-file copy of your database, in addition to copying that
database to your device, you will need to remove the device’s -shm and -wal
files to match

Flipper
Another possibility is to integrate Flipper. Flipper is a library from Facebook that
you can integrate into debug builds of your app. It opens a port that a Flipper-
supplied desktop app can connect to. Depending on what Flipper plugins you have
enabled, that desktop app can do different things… with one being giving you
Database Inspector-style access to your app’s database.

The PagedFTSmodule of the book’s primary sample project — profiled elsewhere in
the book — happens to integrate Flipper.

Adding Dependencies

Flipper takes an approach used by a few debugging-centric libraries: have some real
dependencies to add to debug builds and a “no-op” dependency to add to release
builds. The objective is to allow for configuration to be the same regardless of build
type, while avoiding the risk of shipping debug-related code to your users.

PagedFTS, therefore, has two debugImplementation lines and one
releaseImplementation line in its dependencies list:

SQLITE CLIENTS

174

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://fbflipper.com/
https://gitlab.com/commonsguy/cw-room/tree/master/PagedFTS
https://gitlab.com/commonsguy/cw-room/tree/master/PagedFTS
https://gitlab.com/commonsguy/cw-room

debugImplementation 'com.facebook.flipper:flipper:0.96.1'
debugImplementation 'com.facebook.soloader:soloader:0.10.1'

releaseImplementation 'com.facebook.flipper:flipper-noop:0.96.1'

(from PagedFTS/build.gradle)

Configuring Flipper for Database Debugging

Flipper is designed to be configured from onCreate() of a custom Application class.
PagedFTS has such a class, named KoinApp:

packagepackage com.commonsware.room.ftscom.commonsware.room.fts

importimport android.app.Applicationandroid.app.Application
importimport com.facebook.flipper.android.AndroidFlipperClientcom.facebook.flipper.android.AndroidFlipperClient
importimport com.facebook.flipper.android.utils.FlipperUtilscom.facebook.flipper.android.utils.FlipperUtils
importimport com.facebook.flipper.plugins.databases.DatabasesFlipperPlugincom.facebook.flipper.plugins.databases.DatabasesFlipperPlugin
importimport com.facebook.flipper.plugins.inspector.DescriptorMappingcom.facebook.flipper.plugins.inspector.DescriptorMapping
importimport com.facebook.flipper.plugins.inspector.InspectorFlipperPlugincom.facebook.flipper.plugins.inspector.InspectorFlipperPlugin
importimport com.facebook.soloader.SoLoadercom.facebook.soloader.SoLoader
importimport org.koin.android.ext.koin.androidContextorg.koin.android.ext.koin.androidContext
importimport org.koin.android.ext.koin.androidLoggerorg.koin.android.ext.koin.androidLogger
importimport org.koin.androidx.viewmodel.dsl.viewModelorg.koin.androidx.viewmodel.dsl.viewModel
importimport org.koin.core.context.startKoinorg.koin.core.context.startKoin
importimport org.koin.dsl.moduleorg.koin.dsl.module

classclass KoinAppKoinApp : ApplicationApplication() {
privateprivate valval koinModule = module {
single { BookDatabaseBookDatabase.newInstance(androidContext()) }
single { BookRepositoryBookRepository(getget()) }
viewModel { BookViewModelBookViewModel(getget()) }
viewModel { (search: StringString) -> SearchViewModelSearchViewModel(search, getget()) }
}

overrideoverride funfun onCreate() {
supersuper.onCreate()

startKoin {
androidLogger()
androidContext(thisthis@KoinApp)
modules(koinModule)
}

ifif (BuildConfigBuildConfig.DEBUGDEBUG && FlipperUtilsFlipperUtils.shouldEnableFlipper(thisthis)) {
SoLoaderSoLoader.init(thisthis, falsefalse)

SQLITE CLIENTS

175

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/PagedFTS/build.gradle

AndroidFlipperClientAndroidFlipperClient.getInstance(thisthis).also { client ->
client.addPlugin(DatabasesFlipperPluginDatabasesFlipperPlugin(thisthis))

client.start()
}
}
}
}

(from PagedFTS/src/main/java/com/commonsware/room/fts/KoinApp.kt)

Part of onCreate() is setting up Koin for dependency inversion. However, the last
few lines of onCreate() are focused on Flipper initialization:

ifif (BuildConfigBuildConfig.DEBUGDEBUG && FlipperUtilsFlipperUtils.shouldEnableFlipper(thisthis)) {
SoLoaderSoLoader.init(thisthis, falsefalse)

AndroidFlipperClientAndroidFlipperClient.getInstance(thisthis).also { client ->
client.addPlugin(DatabasesFlipperPluginDatabasesFlipperPlugin(thisthis))

client.start()
}
}

(from PagedFTS/src/main/java/com/commonsware/room/fts/KoinApp.kt)

The key, for being able to debug databases using Flipper, is adding the
DatabasesFlipperPlugin to Flipper. Flipper operates based on a series of plugins,
and this one provides access to SQLite databases, at least those in standard
locations. The documentation for that plugin provides some other options,
particularly for databases residing in non-standard locations.

See the Flipper documentation for more details about this initialization/
configuration process.

Obtaining and Using the Desktop App

The Flipper site has download options for Linux, macOS, and Windows versions of
the desktop app. Windows and Linux are bare ZIP files containing the React Native
app; macOS gets a proper DMG file.

SQLITE CLIENTS

176

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/PagedFTS/src/main/java/com/commonsware/room/fts/KoinApp.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/PagedFTS/src/main/java/com/commonsware/room/fts/KoinApp.kt
https://fbflipper.com/docs/setup/databases-plugin
https://fbflipper.com/docs/getting-started/android-native/
https://fbflipper.com/docs/getting-started/index/

If you run your Flipper-enabled app, then run the Flipper desktop app, your app will
appear in a section in the accordion on the left of the desktop app, and you can
enable the Databases tool via a switch:

Figure 13: Flipper, Showing PagedFTS App and Databases Tool

SQLITE CLIENTS

177

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

You can choose the database and table via drop-downs towards the top of the
Databases content pane. The default view is “Data”, showing you the contents of
your selected table:

Figure 14: Flipper, Showing Contents of paragraphs Table

SQLITE CLIENTS

178

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

You can view your table schema either in the form of SQL via the “Table Info” tab or
as a table in the “Structure” tab. And the “SQL” tab lets you execute arbitrary SQL
statements, showing you query results below the text area:

Figure 15: Flipper, Showing Results of SQL Query

SQLITE CLIENTS

179

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Room Security

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

SQLCipher for Android

Room, by default, works with the device’s stock copy of SQLite. This is fine, as far as
it goes. However, from a security standpoint, SQLite stores its data unencrypted.
Some apps should be considering encrypting their data “at rest”, when it is stored in
a database, to protect their users.

Fortunately, as noted in an earlier chapter, Room supports a pluggable SQLite
implementation, and so we can plug in a SQLite edition that supports encryption,
such as SQLCipher for Android. This chapter will outline how to do this.

Introducing SQLCipher for Android
Since SQLite is public domain, it is easy for people to grab the source code and hack
on it. SQLite also offers an extension system, making it relatively easy for developers
to add functionality with a minimal number of changes to SQLite’s core code. As a
result, a few encryption options for SQLite have been published.

One of these is SQLCipher, whose development is overseen by Zetetic. This offers
transparent AES-256 encryption of everything in the database: data, schema, etc.

With the help of the Guardian Project, Zetitec released SQLCipher for Android. This
combines a pre-compiled version of SQLite with Java classes that mimic an old
edition of Android’s native SQLite classes (e.g., SQLiteOpenHelper). SQLCipher for
Android is open source, and if you can live with the increase in app size due to the
native binaries, it is an effective solution.

And, in 2019, Zetetic started offering support for the SupportSQLite* APIs that allow
SQLCipher for Android to be plugged into Room.

183

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://www.zetetic.net/sqlcipher
https://www.zetetic.net/
https://www.zetetic.net/sqlcipher/sqlcipher-for-android/

But First, A To-Do Reminder
Back in the chapter on reactive threading solutions, we looked at some code for
tracking to-do items. This code was derived from the sample app built up in
Exploring Android. That chapter explored variations of this code that used LiveData,
RxJava, and coroutines.

The SQLCipher material in this book continues its riff on that example, so let’s
quickly review the core Room elements of the to-do code, specifically the coroutines
edition.

The Entity, the Model, and the Store

Our one Room entity is ToDoEntity implemented as a data class:

packagepackage com.commonsware.todo.repocom.commonsware.todo.repo

importimport androidx.room.*androidx.room.*
importimport kotlinx.coroutines.flow.Flowkotlinx.coroutines.flow.Flow
importimport org.threeten.bp.Instantorg.threeten.bp.Instant
importimport java.util.*java.util.*

@Entity(tableName = "todos", indices = [IndexIndex(value = ["id"])])
data classdata class ToDoEntityToDoEntity(
valval description: StringString,
@PrimaryKey
valval id: StringString = UUIDUUID.randomUUID().toString(),
valval notes: StringString = "",
valval createdOn: InstantInstant = InstantInstant.now(),
valval isCompleted: BooleanBoolean = falsefalse
) {
constructorconstructor(model: ToDoModelToDoModel) : thisthis(
id = model.id,
description = model.description,
isCompleted = model.isCompleted,
notes = model.notes,
createdOn = model.createdOn
)

funfun toModel(): ToDoModelToDoModel {
returnreturn ToDoModelToDoModel(
id = id,
description = description,
isCompleted = isCompleted,

SQLCIPHER FOR ANDROID

184

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://commonsware.com/AndExplore

notes = notes,
createdOn = createdOn
)
}

@Dao
interfaceinterface StoreStore {
@Query("SELECT * FROM todos")
funfun all(): FlowFlow<ListList<ToDoEntityToDoEntity>>

@Query("SELECT * FROM todos WHERE id = :modelId")
funfun find(modelId: StringString): FlowFlow<ToDoEntityToDoEntity?>

@Insert(onConflict = OnConflictStrategyOnConflictStrategy.REPLACEREPLACE)
suspendsuspend funfun save(varargvararg entities: ToDoEntityToDoEntity)

@Delete
suspendsuspend funfun delete(varargvararg entities: ToDoEntityToDoEntity)
}
}

(from Coroutines/src/main/java/com/commonsware/todo/repo/ToDoEntity.kt)

To simulate a more complex scenario, an entity knows how to convert itself to and
from a ToDoModel:

packagepackage com.commonsware.todo.repocom.commonsware.todo.repo

importimport org.threeten.bp.Instantorg.threeten.bp.Instant
importimport java.util.*java.util.*

data classdata class ToDoModelToDoModel(
valval description: StringString,
valval id: StringString = UUIDUUID.randomUUID().toString(),
valval isCompleted: BooleanBoolean = falsefalse,
valval notes: StringString = "",
valval createdOn: InstantInstant = InstantInstant.now()
) {
}

(from Coroutines/src/main/java/com/commonsware/todo/repo/ToDoModel.kt)

In theory, that model might have a significantly different representation than does
the entity, from data type conversions to having direct references to other models
derived from other entities.

ToDoEntity contains a nested Store @Dao interface with functions for working with

SQLCIPHER FOR ANDROID

185

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/Coroutines/src/main/java/com/commonsware/todo/repo/ToDoEntity.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/Coroutines/src/main/java/com/commonsware/todo/repo/ToDoModel.kt

entities. Two (all() and find()) are queries and return Flow objects, while the
save() and delete() functions are marked with suspend. Hence, our DAO uses
coroutines for read and write operations.

The Database and the Transmogrifier

Our @Database class is ToDoDatabase:

packagepackage com.commonsware.todo.repocom.commonsware.todo.repo

importimport android.content.Contextandroid.content.Context
importimport androidx.room.Databaseandroidx.room.Database
importimport androidx.room.Roomandroidx.room.Room
importimport androidx.room.RoomDatabaseandroidx.room.RoomDatabase
importimport androidx.room.TypeConvertersandroidx.room.TypeConverters

privateprivate constconst valval DB_NAME = "stuff.db"

@Database(entities = [ToDoEntityToDoEntity::classclass], version = 1)
@TypeConverters(TypeTransmogrifierTypeTransmogrifier::classclass)
abstractabstract classclass ToDoDatabaseToDoDatabase : RoomDatabaseRoomDatabase() {
abstractabstract funfun todoStore(): ToDoEntityToDoEntity.StoreStore

companioncompanion objectobject {
funfun newInstance(context: ContextContext) =
RoomRoom.databaseBuilder(context, ToDoDatabaseToDoDatabase::classclass.java, DB_NAMEDB_NAME).build()

funfun newTestInstance(context: ContextContext) =
RoomRoom.inMemoryDatabaseBuilder(context, ToDoDatabaseToDoDatabase::classclass.java)
.build()

}
}

(from Coroutines/src/main/java/com/commonsware/todo/repo/ToDoDatabase.kt)

It ties in a TypeTransmogrifier class that offers type converters between Instant
timestamps and Long objects for storage in Room:

packagepackage com.commonsware.todo.repocom.commonsware.todo.repo

importimport androidx.room.TypeConverterandroidx.room.TypeConverter
importimport org.threeten.bp.Instantorg.threeten.bp.Instant
importimport java.util.*java.util.*

classclass TypeTransmogrifierTypeTransmogrifier {
@TypeConverter

SQLCIPHER FOR ANDROID

186

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/Coroutines/src/main/java/com/commonsware/todo/repo/ToDoDatabase.kt

funfun instantToLong(timestamp: InstantInstant?) = timestamp?.toEpochMilli()

@TypeConverter
funfun longToInstant(timestamp: LongLong?) =
timestamp?.let { InstantInstant.ofEpochMilli(it) }

}

(from Coroutines/src/main/java/com/commonsware/todo/repo/TypeTransmogrifier.kt)

ToDoDatabase offers newInstance()-style factory functions both for normal use and
for tests, with the latter being backed purely by memory instead of storing data on
disk.

The Repository

ToDoRepository hides all of those details, exposing its own coroutine-based API
that, in particular, uses a custom CoroutineScope to ensure that write operations are
not canceled early due to user navigation and the resulting clearing of viewmodels:

packagepackage com.commonsware.todo.repocom.commonsware.todo.repo

importimport kotlinx.coroutines.CoroutineScopekotlinx.coroutines.CoroutineScope
importimport kotlinx.coroutines.flow.Flowkotlinx.coroutines.flow.Flow
importimport kotlinx.coroutines.flow.mapkotlinx.coroutines.flow.map
importimport kotlinx.coroutines.withContextkotlinx.coroutines.withContext

classclass ToDoRepositoryToDoRepository(
privateprivate valval store: ToDoEntityToDoEntity.StoreStore,
privateprivate valval appScope: CoroutineScopeCoroutineScope
) {
funfun items(): FlowFlow<ListList<ToDoModelToDoModel>> =
store.all().map { all -> all.map { it.toModel() } }

funfun find(id: StringString): FlowFlow<ToDoModelToDoModel?> = store.find(id).map { it?.toModel() }

suspendsuspend funfun save(model: ToDoModelToDoModel) {
withContext(appScope.coroutineContext) {
store.save(ToDoEntityToDoEntity(model))
}
}

suspendsuspend funfun delete(model: ToDoModelToDoModel) {
withContext(appScope.coroutineContext) {
store.delete(ToDoEntityToDoEntity(model))

SQLCIPHER FOR ANDROID

187

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/Coroutines/src/main/java/com/commonsware/todo/repo/TypeTransmogrifier.kt

}
}
}

(from Coroutines/src/main/java/com/commonsware/todo/repo/ToDoRepository.kt)

The Basics of SQLCipher for Android
The ToDoCryptmodule of the book’s primary sample project contains its own
edition of those classes, plus the whole to-do app UI that employs them. In addition,
this app adds SQLCipher for Android, in case the user really wants to protect those
to-do items.

Adding the Dependency

Zetetic maintains a standard Android AAR artifact, available in Maven Central and
its mirrors (e.g., Bintray’s JCenter), using net.zetetic:android-database-
sqlcipher as the base Maven coordinates. So, ToDoCrypt adds that library to the
roster of libraries that it pulls in via the dependencies closure in the module’s
build.gradle file:

implementation "net.zetetic:android-database-sqlcipher:4.4.2"

(from ToDoCrypt/build.gradle)

Creating and Applying the Factory

That gives us access to a SupportFactory class. This is an implementation of
SupportSQLiteHelper.Factory and serves as the “glue” between SQLCipher for
Android and clients like Room.

The simplest SupportFactory constructor takes a byte[] that represents the
passphrase for the database. This will be used in two cases:

• If the database does not yet exist, SQLCipher for Android will create one,
and this passphrase will be used for encrypting the database

• If the database does exist, SQLCipher for Android will try to open it using
this passphrase to decrypt the database

How you get that byte[] for the passphrase is up to you. In this sample, we take a
very easy and very lousy approach: hardcoding it. So, we have a PASSPHRASE constant
and use that in the SupportFactory constructor:

SQLCIPHER FOR ANDROID

188

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/Coroutines/src/main/java/com/commonsware/todo/repo/ToDoRepository.kt
https://gitlab.com/commonsguy/cw-room/tree/master/ToDoCrypt
https://gitlab.com/commonsguy/cw-room/tree/master/ToDoCrypt
https://gitlab.com/commonsguy/cw-room
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/ToDoCrypt/build.gradle

packagepackage com.commonsware.todo.repocom.commonsware.todo.repo

importimport android.content.Contextandroid.content.Context
importimport androidx.room.Databaseandroidx.room.Database
importimport androidx.room.Roomandroidx.room.Room
importimport androidx.room.RoomDatabaseandroidx.room.RoomDatabase
importimport androidx.room.TypeConvertersandroidx.room.TypeConverters
importimport net.sqlcipher.database.SupportFactorynet.sqlcipher.database.SupportFactory

privateprivate constconst valval DB_NAME = "stuff.db"
privateprivate constconst valval PASSPHRASE = "sekr1t"

@Database(entities = [ToDoEntityToDoEntity::classclass], version = 1)
@TypeConverters(TypeTransmogrifierTypeTransmogrifier::classclass)
abstractabstract classclass ToDoDatabaseToDoDatabase : RoomDatabaseRoomDatabase() {
abstractabstract funfun todoStore(): ToDoEntityToDoEntity.StoreStore

companioncompanion objectobject {
funfun newInstance(context: ContextContext) =
RoomRoom.databaseBuilder(context, ToDoDatabaseToDoDatabase::classclass.java, DB_NAMEDB_NAME)
.openHelperFactory(SupportFactorySupportFactory(PASSPHRASEPASSPHRASE.toByteArray()))
.build()

}
}

(from ToDoCrypt/src/main/java/com/commonsware/todo/repo/ToDoDatabase.kt)

We pass that SupportFactory to openHelperFactory() on our
RoomDatabase.Builder, and from there, Room will take over and integrate with
SQLCipher for Android.

Using the Database

The beauty of the SupportSQLite* family of APIs is that, for the most part, Room
clients neither know nor care about the actual SQLite implementation. ToDoEntity
and ToDoEntity.Store do not need anything special for SQLCipher for Android.
Even ToDoDatabase has just the change to add that one openHelperFactory() call —
nothing else is affected. ToDoRepository and its clients (e.g., viewmodels) are also
unaffected. So, everything that has been covered to date in the book just works, with
the added improvement of encryption.

Using the Database… Outside the App

To work with a database encrypted by SQLCipher for Android, you will need a client
that has SQLCipher compiled in. SQLCipher databases are portable across

SQLCIPHER FOR ANDROID

189

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/ToDoCrypt/src/main/java/com/commonsware/todo/repo/ToDoDatabase.kt

platforms, just as SQLite databases are, but plain SQLite clients will not know how
to deal with SQLCipher’s encryption scheme. So, for example, neither Android
Studio’s Database Inspector nor the sqlite3 binary that is part of Android itself will
be able to work with SQLCipher for Android databases.

DB Browser for SQLite, however, does support SQLCipher.

The Costs of SQLCipher for Android
Being able to get high-grade encryption for one dependency and (seemingly) one
line of code in the app seems wonderful. And, in truth, in scenarios that need
encryption, it is wonderful. It is even both “free as in beer” and “free as in speech”.

However, there are costs… just not in terms of money or rights.

APK Size

The debug build of ToDoCrypt is 10MB. Of that, nearly 6MB comes from NDK
binaries:

Figure 16: APK Analyzer, Analyzing ToDoCrypt Debug Build

SQLCIPHER FOR ANDROID

190

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://opensource.stackexchange.com/questions/620/what-is-the-difference-between-free-as-in-beer-and-free-as-in-speech

SQLCipher for Android includes a full copy of SQLite (with the SQLCipher
extensions installed), for four CPU architectures. Using ABI splits or App Bundles,
the cost for individual users can be a lot less, dropping that 6MB to 1-2MB. For some
apps, this will not be a big problem; for other apps (and other user bases), adding
that kind of size to the APK could be a deal-breaker.

Runtime Performance

Considering that everything is being encrypted and decrypted, the performance of
SQLCipher for Android is fairly reasonable.

The biggest expense is when you open the database. That usually is when those
NDK libraries will be loaded. Also, SQLCipher uses “key stretching” (thousands of
rounds of PBKDF2) to convert your supplied passphrase into the actual encryption
key, and this takes a bit of time. So, if your app loads data out of the database when
the app starts, as ToDoCrypt does, this make take longer than you are used to. This
specific edition of ToDoCrypt does not have a loading state, and depending on your
test device, you will see why you need one — the UI briefly shows an empty state
before any to-do items get loaded. However, since Room and modern Android
architecture tend to steer developers towards opening the database just once per
process, this cost is only incurred once per process.

After that, individual database operations are more expensive, but usually not
dramatically more expensive. The cost of the encryption and decryption will be
roughly proportional to the amount of data that needs to be encrypted or decrypted.
As a result:

• Small database operations will not be perceptively slower with SQLCipher
for Android than with plain SQLite

• Large database operations — ones that were somewhat painful already —
may be a substantially more painful

This just means that you will need to spend some extra time in optimizing your
database access, such as adding indices to avoid SQLCipher for Android having to
decrypt an entire table to walk through all rows in a “table scan”-style query.

Complexity

The code changes in the chapter were trivial. That is because our approach towards
managing the passphrase was trivial. Unfortunately, that also means that the
security benefit is trivial, as an attacker would not have a difficult time finding that

SQLCIPHER FOR ANDROID

191

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

hard-coded passphrase.

In the end, the complexity of SQLCipher for Android comes not from the library, but
rather from passphrase management. We will explore that more in the next chapter.

SQLCIPHER FOR ANDROID

192

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

SQLCipher and Passphrases

The fun with SQLCipher for Android — particularly when used with Room and
dependency inversion frameworks — is in getting the passphrase to use for the
database.

In the preceding chapter, we hard-coded the passphrase. This is simple but insecure.
Every user has the same passphrase, and that passphrase is fairly easy to find out via
reverse-engineering the app’s APK. At that point, SQLCipher for Android adds no
real security over regular SQLite, so you have all the costs (e.g., APK size, runtime
performance) with no benefits.

Instead, we need to have a passphrase that is unique to the app installation. Ideally,
attackers would have no way to find out the passphrase for any user. But, even if they
could get the passphrase for one user, that would only affect that user — it does not
immediately compromise all other users.

So, in this chapter, we will explore alternative ways of setting up passphrases.

Generating a Passphrase
The classic solution for this problem is to have the user provide their own
passphrase. We will explore that option later in the chapter.

However, typically, that solution has issues:

• Users are far too likely to choose poor passphrases, such as 12345
• Users have to enter that passphrase every time, which makes using better

passphrases more annoying

193

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://www.youtube.com/watch?v=a6iW-8xPw3k
https://www.youtube.com/watch?v=a6iW-8xPw3k

The nice thing about the hard-coded passphrase is that the user does not have to
worry about it. They just use the app normally.

We could generate a per-installation passphrase and use that to encrypt the
database. We then wind up with a “chicken and egg” problem: where do we store
that generated passphrase, such that it cannot be accessed by attackers? We could
store it in an ordinary file, but then any attacker that can get to the database file can
also get to the passphrase file, and our security is blown.

We could store the generated passphrase in an encrypted file. This gives us another
form of the “chicken and egg” problem: how are we going to encrypt it? After all,
most encryption systems, like SQLCipher, require a passphrase, and so if encrypting
a passphrase requires another passphrase, we seem to have gotten nowhere.

However, for plain files, Google has better options for encryption. In particular, we
can use the Security library from the Jetpack. This encrypts data using encryption
keys that (on most hardware) is stored in a hardware-backed “keystore”, one that is
designed to be tamper-resistant. So, we wind up with:

• A database encrypted by a generated passphrase
• That generated passphrase encrypted using a key that is inaccessible except

from our app

We still have a risk of an attacker accessing our generated passphrase, as we will see
later in the chapter, but it really starts to ramp up the difficulty, and with some
careful work, we can reduce the risk even further.

So, with all of that in mind, let us look at the ToDoGenmodule of the book’s primary
sample project. This is a clone of ToDoCrypt that we saw in the previous chapter,
except that we use the Security library and a generated passphrase, rather than a
hard-coded one.

Creating the Passphrase

The passphrase that we generate will never be entered by a user — it is purely for
internal use. Hence, we do not need to worry about how easy it is to type in.
However, Zetetic requires binary keys to not have zero byte values.

So, for the purposes of this sample, we will go with a 32-byte passphrase, rejecting
any that contain zero as a value:

SQLCIPHER AND PASSPHRASES

194

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/tree/master/ToDoGen
https://gitlab.com/commonsguy/cw-room/tree/master/ToDoGen
https://gitlab.com/commonsguy/cw-room
https://gitlab.com/commonsguy/cw-room
https://discuss.zetetic.net/t/technical-guidance-using-random-values-as-sqlcipher-keys/3715

privateprivate funfun generatePassphrase(): ByteArrayByteArray {
valval random = SecureRandomSecureRandom.getInstanceStrong()
valval result = ByteArrayByteArray(PASSPHRASE_LENGTHPASSPHRASE_LENGTH)

random.nextBytes(result)

// filter out zero byte values, as SQLCipher does not like them
whilewhile (result.contains(0)) {
random.nextBytes(result)
}

returnreturn result
}

(from ToDoGen/src/main/java/com/commonsware/todo/repo/PassphraseRepository.kt)

Safely Storing the Passphrase

That passphrase is generated by a PassphraseRepository, backed by a
EncryptedFile instance. If we do not have a passphrase file, we generate a
passphrase and save it in an encrypted form. If we do have a passphrase file, we
decrypt it to get the passphrase to use:

packagepackage com.commonsware.todo.repocom.commonsware.todo.repo

importimport android.content.Contextandroid.content.Context
importimport androidx.security.crypto.EncryptedFileandroidx.security.crypto.EncryptedFile
importimport androidx.security.crypto.MasterKeysandroidx.security.crypto.MasterKeys
importimport java.io.Filejava.io.File
importimport java.security.SecureRandomjava.security.SecureRandom

privateprivate constconst valval PASSPHRASE_LENGTH = 32

classclass PassphraseRepositoryPassphraseRepository(privateprivate valval context: ContextContext) {
funfun getPassphrase(): ByteArrayByteArray {
valval file = FileFile(context.filesDir, "passphrase.bin")
valval encryptedFile = EncryptedFileEncryptedFile.BuilderBuilder(
file,
context,
MasterKeysMasterKeys.getOrCreate(MasterKeysMasterKeys.AES256_GCM_SPECAES256_GCM_SPEC),
EncryptedFileEncryptedFile.FileEncryptionSchemeFileEncryptionScheme.AES256_GCM_HKDF_4KBAES256_GCM_HKDF_4KB
).build()

returnreturn ifif (file.exists()) {
encryptedFile.openFileInput().use { it.readBytes() }
} elseelse {
generatePassphrase().also { passphrase ->

SQLCIPHER AND PASSPHRASES

195

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/ToDoGen/src/main/java/com/commonsware/todo/repo/PassphraseRepository.kt

encryptedFile.openFileOutput().use { it.write(passphrase) }
}
}
}

privateprivate funfun generatePassphrase(): ByteArrayByteArray {
valval random = SecureRandomSecureRandom.getInstanceStrong()
valval result = ByteArrayByteArray(PASSPHRASE_LENGTHPASSPHRASE_LENGTH)

random.nextBytes(result)

// filter out zero byte values, as SQLCipher does not like them
whilewhile (result.contains(0)) {
random.nextBytes(result)
}

returnreturn result
}
}

(from ToDoGen/src/main/java/com/commonsware/todo/repo/PassphraseRepository.kt)

The specific recipe used here, in terms of the MasterKeys and various Scheme
objects, comes from Google and appears to be a reasonable set of defaults.

That EncryptedFile class comes from the androidx.security:security-crypto
added to the module’s build.gradle file:

implementation "androidx.security:security-crypto:1.0.0"

(from ToDoGen/build.gradle)

The PassphraseRepository itself is created by Koin in ToDoApp, as part of a module:

single { PassphraseRepositoryPassphraseRepository(androidContext()) }

(from ToDoGen/src/main/java/com/commonsware/todo/ToDoApp.kt)

The net effect is that our PrefsRepository stores that generated passphrase in the
encrypted SharedPreferences, and that repository is available for other objects to
use via Koin.

Using the Generated Passphrase

Our ToDoDatabase factory function needs that generated passphrase. So, we add it to
the function signature and remove the hard-coded PASSPHRASE that ToDoCrypt used:

SQLCIPHER AND PASSPHRASES

196

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/ToDoGen/src/main/java/com/commonsware/todo/repo/PassphraseRepository.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/ToDoGen/build.gradle
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/ToDoGen/src/main/java/com/commonsware/todo/ToDoApp.kt

packagepackage com.commonsware.todo.repocom.commonsware.todo.repo

importimport android.content.Contextandroid.content.Context
importimport androidx.room.Databaseandroidx.room.Database
importimport androidx.room.Roomandroidx.room.Room
importimport androidx.room.RoomDatabaseandroidx.room.RoomDatabase
importimport androidx.room.TypeConvertersandroidx.room.TypeConverters
importimport net.sqlcipher.database.SupportFactorynet.sqlcipher.database.SupportFactory

privateprivate constconst valval DB_NAME = "stuff.db"

@Database(entities = [ToDoEntityToDoEntity::classclass], version = 1)
@TypeConverters(TypeTransmogrifierTypeTransmogrifier::classclass)
abstractabstract classclass ToDoDatabaseToDoDatabase : RoomDatabaseRoomDatabase() {
abstractabstract funfun todoStore(): ToDoEntityToDoEntity.StoreStore

companioncompanion objectobject {
funfun newInstance(context: ContextContext, passphrase: ByteArrayByteArray) =
RoomRoom.databaseBuilder(context, ToDoDatabaseToDoDatabase::classclass.java, DB_NAMEDB_NAME)
.openHelperFactory(SupportFactorySupportFactory(passphrase))
.build()

}
}

(from ToDoGen/src/main/java/com/commonsware/todo/repo/ToDoDatabase.kt)

When Koin creates our ToDoDatabase, we pull the passphrase from
PassphraseRepository, causing it to be generated if needed:

single {
valval passRepo: PassphraseRepositoryPassphraseRepository = getget()

ToDoDatabaseToDoDatabase.newInstance(androidContext(), passRepo.getPassphrase())
}

(from ToDoGen/src/main/java/com/commonsware/todo/ToDoApp.kt)

The result is no change from the user’s standpoint, but we have replaced the hard-
coded passphrase with a generated passphrase, backed by Jetpack-managed device
encryption.

Pros and Cons

This required relatively little in the way of code changes. It does not change the user
experience. And, it is a lot better from a security standpoint than having a hard-
coded passphrase.

SQLCIPHER AND PASSPHRASES

197

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/ToDoGen/src/main/java/com/commonsware/todo/repo/ToDoDatabase.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/ToDoGen/src/main/java/com/commonsware/todo/ToDoApp.kt

However, it is not perfect:

• EncryptedFilemay have problems on some hardware.
• The database is unusable, except via the app. For example, you cannot copy

the database off the device and use it with another client, unless you also
arrange to get a copy of the passphrase. In development, that might be a
matter of logging it with Logcat… so long as you do not accidentally ship
such code. In production, this will cause issues with backup solutions, if they
back up the database but not the encryption key needed to actually use that
database.

• Anyone who can get into the phone can get into the database via the app.
“Social engineering” attacks can trick users into handing over their phones
in an unlocked state. This can be improved somewhat by creating a custom
MasterKeys that includes options like
setUserAuthenticationRequired(true).

• The implementation here keeps things simple and does the disk I/O for the
EncryptedFile on the current thread, which may well be the main
application thread. This is not ideal, and a production-grade app ideally
would do a better job.

Collecting a Passphrase
Another option is to have the passphrase be stored in the user’s memory. We have
them choose a passphrase when we go to create the database, and we have them
supply that passphrase again later when opening the database in a fresh app process.

Adding a Passphrase Field

One downside to this approach is that we have to add some UI to our app to collect
that passphrase from the user.

To keep the example simple — if perhaps not very pretty — this example just shoves
a password EditText and a Button into the layout that we use for the list of to-do
items.

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout<androidx.constraintlayout.widget.ConstraintLayout
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"

SQLCIPHER AND PASSPHRASES

198

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://issuetracker.google.com/issues?q=EncryptedFile
https://issuetracker.google.com/issues?q=EncryptedFile
https://stackoverflow.com/q/62153438/115145
https://stackoverflow.com/q/62153438/115145
https://stackoverflow.com/q/62153438/115145

android:layout_height="match_parent"
tools:context=".ui.MainActivity">>

<TextView<TextView
android:id="@+id/empty"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/msg_empty"
android:textAppearance="?android:attr/textAppearanceMedium"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent" />/>

<androidx.recyclerview.widget.RecyclerView<androidx.recyclerview.widget.RecyclerView
android:id="@+id/items"
android:layout_width="0dp"
android:layout_height="0dp"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent" />/>

<EditText<EditText
android:id="@+id/passphrase"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:hint="@string/passphrase_hint"
android:importantForAutofill="no"
android:inputType="textPassword"
android:maxLines="1"
app:layout_constraintBottom_toTopOf="@id/open"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent"
app:layout_constraintVertical_chainStyle="packed" />/>

<Button<Button
android:id="@+id/open"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:text="@string/button_open"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toBottomOf="@id/passphrase" />/>

<androidx.constraintlayout.widget.Group<androidx.constraintlayout.widget.Group

SQLCIPHER AND PASSPHRASES

199

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

android:id="@+id/authGroup"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:visibility="gone"
app:constraint_referenced_ids="passphrase,open"
tools:visibility="visible" />/>

</androidx.constraintlayout.widget.ConstraintLayout></androidx.constraintlayout.widget.ConstraintLayout>

(from ToDoUser/src/main/res/layout/todo_roster.xml)

The objective is to then show those widgets at the outset, so we can collect the
passphrase from the user:

Figure 17: ToDoUser, Requesting a Passphrase

Detecting We Need a Passphrase

Our viewmodel will need to track whether or not we need to be asking for the
passphrase and should be showing those new widgets. So, we have our view-state —
here called RosterViewState— wrap both the list of to-do items and a flag
indicating whether or not authentication is required:

SQLCIPHER AND PASSPHRASES

200

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/ToDoUser/src/main/res/layout/todo_roster.xml

data classdata class RosterViewStateRosterViewState(
valval items: ListList<ToDoModelToDoModel> = listOf(),
valval authRequired: BooleanBoolean = falsefalse
)

(from ToDoUser/src/main/java/com/commonsware/todo/ui/roster/RosterMotor.kt)

We then have our LiveData from this viewmodel be for this RosterViewState. And,
we can go ahead and initialize it to start with authRequired = true, since the flow
of this app pretty much guarantees that if this viewmodel is first being created, we
are going to need the passphrase:

privateprivate valval _states =
MutableLiveDataMutableLiveData<RosterViewStateRosterViewState>(RosterViewStateRosterViewState(authRequired = truetrue))
valval states: LiveDataLiveData<RosterViewStateRosterViewState> = _states

(from ToDoUser/src/main/java/com/commonsware/todo/ui/roster/RosterMotor.kt)

Our view — RosterListFragment— can then observe that stream of view-states and
update the visible set of widgets to match:

motor.states.observe(viewLifecycleOwner) { state ->
adapter.submitList(state.items)

whenwhen {
state.authRequired -> {
binding.authGroup.isVisible = truetrue
binding.empty.isVisible = falsefalse
}
state.items.isEmpty() -> {
binding.authGroup.isVisible = falsefalse
binding.empty.isVisible = truetrue
binding.empty.setText(RR.string.msg_empty)
}
elseelse -> {
binding.authGroup.isVisible = falsefalse
binding.empty.isVisible = falsefalse
}
}
}

(from ToDoUser/src/main/java/com/commonsware/todo/ui/roster/RosterListFragment.kt)

So, when we launch the app and we get to this screen, initially, we will ask for the
passphrase.

SQLCIPHER AND PASSPHRASES

201

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/ToDoUser/src/main/java/com/commonsware/todo/ui/roster/RosterMotor.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/ToDoUser/src/main/java/com/commonsware/todo/ui/roster/RosterMotor.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/ToDoUser/src/main/java/com/commonsware/todo/ui/roster/RosterListFragment.kt

Applying the Passphrase

When the user clicks the button, we call an open() function on the viewmodel
(RosterMotor), supplying the contents of the EditText:

binding.openopen.setOnClickListener {
motor.openopen(binding.passphrase.text.toString())
}

(from ToDoUser/src/main/java/com/commonsware/todo/ui/roster/RosterListFragment.kt)

With the previous versions of these samples, RosterMotor could just start working
with the database right away, as the passphrase was either hard-coded or app-
generated. Now, since we need a user-supplied passphrase, we need to delay opening
the database until we have that passphrase, and that is what open() does:

funfun open(passphrase: StringString) {
viewModelScope.launch {
ifif (repo.openDatabase(context, passphrase)) {
repo.items().collect { _states.value = RosterViewStateRosterViewState(items = it) }
} elseelse {
_states.value = RosterViewStateRosterViewState(authRequired = truetrue)
}
}
}

(from ToDoUser/src/main/java/com/commonsware/todo/ui/roster/RosterMotor.kt)

openDatabase() on ToDoRepository will open or create the database using the
supplied passphrase. It will return true if that succeeds or false otherwise. In the
former case, we load our to-do list items and emit a fresh view-state with that data
(and with authRequired set to false, the default). In the latter case, we ensure that
our LiveData has authRequired = false. The UX will be that if the user mis-types
their passphrase, nothing really happens — this is not ideal, but it keeps the
example simple.

Creating and Opening the Database

In earlier examples, ToDoRepository received a ToDoEntity.Store as a constructor
parameter via dependency inversion. Now, it receives a ToDoDatabase.Factory
instead:

SQLCIPHER AND PASSPHRASES

202

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/ToDoUser/src/main/java/com/commonsware/todo/ui/roster/RosterListFragment.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/ToDoUser/src/main/java/com/commonsware/todo/ui/roster/RosterMotor.kt

classclass ToDoRepositoryToDoRepository(
privateprivate valval dbFactory: ToDoDatabaseToDoDatabase.FactoryFactory,
privateprivate valval appScope: CoroutineScopeCoroutineScope
) {

(from ToDoUser/src/main/java/com/commonsware/todo/repo/ToDoRepository.kt)

That is because while previously Koin could open the database on its own, we now
need to wait until the passphrase is available.

ToDoDatabase.Factory knows how to open a database, given a passphrase:

packagepackage com.commonsware.todo.repocom.commonsware.todo.repo

importimport android.content.Contextandroid.content.Context
importimport androidx.room.Databaseandroidx.room.Database
importimport androidx.room.Roomandroidx.room.Room
importimport androidx.room.RoomDatabaseandroidx.room.RoomDatabase
importimport androidx.room.TypeConvertersandroidx.room.TypeConverters
importimport net.sqlcipher.database.SupportFactorynet.sqlcipher.database.SupportFactory

privateprivate constconst valval DB_NAME = "stuff.db"

@Database(entities = [ToDoEntityToDoEntity::classclass], version = 1)
@TypeConverters(TypeTransmogrifierTypeTransmogrifier::classclass)
abstractabstract classclass ToDoDatabaseToDoDatabase : RoomDatabaseRoomDatabase() {
abstractabstract funfun todoStore(): ToDoEntityToDoEntity.StoreStore

classclass FactoryFactory {
funfun newInstance(context: ContextContext, passphrase: ByteArrayByteArray) =
RoomRoom.databaseBuilder(context, ToDoDatabaseToDoDatabase::classclass.java, DB_NAMEDB_NAME)
.openHelperFactory(SupportFactorySupportFactory(passphrase))
.build()

}
}

(from ToDoUser/src/main/java/com/commonsware/todo/repo/ToDoDatabase.kt)

The koinModule in KoinApp now sets up a singleton instance of
ToDoDatabase.Factory, to satisfy the ToDoRepository requirement:

single { ToDoDatabaseToDoDatabase.FactoryFactory() }
single {
ToDoRepositoryToDoRepository(
getget(),
getget(named("appScope"))
)

SQLCIPHER AND PASSPHRASES

203

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/ToDoUser/src/main/java/com/commonsware/todo/repo/ToDoRepository.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/ToDoUser/src/main/java/com/commonsware/todo/repo/ToDoDatabase.kt

(from ToDoUser/src/main/java/com/commonsware/todo/ToDoApp.kt)

ToDoRepository now has a db property that holds the ToDoDatabase… if it has been
opened. Otherwise, it remains null:

privateprivate varvar db: ToDoDatabaseToDoDatabase? = nullnull

funfun isReady() = db != nullnull

(from ToDoUser/src/main/java/com/commonsware/todo/repo/ToDoRepository.kt)

The openDatabase() function that our viewmodel called will use that
ToDoDatabase.Factory to open the database and populate that db property:

suspendsuspend funfun openDatabase(context: ContextContext, passphrase: StringString): BooleanBoolean {
trytry {
db = dbFactory.newInstance(context, passphrase.toByteArray())
db?.todoStore()?.count()
} catchcatch (t: ThrowableThrowable) {
trytry { db?.close() } catchcatch (t2: ThrowableThrowable) { }
db = nullnull
LogLog.e("ToDoUser", "Exception opening database", t)
}

returnreturn isReady()
}

(from ToDoUser/src/main/java/com/commonsware/todo/repo/ToDoRepository.kt)

openDatabase() uses the ToDoDatabase.Factory to get the ToDoDatabase instance,
supplying the passphrase. However that does not trigger the database to be opened.
Normally, having the database be opened lazily is a fine Room feature. In this case,
though, we have to worry about the possibility that the passphrase is wrong. So, we
now have a count() function on our DAO, that just returns a count of the to-do item
rows:

@Dao
interfaceinterface StoreStore {
@Query("SELECT * FROM todos ORDER BY description")
funfun all(): FlowFlow<ListList<ToDoEntityToDoEntity>>

@Query("SELECT * FROM todos WHERE id = :modelId")
funfun find(modelId: StringString?): FlowFlow<ToDoEntityToDoEntity?>

@Query("SELECT COUNT(*) FROM todos")
suspendsuspend funfun count(): LongLong

SQLCIPHER AND PASSPHRASES

204

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/ToDoUser/src/main/java/com/commonsware/todo/ToDoApp.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/ToDoUser/src/main/java/com/commonsware/todo/repo/ToDoRepository.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/ToDoUser/src/main/java/com/commonsware/todo/repo/ToDoRepository.kt

@Insert(onConflict = OnConflictStrategyOnConflictStrategy.REPLACEREPLACE)
suspendsuspend funfun save(varargvararg entities: ToDoEntityToDoEntity)

@Delete
suspendsuspend funfun delete(varargvararg entities: ToDoEntityToDoEntity)
}

(from ToDoUser/src/main/java/com/commonsware/todo/repo/ToDoEntity.kt)

This is designed to be fairly cheap to execute while ensuring that the passphrase
works. So, openDatabase() calls count(). If that throws an exception, then
presumably the passphrase was mis-entered, so we close() the database and set db
back to null to indicate that we have not successfully opened the database.
openDatabase() then returns the Boolean indicating success or failure. All of this is
done in a suspend function, so it can be performed on a background thread.

The remaining functions on ToDoRepository now use db to access the database and
throw an exception if the database is not currently open:

funfun items(): FlowFlow<ListList<ToDoModelToDoModel>> =
db?.todoStore()?.let { store ->
store.all().map { all -> all.map { it.toModel() } }
} ?: throwthrow IllegalStateExceptionIllegalStateException("database is not open")

funfun find(id: StringString?): FlowFlow<ToDoModelToDoModel?> =
db?.todoStore()?.let { store ->
store.find(id).map { it?.toModel() }
} ?: throwthrow IllegalStateExceptionIllegalStateException("database is not open")

suspendsuspend funfun save(model: ToDoModelToDoModel) {
withContext(appScope.coroutineContext) {
db?.todoStore()?.save(ToDoEntityToDoEntity(model))
?: throwthrow IllegalStateExceptionIllegalStateException("database is not open")

}
}

suspendsuspend funfun delete(model: ToDoModelToDoModel) {
withContext(appScope.coroutineContext) {
db?.todoStore()?.delete(ToDoEntityToDoEntity(model))
?: throwthrow IllegalStateExceptionIllegalStateException("database is not open")

}
}

(from ToDoUser/src/main/java/com/commonsware/todo/repo/ToDoRepository.kt)

SQLCIPHER AND PASSPHRASES

205

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/ToDoUser/src/main/java/com/commonsware/todo/repo/ToDoEntity.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/ToDoUser/src/main/java/com/commonsware/todo/repo/ToDoRepository.kt

Pros and Cons

The good news is that the user knows the passphrase. Backups of the database can
be made and restored, and the user should retain access to them. The database
could even be transferred to some other device or platform, and the user can retain
access.

The bad news is that the user knows the passphrase. This means that the user might
be convinced to give up the passphrase and thereby lose control over their data.

Multi-Factor Authentication
Multi-factor authentication is all about combining multiple data sources to validate
identity. In classic two-factor authentication, the phrase “something you have and
something you know” is often used to describe the factors. “Something you have”
might be a hardware token, or a code generated by an authenticator app.
“Something you know” is a passphrase.

Similarly, we could combine the two passphrase techniques shown in this chapter,
where the actual passphrase given to SQLCipher for Android combines:

• A user-supplied passphrase, and
• A generated passphrase that effectively is tied to the user’s ability to

authenticate against their device

Or, we could combine a user-supplied passphrase and an externally-generated token,
such as via NFC-capable hardware tokens.

Or, we could combine all three: a user-supplied passphrase, a generated on-device
passphrase, and a hardware token.

Or, we could come up with yet other sources of passphrase material and offer them
as options.

In the end, SQLCipher for Android does not know or care how you get the
passphrase or how it got assembled from individual pieces. That is up to you, as you
try to strike the balance between security and usability.

SQLCIPHER AND PASSPHRASES

206

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://xkcd.com/538/
https://xkcd.com/538/
https://www.yubico.com/product/yubikey-5-nfc/

The Risks of StringString

One flaw in ToDoUser is that the passphrase is being passed around as a String.

While String is convenient, String is immutable. We have no way to get rid of a
String, other than to let go of it, hope that it gets garbage-collected quickly, then
hope that something else allocates that same bit of memory and overwrites it.

Passphrases in memory are like nuclear waste: they served a role and now are just
disasters waiting to happen. Fortunately, usually, disasters do not happen, but for
some people, “usually” is insufficient.

So long as passphrases remain in memory, it is possible, through advanced
techniques, for them to be extracted from memory. That almost always requires
somebody to have physical access to the device, be able to obtain superuser
privileges (a.k.a., “root the device”), and be able to use specialized tools to save a
snapshot of the app’s heap to disk. Those are significant barriers, but ones that are
manageable by attackers who are skilled, wealthy, or both.

Ideally, once we use the passphrase to gain access to the encrypted database, we
would clear the passphrase itself out of memory. That is not possible with a String.

This is why ToDoGen uses a ByteArray. SQLCipher for Android, by default, will “zero
out” the ByteArray, replacing all its bytes with zeros, once the passphrase has been
used. This ensures that the passphrase can no longer be retrieved via examining the
application’s heap.

SQLCIPHER AND PASSPHRASES

207

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Managing SQLCipher

Just as we need to think about managing our ordinary SQLite databases, we need to
think about doing the same for SQLCipher for Android databases. In this chapter,
we will briefly explore some of those common concerns.

Backup and Restore
Earlier in the book, we looked at how to back up and restore a SQLite database. The
same mechanisms would be used for import/export operations, to make a copy of
the database available for users to take to another machine, for example.

With an encrypted database, things get more complicated. Roughly speaking, there
are two scenarios to consider:

1. You want to back up the database and keep it encrypted. This would be good
for cases where the passphrase is user-supplied, or for cases where you are
going to back up the passphrase as well (by some secure means). Similarly,
you might be trying to restore the database that is already encrypted.

2. You want to export the database in a decrypted form, one that can be used
by ordinary SQLite clients, not necessarily ones that support the SQLCipher
format. Similarly, you might be trying to import a decrypted database and
store that data in your encrypted database.

The first scenario works pretty much the same as with regular SQLite databases. If
you are copying using filesystem APIs, the data in the database remains in its
current form. And, with SQLCipher for Android, the “current form” is encrypted. So,
if you copy the database file for an encrypted database, you wind up with a copy of
that encrypted database.

209

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

The import/export to unencrypted (“plaintext”) databases gets more involved, as we
will see in the ImportExportCryptmodule of the book’s primary sample project.
That sample builds upon the ImportExport sample from the chapter on backing up
a database. However, this time, the database is encrypted, using a hard-coded
passphrase for simplicity. And, our UI now has five buttons, including options for
both plain and encrypted import and export:

Figure 18: ImportExportCrypt, Showing Available Buttons

Exporting a Plaintext Database

Our app has a SQLCipher for Android database, encrypted by our hard-coded
passphrase. We want to export a plaintext copy of that database: same schema, same
data, just without the encryption.

SQLCipher for Android has a recipe for doing this. Since it involves a fair bit of
manual database manipulation, rather than using Room or the
SupportSQLiteDatabase API, we will go “old school” and work with the SQLCipher
for Android version of SQLiteDatabase directly. In the end, we wind up with a
decryptTo() function on a SQLCipherUtils object that takes:

• A path to our encrypted database file

MANAGING SQLCIPHER

210

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/tree/master/ImportExportCrypt
https://gitlab.com/commonsguy/cw-room/tree/master/ImportExportCrypt
https://gitlab.com/commonsguy/cw-room

• A path to the destination plaintext database file
• The passphrase for our encrypted database
• A Context, because this is Android, and you cannot get out of bed in the

morning without a Context

After calling this blocking function, our plaintext database should reside at the
requested path.

Examining the Utility Function

The function looks a bit nasty:

funfun decryptTo(
ctxt: ContextContext,
originalFile: FileFile,
targetFile: FileFile,
passphrase: ByteArrayByteArray?
) {
SQLiteDatabaseSQLiteDatabase.loadLibs(ctxt)

ifif (originalFile.exists()) {
valval originalDb = SQLiteDatabaseSQLiteDatabase.openDatabase(
originalFile.absolutePath,
passphrase,
nullnull,
SQLiteDatabaseSQLiteDatabase.OPEN_READWRITEOPEN_READWRITE,
nullnull,
nullnull
)

SQLiteDatabaseSQLiteDatabase.openOrCreateDatabase(
targetFile.absolutePath,
"",
nullnull
).close() // create an empty database

//language=text
valval st =
originalDb.compileStatement("ATTACH DATABASE ? AS plaintext KEY ''")

st.bindString(1, targetFile.absolutePath)
st.execute()
originalDb.rawExecSQL("SELECT sqlcipher_export('plaintext')")
originalDb.rawExecSQL("DETACH DATABASE plaintext")

valval version = originalDb.version

MANAGING SQLCIPHER

211

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

st.close()
originalDb.close()

valval db = SQLiteDatabaseSQLiteDatabase.openOrCreateDatabase(
targetFile.absolutePath,
"",
nullnull
)

db.version = version
db.close()
} elseelse {
throwthrow FileNotFoundExceptionFileNotFoundException(originalFile.absolutePath + " not found")
}
}

(from ImportExportCrypt/src/main/java/com/commonsware/room/importexport/SQLCipherUtils.kt)

If you wish to take it on faith that the function works, feel free to skip ahead to the
next section.

But, to explain what this function does, let’s take it step by step.

SQLiteDatabaseSQLiteDatabase.loadLibs(ctxt)

(from ImportExportCrypt/src/main/java/com/commonsware/room/importexport/SQLCipherUtils.kt)

SQLCipher for Android contains a complete copy of SQLite with the SQLCipher for
Android extensions compiled in. This is native code, compiled via the NDK. When
we use the SQLCipher for Android dependency, we get that compiled code in the
form of .so files in the AAR. This statement loads the SQLCipher for Android
library.

Then, after checking to see if the encrypted database file exists, we open it using the
SQLCipher for Android edition of SQLiteDatabase:

valval originalDb = SQLiteDatabaseSQLiteDatabase.openDatabase(
originalFile.absolutePath,
passphrase,
nullnull,
SQLiteDatabaseSQLiteDatabase.OPEN_READWRITEOPEN_READWRITE,
nullnull,
nullnull
)

MANAGING SQLCIPHER

212

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/ImportExportCrypt/src/main/java/com/commonsware/room/importexport/SQLCipherUtils.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/ImportExportCrypt/src/main/java/com/commonsware/room/importexport/SQLCipherUtils.kt

(from ImportExportCrypt/src/main/java/com/commonsware/room/importexport/SQLCipherUtils.kt)

The primary difference from what you would do with the framework
SQLiteDatabase is that you supply the passphrase to use to open the database.

We then need to set up the target plaintext database. Once again we use the
SQLCipher for Android edition of SQLiteDatabase, but this time we use "" as the
passphrase, which tells SQLCipher to leave this database decrypted:

SQLiteDatabaseSQLiteDatabase.openOrCreateDatabase(
targetFile.absolutePath,
"",
nullnull
).close() // create an empty database

(from ImportExportCrypt/src/main/java/com/commonsware/room/importexport/SQLCipherUtils.kt)

You will notice that we then immediately close this database. We need the database
to exist, but we do not need (or want) it to be open — we are going to use it in a
slightly different fashion… via ATTACH DATABASE:

//language=text
valval st =
originalDb.compileStatement("ATTACH DATABASE ? AS plaintext KEY ''")

st.bindString(1, targetFile.absolutePath)
st.execute()

(from ImportExportCrypt/src/main/java/com/commonsware/room/importexport/SQLCipherUtils.kt)

ATTACH DATABASE is part of SQLite’s SQL syntax. It allows you to open two databases
at once. The database that you opened using SQLiteDatabase is identified normally;
the database that you attach is identified by the name you give it via the AS keyword.
So, in this case, we are attaching the empty plaintext database as plaintext.
SQLCipher extends ATTACH DATABASE to take a KEY keyword that provides the
passphase to use — in this case, we are passing the empty string, to indicate that
this database is not encrypted. The ? in the ATTACH DATABASE statement is the fully-
qualified path to the database file, which we supply as a query parameter using
bindString(). The net effect of executing this SQL statement is that we now have
both databases open at once.

SQLCipher comes with a sqlcipher_export() function that we can invoke that
copies the contents of the database from the original to the attached one:

MANAGING SQLCIPHER

213

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/ImportExportCrypt/src/main/java/com/commonsware/room/importexport/SQLCipherUtils.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/ImportExportCrypt/src/main/java/com/commonsware/room/importexport/SQLCipherUtils.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/ImportExportCrypt/src/main/java/com/commonsware/room/importexport/SQLCipherUtils.kt
https://sqlite.org/lang_attach.html

originalDb.rawExecSQL("SELECT sqlcipher_export('plaintext')")
originalDb.rawExecSQL("DETACH DATABASE plaintext")

(from ImportExportCrypt/src/main/java/com/commonsware/room/importexport/SQLCipherUtils.kt)

The effect of these two statements is to copy almost all of the encrypted data from
the original database to the plaintext database, then to detach that plaintext
database (thereby closing it).

One piece of data that sqlcipher_export()misses is the schema version. So, our
final step is to get the schema version from the encrypted database and apply it to
the plaintext database:

valval version = originalDb.version

st.close()
originalDb.close()

valval db = SQLiteDatabaseSQLiteDatabase.openOrCreateDatabase(
targetFile.absolutePath,
"",
nullnull
)

db.version = version
db.close()

(from ImportExportCrypt/src/main/java/com/commonsware/room/importexport/SQLCipherUtils.kt)

The result is that all of our data resides in our new plaintext database, and both
database files are closed when we are done.

This code is far from perfect. It does not have much in the way of recovery from
problems, for example. For the purposes of this book example, it works and is
reasonable. If you wish to do this sort of work in a production app, though, you
should look to improve upon this function.

Using the Utility Function

One thing that SQLCipherUtils.decryptTo() requires is that the original and target
both be files. That is because SQLite and SQLCipher for Android both need files.
However, RandomDatabase.copyTo() function uses an OutputStream as a target, as
the user is choosing the destination of the export via
ActivityResultContracts.CreateDocument, so we do not have a file.

MANAGING SQLCIPHER

214

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/ImportExportCrypt/src/main/java/com/commonsware/room/importexport/SQLCipherUtils.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/ImportExportCrypt/src/main/java/com/commonsware/room/importexport/SQLCipherUtils.kt

So, RandomDatabase.decryptTo() has SQLCipherUtils.decryptTo() decrypt the
database to a temporary file, which we then copy to the desired OutputStream:

funfun decryptTo(context: ContextContext, stream: OutputStreamOutputStream) {
valval temp = FileFile(context.cacheDir, "export.db")

temp.delete()

SQLCipherUtilsSQLCipherUtils.decryptTo(
context,
context.getDatabasePath(DB_NAMEDB_NAME),
temp,
PASSPHRASEPASSPHRASE.toByteArray()
)

temp.inputStream().copyTo(stream)
temp.delete()
}

(from ImportExportCrypt/src/main/java/com/commonsware/room/importexport/RandomDatabase.kt)

That way, we can use RandomDatabase.decryptTo() the same way that we used
RandomDatabase.copyTo(). The activity, viewmodel, and repository all follow the
same pattern as in the original ImportExport app, just routing the export-plain case
through new functions that, in the end, trigger a call to
RandomDatabase.decryptTo().

The result, if you run the app and populate the database, then opt to export the
plaintext database, is that your exported copy can be opened in a SQLite client
without any passphrase.

Importing a Plaintext Database

The other direction — importing a plaintext database — works much the same way.
However, this time, we also add a new wrinkle: detecting whether the to-be-
imported database really is a plaintext database or not.

Detecting Plaintext

Sometimes, you will be in a situation where you do not know if the database is
already encrypted or not. The way to determine if the database is encrypted is to try
opening it with the empty string as a passphrase. As we saw earlier, that is how you
tell SQLCipher for Android to open an unencrypted database. If we can successfully

MANAGING SQLCIPHER

215

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/ImportExportCrypt/src/main/java/com/commonsware/room/importexport/RandomDatabase.kt

open the database with an empty passphrase, we know that the database is not
encrypted. If we get some sort of problem, we know that either:

• The database is encrypted, or
• The database is unencrypted but the file has been corrupted somehow

For security reasons, SQLCipher for Android does not distinguish between those two
cases. That is so attackers cannot learn from a failed open attempt (perhaps with a
candidate passphrase, like 12345) whether the database is encrypted or not.

The SQLCipherUtils object has a getDatabaseState() function that applies this
technique, returning a State object for three possibilities:

• The database is unencrypted (UNENCRYPTED)
• The database is encrypted (ENCRYPTED)
• The database is missing (DOES_NOT_EXIST)

Just remember that ENCRYPTED is short for ENCRYPTED_OR_POSSIBLY_CORRUPT.

To detect those cases, getDatabaseState() sees if your requested file exists and, if it
does, tries opening it with the empty passphrase:

/**
* The detected state of the database, based on whether we can open it
* without a passphrase.
*/
enumenum classclass StateState {
DOES_NOT_EXISTDOES_NOT_EXIST, UNENCRYPTEDUNENCRYPTED, ENCRYPTEDENCRYPTED
}

funfun getDatabaseState(ctxt: ContextContext, dbPath: FileFile): StateState {
SQLiteDatabaseSQLiteDatabase.loadLibs(ctxt)

ifif (dbPath.exists()) {
varvar db: SQLiteDatabaseSQLiteDatabase? = nullnull

returnreturn trytry {
db = SQLiteDatabaseSQLiteDatabase.openDatabase(
dbPath.absolutePath,
"",
nullnull,
SQLiteDatabaseSQLiteDatabase.OPEN_READONLYOPEN_READONLY
)
db.version

MANAGING SQLCIPHER

216

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

StateState.UNENCRYPTEDUNENCRYPTED
} catchcatch (e: ExceptionException) {
StateState.ENCRYPTEDENCRYPTED
} finallyfinally {
db?.close()
}
}

returnreturn StateState.DOES_NOT_EXISTDOES_NOT_EXIST
}

(from ImportExportCrypt/src/main/java/com/commonsware/room/importexport/SQLCipherUtils.kt)

Examining the Utility Function

Given a plaintext database, SQLCipherUtils.encryptTo() will encrypt it to a
designated database file:

funfun encryptTo(
ctxt: ContextContext,
originalFile: FileFile,
targetFile: FileFile,
passphrase: ByteArrayByteArray?
) {
SQLiteDatabaseSQLiteDatabase.loadLibs(ctxt)

ifif (originalFile.exists()) {
valval originalDb = SQLiteDatabaseSQLiteDatabase.openDatabase(
originalFile.absolutePath,
"",
nullnull,
SQLiteDatabaseSQLiteDatabase.OPEN_READWRITEOPEN_READWRITE
)
valval version = originalDb.version

originalDb.close()

valval db = SQLiteDatabaseSQLiteDatabase.openOrCreateDatabase(
targetFile.absolutePath,
passphrase,
nullnull
)

//language=text
valval st = db.compileStatement("ATTACH DATABASE ? AS plaintext KEY ''")

st.bindString(1, originalFile.absolutePath)

MANAGING SQLCIPHER

217

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/ImportExportCrypt/src/main/java/com/commonsware/room/importexport/SQLCipherUtils.kt

st.execute()
db.rawExecSQL("SELECT sqlcipher_export('main', 'plaintext')")
db.rawExecSQL("DETACH DATABASE plaintext")
db.version = version
st.close()
db.close()
} elseelse {
throwthrow FileNotFoundExceptionFileNotFoundException(originalFile.absolutePath + " not found")
}
}

(from ImportExportCrypt/src/main/java/com/commonsware/room/importexport/SQLCipherUtils.kt)

As with decryptTo(), encryptTo() is a bit complex, but it has the same basic
structure.

We start by loading SQLCipher for Android’s native libraries using
SQLiteDatabase.loadLibs(ctxt). Then, assuming that the plaintext database exists,
we open it using the empty string as a passphrase (indicating it is plaintext), get the
database version, and close the database back up:

valval originalDb = SQLiteDatabaseSQLiteDatabase.openDatabase(
originalFile.absolutePath,
"",
nullnull,
SQLiteDatabaseSQLiteDatabase.OPEN_READWRITEOPEN_READWRITE
)
valval version = originalDb.version

originalDb.close()

(from ImportExportCrypt/src/main/java/com/commonsware/room/importexport/SQLCipherUtils.kt)

We then open or create the encrypted database, using the supplied passphrase:

valval db = SQLiteDatabaseSQLiteDatabase.openOrCreateDatabase(
targetFile.absolutePath,
passphrase,
nullnull
)

(from ImportExportCrypt/src/main/java/com/commonsware/room/importexport/SQLCipherUtils.kt)

Next, we attach the plaintext database using ATTACH DATABASE:

MANAGING SQLCIPHER

218

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/ImportExportCrypt/src/main/java/com/commonsware/room/importexport/SQLCipherUtils.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/ImportExportCrypt/src/main/java/com/commonsware/room/importexport/SQLCipherUtils.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/ImportExportCrypt/src/main/java/com/commonsware/room/importexport/SQLCipherUtils.kt

//language=text
valval st = db.compileStatement("ATTACH DATABASE ? AS plaintext KEY ''")

st.bindString(1, originalFile.absolutePath)
st.execute()

(from ImportExportCrypt/src/main/java/com/commonsware/room/importexport/SQLCipherUtils.kt)

We then use a two-parameter form of sqlcipher_export(), saying that we want to
“export” the plaintext database into the encrypted one:

db.rawExecSQL("SELECT sqlcipher_export('main', 'plaintext')")

(from ImportExportCrypt/src/main/java/com/commonsware/room/importexport/SQLCipherUtils.kt)

Finally, we detach the plaintext database, set the version in the encrypted database,
and close everything up:

db.rawExecSQL("DETACH DATABASE plaintext")
db.version = version
st.close()
db.close()

(from ImportExportCrypt/src/main/java/com/commonsware/room/importexport/SQLCipherUtils.kt)

Using the Utility Function

Just as RandomDatabase has its decryptTo() that wraps the SQLCipherUtils
equivalent, RandomDatabase also has encryptFrom() that wraps
SQLCipherUtils.encryptFrom():

funfun encryptFrom(context: ContextContext, stream: InputStreamInputStream) {
valval temp = FileFile(context.cacheDir, "import.db")

temp.delete()

stream.copyTo(temp.outputStream())

trytry {
whenwhen (SQLCipherUtilsSQLCipherUtils.getDatabaseState(context, temp)) {
SQLCipherUtilsSQLCipherUtils.StateState.UNENCRYPTEDUNENCRYPTED -> SQLCipherUtilsSQLCipherUtils.encryptTo(
context,
temp,
context.getDatabasePath(DB_NAMEDB_NAME),
PASSPHRASEPASSPHRASE.toByteArray()
)

MANAGING SQLCIPHER

219

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/ImportExportCrypt/src/main/java/com/commonsware/room/importexport/SQLCipherUtils.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/ImportExportCrypt/src/main/java/com/commonsware/room/importexport/SQLCipherUtils.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/ImportExportCrypt/src/main/java/com/commonsware/room/importexport/SQLCipherUtils.kt

SQLCipherUtilsSQLCipherUtils.StateState.DOES_NOT_EXISTDOES_NOT_EXIST ->
throwthrow IllegalStateExceptionIllegalStateException("Could not find $temp???")
SQLCipherUtilsSQLCipherUtils.StateState.ENCRYPTEDENCRYPTED ->
throwthrow IllegalStateExceptionIllegalStateException("Original database appears encrypted!")

}
} finallyfinally {
temp.delete()
}
}

(from ImportExportCrypt/src/main/java/com/commonsware/room/importexport/RandomDatabase.kt)

Both getDatabaseState() and encryptTo() on SQLCipherUtils work with a file,
and we are starting with an InputStream. So, we start by copying the contents of
that stream to a temporary database file.

We then call getDatabaseState(). In the expected outcome, we get UNENCRYPTED for
the state and can then call encryptTo() to encrypt the database and put it in our
desired location. If we find any other state, we throw an exception. All of that is
wrapped in try / finally, so we can delete the temporary unencrypted database
copy.

About That languagelanguage Comment

In both encryptTo() and decryptFrom() on SQLCipherUtils, we have an odd
comment:

//language=text

(from ImportExportCrypt/src/main/java/com/commonsware/room/importexport/SQLCipherUtils.kt)

This appears before each of our compileStatement() calls:

//language=text
valval st =
originalDb.compileStatement("ATTACH DATABASE ? AS plaintext KEY ''")

(from ImportExportCrypt/src/main/java/com/commonsware/room/importexport/SQLCipherUtils.kt)

This stems from a feature of Android Studio called “language injection”. Basically,
there are ways for the IDE to interpret a string as being associated with a
programming language and to provide syntax validation of the string following the
rules of that language.

In this case, by default, Studio thinks that the parameter to compileStatement() is a

MANAGING SQLCIPHER

220

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/ImportExportCrypt/src/main/java/com/commonsware/room/importexport/RandomDatabase.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/ImportExportCrypt/src/main/java/com/commonsware/room/importexport/SQLCipherUtils.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/ImportExportCrypt/src/main/java/com/commonsware/room/importexport/SQLCipherUtils.kt

SQL string, and so it wants to validate that SQL.

This sounds wonderful!

However, Studio’s SQL syntax rules are based on SQLite, not SQLCipher for
Android. As a result, Studio does not like our KEY clause:

Figure 19: Android Studio “Language Injection” SQL Validation

The language=text comment is a hack to block that validation warning.

Migrating to Encryption
Normal Room migrations work with SQLCipher for Android, for adjusting your
database schema to account for changes in your entities, DAOs, and so forth.

However, with SQLCipher for Android, you may have a special “migration” to
consider: migrating from having an ordinary database to having an encrypted one.
That would occur if you started with ordinary SQLite and only decided to add
encryption later on.

So, suppose you initially shipped your app with ordinary SQLite as version 1.0.0.
Later, in version 2.0.0 of your app, you shipped support for encrypted databases.
Now your RoomDatabase will need to handle two cases:

1. Version 2.0.0 of your app is being installed by a new user. In that case, you
have no existing database, and you can start with the encrypted database
from the outset.

2. An existing 1.x.y user upgrades to 2.0.0. They already have an unencrypted
database. Presumably, they would like to keep that data, and so you need to
encrypt that database.

The SQLCipherUtils code that we saw earlier in this chapter can handle this
scenario as well, as we can see in the cryptMigrate pair of modules of the book’s
primary sample project.

That directory contains two modules. CMBefore is the same to-do app that we saw in

MANAGING SQLCIPHER

221

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://commonsware.com/blog/2021/02/11/quieting-sql-syntax-warnings.html
https://gitlab.com/commonsguy/cw-room/tree/master/cryptMigrate
https://gitlab.com/commonsguy/cw-room/tree/master/cryptMigrate
https://gitlab.com/commonsguy/cw-room
https://gitlab.com/commonsguy/cw-room

earlier SQLCipher for Android samples, just without any encryption. Theoretically,
this represents version 1.0.0 of your app. CMAfter is mostly the same as the
ToDoCrypt sample from previous chapters, where we use SQLCipher for Android
with a hardcoded passphrase (to simplify the sample). However, this time,
ToDoDatabase has a substantially more complex version of newInstance():

packagepackage com.commonsware.todo.repocom.commonsware.todo.repo

importimport android.content.Contextandroid.content.Context
importimport androidx.room.Databaseandroidx.room.Database
importimport androidx.room.Roomandroidx.room.Room
importimport androidx.room.RoomDatabaseandroidx.room.RoomDatabase
importimport androidx.room.TypeConvertersandroidx.room.TypeConverters
importimport net.sqlcipher.database.SupportFactorynet.sqlcipher.database.SupportFactory
importimport java.io.IOExceptionjava.io.IOException

privateprivate constconst valval DB_NAME = "stuff.db"
privateprivate constconst valval PASSPHRASE = "sekr1t"

@Database(entities = [ToDoEntityToDoEntity::classclass], version = 1)
@TypeConverters(TypeTransmogrifierTypeTransmogrifier::classclass)
abstractabstract classclass ToDoDatabaseToDoDatabase : RoomDatabaseRoomDatabase() {
abstractabstract funfun todoStore(): ToDoEntityToDoEntity.StoreStore

companioncompanion objectobject {
funfun newInstance(context: ContextContext): ToDoDatabaseToDoDatabase {
valval dbFile = context.getDatabasePath(DB_NAMEDB_NAME)
valval passphrase = PASSPHRASEPASSPHRASE.toByteArray()
valval state = SQLCipherUtilsSQLCipherUtils.getDatabaseState(context, dbFile)

ifif (state == SQLCipherUtilsSQLCipherUtils.StateState.UNENCRYPTEDUNENCRYPTED) {
valval dbTemp = context.getDatabasePath("_temp.db")

dbTemp.delete()

SQLCipherUtilsSQLCipherUtils.encryptTo(context, dbFile, dbTemp, passphrase)

valval dbBackup = context.getDatabasePath("_backup.db")

ifif (dbFile.renameTo(dbBackup)) {
ifif (dbTemp.renameTo(dbFile)) {
dbBackup.delete()
} elseelse {
dbBackup.renameTo(dbFile)
throwthrow IOExceptionIOException("Could not rename $dbTemp to $dbFile")
}
} elseelse {

MANAGING SQLCIPHER

222

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

dbTemp.delete()
throwthrow IOExceptionIOException("Could not rename $dbFile to $dbBackup")
}
}

returnreturn RoomRoom.databaseBuilder(context, ToDoDatabaseToDoDatabase::classclass.java, DB_NAMEDB_NAME)
.openHelperFactory(SupportFactorySupportFactory(passphrase))
.build()

}
}
}

(from cryptMigrate/CMAfter/src/main/java/com/commonsware/todo/repo/ToDoDatabase.kt)

We start by checking the database state using getDatabaseState(). If the state is
ENCRYPTED, we are set — this implies that the user has already run this version of the
app before and we are already have our encrypted database. If the state is
DOES_NOT_EXIST, we also do not need to do anything special, as Room will lazy-
create our encrypted database for us. In either of those cases, we proceed directly to
using Room.databaseBuilder() with our SupportFactory to create and/or open the
database.

The scenario where we need to do extra work is if our state is UNENCRYPTED. That
means the user was using CMBefore and has an existing unencrypted database. We
want to keep the data, but encrypt it. So, we:

• Use SQLCipherUtils.encryptTo() to encrypt the database to a new database
file

• Rename the unencrypted database to a temporary name (dbBackup)
• Rename the newly-encrypted database to our desired name (dbFile)
• Delete the unencrypted database

If something goes wrong with one of our file I/O operations, we try to switch back to
the unencrypted database and fail with an exception.

If you run CMBefore, fill in some to-do items, and then run CMAfter, you will find
that your to-do items remain intact, but that the resulting database is encrypted.

MANAGING SQLCIPHER

223

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/cryptMigrate/CMAfter/src/main/java/com/commonsware/todo/repo/ToDoDatabase.kt

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Advanced Scenarios

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Paged Room Queries

Sometimes, we simply have too much data.

It is very easy to write a DAO that returns all rows from a particular table. Whether
doing that is sensible or not will depend on:

• The number of rows in that table
• The number, types, and contents of columns in that table
• The impacts of any JOINs or other constructs that might expand the result

set

If we know that we might have a ridiculous amount of data, we can use Room’s
support for the Jetpack Paging library. This teaches Room to retrieve rows a “page”
at a time from the underlying table(s), instead of the full result set all at once. This
can greatly reduce the amount of memory that is consumed at once, if we can
organize our UI to only need a page’s worth of data at once. The downside is that the
only easy way to consume this paged data is via a RecyclerView— anything else is
terribly complicated.

In this chapter, we will explore a bit about the Paging library in general and show
how Room and Paging can populate a RecyclerView as the user scrolls.

The Problem: Too Much Data
One of the little-known issues with Android’s SQLite API is how the Cursor works.
We tend to just use that Cursor and ignore exactly how it is getting its data. The
behavior of our database Cursor is normal for smaller data sets but possibly
problematic for really large ones.

227

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://developer.android.com/topic/libraries/architecture/paging.html

Cursor is an interface. The real Java class that we get back from SQLite is a
SQLiteCursor. The Cursor API, and SQLiteCursor in particular, was developed well
before Android 1.0 was released, and therefore has a fair share of “features” that
seemed like good ideas at the time but did not hold up well as the years progressed.
The one that everybody encounters is the fact that when you get a Cursor back from
methods like query() or rawQuery() on a SQLiteDatabase, the query has not
actually been done yet. Instead, it is lazy-executed when you ask the Cursor for
something where the data is needed, such as getCount(). This is a pain, as we want
to do the database I/O on a background thread, so we have to specifically do
something while on that background thread (e.g., call getCount()) to ensure that
the query really does get executed when we expect it to.

Another quirk with Cursor is that when the query is executed, it really populates a
CursorWindow. For small queries, this will represent the entire result set. For larger
queries, it is a portion of that result set. As we move through the Cursor,
SQLiteCursor will load more relevant rows into the CursorWindow, around the new
position. This exacerbates the threading problem, as we might wind up doing disk I/
O at any point while working with the Cursor, if the window’s contents need to be
adjusted.

Ideally, your queries are small, within the CursorWindow limits. And for apps where
the data comes from the user, usually you can keep your queries small. Users are
only going to enter in so much data on a small screen. Even if the user records some
form of multimedia — such as taking a picture with the camera — large queries can
be avoided by not storing the media in the database itself, but rather storing it in
plain files referenced by the database.

However, in cases where the data comes from some server, sticking with small
queries can get tricky.

Addressing the UX
Beyond the threading issues, there is another challenge with showing large result
sets in a single UI (e.g., in a RecyclerView): it is a pain for users to navigate. Nobody
is going to want to scroll through 10,000 rows in a vertically-scrolling list — their
finger will develop a blister first.

If you anticipate having a large amount of data, your primary concern is to get the
UX right. Focus on searching, filtering, and other means for the user to easily scope
the required data to some subset of relevance. Do not have the primary UX be a

PAGED ROOM QUERIES

228

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

“scroll through the world” sort of experience, even if that is an available option for
users who are gluttons for punishment or have steel-tipped fingers (or, perhaps, a
stylus).

However, even with user-supplied constraints, you still might wind up with more
data than can fit in a CursorWindow. And we have no direct control over that
CursorWindow behavior, as it is hidden behind a few layers of abstraction.

Enter the Paging Library
The Paging library exists to provide greater developer control over exactly what gets
loaded from a backing data store and when, handling things like:

• Performing smaller queries, to stay inside a CursorWindow’s bounds, so we
can control the threads used for data loads

• Supporting multiple traversal options through a data set: not only classic
position-based systems, but ones where you might be navigating a tree and
need to retrieve related child objects as part of traversal

• Offering reactive approaches, based on LiveData, so we can ensure that our
UI remains responsive.

The Paging library has evolved over the years. The current edition, known as Paging
v3, has a powerful Kotlin-centric API, and Room has basic support for returning
Paging v3-based responses from queries.

There are a number of classes involved in the Paging library, but for basic scenarios,
there are a few of significance:

• A PagingSource represents a source of paged data. Room can be set up to
return a PagingSource from a @Query-annotated @Dao function, for example.

• A PagingData represents a chunk of data retrieved from the underlying data
source via the PagingSource

• A Pager represents a specific operation for getting paged data out of a
PagingSource. We can teach a Pager how many items to retrieve in a “page”,
and the Pager gives us a Flow, LiveData, or similar reactive API for getting
PagingData objects as needed.

• A PagingDataAdapter is a RecyclerView.Adapter that knows how to work
with a PagingData. As the user scrolls the RecyclerView, the
PagingDataAdapter can signal that we need more data, triggering the Pager
to fetch more data from the PagingSource and emit a fresh PagingData for

PAGED ROOM QUERIES

229

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

the PagingDataAdapter to use.

That still leaves a lot of moving parts, which we will examine in greater detail in this
chapter.

Paging and Room
The PagedFTSmodule of the book’s primary sample project demonstrates the use of
the Paging library with Room.

This is our third generation of a full-text searching sample, originating with FTS and
continuing with PackagedFTS. In those samples, we had an app that displayed the
text of H. G. Wells’ “The Time Machine”, with individual paragraphs as rows in a
RecyclerView. However, we loaded the entire book (or entire set of search results) at
once. “The Time Machine” is short, but there are much longer books, where loading
the entire book into memory would be impractical.

So, PagedFTS replaces the load-everything logic of FTS with load-pages logic,
courtesy of the Paging library.

The Dependency

To use those classes, we need another dependency, one for the Paging library:

implementation "androidx.paging:paging-runtime-ktx:3.0.1"

(from PagedFTS/build.gradle)

androidx.paging:paging-runtime-ktx gives us the code that we need to tell Room
to produce paged query results and to populate a RecyclerView with the results. As
with other dependencies, the -ktx suffix indicates that there are Kotlin-specific
functions, such as a toLiveData() extension function that we will examine shortly.

The DAO

The revised BookStore is a bit different than what we had before:

packagepackage com.commonsware.room.ftscom.commonsware.room.fts

importimport androidx.paging.PagingSourceandroidx.paging.PagingSource
importimport androidx.room.Daoandroidx.room.Dao
importimport androidx.room.Insertandroidx.room.Insert

PAGED ROOM QUERIES

230

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/tree/master/PagedFTS
https://gitlab.com/commonsguy/cw-room/tree/master/PagedFTS
https://gitlab.com/commonsguy/cw-room
https://commonsware.com/Android
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/PagedFTS/build.gradle

importimport androidx.room.Queryandroidx.room.Query

@Dao
abstractabstract classclass BookStoreBookStore {
@Insert
abstractabstract suspendsuspend funfun insert(paragraphs: ListList<ParagraphEntityParagraphEntity>)

@Query("SELECT COUNT(*) FROM paragraphs")
abstractabstract suspendsuspend funfun count(): IntInt

@Query("SELECT prose FROM paragraphs ORDER BY sequence")
abstractabstract funfun all(): PagingSourcePagingSource<IntInt, StringString>

@Query("SELECT snippet(paragraphsFts) FROM paragraphs JOIN paragraphsFts "+
"ON paragraphs.id == paragraphsFts.rowid WHERE paragraphsFts.prose "+
"MATCH :search ORDER BY sequence")

abstractabstract funfun filtered(search: StringString): PagingSourcePagingSource<IntInt, StringString>
}

(from PagedFTS/src/main/java/com/commonsware/room/fts/BookStore.kt)

The insert() function is unchanged. There is a new count() function that returns
the number of paragraphs in our database. But the more interesting changes affect
all() and filtered():

• They no longer are suspend functions
• They no longer return a List of paragraphs, but instead return a
PagingSource

PagingSource takes two generic types. The second is the type of data that we are
paging through. In this case, both queries return simple String objects, so our
second data type to PagingSource is String. We could use ParagraphEntity or
anything else Room knows how to handle.

The first data type in the PagingSource declaration indicates to the Paging library
how we are identifying the contents of pages. Room will do this based on position
within a result set, so the first page might be rows 0-49, the second page might be
rows 50-99, and so on. With Room, positions are indicated by an Int, so the first
type that we provide to PagingSource is an Int. The Paging library supports other
strategies, mostly designed around developers creating custom data sources (e.g.,
wrapped around a REST-style Web service), but Room uses positions.

We skip the suspend keyword because PagingSource does not perform any I/O
immediately. Instead, the actual I/O is delayed until something starts using the

PAGED ROOM QUERIES

231

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/PagedFTS/src/main/java/com/commonsware/room/fts/BookStore.kt

factory. This is much like how LiveData, Single, and Flow work with our classic
reactive return types.

The ViewModels

BookViewModel and SearchViewModel need to expose the book contents to their
respective UI layers. In the original project, this was via a LiveData. And, the good
news is that we can get a LiveData from a PagingSource— though while the code is
terse, it is a bit complicated:

packagepackage com.commonsware.room.ftscom.commonsware.room.fts

importimport androidx.lifecycle.ViewModelandroidx.lifecycle.ViewModel
importimport androidx.lifecycle.viewModelScopeandroidx.lifecycle.viewModelScope
importimport androidx.paging.Pagerandroidx.paging.Pager
importimport androidx.paging.PagingConfigandroidx.paging.PagingConfig
importimport androidx.paging.cachedInandroidx.paging.cachedIn
importimport androidx.paging.liveDataandroidx.paging.liveData

classclass BookViewModelBookViewModel(repo: BookRepositoryBookRepository) : ViewModelViewModel() {
valval paragraphs =
PagerPager(PagingConfigPagingConfig(pageSize = 15)) { repo.all() }
.liveData
.cachedIn(viewModelScope)

}

(from PagedFTS/src/main/java/com/commonsware/room/fts/BookViewModel.kt)

packagepackage com.commonsware.room.ftscom.commonsware.room.fts

importimport androidx.lifecycle.ViewModelandroidx.lifecycle.ViewModel
importimport androidx.lifecycle.viewModelScopeandroidx.lifecycle.viewModelScope
importimport androidx.paging.Pagerandroidx.paging.Pager
importimport androidx.paging.PagingConfigandroidx.paging.PagingConfig
importimport androidx.paging.cachedInandroidx.paging.cachedIn
importimport androidx.paging.liveDataandroidx.paging.liveData

classclass SearchViewModelSearchViewModel(search: StringString, repo: BookRepositoryBookRepository) : ViewModelViewModel() {
valval paragraphs =
PagerPager(PagingConfigPagingConfig(pageSize = 15)) { repo.filtered(search) }
.liveData
.cachedIn(viewModelScope)

}

(from PagedFTS/src/main/java/com/commonsware/room/fts/SearchViewModel.kt)

PAGED ROOM QUERIES

232

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/PagedFTS/src/main/java/com/commonsware/room/fts/BookViewModel.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/PagedFTS/src/main/java/com/commonsware/room/fts/SearchViewModel.kt

As noted earlier, a Pager handles getting pages of data from our PagingSource. We
can configure the Pager via the PagingConfig parameter — here, we say that we
want to load 15 paragraphs at a time, via pageSize. We also provide the Pager with
the PagingSource by way of a lambda expression. When we start trying to get data
from the Pager, it will invoke that lambda expression, get the PagingSource, and
start asking it for data.

That sets up the Pager itself. The liveData extension property on Pager gives us a
LiveData wrapper around the Pager… or, more accurately, a LiveData wrapper
around a Flow that is wrapped around the Pager. This LiveData will be for a
PagingData of our PagingSource data type — in this case, String. The Pager, when
it is requested to load different pages, will emit a fresh PagingData holding the
results.

Because this LiveData is backed by a Flow, we need to teach the LiveData about the
CoroutineScope to use, so that the Flow collector that it uses handles lifecycles
properly within the coroutine system. This is handled by calling cachedIn() and
providing a suitable scope — in this case, viewModelScope. If you forget to do this,
while the code will compile, you will have a bad time when you try to run it.

The PagingDataAdapterPagingDataAdapter

We are showing our book contents in a ParagraphAdapter. In the original project,
this was a simple RecyclerView.Adapter. If you are using the Paging library, though,
you will want to use PagingDataAdapter. You can hand a PagingDataAdapter a
PagingData of data (e.g., a PagingData of paragraphs), and PagingDataAdapter
knows how to use the PagingData API to handle loading additional pages as the user
scrolls.

The good news is that with PagingDataAdapter, you do not need to bother with
implementing getCount(), as PagingDataAdapter knows its PagingData and can get
the overall size from it. The bad news is that you will need to provide a
DiffUtil.ItemCallback to compare objects in the list. If you have used the
RecyclerView version of ListAdapter, it uses the same DiffUtil.ItemCallback
abstract class that PagedListAdapter does.

So, our revised ParagraphAdapter looks like:

packagepackage com.commonsware.room.ftscom.commonsware.room.fts

importimport android.view.LayoutInflaterandroid.view.LayoutInflater

PAGED ROOM QUERIES

233

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://issuetracker.google.com/issues/194561310

importimport android.view.ViewGroupandroid.view.ViewGroup
importimport androidx.paging.PagingDataAdapterandroidx.paging.PagingDataAdapter
importimport androidx.recyclerview.widget.DiffUtilandroidx.recyclerview.widget.DiffUtil

classclass ParagraphAdapterParagraphAdapter(privateprivate valval inflater: LayoutInflaterLayoutInflater) :
PagingDataAdapterPagingDataAdapter<StringString, RowHolderRowHolder>(STRING_DIFFERSTRING_DIFFER) {
overrideoverride funfun onCreateViewHolder(parent: ViewGroupViewGroup, viewType: IntInt) =
RowHolderRowHolder(inflater.inflate(RR.layout.row, parent, falsefalse))

overrideoverride funfun onBindViewHolder(holder: RowHolderRowHolder, position: IntInt) {
holder.bind(getItem(position).orEmpty())
}
}

privateprivate valval STRING_DIFFER = objectobject : DiffUtilDiffUtil.ItemCallbackItemCallback<StringString>() {
overrideoverride funfun areItemsTheSame(oldItem: StringString, newItem: StringString) =
oldItem === newItem

overrideoverride funfun areContentsTheSame(oldItem: StringString, newItem: StringString) =
oldItem == newItem

}

(from PagedFTS/src/main/java/com/commonsware/room/fts/ParagraphAdapter.kt)

Here, STRING_DIFFER is a DiffUtil.ItemCallback that can handle comparing simple
strings, using content equality for areContentsTheSame() and object equality (=== in
Kotlin) for areItemsTheSame().

There is also one other subtle difference: the data that we bind into the RowHolder.
In the original app, this was a String. In this app, though, it is a String?. The
Paging library uses null as the default placeholder data, if we try accessing parts of
the list that have not yet been loaded. We call getItem() from PagingDataAdapter
to return the data for a given position, and it will return a nullable type. We have to
be able to cope with a null value. Here, we just use orEmpty() to convert it into an
empty string, but a more sophisticated app might use a different mechanism to
indicate a RecyclerView item that has been loading. Once the data for that position
is available, onBindViewHolder() will be called again, so you can repopulate the UI
for that item with the now-available data.

The Fragments

The only significant difference in the fragments is in setting up the
ParagraphAdapter. In the original project, we would pass in the List<String> to the
ParagraphAdapter constructor, so we had to wait to create the ParagraphAdapter

PAGED ROOM QUERIES

234

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/PagedFTS/src/main/java/com/commonsware/room/fts/ParagraphAdapter.kt

until we were observing the LiveData that would provide our List. Now, we call a
submitData()method on ParagraphAdapter, supplied by PagingDataAdapter, so we
can set up the adapter ahead of time:

supersuper.onViewCreated(view, savedInstanceState)

valval rv = view asas RecyclerViewRecyclerView
valval adapter = ParagraphAdapterParagraphAdapter(layoutInflater)

rv.adapter = adapter

vm.paragraphs.observe(viewLifecycleOwner) {
adapter.submitData(viewLifecycleOwner.lifecycle, it)
}
}

(from PagedFTS/src/main/java/com/commonsware/room/fts/BookFragment.kt)

supersuper.onViewCreated(view, savedInstanceState)

valval rv = view asas RecyclerViewRecyclerView
valval adapter = ParagraphAdapterParagraphAdapter(layoutInflater)

rv.adapter = adapter

vm.paragraphs.observe(viewLifecycleOwner) {
adapter.submitData(viewLifecycleOwner.lifecycle, it)
}
}
}

(from PagedFTS/src/main/java/com/commonsware/room/fts/SearchFragment.kt)

From the user’s standpoint, there is no real difference in behavior. The user can
scroll through the list and read the book or the search results. In principle, on a slow
device, the user might scroll fast enough that the data is not ready, and so a blank
spot would appear at the bottom of the scrolled area (rows with the empty string)
until the data got loaded. In the case of this app, the database I/O is small and fairly
quick, so the user is unlikely to encounter any such visual hiccup with rapid
scrolling. Yet, our app will be more efficient in its use of memory, by not necessarily
loading the entire book at once.

PAGED ROOM QUERIES

235

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/PagedFTS/src/main/java/com/commonsware/room/fts/BookFragment.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/PagedFTS/src/main/java/com/commonsware/room/fts/SearchFragment.kt

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Room Across Processes

Most Android apps run in a single process. However, Android does give developers
the option to have their apps be split across multiple processes.

However, this can cause problems with stuff held in memory, as multiple processes
will not share that memory. In the case of Room, one area where the problem crops
up is with “invalidation tracking”: the piece of Room that knows to update your
reactive query results (Flow, LiveData, Observable, etc.) when the data changes. By
default, that does not work across process boundaries, but you can enable it via
enableMultiInstanceInvalidation() on your RoomDatabase.Builder.

In this chapter, we will explore all of this in greater detail and demonstrate how it
works.

Room and Invalidation Tracking
When you modify your Room database, active observers of reactive responses from
@Query-annotated functions get fresh results delivered automatically.

Under the covers, that is powered by InvalidationTracker and related code. Room
tracks:

• Which tables and views are referenced by active queries, and
• Which tables are affected by database modifications

When you modify the database, Room looks up the active queries that are tied to
any tables that you affected. For those, Room re-executes the queries and emits new
results via the Flow, LiveData, Observable, or whatever.

237

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

This is all done for you, almost by magic. But, in reality, it just sophisticated code
from a sophisticated library.

Invalidation Tracking and Processes
InvalidationTracker is an ordinary Java class. So are RoomDatabase and the code-
generated bits that we get from the Room compiler. They are part of the memory of
whatever process that you used to create an instance of your RoomDatabase subclass.

If you have two processes, each working with the same RoomDatabase subclass, each
process will have its own independent instance of that subclass, and each of those
will be associated with its own InvalidationTracker. Each of those instances will
know nothing about the other.

If you modify the database in one process, the InvalidationTracker of that process
can notify observers in that process about updated results to their queries. However,
by default, the InvalidationTracker of the other process will not find out about the
database modifications and will not be able to update its own observers with fresh
data.

Introducing enableMultiInstanceInvalidation()enableMultiInstanceInvalidation()

Room now has an enableMultiInstanceInvalidation() function that you can call
on RoomDatabase.Builder when you are setting up the database. This tells Room
that you want to use it across processes. Room will then set up a
MultiInstanceInvalidationService in your primary (default) process.
RoomDatabase objects in other processes will connect to that service, and Room will
use IPC to allow database modification information to flow between the processes.
The net effect is that each InvalidationTracker finds out about modifications
happening in any of the app’s processes.

The CrossProcessmodule of the book’s primary sample project has a database that
uses enableMultiInstanceInvalidation():

packagepackage com.commonsware.room.processcom.commonsware.room.process

importimport android.content.Contextandroid.content.Context
importimport androidx.room.Databaseandroidx.room.Database
importimport androidx.room.Roomandroidx.room.Room
importimport androidx.room.RoomDatabaseandroidx.room.RoomDatabase
importimport androidx.room.TypeConvertersandroidx.room.TypeConverters

ROOM ACROSS PROCESSES

238

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/tree/master/CrossProcess
https://gitlab.com/commonsguy/cw-room/tree/master/CrossProcess
https://gitlab.com/commonsguy/cw-room

privateprivate constconst valval DB_NAME = "random.db"

@Database(entities = [RandomEntityRandomEntity::classclass], version = 1)
@TypeConverters(TypeTransmogrifierTypeTransmogrifier::classclass)
abstractabstract classclass RandomDatabaseRandomDatabase : RoomDatabaseRoomDatabase() {
abstractabstract funfun randomStore(): RandomStoreRandomStore

companioncompanion objectobject {
funfun newInstance(context: ContextContext) =
RoomRoom.databaseBuilder(context, RandomDatabaseRandomDatabase::classclass.java, DB_NAMEDB_NAME)
.enableMultiInstanceInvalidation()
.build()

}
}

(from CrossProcess/src/main/java/com/commonsware/room/process/RandomDatabase.kt)

For that to be useful, though, we need more than one process, and we need for each
process to be working with the same underlying SQLite database via the same
Room-generated classes.

In One Process, an ActivityActivity

In the main application process, MainActivity has a really big “Populate Sample
Data” button that, when clicked, calls a populate() function on MainViewModel.
That in turn calls populate() on the RandomRepository. That generates a random
number of RandomEntity instances and inserts them:

packagepackage com.commonsware.room.processcom.commonsware.room.process

importimport kotlinx.coroutines.CoroutineScopekotlinx.coroutines.CoroutineScope
importimport kotlinx.coroutines.asCoroutineDispatcherkotlinx.coroutines.asCoroutineDispatcher
importimport kotlinx.coroutines.withContextkotlinx.coroutines.withContext
importimport java.util.concurrent.Executorsjava.util.concurrent.Executors
importimport kotlin.random.Randomkotlin.random.Random

classclass RandomRepositoryRandomRepository(
privateprivate valval db: RandomDatabaseRandomDatabase,
privateprivate valval appScope: CoroutineScopeCoroutineScope
) {
privateprivate valval dispatcher =
ExecutorsExecutors.newSingleThreadExecutor().asCoroutineDispatcher()

funfun summarize() = db.randomStore().summarize()

ROOM ACROSS PROCESSES

239

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/CrossProcess/src/main/java/com/commonsware/room/process/RandomDatabase.kt

suspendsuspend funfun populate() {
withContext(dispatcher + appScope.coroutineContext) {
valval count = RandomRandom.nextInt(100) + 1

db.randomStore().insert((1..count).map { RandomEntityRandomEntity(0) })
}
}
}

(from CrossProcess/src/main/java/com/commonsware/room/process/RandomRepository.kt)

RandomRepository also has a summarize() function that exposes a corresponding
function on our DAO:

packagepackage com.commonsware.room.processcom.commonsware.room.process

importimport androidx.room.Daoandroidx.room.Dao
importimport androidx.room.Insertandroidx.room.Insert
importimport androidx.room.Queryandroidx.room.Query
importimport kotlinx.coroutines.flow.Flowkotlinx.coroutines.flow.Flow
importimport java.time.Instantjava.time.Instant

data classdata class SummarySummary(
valval count: IntInt,
valval oldestTimestamp: InstantInstant? = nullnull
)

@Dao
interfaceinterface RandomStoreRandomStore {
@Insert
suspendsuspend funfun insert(entities: ListList<RandomEntityRandomEntity>)

@Query("SELECT COUNT(*) as count, MIN(timestamp) as oldestTimestamp FROM randomStuff")
funfun summarize(): FlowFlow<SummarySummary>
}

(from CrossProcess/src/main/java/com/commonsware/room/process/RandomStore.kt)

summarize() gets the count of entities and the oldest timestamp and emits them via
a Flow. That Flow will emit new results as the database is modified and so long as
something is observing the Flow. MainActivity gets that data via MainViewModel
and shows the count and date on the screen.

In Another Process, a ServiceService

Our manifest has a <service> entry for SomeService, placing it into another process
via android:process:

<service<service android:name=".SomeService" android:process=":something" />/>

(from CrossProcess/src/main/AndroidManifest.xml)

ROOM ACROSS PROCESSES

240

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/CrossProcess/src/main/java/com/commonsware/room/process/RandomRepository.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/CrossProcess/src/main/java/com/commonsware/room/process/RandomStore.kt
https://gitlab.com/commonsguy/cw-room/blob/vFINAL/CrossProcess/src/main/AndroidManifest.xml

SomeService also uses summarize() on RandomRepository, dumping whatever it
receives to Logcat:

packagepackage com.commonsware.room.processcom.commonsware.room.process

importimport android.content.Intentandroid.content.Intent
importimport android.os.Processandroid.os.Process
importimport android.util.Logandroid.util.Log
importimport androidx.lifecycle.LifecycleServiceandroidx.lifecycle.LifecycleService
importimport kotlinx.coroutines.CoroutineScopekotlinx.coroutines.CoroutineScope
importimport kotlinx.coroutines.flow.collectkotlinx.coroutines.flow.collect
importimport kotlinx.coroutines.launchkotlinx.coroutines.launch
importimport org.koin.android.ext.android.injectorg.koin.android.ext.android.inject
importimport org.koin.core.qualifier.namedorg.koin.core.qualifier.named

classclass SomeServiceSomeService : LifecycleServiceLifecycleService() {
privateprivate valval repo: RandomRepositoryRandomRepository byby inject()
privateprivate valval appScope: CoroutineScopeCoroutineScope byby inject(named("appScope"))

overrideoverride funfun onCreate() {
supersuper.onCreate()

appScope.launch {
repo.summarize().collect {
LogLog.d("SomeService", "PID: ${Process.myPid()} summary: $it")
}
}
}
}

(from CrossProcess/src/main/java/com/commonsware/room/process/SomeService.kt)

MainActivity starts that service when it is in the foreground via onStart() and
stops that service when the UI returns to the background in onStop(). This is not a
wise use of a service; the point behind a service is to run when the UI is not in the
foreground. But, it helps illustrate the effects of
enableMultiInstanceInvalidation().

Results, Before and After

If we lacked enableMultiInstanceInvalidation()— such as if you comment out
that line in RandomDatabase and run the app — you will find that SomeService logs
the initial state of the database, but that is it. You can push the big button as much
as you want, and the activity will display the current count of entities, but the
service will not log new data. That is because our separate process does not know

ROOM ACROSS PROCESSES

241

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/CrossProcess/src/main/java/com/commonsware/room/process/SomeService.kt

that the database changed, so Room does not emit a new result on that process’
summarize() Flow.

But, if we use enableMultiInstanceInvalidation(), now clicking the button causes
both the activity and the service to get details of the updated database, so we see
both the UI update and the SomeService Logcat entry.

ROOM ACROSS PROCESSES

242

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Triggers

Triggers are a way to teach SQLite to manipulate Table X every time that you do
something to Table Y. While to date Google has elected to not support triggers
directly in Room, you can still set them up manually if needed.

In this chapter, we will examine how to do this.

Trigger Basics
Triggers are most often associated with server-side databases: Oracle, SQL Server,
and so on. And triggers have their downsides. However, they are an available option
on SQLite, which supports the CREATE TRIGGER statement to define a trigger.

You can think of triggers as being an “if this, then that” sort of construct:

• If we insert a row in Table X, update some data in Table Y
• If we modify a row in Table Y, also modify related rows in Table Z
• If we delete data from Table Z, insert a row in Table Q
• And so on

At a high level, the syntax for creating a trigger is:

CREATECREATE TRIGGERTRIGGER [name] [timing] [action] ONON [tabletable]
BEGINBEGIN
[SQLSQL statements]
ENDEND;

Each trigger has a name, the same way that tables and views have names. The timing
usually is BEFORE or AFTER, and the action is INSERT, DELETE, or UPDATE OF
[columns], with the latter representing modification of some column(s) on one or

243

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://stackoverflow.com/q/460316/115145
https://sqlite.org/lang_createtrigger.html
https://sqlite.org/lang_createtrigger.html

more rows. So, you get combinations like:

• BEFORE INSERT
• AFTER UPDATE OF name
• BEFORE DELETE
• And so on

The SQL statements between BEGIN and END; will be executed whenever the action
occurs on the specified table, either BEFORE or AFTER the action itself is performed.
So, BEFORE executes the SQL statements before the action is applied to the table,
while AFTER executes the SQL statements after the action is applied to the table.

Room and Triggers
Developers asked for Google to offer first-class support for triggers back in 2017; this
request was rejected.

However, another request is still open. That could be a sign that Room might
support triggers directly in the future. Or, it could be a sign that the issue tracker
has stale issues.

Regardless, as of Room 2.4.0, there is no @Trigger annotation to teach Room about
triggers.

Instead, we have to do it the hard way.

Triggers the Hard Way
So, back in 2017, Adam McNeilly worked out the basic mechanics of setting up a
trigger, by using the onCreate() callback function on a RoomDatabase.Callback.

The Triggermodule of the book’s primary sample project demonstrates this
approach.

In this project, we have two Room-managed tables:

• randomStuff, containing some random entities that we insert
• countOfRandomStuff, which contains the count of the number of entities in
randomStuff, that for some strange reason we want to store in a separate
table

TRIGGERS

244

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://issuetracker.google.com/issues/67764628
https://issuetracker.google.com/issues/67764628
https://issuetracker.google.com/issues/64591115
https://gist.github.com/AdamMc331/5d48220875ce6b8bf0a0c0396ec8a0c0
https://gist.github.com/AdamMc331/5d48220875ce6b8bf0a0c0396ec8a0c0
https://gitlab.com/commonsguy/cw-room/tree/master/Trigger
https://gitlab.com/commonsguy/cw-room/tree/master/Trigger
https://gitlab.com/commonsguy/cw-room

To keep countOfRandomStuff up to date with respect to entities being inserted into
randomStuff, we could use the following trigger:

CREATECREATE TRIGGERTRIGGER updateCount AFTERAFTER INSERTINSERT ONON randomStuff
BEGINBEGIN
UPDATEUPDATE countOfRandomStuff SETSET countcount = (SELECTSELECT COUNTCOUNT(*) FROMFROM randomStuff);
ENDEND;

(in principle, we also need an AFTER DELETE trigger, but since this sample app never
deletes data from randomStuff, we can skip it)

The UPDATE countOfRandomStuff statement will update after one or more rows are
inserted into randomStuff. The UPDATE countOfRandomStuff statement updates all
of its rows to have a count column reflect the count of rows in randomStuff. As it
turns out, we will only have one row in that countOfRandomStuff table.

We set up countOfRandomStuff using a Room @Entity:

packagepackage com.commonsware.room.triggercom.commonsware.room.trigger

importimport androidx.room.Daoandroidx.room.Dao
importimport androidx.room.Entityandroidx.room.Entity
importimport androidx.room.PrimaryKeyandroidx.room.PrimaryKey
importimport androidx.room.Queryandroidx.room.Query

@Entity(tableName = "countOfRandomStuff")
data classdata class CountEntityCountEntity(
@PrimaryKey(autoGenerate = truetrue) valval id: LongLong,
valval count: IntInt
) {
@Dao
interfaceinterface StoreStore {
@Query("SELECT count FROM countOfRandomStuff LIMIT 1")
suspendsuspend funfun getCurrent(): IntInt
}
}

(from Trigger/src/main/java/com/commonsware/room/trigger/CountEntity.kt)

That CountEntity also has a nested DAO interface, describing a getCurrent()
function that will return the count value for the first row in the countOfRandomStuff
table.

RandomDatabase not only hooks up both the CountEntity and the RandomEntity
(that defines the randomStuff table), but it also does some extra work when the

TRIGGERS

245

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/Trigger/src/main/java/com/commonsware/room/trigger/CountEntity.kt

database is created:

packagepackage com.commonsware.room.triggercom.commonsware.room.trigger

importimport android.content.Contextandroid.content.Context
importimport androidx.room.Databaseandroidx.room.Database
importimport androidx.room.Roomandroidx.room.Room
importimport androidx.room.RoomDatabaseandroidx.room.RoomDatabase
importimport androidx.room.TypeConvertersandroidx.room.TypeConverters
importimport androidx.sqlite.db.SupportSQLiteDatabaseandroidx.sqlite.db.SupportSQLiteDatabase

privateprivate constconst valval DB_NAME = "random.db"

@Database(entities = [RandomEntityRandomEntity::classclass, CountEntityCountEntity::classclass], version = 1)
@TypeConverters(TypeTransmogrifierTypeTransmogrifier::classclass)
abstractabstract classclass RandomDatabaseRandomDatabase : RoomDatabaseRoomDatabase() {
abstractabstract funfun randomStore(): RandomStoreRandomStore
abstractabstract funfun countStore(): CountEntityCountEntity.StoreStore

companioncompanion objectobject {
funfun newInstance(context: ContextContext) =
RoomRoom.databaseBuilder(context, RandomDatabaseRandomDatabase::classclass.java, DB_NAMEDB_NAME)
.addCallback(objectobject : RoomDatabaseRoomDatabase.CallbackCallback() {
overrideoverride funfun onCreate(db: SupportSQLiteDatabaseSupportSQLiteDatabase) {
supersuper.onCreate(db)

db.execSQL("INSERT INTO countOfRandomStuff (count) VALUES (0);")
db.execSQL(
"""

CREATE TRIGGER updateCount AFTER INSERT ON randomStuff
BEGIN
UPDATE countOfRandomStuff SET count = (SELECT COUNT(*) FROM randomStuff);
END;
""".trimIndent()

)
}
})
.build()

}
}

(from Trigger/src/main/java/com/commonsware/room/trigger/RandomDatabase.kt)

We use addCallback() and a RoomDatabase.Callback object to get control when the
database is created, via onCreate(). In there, we do two things:

1. Insert a single row into countOfRandomStuff, so our trigger always has a row

TRIGGERS

246

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/Trigger/src/main/java/com/commonsware/room/trigger/RandomDatabase.kt

to update; and
2. Executes the CREATE TRIGGER shown earlier in this chapter, to define our

trigger

Now, every time that we insert rows into randomStuff, countOfRandomStuff will get
updated. We can access the countOfRandomStuff data via CountEntity and its DAO,
just like any other Room-managed table. That is because countOfRandomStuff is a
Room-managed table, just one whose contents are set up via the onCreate()
callback and the trigger, rather than via calls on the DAO itself.

TRIGGERS

247

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

What’s New in Room?

Room keeps changing, adding in new features with every major and minor release.
This chapter highlights some of those changes.

Version 2.3.x
April 2021 saw the release of 2.3.0. As of late October 2021, no new patch releases
have been required.

2.3.0 gave us a bunch of improvements, particularly around type and column
management.

Enum Support

Historically, if your @Entity had a property that was some enum class, you needed
to write a type converter to convert that enum to and from something else, such as
an Int or String. That is still an option.

However, Room 2.3.0 added automatic conversion of an enum class value to and
from its String representation. So, now you can use an enum without a
@TypeConverter pair:

packagepackage com.commonsware.room.misccom.commonsware.room.misc

importimport androidx.room.*androidx.room.*

enumenum classclass SillySilly { FirstFirst, SecondSecond, ThirdThird }

@Entity(tableName = "autoEnum")
data classdata class AutoEnumEntityAutoEnumEntity(

249

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

@PrimaryKey(autoGenerate = truetrue)
varvar id: LongLong,
varvar silly: SillySilly
) {
@Dao
abstractabstract classclass StoreStore {
@Query("SELECT * FROM autoEnum")
abstractabstract funfun loadAll(): ListList<AutoEnumEntityAutoEnumEntity>

@Query("SELECT * FROM autoEnum WHERE id = :id")
abstractabstract funfun findById(id: IntInt): AutoEnumEntityAutoEnumEntity

funfun insert(entity: AutoEnumEntityAutoEnumEntity): AutoEnumEntityAutoEnumEntity {
entity.id = _insert(entity)

returnreturn entity
}

@Insert
abstractabstract funfun _insert(entity: AutoEnumEntityAutoEnumEntity): LongLong
}
}

(from MiscSamples/src/main/java/com/commonsware/room/misc/AutoEnumEntity.kt)

In this case, our silly column is declared as TEXT in the generated SQL:

CREATECREATE TABLETABLE IF NOTNOT EXISTSEXISTS `autoEnum` (`id` INTEGER PRIMARYPRIMARY KEYKEY AUTOINCREMENT NOTNOT
NULLNULL, `silly` TEXT NOTNOT NULLNULL)

Part of what Room code-generates for us are functions to convert the enum class
values to String representations and back:

privateprivate StringString __Silly_enumToString(finalfinal SillySilly _value) {
ifif (_value == nullnull) {
returnreturn nullnull;
} switch (_value) {
case FirstFirst: returnreturn "First";
case SecondSecond: returnreturn "Second";
case ThirdThird: returnreturn "Third";
default: throwthrow new IllegalArgumentExceptionIllegalArgumentException("Can't convert enum to string,

unknown enum value: " + _value);
}
}

privateprivate SillySilly __Silly_stringToEnum(finalfinal StringString _value) {
ifif (_value == nullnull) {

WHAT’S NEW IN ROOM?

250

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-room/blob/vFINAL/MiscSamples/src/main/java/com/commonsware/room/misc/AutoEnumEntity.kt

returnreturn nullnull;
} switch (_value) {
case "First": returnreturn SillySilly.FirstFirst;
case "Second": returnreturn SillySilly.SecondSecond;
case "Third": returnreturn SillySilly.ThirdThird;
default: throwthrow new IllegalArgumentExceptionIllegalArgumentException("Can't convert value to enum,

unknown value: " + _value);
}
}

Room then uses those functions as if they were a custom @TypeConverter, to convert
our enum class values to and from a String representation to put in the TEXT
column.

Type Converter Improvements

The @TypeConverter annotation is a useful way to get Room to recognize types that
it otherwise could not handle. However, @TypeConverter had been fairly inflexible:
you had to implement the functions on a class, where Room would instantiate that
class as needed.

Room 2.3.0 improves the flexibility in this area.

The simple improvement is that now you can have @TypeConverter annotations on
an object, saving Room the need to instantiate the class.

The more complex improvement is in a new @ProvidedTypeConverter annotation.
This is for cases where you are happy to have the @TypeConverter functions be on a
class, but you want to be in charge of creating the object for that class. One popular
case is where you want to use a dependency inversion framework (Dagger/Hilt,
Koin, etc.) — for example, perhaps you are providing a JSON converter via DI and
need to inject the converter into an object that will use that converter for
@TypeConverter functions.

To make this work, you write a class to house your @TypeConverter functions as
normal. However, now you can add a constructor on that class or otherwise
configure it as you see fit. You do, however, also have to add
@ProvidedTypeConverter as a class-level annotation:

@ProvidedTypeConverter
classclass SomeValueTypeConverterSomeValueTypeConverter(privateprivate valval adapter: JsonAdapterJsonAdapter<SomeValueTypeSomeValueType>) {
@TypeConverter
funfun someValueFromJson(json: StringString) = adapter.fromJson(json)

WHAT’S NEW IN ROOM?

251

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

@TypeConverter
funfun someValueToJson(value: SomeValueTypeSomeValueType) = adapter.toJson(value)
}

Here, we have a SomeValue type (not shown here) and an injected Moshi adapter for
that type. The @TypeConverter-annotated functions simply delegate to Moshi.

@ProvidedTypeConverter tells Room to allow classes without a public zero-
argument constructor. However, the cost is in the second step: you need to supply
the instance of your @ProvidedTypeConverter class to the RoomDatabase.Builder,
via an addTypeConverter() call:

classclass YourRepositoryYourRepository(privateprivate valval someValueTypeAdapter: JsonAdapterJsonAdapter<SomeValueTypeSomeValueType>) {
valval db = RoomRoom.databaseBuilder(context, YourDatabaseYourDatabase::classclass.java, DB_NAMEDB_NAME)
.addTypeConverter(SomeValueTypeConverterSomeValueTypeConverter(someValueTypeAdapter))
.build()

}

The name of the annotation explains the rule: by using @ProvidedTypeConverter,
you have more flexibility, but you have the corresponding responsibility to provide
the instance of the type converter to the RoomDatabase.

Packaged Databases Improvements

As we have seen, you can package a database with your app, so you have starter data
immediately when the app is first opened. Room 2.3.0 makes a couple of
improvements in this area.

In addition to using databases packaged as assets — as the chapter on packaged
databases focuses on — you can use the same technique to populate your database
from a file, using createFromFile() instead of createFromAsset(). This, however,
requires a File object, and those are more difficult to come by given the “scoped
storage” added to Android 10. Room 2.3.0 now gives us createFromInputStream(),
so we can get our starter database from a InputStream, such as one that we might
get from openInputStream() on a ContentResolver using a Uri.

Also, these create...() functions now have a variant that takes an additional
RoomDatabase.PrepackagedDatabaseCallback object (whose name makes the
author very grateful for auto-completion in modern IDEs…). This will be called with
onOpenPrepackagedDatabase() after the data source has been copied and the Room
database is set up. That way, if you need to do some cleanup (e.g., delete a

WHAT’S NEW IN ROOM?

252

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://github.com/square/moshi

downloaded file from getCacheDir()), you know it is safe to do so.

@RewriteQueriesToDropUnusedColumns@RewriteQueriesToDropUnusedColumns

Using * in a @Query SQL SELECT statement is easy. However, by default, Room is not
very sophisticated about using it. Room will happily retrieve all the columns
available to it from your table, even if your entity or other output object only uses a
few of those columns. Plus, you will get a compile-time warning from Room about
the inefficiency. It is more efficient to have your SELECT list the exact columns that
you need, but this gets tedious to keep in sync with your output object structures.

Adding @RewriteQueriesToDropUnusedColumns to your @Query-annotated function
tells Room to try to handle this automatically. The Room compiler will replace your
* with the column names that are needed in the SQL that it actually executes. That
way, you get the convenience of * and the efficiency of only querying for the needed
columns. You can also add @RewriteQueriesToDropUnusedColumns to the entire @Dao
class or interface, to have it apply to all @Query functions.

Paging 3 Support

If you are using Paging 3 — the now-latest generation of the Jetpack Paging
framework — Room will now let you set up DAO functions that support it. The
chapter on paging has been updated to show Paging 3.

RoomDatabase.QueryCallbackRoomDatabase.QueryCallback

For logging purposes, it might be useful to learn when Room executes some SQL.
For that, you can call setQueryCallback() on your RoomDatabase.Builder when you
are setting up Room. This function takes a RoomDatabase.QueryCallback object,
which has a single onQuery() function — this makes it easy to be replaced by a
lambda expression in Java or Kotlin. There, you get a String of the SQL to be
executed and a List of the objects to be bound as replacements for ?-style
placeholders in that SQL.

Do be careful, though, about your logging, as the bind objects may contain data that
should be considered private. Consider only logging in debug builds.

RxJava 3 Support

Not everybody realizes this, but RxJava 2.x is end-of-life: other than some bug fixes,

WHAT’S NEW IN ROOM?

253

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

no new updates are planned for that. The RxJava team has moved on to RxJava 3,
which has a similar API to RxJava 2.x but not quite identical.

Previously, Room supported other reactive options — LiveData, RxJava 2.x,
coroutines — but not RxJava 3. Now, using androidx.room:room-rxjava3, you can
use RxJava 3 types in your Room DAO functions, if you so choose.

WHAT’S NEW IN ROOM?

254

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

	Table of Contents
	Preface
	The Book’s Prerequisites
	Source Code and Its License
	Acknowledgments

	Room Basics
	Wrenching Relations Into Objects
	Room Requirements
	Room Furnishings
	Entities
	DAO
	Database

	Get a Room
	Testing Room
	Writing Instrumented Tests
	Using In-Memory Databases
	The Test Functions

	The Dao of Entities
	Configuring Entities
	Primary Keys
	Auto-Generated Primary Keys
	Composite Primary Keys

	Adding Indexes
	Ignoring Properties
	Custom Column Names
	Other @ColumnInfo Options
	Collation
	Type Affinity
	Default Values

	DAOs and Queries
	Adding Parameters
	WHERE Clause
	Other Clauses

	What You Can Return
	Returning Cursor
	Non-Entity Results
	Reactive Return Types

	Aggregate Functions

	Dynamic Queries
	query()
	@RawQuery

	Other DAO Operations
	Parameters
	Return Values
	Conflict Resolution
	Other Operations

	Transactions and Room
	Using @Transaction
	Custom Functions
	On @Query Functions

	Using RoomDatabase

	Room and Custom Types
	Type Converters
	Setting Up a Type Converter
	Example: Dates and Times
	Example: Locations
	Example: Simple Collections

	Embedded Types
	Example: Locations
	Simple vs. Prefixed

	Room and Reactive Frameworks
	Room and the Main Application Thread
	Room and LiveData
	Benefits of LiveData
	Issues with LiveData

	Room and Coroutines
	suspend
	Flow
	Benefits of Coroutines
	Issues with Coroutines

	Room and RxJava
	Benefits of RxJava
	Issues with RxJava

	Observable Queries
	Room and ListenableFuture
	Where Synchronous Room is Safe
	Being Evil

	Relations in Room
	The Classic ORM Approach
	A History of Threading Mistakes
	The Room Approach
	One-to-Many Relations
	Configuring the Foreign Key
	Cascades on Updates and Deletes
	Retrieving the Related Entities
	Representing No Relation

	Many-to-Many Relations
	Declaring the Join Table
	Retrieving the Related Entities

	Room Entities as DTOs

	The Support Database API
	“Can’t You See That This is a Facade?”
	Requery
	SQLCipher for Android
	SQLDelight

	When Will We Use This?
	Configuring Room’s Database Access
	Get a Factory
	Add a Callback

	Database Migrations
	What’s a Migration?
	When Do We Migrate?
	But First, a Word About Exporting Schemas
	Writing Migrations
	Employing Migrations
	How Room Applies Migrations
	Testing Migrations
	Adding the Artifact
	Adding the Schemas
	Creating a MigrationTestHelper
	Creating a Database for a Schema Version
	Testing a Migration

	Polymorphic Entities
	Polymorphism With Separate Tables
	Can I JOIN a UNION?

	Polymorphism With a Single Table

	Default Values and Partial Entities
	Default Values, and the Other Default Values
	Default Values and Inserts
	Partial Entities

	Room and Full-Text Search
	What Is FTS?
	A Word About SQLite Versions
	FTS3, FTS4, and FTS5

	Applying FTS to Room
	Creating the FTS Table and Entity
	Querying Using FTS
	Getting Snippets
	Populating the Database
	Dealing With Errors
	Why Are We Bothering?

	Supported MATCH Syntax
	Migrating to FTS

	Room and Conflict Resolution
	Abort
	What SQLite Does
	Effects in Room

	Fail
	What SQLite Does
	Effects in Room

	Ignore
	What SQLite Does
	Effects in Room

	Replace
	What SQLite Does
	Effects in Room

	Rollback
	What SQLite Does
	Effects in Room

	What Should You Use with Room?

	A Room With a View
	Defining a View
	Registering the View
	Querying a View
	OK, Why Bother?

	Room and PRAGMAs
	When To Make Changes
	Example: Turbo Boost Mode

	Packaged Databases
	Going Back In Time
	The Room Mechanics
	Creating the Database Asset
	Build In Android
	Build By Hand
	Build By Script

	Dealing With Metadata and Upgrades
	Hybrid Data
	One Database
	Separate Databases
	Attached Databases

	Backing Up Your Room
	Backup and Restore. Or, Import and Export.
	Choosing a Storage Target
	Thinking About Journal Modes
	Keeping It Closed
	Import and Export Mechanics
	The createFromFile() Alternative

	SQLite Clients
	Database Inspector
	Getting To Your Database
	Seeing the Schema
	Performing Operations
	Using Your DAO
	Updating the Output
	Updating the App

	DB Browser for SQLite
	Copying Your Database
	Basic Database Operations

	Flipper
	Adding Dependencies
	Configuring Flipper for Database Debugging
	Obtaining and Using the Desktop App

	SQLCipher for Android
	Introducing SQLCipher for Android
	But First, A To-Do Reminder
	The Entity, the Model, and the Store
	The Database and the Transmogrifier
	The Repository

	The Basics of SQLCipher for Android
	Adding the Dependency
	Creating and Applying the Factory
	Using the Database
	Using the Database… Outside the App

	The Costs of SQLCipher for Android
	APK Size
	Runtime Performance
	Complexity

	SQLCipher and Passphrases
	Generating a Passphrase
	Creating the Passphrase
	Safely Storing the Passphrase
	Using the Generated Passphrase
	Pros and Cons

	Collecting a Passphrase
	Adding a Passphrase Field
	Detecting We Need a Passphrase
	Applying the Passphrase
	Creating and Opening the Database
	Pros and Cons

	Multi-Factor Authentication
	The Risks of String

	Managing SQLCipher
	Backup and Restore
	Exporting a Plaintext Database
	Examining the Utility Function
	Using the Utility Function

	Importing a Plaintext Database
	Detecting Plaintext
	Examining the Utility Function
	Using the Utility Function

	About That language Comment

	Migrating to Encryption

	Paged Room Queries
	The Problem: Too Much Data
	Addressing the UX
	Enter the Paging Library
	Paging and Room
	The Dependency
	The DAO
	The ViewModels
	The PagingDataAdapter
	The Fragments

	Room Across Processes
	Room and Invalidation Tracking
	Invalidation Tracking and Processes
	Introducing enableMultiInstanceInvalidation()
	In One Process, an Activity
	In Another Process, a Service
	Results, Before and After

	Triggers
	Trigger Basics
	Room and Triggers
	Triggers the Hard Way

	What’s New in Room?
	Version 2.3.x
	Enum Support
	Type Converter Improvements
	Packaged Databases Improvements
	@RewriteQueriesToDropUnusedColumns
	Paging 3 Support
	RoomDatabase.QueryCallback
	RxJava 3 Support

