

Elements of Android R

by Mark L. Murphy

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Elements of Android R
by Mark L. Murphy

Copyright © 2020 CommonsWare, LLC. All Rights Reserved.
Printed in the United States of America.

Printing History:
November 2020: FINAL Version

The CommonsWare name and logo, “Busy Coder's Guide”, and related trade dress are trademarks of CommonsWare,
LLC.

All other trademarks referenced in this book are trademarks of their respective firms.

The publisher and author(s) assume no responsibility for errors or omissions or for damages resulting from the use of the
information contained herein.

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Table of Contents
Headings formatted in bold-italic have changed since the last version.

• Preface
◦ The Book’s Prerequisites ... iii
◦ What’s New in the Final Version? ... iii
◦ Warescription ... iv
◦ Source Code and Its License ... v
◦ Creative Commons and the Four-to-Free (42F) Guarantee v
◦ Acknowledgments ... v

• Storage Shifts
◦ Recapping What Happened in Android 10 .. 1
◦ Let’s Do the Time Warp .. 2
◦ Extending the Opt-Out ... 3
◦ Raw Paths Support .. 3
◦ Hey, What About Writing? .. 8
◦ SAF Restrictions .. 8
◦ “All Files Access” ... 13

• MediaStore Modifications
◦ Recapping What We Got in Android 10 .. 17
◦ Getting the Right Uri ... 19
◦ Batched Access ... 19

• Permission Permutations
◦ One-Time Permissions .. 28
◦ Multiple Rejections = Denial .. 30
◦ Background Location Changes ... 32
◦ Automatic Permission Removal ... 38

• Auditing Alternatives
◦ Data Access Auditing ... 41
◦ Application Exits ... 46

• Package Visibility
◦ The Way Things Were ... 53
◦ Social Distancing for Apps .. 54
◦ Whitelisting ... 54
◦ Escaping the Sandbox ... 57
◦ Effects and Ramifications .. 58
◦ So… Why Bother? .. 61
◦ Logging What Was Filtered .. 61

i

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

• Sharing UIs
◦ UI Embedding: The Classic Approaches .. 63
◦ What Android 11 Offers .. 64
◦ How to Share ... 64
◦ Enabling Input ... 74

• Conversations and Bubbles
◦ From “Chat Heads” to Bubbles ... 76
◦ The Basics of Conversations ... 77
◦ The Basics of Bubbles ... 80

• Security Stuff
◦ New Foreground Service Types ... 87
◦ BiometricPrompt and Weak Biometrics ... 88
◦ Toast Restrictions .. 91
◦ Further CA Certificate Restrictions .. 91

• Device Controls
◦ The High-Level View ... 93
◦ Elements of a Control Tile .. 97
◦ Flow… But Not That Flow ... 99
◦ Taking Control of the Situation .. 100
◦ Other APIs ... 114

• Other Changes of Note
◦ Stuff That Might Break You ... 117
◦ Stuff That Might Interest You .. 122

ii

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Preface

Thanks!

Thanks for your continued interest in Android! Android advances year after year,
and 2020’s Android 11 (R) continues that pattern. Many developers ignore new
Android versions until some concrete problem causes them grief. Hopefully, you are
reading this in advance of when Android 11 ships to lots of devices, so you can head
off any problems before they turn into customer complaints.

(on the other hand, if you are reading this in response to Android 11 customer
complaints… sorry!)

And thanks for your interest in this book and CommonsWare’s overall line of
Android books!

The Book’s Prerequisites
This book is designed for developers with 1+ years of Android app development
experience. If you are fairly new to Android, please consider reading Elements of
Android Jetpack, Exploring Android, or both, before continuing with this book.

Also note that this book’s examples are written in Kotlin.

What’s New in the Final Version?
This book is almost unchanged from the previous version.

iii

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://commonsware.com/Jetpack
https://commonsware.com/Jetpack
https://commonsware.com/AndExplore

Warescription
If you purchased the Warescription, read on! If you obtained this book from other
channels, feel free to jump ahead.

The Warescription entitles you, for the duration of your subscription, to digital
editions of this book and its updates, in PDF, EPUB, and Kindle (MOBI/KF8)
formats, plus the ability to read the book online at the Warescription Web site. You
also have access to other books that CommonsWare publishes during that
subscription period.

Each subscriber gets personalized editions of all editions of each title. That way,
your books are never out of date for long, and you can take advantage of new
material as it is made available.

However, you can only download the books while you have an active Warescription.
There is a grace period after your Warescription ends: you can still download the
book until the next book update comes out after your Warescription ends. After
that, you can no longer download the book. Hence, please download your
updates as they come out. You can find out when new releases of this book are
available via:

1. The CommonsBlog
2. The CommonsWare Twitter feed
3. Opting into emails announcing each book release — log into the

Warescription site and choose Configure from the nav bar
4. Just check back on the Warescription site every month or two

Subscribers also have access to other benefits, including:

• “Office hours” — online chats to help you get answers to your Android
application development questions. You will find a calendar for these on
your Warescription page.

• A Stack Overflow “bump” service, to get additional attention for a question
that you have posted there that does not have an adequate answer.

• A discussion board for asking arbitrary questions about Android app
development.

PREFACE

iv

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://wares.commonsware.com/
https://commonsware.com/blog
http://twitter.com/CommonsWare
https://wares.commonsware.com/
https://wares.commonsware.com/

Source Code and Its License
The source code in this book is licensed under the Apache 2.0 License, in case you
have the desire to reuse any of it.

Copying source code directly from the book, in the PDF editions, works best with
Adobe Reader, though it may also work with other PDF viewers. Some PDF viewers,
for reasons that remain unclear, foul up copying the source code to the clipboard
when it is selected.

Creative Commons and the Four-to-Free (42F)
Guarantee
Each CommonsWare book edition will be available for use under the Creative
Commons Attribution-Noncommercial-ShareAlike 3.0 license as of the fourth
anniversary of its publication date, or when 4,000 copies of the edition have been
sold, whichever comes first. That means that, once four years have elapsed (perhaps
sooner!), you can use this prose for non-commercial purposes. That is our Four-to-
Free Guarantee to our readers and the broader community. For the purposes of this
guarantee, new Warescriptions and renewals will be counted as sales of this edition,
starting from the time the edition is published.

This edition of this book will be available under the aforementioned Creative
Commons license on 1 November 2024. Of course, watch the CommonsWare Web
site, as this edition might be relicensed sooner based on sales.

For more details on the Creative Commons Attribution-Noncommercial-ShareAlike
3.0 license, visit the Creative Commons Web site

Note that future editions of this book will become free on later dates, each four years
from the publication of that edition or based on sales of that specific edition.
Releasing one edition under the Creative Commons license does not automatically
release all editions under that license.

Acknowledgments
The author would like to thank the Google team responsible for Android 11.

PREFACE

v

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

http://www.apache.org/licenses/LICENSE-2.0.html
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Storage Shifts

Android 10 introduced what Google calls “scoped storage” and what the author of
this book called “the death of external storage”.

Android 11 tweaks scoped storage some more, improving things in some areas and
causing new and exciting challenges in others.

Recapping What Happened in Android 10
Before we dive into the Android 11 changes to scoped storage, let’s quickly review
what happened in Android 10.

You can learn more about scoped storage in Android 10 in the
"The Death of External Storage" chapter of Elements of Android Q!

Limited Filesystem Access

While apps can still use getExternalFilesDir() and other methods on Context to
work with external and removable storage, everything else has been blocked.
Notably, the methods on Environment like getExternalStorageDirectory() and
getExternalStoragePublicDirectory() are deprecated. And, if you try to use those
directories, you will find that your app lacks access, even if you hold
READ_EXTERNAL_STORAGE and/or WRITE_EXTERNAL_STORAGE.

Roughly speaking, there are three alternatives for addressing this limitation.

1

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://commonsware.com/Q

Alternative #1: Storage Access Framework

For general-purpose content, Google expects you to use the Storage Access
Framework:

• ACTION_OPEN_DOCUMENT to have the user choose a piece of content
• ACTION_CREATE_DOCUMENT to create a new piece of content in a user-chosen

location
• ACTION_OPEN_DOCUMENT_TREE to have the user choose a “document tree” (e.g.,

a directory) that you can then use for reading and writing

The actual mechanics of the Storage Access Framework did not change in Android
10, merely its importance.

Alternative #2: MediaStoreMediaStore

For apps that work with media and wish to place content in common media
locations, MediaStore is still an option. However, the behavior of MediaStore
changed some in Android 10 and again in Android 11 — we will explore that more in
the next chapter.

Alternative #3: Opt Out of the Change

You could add android:requestLegacyExternalStorage="true" to the
<application> element in the manifest to say that you want the “legacy” storage
model. In other words, android:requestLegacyExternalStorage="true" has your
app running on Android 10 behave much as it would on Android 9.

Alternatively, simply having a targetSdkVersion below 29 would give you the same
effect.

Let’s Do the Time Warp
Back when Android 10 was still Android Q, we were told that
android:requestLegacyExternalStorage="true" would no longer work once we
raised targetSdkVersion to 29.

Somewhere along the line, Google rescinded that, and the author of this book
missed that change.

STORAGE SHIFTS

2

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

It appears that in the final release of Android 10, Google allowed
android:requestLegacyExternalStorage="true" regardless of targetSdkVersion.

Since Android 11 also honors it — at least until you reach targetSdkVersion 30 —
this gives you a bit more time to adapt to scoped storage.

Extending the Opt-Out
Android 11 also offers android:preserveLegacyExternalStorage="true". This says:

• For users who upgrade the app, opt out of scoped storage
• For users who freshly install the app, use scoped storage as normal

There is no timetable given for if and when
android:preserveLegacyExternalStorage might no longer be honored, though the
documentation states:

Note that this may not always be respected due to policy or backwards
compatibility reasons.

Also, it means that different users of the same app version will get different storage
behavior, depending on how the user got that app version (fresh install vs. upgrade).

And, of course, since this is new to Android 11, this should have no effect on Android
10 devices.

Given all of that, this seems like an attribute to avoid.

Raw Paths Support
However, even without the opt-out, READ_EXTERNAL_STORAGE works again, more or
less as it did from Android 4.4 through Android 9. If you request it, and the user
grants it, you can traverse external storage as you were used to.

However, there are major caveats:

• You still do not have access to Android/ and its subdirectories. We will see
this limitation again with the Storage Access Framework. Google now
considers those per-app external storage directories to be private.

• You still do not have read access to certain other locations, such as

STORAGE SHIFTS

3

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Documents/ and Downloads/. Basically, if it is controlled by MediaStore, and
you lack read access through MediaStore, you also lack read access through
raw paths.

• Removable storage does not appear to be supported by this “raw paths”
feature.

• The documentation mentions reduced performance. This does not appear to
be severe, but it may pose issues for performance-sensitive apps.

Note that while the documentation emphasizes native libraries, read access works
fine from Java/Kotlin.

Also, methods like getExternalStorageDirectory() and
getExternalStoragePublicDirectory() on Environment are still deprecated.
Instead, we are supposed to use getDirectory() on StorageVolume, which is new to
Android 11. As the names suggest, this gives us the root directory for a particular
storage volume, whether that is external storage or some removable storage device.

The RawPaths sample module in the book’s sample project is designed to
demonstrate the behavior of READ_EXTERNAL_STORAGE across a variety of build
scenarios. There are five product flavors, with varying configurations:

Flavor targetSdkVersiontargetSdkVersion requestLegacyExternalStoragerequestLegacyExternalStorage

alfa 28 true

bravo 29 true

charlie 29 false

delta 30 true

echo 30 false

STORAGE SHIFTS

4

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/tree/master/RawPaths
https://gitlab.com/commonsguy/cw-android-r/tree/master/RawPaths
https://gitlab.com/commonsguy/cw-android-r

The UI is a crude file explorer. It shows you a list of files and directories for a
particular location, starting with some root:

Figure 1: RawPaths, Echo Build, Running on Android 11 DP2

STORAGE SHIFTS

5

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

The “SD card” toolbar button will display a checkable submenu with the available
storage volumes:

Figure 2: RawPaths, Echo Build, Showing Storage Volume Submenu

If you switch to a different storage volume, that volume’s root directory will be
loaded into the list.

Tapping on a file, by default, will bring up a Toast showing the CRC32 checksum of
the file, used to prove that we have read access to the file’s contents. Tapping on a
directory will load that directory’s contents into the list. However, this is a fairly
simplistic file explorer, so there is no way to traverse up the directory tree to get back
to a root.

Before loading any of this content, though, MainActivity will request the
READ_EXTERNAL_STORAGE permission.

Our viewmodel, MainMotor, gets the roster of StorageVolume objects from the
StorageManager system service:

valval volumes: ListList<StorageVolumeStorageVolume> =
context.getSystemService(StorageManagerStorageManager::classclass.java)!!.storageVolumes

STORAGE SHIFTS

6

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

(from RawPaths/src/main/java/com/commonsware/android/r/rawpaths/MainMotor.kt)

MainActivity uses that list to build up the submenu contents. If the user taps on
one, MainActivity calls a loadRoot() function on MainMotor. If the app is running
on Android 11, that in turn gets the selected StorageVolume out of that list and
retrieves its directory. On older devices, we just use the deprecated
Environment.getExternalStorageDirectory() option instead:

funfun loadRoot(volumeIndex: IntInt = 0) {
ifif (BuildBuild.VERSIONVERSION.SDK_INTSDK_INT < 30) {

load(EnvironmentEnvironment.getExternalStorageDirectory())
} elseelse {

load(volumes[volumeIndex].directory!!)
}

}

(from RawPaths/src/main/java/com/commonsware/android/r/rawpaths/MainMotor.kt)

That directory is then used by the load() function to get the directory’s contents
and calculate the CRC32 checksums for all files in the directory:

funfun load(dir: FileFile) {
_states.postValue(MainViewStateMainViewState.LoadingLoading)

viewModelScope.launch(DispatchersDispatchers.IOIO) {
trytry {

valval items = dir.listFiles().orEmpty()
.sortedBy { it.name }
.map { file ->

ifif (file.isDirectory) {
FileItemFileItem(file, isDirectory = truetrue)

} elseelse {
FileItemFileItem(file,

crc32 = CRC32CRC32().let { crc ->
crc.update(file.readBytes())
crc.value

})
}

}

_states.postValue(MainViewStateMainViewState.ContentContent(items))
} catchcatch (t: ThrowableThrowable) {

LogLog.e("RawPaths", "Exception loading $dir", t)
_states.postValue(MainViewStateMainViewState.ErrorError)

}
}

}

STORAGE SHIFTS

7

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/RawPaths/src/main/java/com/commonsware/android/r/rawpaths/MainMotor.kt
https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/RawPaths/src/main/java/com/commonsware/android/r/rawpaths/MainMotor.kt

(from RawPaths/src/main/java/com/commonsware/android/r/rawpaths/MainMotor.kt)

What you will find is:

• On Android 11, both delta and echo behave the same. delta requests the
scoped storage opt-out (android:requestLegacyExternalStorage="true"),
while echo does not. Yet, with READ_EXTERNAL_STORAGE, we can still access
the contents of external storage, though apparently not removable storage
and the other restricted locations noted above.

• On Android 10, android:requestLegacyExternalStorage has a clear effect.
If you use it (bravo), READ_EXTERNAL_STORAGE works, even though we have
targetSdkVersion set to 29. If you do not use it (charlie), even if the user
grants READ_EXTERNAL_STORAGE, you do not have filesystem access to external
storage.

• On Android 9, before all of these changes took effect,
READ_EXTERNAL_STORAGE works normally.

Hey, What About Writing?
You have write access to certain raw paths… even without WRITE_EXTERNAL_STORAGE.

However, the exact list of these locations is undocumented. As such, these locations
are unreliable — device manufacturers might elect to change the behavior here.

But, based on experiments and some Google comments you should be able to write
to:

• Download/
• DCIM/
• Movies/
• Music/

…and perhaps others.

SAF Restrictions
Since the beginning, the Storage Access Framework has been billed as the way for
the app to get access to whatever content the user wants to work with.

In Android 11, that is no longer the case, as the OS will prevent the user from

STORAGE SHIFTS

8

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/RawPaths/src/main/java/com/commonsware/android/r/rawpaths/MainMotor.kt
https://issuetracker.google.com/issues/154750665#comment8

accessing the user’s content in scenarios that Google does not like.

ACTION_OPEN_DOCUMENT_TREEACTION_OPEN_DOCUMENT_TREE

In the Android 11 version of this UI, the user can navigate into a directory and click a
“Use this folder” button at the bottom to choose it:

Figure 3: SAF UI, Showing “Use this folder” Button

However, that button will be grayed out in some situations.

STORAGE SHIFTS

9

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Overall External Storage Root

The user cannot grant an app rights to work with the root of external storage,
precluding apps from placing new directories there:

Figure 4: SAF UI, Showing Disabled “Use this folder” Button for External Storage
Root

STORAGE SHIFTS

10

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Download/Download/

The same holds true for Download/:

Figure 5: SAF UI, Showing Disabled “Use this folder” Button for Download/

However, if the user creates a subdirectory of Download/, such as via their USB cable
or the stock Files app, they can choose that subdirectory.

STORAGE SHIFTS

11

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Stuff in Android/Android/

While the user can choose the Android/ directory on external or removable storage,
the user cannot access anything inside of it. In the other cases, the user could see
directories that could not be selected, but in this case, the contents simply do not
show up:

Figure 6: SAF UI, Showing “Empty” Android/ Directory

The Other SAF Actions

ACTION_OPEN_DOCUMENT and ACTION_CREATE_DOCUMENT share the last restriction of
ACTION_OPEN_DOCUMENT_TREE: the user cannot choose or create a file within
getExternalFilesDir() and kin of some other app. Otherwise, these actions seem
unaffected.

Unfortunately, the ACTION_OPEN_DOCUMENT limitation means that an app’s files are
inaccessible by the user except through that app or by copying the files elsewhere
using a device-supplied file manager.

STORAGE SHIFTS

12

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

“All Files Access”
Android 11 offers an “All Files Access” capability. The idea is that if your app requests
the MANAGE_EXTERNAL_STORAGE permission, and the user grants it, that you would
have unfettered access to most of external and removable storage. There are a few
caveats:

1. MANAGE_EXTERNAL_STORAGE is not a dangerous permission. Instead, it is one
of those specialized permissions, like SYSTEM_ALERT_WINDOW, where the user
needs to go into “Special app access” area of the Settings app to grant the
permission.

2. You still do not have access to Android/data/ on external storage or any
removable volume. This limits the utility of MANAGE_EXTERNAL_STORAGE,
particularly for backup/restore apps.

3. Google hints that this permission will be restricted on the Play Store. The
result probably will be akin to select other permissions, where you have to
fill out a form and get explicit approval to use this permission. Otherwise,
your app might be banned from the Play Store. It might get banned anyway,
due to a bot, as Google’s policy violation detection bots seem to be
unreliable, to the detriment of too many app developers.

4. Google has indicated that apps cannot request this permission until 2021,
presumably because they do not have the policy violation detection bots
fully set up yet.

In the RawPaths sample module, the activity has a toolbar button with the infinity
symbol:

Figure 7: Raw Paths Infinity Toolbar Button

STORAGE SHIFTS

13

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://www.androidpolice.com/2020/07/08/android-11-apps-wont-have-full-storage-access-until-2021/

On Android 11 devices, tapping that will request the MANAGE_EXTERNAL_STORAGE
permission, by means of starting an
ACTION_MANAGE_APP_ALL_FILES_ACCESS_PERMISSION activity. This takes a Uri
pointing to your application, using the package: scheme:

ifif (item.itemId == RR.id.allAccess) {
ifif (BuildBuild.VERSIONVERSION.SDK_INTSDK_INT >= 30) {

ifif (hasAllFilesPermission()) {
ToastToast.makeText(thisthis, RR.string.already_permission, ToastToast.LENGTH_LONGLENGTH_LONG)

.show()
}

valval uri = UriUri.parse("package:${BuildConfig.APPLICATION_ID}")

startActivity(
IntentIntent(

SettingsSettings.ACTION_MANAGE_APP_ALL_FILES_ACCESS_PERMISSIONACTION_MANAGE_APP_ALL_FILES_ACCESS_PERMISSION,
uri

)
)

} elseelse {
ToastToast.makeText(thisthis, RR.string.sorry, ToastToast.LENGTH_LONGLENGTH_LONG).show()

}

(from RawPaths/src/main/java/com/commonsware/android/r/rawpaths/MainActivity.kt)

STORAGE SHIFTS

14

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/RawPaths/src/main/java/com/commonsware/android/r/rawpaths/MainActivity.kt

This will bring up a Settings screen for the user to grant you the permission:

Figure 8: All Files Access Settings Screen

If the user grants you that permission, you now have write access to external storage,
akin to what you would have with WRITE_EXTERNAL_STORAGE on Android 9 and
below. In the RawPaths app, if you have write permission, tapping on a file will make
a copy of that file in the same directory, reloading the list to show you the copy.
Without MANAGE_EXTERNAL_STORAGE, you cannot write into many directories
(though, as noted earlier, you do have write access to some locations). With
MANAGE_EXTERNAL_STORAGE, you can work with a lot more.

So, on the plus side, MANAGE_EXTERNAL_STORAGE means it is conceivable that you
could have write access, at least to external storage, on Android 11. However, that
does not help for Android 10. So, you will still need some other solution for your
Android 10 users, as there will be more of them than Android 11 users for a few years.

Detecting This Permission

In Android 11, Environment now has a pair of isExternalStorageManager() methods
that will tell you if you hold MANAGE_EXTERNAL_STORAGE.

STORAGE SHIFTS

15

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

In theory, the zero-parameter isExternalStorageManager() would tell you if you
can manage external storage, and the one-parameter isExternalStorageManager()
would tell you if you can manage the storage volume containing the supplied File.
In practice, the user seems to only be able to grant MANAGE_EXTERNAL_STORAGE
device-wide, so it is unclear if there is a practical difference between the two.

STORAGE SHIFTS

16

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

MediaStoreMediaStore Modifications

In addition to the Storage Access Framework, Google has been pushing developers
towards MediaStore more. In Android 10, that became fairly important, due to the
restrictions placed on external and removable storage. Android 11 changes things
again, mostly improving Android’s behavior in some key areas related to
MediaStore.

Recapping What We Got in Android 10
As we did with storage, let’s first review what changed in Android 10, as some
developers are still coming to grips with those changes.

You can learn more about MediaStore in Android 10 in the "Using
MediaStore" chapter of Elements of Android Q!

Limited Access

The big thing is that, by default, you have limited access to the contents of
MediaStore. Specifically, by default, you can only see the content that your app has
added to the MediaStore.

To be able to query and retrieve content created by other apps, you need to hold
READ_EXTERNAL_STORAGE. Even then, you lost access to some things:

• Location metadata for images is redacted, with workarounds to get that
metadata if the user permits.

17

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://commonsware.com/Q

• The oft-reviled DATA column is deprecated. It was never reliable, and it is
even less reliable now.

RecoverableSecurityExceptionRecoverableSecurityException

If you want to modify content from other apps, that can be done, albeit with a
somewhat cumbersome process… one that becomes seriously cumbersome if you are
trying to modify lots of content at once.

Your calls on ContentResolver that would require write access — such as delete()
or openOutputStream() — may now throw a RecoverableSecurityException. This
indicates that you do not have write access to that content, but you could get it via
the exception. Specifically, that exception has a getUserAction() method, one that
returns a RemoteAction. That has a getActionIntent() method that returns a
PendingIntent. You can use that PendingIntent to display a system dialog that asks
the user if it is OK for you to have write access to this piece of content. If the user
agrees, you can re-try your ContentResolver call, and it should succeed.

However, this only works on an individual basis. If you try to delete() a piece of
content using its Uri, that may give you the RecoverableSecurityException that
you need. If, instead, you use delete() with a collection Uri and a WHERE clause, that
will simply fail. In Android 10, there is no bulk option, where you can request write
access to a list of Uri values or an entire collection.

Also, not everything is writable, even with this per-content permission. For example,
you can update the TAGS column for an image, but not the DESCRIPTION.

See this blog post from the author of this book for more about
RecoverableSecurityException.

New Collections

Two new MediaStore collections appeared… though only one was documented.

The documented one was MediaStore.Downloads, to access the content of the
Download/ directory. The undocumented one was one for the Documents/ directory,
which requires a convoluted means to access.

Both of these are restricted more than the other collections. In particular, you can
only see your own app’s content, even with READ_EXTERNAL_STORAGE.

MEDIASTORE MODIFICATIONS

18

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://commonsware.com/blog/2020/03/03/scoped-storage-stories-recoverablesecurityexception.html
https://commonsware.com/blog/2020/02/15/scoped-storage-stories-undocumented-documents.html

Getting the Right UriUri

A MediaStore Uri, pointing to an individual piece of content, is the combination of a
collection Uri and the ID of the content. The classic way to accomplish that was via
ContentUris.withAppendedId(), which assembles the MediaStore Uri given those
two pieces.

We now have an alternative: a two-parameter getContentUri() method on the
various MediaStore collection classes (e.g., MediaStore.Video.Media). Whereas
ContentUris.withAppendedId() takes a collection Uri and an ID, getContentUri()
takes a “volume name” and an ID. MediaStore.VOLUME_EXTERNAL works for classic
external storage as the volume name, giving us:

valval contentUri = MediaStoreMediaStore.VideoVideo.MediaMedia.getContentUri(MediaStoreMediaStore.VOLUME_EXTERNALVOLUME_EXTERNAL, id)

where id is the ID of some piece of content (in this case, a video).

Batched Access
Earlier, we saw how in Android 10 we could catch a RecoverableSecurityException
and use that to get permission to modify a single piece of content. For many apps,
this is sufficient, because they only need to modify one piece of content at a time.
However, for apps that manipulate multiple pieces of content, this per-piece-
permission approach is awful. The user winds up having to accept a dialog for each
piece, and that gets tedious quickly.

Android 11 offers a batched way to get permission from the user, though the API for
it is rather odd.

MEDIASTORE MODIFICATIONS

19

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

The VideoTagger sample module in the book’s sample project requests
READ_EXTERNAL_STORAGE permission on startup and uses that to query the
MediaStore for all the videos on external storage. Those are then presented in a
checklist:

Figure 9: VideoTagger, As Initially Launched

MEDIASTORE MODIFICATIONS

20

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/tree/master/VideoTagger
https://gitlab.com/commonsguy/cw-android-r/tree/master/VideoTagger
https://gitlab.com/commonsguy/cw-android-r

The user can check one or more of the videos, then fill in “tags” in the field and click
“Set Tags”. This will attempt to update the TAGS property of the content… and that
will fail initially. The app then requests write permission for all of those videos at
once:

Figure 10: VideoTagger, with Permission Request Dialog

If the user grants the permission, the app updates the TAGS and reloads the list,
showing those tags below the video title. If the user leaves the field blank and clicks
“Set Tags”, the same thing happens, except that any existing TAGS value is simply
cleared.

Obtaining the Image UriUri Values

There are many ways we could have gotten Uri values for the user’s chosen set of
videos. For example, we could have used ACTION_OPEN_DOCUMENT,
ACTION_GET_CONTENT, or ACTION_PICK. In particular, ACTION_OPEN_DOCUMENT and
ACTION_GET_CONTENT should support EXTRA_ALLOW_MULTIPLE, so we can request a UI
that allows the user to pick several items at once.

However, the Uri values that we get back from those do not work with this batched
permission request feature. If we try, we get:

MEDIASTORE MODIFICATIONS

21

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

java.lang.IllegalArgumentException: Missing volume name:
content://com.android.providers.media.documents/document/video%3A23

(for whatever Uri you happened to try)

For ACTION_OPEN_DOCUMENT and ACTION_GET_CONTENT, we get “document Uri” values.
You might think that the solution is to convert those to “media Uri” values, using
getMediaUri() on MediaStore. While we can call that method and convert the Uri
values, the converted values also do not work, as we get:

java.lang.IllegalStateException: java.io.FileNotFoundException: No root
for video

(at least for a video Uri — the error probably varies based on media type)

The way that works is the one described earlier in this chapter: use
getContentUri().

That is what the VideoTagger app uses. We have a VideoModel that represents the
data that we need for a video:

packagepackage com.commonsware.android.r.videotaggercom.commonsware.android.r.videotagger

importimport android.net.Uriandroid.net.Uri

data classdata class VideoModelVideoModel(
valval uri: UriUri,
valval title: StringString,
valval tags: StringString?,
valval description: StringString?,
varvar isChecked: BooleanBoolean = falsefalse

)

(from VideoTagger/src/main/java/com/commonsware/android/r/videotagger/VideoModel.kt)

When our VideoRepository queries the MediaStore and converts the Cursor to a
List of VideoModel, it uses getContentUri() to fill in the uri property:

privateprivate valval resolver = context.contentResolver

suspendsuspend funfun loadVideos(): ListList<VideoModelVideoModel> =
withContext(DispatchersDispatchers.IOIO) {

valval collection =
MediaStoreMediaStore.VideoVideo.MediaMedia.getContentUri(MediaStoreMediaStore.VOLUME_EXTERNALVOLUME_EXTERNAL)

MEDIASTORE MODIFICATIONS

22

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://developer.android.com/reference/android/provider/MediaStore#getMediaUri(android.content.Context,%20android.net.Uri)
https://developer.android.com/reference/android/provider/MediaStore#getMediaUri(android.content.Context,%20android.net.Uri)
https://developer.android.com/reference/android/provider/MediaStore#getMediaUri(android.content.Context,%20android.net.Uri)
https://developer.android.com/reference/android/provider/MediaStore#getMediaUri(android.content.Context,%20android.net.Uri)
https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/VideoTagger/src/main/java/com/commonsware/android/r/videotagger/VideoModel.kt

resolver.query(collection, PROJECTIONPROJECTION, nullnull, nullnull, SORT_ORDERSORT_ORDER)
?.use { cursor ->

cursor.mapToList {
VideoModelVideoModel(

uri = MediaStoreMediaStore.VideoVideo.MediaMedia.getContentUri(
MediaStoreMediaStore.VOLUME_EXTERNALVOLUME_EXTERNAL,
it.getLong(0)

),
title = it.getString(1),
tags = it.getString(2),
description = it.getString(3)

)
}

} ?: emptyList()
}

(from VideoTagger/src/main/java/com/commonsware/android/r/videotagger/VideoRepository.kt)

Seeing If We Have Permission

Once the user has selected some videos, if the user clicks the “Set Tags” button, we
need to:

• See if we have write permission for all of those videos
• Request write permission for those that we lack
• Update the tags once we get write permissions for the videos

All of this is a bit clunky.

To see if we have permission to modify the content identified by a Uri, we need to
call checkUriPermission() on a Context. This takes four parameters:

• The Uri to check
• Your process ID (Process.myPid())
• Your app’s user ID (Process.myUid())
• The permission to check (e.g., Intent.FLAG_GRANT_WRITE_URI_PERMISSION)

This will return PackageManager.PERMISSION_GRANTED if your app holds that
particular permission.

MainActivity in VideoTagger has a neededPermissions() function that takes the
list of videos and returns the subset for which we still need to obtain permission
from the user:

MEDIASTORE MODIFICATIONS

23

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/VideoTagger/src/main/java/com/commonsware/android/r/videotagger/VideoRepository.kt

privateprivate funfun neededPermissions(selections: ListList<UriUri>) =
selections.filter {

checkUriPermission(
it,
ProcessProcess.myPid(),
ProcessProcess.myUid(),
IntentIntent.FLAG_GRANT_WRITE_URI_PERMISSIONFLAG_GRANT_WRITE_URI_PERMISSION

) != PackageManagerPackageManager.PERMISSION_GRANTEDPERMISSION_GRANTED
}

(from VideoTagger/src/main/java/com/commonsware/android/r/videotagger/MainActivity.kt)

Requesting the Permission

To get write permission for those Uri values where we lack it, we need to do two
things.

First, we need to call MediaStore.createWriteRequest(), supplying the list of Uri
values and a ContentResolver. This returns a PendingIntent that represents this
request for write access.

Then, we need to call startIntentSenderForResult(). If the PendingIntent is one
for an activity (PendingIntent.getActivity()), then
startIntentSenderForResult() will start that activity and send any result back to
our onActivityResult() function. This works just as it would if we called
startActivityForResult() on a regular Intent.

When the user clicks “Set Tags”, that triggers a call to an applyTags() function. This
uses neededPermissions() to find the Uri values for which we lack write access. If
we have write access to all of them, we go ahead and ask MainMotor to update the
tags. Otherwise, we call MediaStore.createWriteRequest() and
startIntentSenderForResult() to request permission from the user:

privateprivate funfun applyTags(models: ListList<VideoModelVideoModel>) {
valval needed = neededPermissions(models.map { it.uri })

ifif (needed.isEmpty()) {
motor.applyTags(models, binding.tags.text.toString())

} elseelse {
valval pi = MediaStoreMediaStore.createWriteRequest(contentResolver, needed)

startIntentSenderForResult(pi.intentSender, REQUEST_PERMSREQUEST_PERMS, nullnull, 0, 0, 0)
}

}

MEDIASTORE MODIFICATIONS

24

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/VideoTagger/src/main/java/com/commonsware/android/r/videotagger/MainActivity.kt

(from VideoTagger/src/main/java/com/commonsware/android/r/videotagger/MainActivity.kt)

This is what triggers the dialog shown earlier. In our onActivityResult() function,
if our REQUEST_PERMS request succeeded, we can go ahead and try applyTags()
again.

MEDIASTORE MODIFICATIONS

25

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/VideoTagger/src/main/java/com/commonsware/android/r/videotagger/MainActivity.kt

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Permission Permutations

There have been some tweaks to how runtime permissions work in Android 11. In
theory, most of these should not cause any harm to your app. Unfortunately, not
everything works the way that we think it should, and so it is possible that you will
need to make some tweaks to your app to accommodate these changes.

And, if you are using location permissions, and adjusted your app to deal with
background locations for Android 10… you have more work to do here in Android 11.

27

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

One-Time Permissions
The biggest user-visible change is what Google calls “one-time permissions”. For a
certain set of permission groups, the user will be given an “Only this time” option in
the runtime permission dialog:

Figure 11: Runtime Permission Dialog with “Only This Time” Option

The documentation is a bit unclear over exactly which permissions get this
treatment. Based on what is written, it is likely that the permissions in the CAMERA,
LOCATION, and MICROPHONE permission groups will be affected.

The documentation is also a bit vague on how long the permission grant remains in
effect — in others words, what is the scope of “Only this time”? Based on
experiments, it appears that the answer is “for the current process”, where a fresh
process will need to bring up the permission dialog again… if that process is
launched a bit after the old process ended.

Trying It Out

You can test this yourself using the PermissionCheck sample module in the book’s

PERMISSION PERMUTATIONS

28

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/tree/master/PermissionCheck
https://gitlab.com/commonsguy/cw-android-r/tree/master/PermissionCheck
https://gitlab.com/commonsguy/cw-android-r

sample project.

When you run this module, you get an activity with a Switch to request the
ACCESS_FINE_LOCATION runtime permission:

Figure 12: PermissionCheck App, As Initially Launched

That switch will be off and enabled if you do not hold the permission at the time of
displaying the activity, and it will be on and disabled if you do hold the permission.
Also, the “Request Location” button beneath it will be enabled if you hold the
permission — clicking it will find your location and display it where you see “(no
location)” in the screenshot. Finally, the “Launch Another Activity” button launches
another instance of this activity, where the code in the toolbar will show you which
instance is which.

If you click the switch and grant the permission “Only this time”, you will find that:

• You can request the location in this activity
• You can launch another activity and request the location there without

getting the permission dialog again
• You can navigate BACK to the first activity and request the location
• You can click BACK from the first activity to exit the app, then launch the

PERMISSION PERMUTATIONS

29

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r

activity again from your launcher, and you can still request the location
(since it is all the same process)

• If you swipe the app off the overview screen, then launch it again right away,
you can still request the location

• If you swipe the app off the overview screen, then launch it again only after a
delay, you will be presented with the runtime permission dialog again

Ramifications For You

In theory, your app should already handle this. After all, the user could revoke your
runtime permission from the Settings app at any point. Your process is then
terminated (if it was running), and the next time your app runs, you will need to
request permission again. All “Only this time” does is automate that work.

The documentation implies that the scope of an “Only this time” permission is a
single activity, or perhaps the combination of an activity and a foreground service.
Most likely, this is just a documentation bug. However, you may wish to pay closer
attention to this change as Android 11 evolves, in case they revise the behavior to
match the documentation.

Multiple Rejections = Denial
By now, probably you are used to the triad of permission options in the runtime
permission dialog:

• Allow
• Deny
• Deny (and “don’t ask again”)

If the user chooses “don’t ask again”, you will not be able to ask for the permission
again from within your app. The system will refuse to display the runtime
permission dialog and will simply report that the permission was denied (via
onRequestPermissionResult()).

However, “don’t ask again” may not appear in the runtime permission dialog all the
time. For example, in the screenshot shown earlier in this chapter, the options are:

• Only this time
• While using the app
• Deny

PERMISSION PERMUTATIONS

30

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://issuetracker.google.com/issues/151101650

However, the user still can get the “don’t ask again” effect.

If you display the dialog, and the user clicks “Deny”, then later you display the dialog
again and the user clicks “Deny”, then your app is treated as though the user chose
“Don’t ask again”.

The two “Deny” actions do not need to be sequential, so long as the user uses the
BACK button to close the dialog other times in between. So, for example, the flow
could be:

• Deny
• BACK
• BACK
• BACK
• Deny

Each of those five times, the dialog would be shown, but after that second “Deny”, it
is treated as “Don’t ask again”.

Trying It Out

You can see this effect in action with the PermissionCheck sample. Uninstall the app
(if you had it installed already). Re-run the app form the IDE, then tap the switch
and click “Deny” on the resulting permission dialog. Do that two times, and you will
find that future clicks on the switch have no practical effect, other than
incrementally wearing out your smartphone screen.

Ramifications For You

Once again, this should not really cause a problem in terms of app operation. You
have had to deal with “don’t ask again” in the past. This simply provides that option
with a different UI.

However, if you are trying to maintain decent end-user documentation, including
showing the various permission flows… well, your job just got harder.

(sorry!)

PERMISSION PERMUTATIONS

31

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Background Location Changes
Android 10 introduced ACCESS_BACKGROUND_LOCATION as a new permission. If you
want your app to be able to access location data from the background, you need to
hold this permission. This is a dangerous permission, one that you will need to
request at runtime in addition to having it in the manifest.

You can learn more about ACCESS_BACKGROUND_LOCATION in
Android 10 in the "Location Access Restrictions" chapter of
Elements of Android Q!

Android 11 does not change any of that.

However, what Android 11 does change is when you can ask for it. On Android 10,
you could request ACCESS_BACKGROUND_LOCATION at the same time as you requested
ACCESS_COARSE_LOCATION or ACCESS_FINE_LOCATION. In Android 11, you have to
request it separately and after requesting ACCESS_COARSE_LOCATION or
ACCESS_FINE_LOCATION.

The BackgroundLocation sample module in the book’s sample project requests
ACCESS_FINE_LOCATION, then asks for ACCESS_BACKGROUND_LOCATION after
ACCESS_FINE_LOCATION is granted (and the user clicks a button). This module also
has two product flavors, to demonstrate two different types of builds:

Product Flavor targetSdkVersiontargetSdkVersion

quince 29

rutabaga R

(remember: Android versions are not “tasty treats” anymore!)

The following sections illustrate what you get when you request
ACCESS_FINE_LOCATION, followed by ACCESS_BACKGROUND_LOCATION.

PERMISSION PERMUTATIONS

32

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://commonsware.com/Q
https://gitlab.com/commonsguy/cw-android-r/tree/master/BackgroundLocation
https://gitlab.com/commonsguy/cw-android-r/tree/master/BackgroundLocation
https://gitlab.com/commonsguy/cw-android-r

Android 10

We start off with a dialog offering to grant permission only while using the app:

Figure 13: BackgroundLocation, As Initially Launched, on Android 10

PERMISSION PERMUTATIONS

33

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Later, if you request ACCESS_BACKGROUND_LOCATION, the user gets a dialog offering to
upgrade your access to “all the time”:

Figure 14: BackgroundLocation, After Background Access Request, on Android 10

PERMISSION PERMUTATIONS

34

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Android 11, targetSdkVersiontargetSdkVersion 29

While your targetSdkVersion remains at 29, the first difference is that the first
dialog offers the “Only this time” option, discussed earlier in this chapter:

Figure 15: BackgroundLocation, As Initially Launched, on Android 11 with
targetSdkVersion 29

PERMISSION PERMUTATIONS

35

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

The “upgrade” dialog that you get when you request ACCESS_BACKGROUND_LOCATION is
also a bit different. The only direct option that the user can choose is to keep their
current value:

Figure 16: BackgroundLocation, After Background Access Request, on Android 11 with
targetSdkVersion 29

PERMISSION PERMUTATIONS

36

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

In order to actually grant you ACCESS_BACKGROUND_LOCATION, the user has to click
that “Allow in settings” link, which will bring up the permission screen for this
permission group for your app in Settings:

Figure 17: Android 11 Location Permission Settings Screen

Android 11, targetSdkVersiontargetSdkVersion 30

Once you upgrade to targetSdkVersion of 30, the initial dialog remains unchanged.

Later, when you request ACCESS_BACKGROUND_LOCATION, the user is taken straight to
the Settings app, bypassing that intermediate dialog and its “Allow in settings” link.
The idea is that you would provide your own UI explaining what is about to happen,
before you request the ACCESS_BACKGROUND_LOCATION permission.

PERMISSION PERMUTATIONS

37

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Automatic Permission Removal
Android 11 adds a user option to have Android automatically revoke permissions if
your app is unused for an extended period of time (months):

Figure 18: BackgroundLocation Permissions Screen in Settings, Showing Auto Revoke
Permissions Option

Once again, this should not be a major problem for well-written apps. Partly, that is
because this is not significantly different than the user revoking permissions
manually, which you have needed to handle. Partly, that is because a well-written
app is likely to be used frequently enough to avoid the automatic permission
removal.

In theory, you can add android:autoRevokePermissions="disallowed" to the
<application> element to say that the switch would be off by default. The
documentation for this setting states “This declaration may cause an additional
review when publishing your app”. In addition, it does not work.

Another option is android:autoRevokePermissions="discouraged". This is
supposed to allow you to use ACTION_AUTO_REVOKE_PERMISSIONS to lead the user to a

PERMISSION PERMUTATIONS

38

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://developer.android.com/reference/android/R.attr.html#autoRevokePermissions
https://developer.android.com/reference/android/R.attr.html#autoRevokePermissions
https://issuetracker.google.com/issues/162077344

screen where they can toggle the switch to the off position. However, this does not
work, insofar as it only leads the user to the main page for your app in Settings, not
to “UI to manage auto-revoke state” as is stated in the documentation.

PERMISSION PERMUTATIONS

39

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://issuetracker.google.com/issues/162162384
https://issuetracker.google.com/issues/162162384
https://developer.android.com/reference/android/content/Intent.html#ACTION_AUTO_REVOKE_PERMISSIONS

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Auditing Alternatives

“Audit” as a term sometimes has negative connotations (“you have been cordially
invited to attend your upcoming tax audit…”). Really, though, an audit is simply a
form of testing, confirming that everything is working as you might expect. It’s just
that testing usually occurs in development, while auditing is something that you
apply in production.

Android has had some auditing options in the past, such as using TrafficStats or
NetworkStatsManager to get a sense of how much bandwidth your app is using.
Android 11 adds two more auditing options, for determining what sorts of protected
services you might be accessing, and why your application’s process is terminated.

Data Access Auditing
If your app uses dangerous permissions — the ones we need to request at runtime
— Android 11 lets you find out when and where your app uses those permissions.
That includes both direct uses in your own code and uses by any libraries that you
add as dependencies.

If you collect this data and get it back to your organization, you can determine if
your app is using these permissions in an expected fashion. Or, conversely, you
might find that some third-party library that you are using is siphoning off user data
in ways that your users (and your qualified legal counsel) might not appreciate.

Collecting the Data

Android has had an AppOpsManager system service for a few releases. In Android 11, it
now has a setNotedAppOpsCollector() method. This takes an instance of an
AppOpsManager.AppOpsCollector abstract class, which serves as your callback for

41

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

the various events. Since there is one collector per process, this is the sort of thing
that you might configure in your custom Application class.

We looked at the PermissionCheck sample module in the book’s sample project in
the chapter on permission changes. This module also demonstrates the data access
auditing code. Specifically, in MainApp, along with setting up Koin for dependency
inversion, we also register an AppOpsManager.OnOpNotedCallback:

packagepackage com.commonsware.android.r.permcheckcom.commonsware.android.r.permcheck

importimport android.app.AppOpsManagerandroid.app.AppOpsManager
importimport android.app.Applicationandroid.app.Application
importimport android.app.AsyncNotedAppOpandroid.app.AsyncNotedAppOp
importimport android.app.SyncNotedAppOpandroid.app.SyncNotedAppOp
importimport android.util.Logandroid.util.Log
importimport org.koin.android.ext.koin.androidContextorg.koin.android.ext.koin.androidContext
importimport org.koin.android.ext.koin.androidLoggerorg.koin.android.ext.koin.androidLogger
importimport org.koin.androidx.viewmodel.dsl.viewModelorg.koin.androidx.viewmodel.dsl.viewModel
importimport org.koin.core.context.startKoinorg.koin.core.context.startKoin
importimport org.koin.dsl.moduleorg.koin.dsl.module
importimport java.util.concurrent.Executorsjava.util.concurrent.Executors

privateprivate constconst valval TAG = "PermissionCheck"
privateprivate constconst valval FEATURE_ID = "awesome-stuff"

classclass MainAppMainApp : ApplicationApplication() {
privateprivate valval module = module {

viewModel { MainMotorMainMotor(androidContext().createAttributionContext(FEATURE_IDFEATURE_ID)) }
}
privateprivate valval executor = ExecutorsExecutors.newSingleThreadExecutor()

overrideoverride funfun onCreate() {
supersuper.onCreate()

startKoin {
androidLogger()
androidContext(thisthis@MainApp)
modules(module)

}

getSystemService(AppOpsManagerAppOpsManager::classclass.java)
?.setOnOpNotedCallback(executor, objectobject : AppOpsManagerAppOpsManager.OnOpNotedCallbackOnOpNotedCallback() {

overrideoverride funfun onNoted(op: SyncNotedAppOpSyncNotedAppOp) {
LogLog.d(TAGTAG, "onNoted: ${op.toDebugString()}")
RuntimeExceptionRuntimeException().printStackTrace(SystemSystem.outout)

}

overrideoverride funfun onSelfNoted(op: SyncNotedAppOpSyncNotedAppOp) {
LogLog.d(TAGTAG, "onSelfNoted: ${op.toDebugString()}")
RuntimeExceptionRuntimeException().printStackTrace(SystemSystem.outout)

}

overrideoverride funfun onAsyncNoted(op: AsyncNotedAppOpAsyncNotedAppOp) {
LogLog.d(TAGTAG, "onAsyncNoted: ${op.toDebugString()}")
RuntimeExceptionRuntimeException().printStackTrace(SystemSystem.outout)

}

AUDITING ALTERNATIVES

42

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/tree/master/PermissionCheck
https://gitlab.com/commonsguy/cw-android-r/tree/master/PermissionCheck
https://gitlab.com/commonsguy/cw-android-r

})
}

privateprivate funfun SyncNotedAppOpSyncNotedAppOp.toDebugString() =
"SyncNotedAppOp[attributionTag = $attributionTag, op = $op"

privateprivate funfun AsyncNotedAppOpAsyncNotedAppOp.toDebugString() =
"AsyncNotedAppOp[attributionTag = $attributionTag, op = $op, time = $time, uid = $notingUid, message =

$message"
}

(from PermissionCheck/src/main/java/com/commonsware/android/r/permcheck/MainApp.kt)

There are three methods that you need to implement on your OnOpNotedCallback:

• onNoted() will be called when the data access occurred synchronously with a
call from your app

• onAsyncNoted() will be called when the data access occurred in some
callback

• onSelfNoted(), which is not very well documented

In all three cases, MainApp dumps a “debug string” to Logcat, along with the current
stack trace (culled from a RuntimeException instance).

If you run the app and request a location, you will get data access information in
Logcat (with some portions replaced with ... for the sake of brevity):

D/PermissionCheck: onNoted: SyncNotedAppOp[attributionTag = awesome-
stuff, op = android:fine_location
I/System.out: java.lang.RuntimeException
I/System.out: at ...MainApp$onCreate$2.onNoted(MainApp.kt:53)
I/System.out: at
android.app.AppOpsManager.readAndLogNotedAppops(AppOpsManager.java:8154)
...
I/System.out: at
...MainMotor$fetchLocationAsync$2.invokeSuspend(MainMotor.kt:75)
...
D/PermissionCheck: onAsyncNoted: AsyncNotedAppOp[attributionTag =
awesome-stuff, op = android:fine_location, time = 1588186761021, uid =
1000, message = Location sent to
...MainMotor$fetchLocationAsync$2$invokeSuspend$$...
I/System.out: java.lang.RuntimeException
I/System.out: at ...MainApp$onCreate$2.onAsyncNoted(MainApp.kt:63)
...

AUDITING ALTERNATIVES

43

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/PermissionCheck/src/main/java/com/commonsware/android/r/permcheck/MainApp.kt

We have one onNoted() call. As part of the SyncNotedAppOp that we receive, we
know that the op was android:fine_location, meaning that we did something that
required ACCESS_FINE_LOCATION permission. The stack trace shows that this came
from the getCurrentLocation() call on a LocationManager inside of MainMotor, our
viewmodel:

packagepackage com.commonsware.android.r.permcheckcom.commonsware.android.r.permcheck

importimport android.Manifestandroid.Manifest
importimport android.content.Contextandroid.content.Context
importimport android.content.pm.PackageManagerandroid.content.pm.PackageManager
importimport android.location.Locationandroid.location.Location
importimport android.location.LocationManagerandroid.location.LocationManager
importimport androidx.lifecycle.LiveDataandroidx.lifecycle.LiveData
importimport androidx.lifecycle.MutableLiveDataandroidx.lifecycle.MutableLiveData
importimport androidx.lifecycle.ViewModelandroidx.lifecycle.ViewModel
importimport androidx.lifecycle.viewModelScopeandroidx.lifecycle.viewModelScope
importimport kotlinx.coroutines.*kotlinx.coroutines.*
importimport java.util.concurrent.Executorsjava.util.concurrent.Executors
importimport java.util.function.Consumerjava.util.function.Consumer
importimport kotlin.coroutines.resumekotlin.coroutines.resume
importimport kotlin.coroutines.suspendCoroutinekotlin.coroutines.suspendCoroutine

sealedsealed classclass MainViewStateMainViewState {
data classdata class ContentContent(

valval hasPermission: BooleanBoolean,
valval location: LocationLocation? = nullnull

) :
MainViewStateMainViewState()

objectobject ErrorError : MainViewStateMainViewState()
}

classclass MainMotorMainMotor(privateprivate valval context: ContextContext) : ViewModelViewModel() {
privateprivate valval _states = MutableLiveDataMutableLiveData<MainViewStateMainViewState>()
valval states: LiveDataLiveData<MainViewStateMainViewState> = _states

funfun checkPermission() {
_states.value = MainViewStateMainViewState.ContentContent(hasLocationPermission())

}

funfun fetchLocation() {
viewModelScope.launch(DispatchersDispatchers.MainMain) {

_states.value =
MainViewStateMainViewState.ContentContent(hasLocationPermission(), fetchLocationAsync())

}
}

AUDITING ALTERNATIVES

44

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

privateprivate funfun hasLocationPermission() =
context.checkSelfPermission(ManifestManifest.permission.ACCESS_FINE_LOCATIONACCESS_FINE_LOCATION) ==

PackageManagerPackageManager.PERMISSION_GRANTEDPERMISSION_GRANTED

privateprivate suspendsuspend funfun fetchLocationAsync(): LocationLocation {
valval locationManager =

context.getSystemService(LocationManagerLocationManager::classclass.java)!!
valval executor = ExecutorsExecutors.newSingleThreadExecutor()

returnreturn withContext(executor.asCoroutineDispatcher()) {
suspendCoroutine<LocationLocation> { continuation ->

valval consumer =
ConsumerConsumer<LocationLocation?> { location ->

ifif (isActive && location != nullnull) continuation.resume(location)
}

locationManager.getCurrentLocation(
LocationManagerLocationManager.GPS_PROVIDERGPS_PROVIDER,
nullnull,
executor,
consumer

)
}

}
}

}

(from PermissionCheck/src/main/java/com/commonsware/android/r/permcheck/MainMotor.kt)

We also have one onAsyncNoted() call. Here, the op is also android:fine_location.
The message property shows that the operation came from something inside
MainMotor, but it is buried in the suspendCoroutine() lambda expression. Probably,
this is being triggered when our Consumer receives a location, but that is just a guess,
given that we have no line number to use.

Identifying Uses by Attribution

Both logs show an attributionTag of awesome-stuff. By default, you will not have
an attributionTag value. And for many apps, that’s fine. However, if you want to be
able to tag your data access, you can do so by setting the value to appear in that
attributionTag to some string.

To do this, you need to use createAttributionContext(), a method available on
Context. This gives you another Context, one with your specified attributionTag

AUDITING ALTERNATIVES

45

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/PermissionCheck/src/main/java/com/commonsware/android/r/permcheck/MainMotor.kt
https://issuetracker.google.com/issues/152029673

value. You then use that augmented Context when doing things involving the data
access, such as requesting the LocationManager system service.

In this app, we do that as part of our Koin setup in MainApp:

privateprivate valval module = module {
viewModel { MainMotorMainMotor(androidContext().createAttributionContext(FEATURE_IDFEATURE_ID)) }

}

(from PermissionCheck/src/main/java/com/commonsware/android/r/permcheck/MainApp.kt)

When we inject a Context into MainMotor, we get the Koin androidContext(), then
call createAttributionContext() on that Context. The MainMotor gets the Context
from createAttributionContext() and uses that to get the LocationManager. And,
since we set the attributionTag to awesome-stuff in the
createAttributionContext() call, that is why we get awesome-stuff as the
attributionTag in our output.

What To Do With the Results?

You might consider collecting the data and sending it to your backend, to get a sense
of what is using protected data and how frequently. You could send all of the data, or
use heuristics to determine expected-vs.-unexpected scenarios and report them
differently.

One imagines that future versions of crash logging or analytics libraries will “bake
in” the ability to gather this data as part of their normal operation.

Application Exits
Your process does not live forever. In fact, your process gets terminated a lot,
particularly depending on the sort of work that you do. For example, if you are using
WorkManager to get control periodically in the background to do some work, your
process will be terminated sometime after each piece of work.

This is nothing new.

What is new is the ability to find out why your process got terminated. You are not
told this in real-time as your process is being terminated, but you can find out past
reasons for process termination.

AUDITING ALTERNATIVES

46

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/PermissionCheck/src/main/java/com/commonsware/android/r/permcheck/MainApp.kt

Collecting the Data

The ActivityManager system service now has a
getHistoricalProcessExitReasons() method. This will return a list of
ApplicationExitInfo objects, representing past process termination reasons.

The ForensicPathologist sample module in the book’s sample project gets those
ApplicationExitInfo objects in its MainMotor:

classclass MainMotorMainMotor(privateprivate valval context: ContextContext) : ViewModelViewModel() {
privateprivate valval _content = MutableLiveDataMutableLiveData<ListList<ExitInfoExitInfo>>()
valval content: LiveDataLiveData<ListList<ExitInfoExitInfo>> = _content

init {
_content.value =

context.getSystemService(ActivityManagerActivityManager::classclass.java)
?.getHistoricalProcessExitReasons(nullnull, 0, 0).orEmpty()
.map { convert(it) }

}

(from ForensicPathologist/src/main/java/com/commonsware/android/r/forensics/MainMotor.kt)

We get the ActivityManager, call getHistoricalProcessExitReasons(), coerce null
results into an empty list, and use that to populate a MutableLiveData.

getHistoricalProcessExitReasons() takes three parameters:

• The package name of app whose processes you wish to collect, or null for
your own process

• A particular process ID to examine, or 0 to not filter by process ID
• The maximum number of items to return, or 0 to return all that are available

Note that if you specify a package name from some other app, you will need to hold
the DUMP permission. This is not available to ordinary third-party apps. And, usually,
we will not know any particular process ID to filter upon. So, typically, the call to
getHistoricalProcessExitReasons() will be
getHistoricalProcessExitReasons(null, 0, 0), to collect all known process exit
reasons.

The ApplicationExitInfo contains several fields that you can use. The big one is
the reason field, which says why the process was terminated. This is an Int that
maps to various REASON_ constants on ApplicationExitInfo. As part of converting
an ApplicationExitInfo into data to fill into our UI, MainMotor converts a reason

AUDITING ALTERNATIVES

47

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/tree/master/ForensicPathologist
https://gitlab.com/commonsguy/cw-android-r/tree/master/ForensicPathologist
https://gitlab.com/commonsguy/cw-android-r
https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/ForensicPathologist/src/main/java/com/commonsware/android/r/forensics/MainMotor.kt

value into a string resource ID:

@StringRes
privateprivate funfun convertReason(reason: IntInt): IntInt = whenwhen (reason) {

ApplicationExitInfoApplicationExitInfo.REASON_ANRREASON_ANR -> RR.string.reason_anr
ApplicationExitInfoApplicationExitInfo.REASON_CRASHREASON_CRASH -> RR.string.reason_crash
ApplicationExitInfoApplicationExitInfo.REASON_CRASH_NATIVEREASON_CRASH_NATIVE -> RR.string.reason_crash_native
ApplicationExitInfoApplicationExitInfo.REASON_DEPENDENCY_DIEDREASON_DEPENDENCY_DIED -> RR.string.reason_dependency_died
ApplicationExitInfoApplicationExitInfo.REASON_EXCESSIVE_RESOURCE_USAGEREASON_EXCESSIVE_RESOURCE_USAGE -> RR.string.reason_excessive_resource_usage
ApplicationExitInfoApplicationExitInfo.REASON_EXIT_SELFREASON_EXIT_SELF -> RR.string.reason_exit_self
ApplicationExitInfoApplicationExitInfo.REASON_INITIALIZATION_FAILUREREASON_INITIALIZATION_FAILURE -> RR.string.reason_init_failure
ApplicationExitInfoApplicationExitInfo.REASON_LOW_MEMORYREASON_LOW_MEMORY -> RR.string.reason_low_memory
ApplicationExitInfoApplicationExitInfo.REASON_OTHERREASON_OTHER -> RR.string.reason_other
ApplicationExitInfoApplicationExitInfo.REASON_PERMISSION_CHANGEREASON_PERMISSION_CHANGE -> RR.string.reason_permission_change
ApplicationExitInfoApplicationExitInfo.REASON_SIGNALEDREASON_SIGNALED -> RR.string.reason_signaled
ApplicationExitInfoApplicationExitInfo.REASON_USER_REQUESTEDREASON_USER_REQUESTED -> RR.string.reason_user_requested
ApplicationExitInfoApplicationExitInfo.REASON_USER_STOPPEDREASON_USER_STOPPED -> RR.string.reason_user_stopped
elseelse -> RR.string.shrug

}

(from ForensicPathologist/src/main/java/com/commonsware/android/r/forensics/MainMotor.kt)

The description field may contain additional details about the reason for the
process to be terminated, depending on what the reason value is. Similarly, status
may contain an additional number related to the process termination (e.g., if the OS
signaled for process termination, status will contain the signal number)

We also have:

• pss and rss, to tell us about the memory consumption of the process at the
time that it was terminated

• timestamp, indicating when the process was terminated
• importance, indicating the importance of the process at the time that it was

terminated

MainMotor converts all of that stuff into ExitInfo model objects:

privateprivate funfun convert(appExitInfo: ApplicationExitInfoApplicationExitInfo): ExitInfoExitInfo {
returnreturn ExitInfoExitInfo(

description = appExitInfo.description.orEmpty(),
importance = convertImportance(appExitInfo.importance),
pss = appExitInfo.pss,
rss = appExitInfo.rss,
reason = convertReason(appExitInfo.reason),
status = appExitInfo.status,
timestamp = DateUtilsDateUtils.getRelativeTimeSpanString(

context,
appExitInfo.timestamp

)
)

}

AUDITING ALTERNATIVES

48

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/ForensicPathologist/src/main/java/com/commonsware/android/r/forensics/MainMotor.kt

@StringRes
privateprivate funfun convertImportance(importance: IntInt): IntInt = whenwhen (importance) {

ActivityManagerActivityManager.RunningAppProcessInfoRunningAppProcessInfo.IMPORTANCE_CACHEDIMPORTANCE_CACHED -> RR.string.importance_cached
ActivityManagerActivityManager.RunningAppProcessInfoRunningAppProcessInfo.IMPORTANCE_CANT_SAVE_STATEIMPORTANCE_CANT_SAVE_STATE -> RR.string.importance_cant_save_state
ActivityManagerActivityManager.RunningAppProcessInfoRunningAppProcessInfo.IMPORTANCE_FOREGROUNDIMPORTANCE_FOREGROUND -> RR.string.importance_foreground
ActivityManagerActivityManager.RunningAppProcessInfoRunningAppProcessInfo.IMPORTANCE_FOREGROUND_SERVICEIMPORTANCE_FOREGROUND_SERVICE ->

RR.string.importance_foreground_service
ActivityManagerActivityManager.RunningAppProcessInfoRunningAppProcessInfo.IMPORTANCE_GONEIMPORTANCE_GONE -> RR.string.importance_gone
ActivityManagerActivityManager.RunningAppProcessInfoRunningAppProcessInfo.IMPORTANCE_PERCEPTIBLEIMPORTANCE_PERCEPTIBLE -> RR.string.importance_perceptible
ActivityManagerActivityManager.RunningAppProcessInfoRunningAppProcessInfo.IMPORTANCE_SERVICEIMPORTANCE_SERVICE -> RR.string.importance_service
ActivityManagerActivityManager.RunningAppProcessInfoRunningAppProcessInfo.IMPORTANCE_TOP_SLEEPINGIMPORTANCE_TOP_SLEEPING -> RR.string.importance_top_sleeping
ActivityManagerActivityManager.RunningAppProcessInfoRunningAppProcessInfo.IMPORTANCE_VISIBLEIMPORTANCE_VISIBLE -> RR.string.importance_visible
elseelse -> RR.string.shrug

}

(from ForensicPathologist/src/main/java/com/commonsware/android/r/forensics/MainMotor.kt)

The UI then renders the results in a RecyclerView… once ForensicPathologist has
been run a time or two and actually has results:

Figure 19: ForensicPathologist, Showing Results After Previous Process
Termination

What To Do With the Results?

Similar to the data access auditing, the idea is that you might:

AUDITING ALTERNATIVES

49

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/ForensicPathologist/src/main/java/com/commonsware/android/r/forensics/MainMotor.kt

• Send aggregated statistics back to your server, such as the total number of
process terminations and the count of each reason type

• Identify unusual cases and report more details on those (e.g., REASON_ANR,
REASON_PERMISSION_CHANGE)

One limiting factor is that you cannot readily identify which ApplicationExitInfo
objects you have seen previously, because there is no unique ID on them. You can
attempt to work around this by checking for the last process termination reason
immediately upon startup of a fresh process. Otherwise, you might count the same
ApplicationExitInfo results multiple times.

Tracking Application State

You might find it useful to know some details about the nature of your app as part of
the application exit reasons.

For example, you might be using “feature flags” to conditionally enable certain
features. Depending on how you implemented those, you may not know, for any
given situation, which feature flags are enabled and which are disabled. Perhaps they
are random for A|B testing, or perhaps you are just worried that the flags might
change between when an application exited and when somebody gets a chance to
look at a report that you generate using these new APIs.

Apps can add a bit of information to the application exit data. If you call
setProcessStateSummary() on ActivityManager, you can provide a byte array of
data. When the application exits, if you called setProcessStateSummary() during
the life of that process, the byte array gets recorded. Later on, when you retrieve the
ApplicationExitInfo for this exit, you can call getProcessStateSummary() to
retrieve the byte array, to include its contents in whatever your analysis does.

So, going back to the earlier example, once you find out what feature flags are
enabled and disabled, you can record those as the process state summary. Later on,
if you are trying to diagnose why your app is behaving as it is with respect to exits,
you can see what feature flags are being used and perhaps determine if one of those
flags is having a particular impact.

However:

• The documentation warns against calling setProcessStateSummary() too
often

• There is no documentation on the size limit for the byte array, but you

AUDITING ALTERNATIVES

50

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://issuetracker.google.com/issues/149970991

should not assume it can hold large blobs of data
• This is not a replacement for existing ways of getting data between process

invocations of your app (saved instance state, files, preferences, etc.)

ANRs and Traces

Perhaps no single error message caused developers more angst in the early years of
Android than did “application not responding”. A dialog with that message would
appear if the app tied up the main application thread for a ridiculous amount of
time (around 10 seconds). It became so well-known that developers started referring
to it by the abbreviation ANR.

The problem with ANRs is that you do not know exactly where you are spending
your time. We have had access to ANR trace files showing the state of our threads
when an ANR occurs. However, on modern versions of Android, this data is only
accessible on certain emulators or non-production builds, where we can achieve root
access.

In Android 11, if your app exits with a reason of REASON_ANR, you can call
getTraceInputStream() on the ApplicationExitInfo to access the trace data. You
can read that in and do something with it (e.g., send it to your server), if desired.

AUDITING ALTERNATIVES

51

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://developer.android.com/topic/performance/vitals/anr#pull_a_traces_file

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Package Visibility

In a somewhat surprising move, Android 11 introduces a new privacy change: app
isolation. Apps can no longer directly communicate with other apps, or even know
that other apps exist, except in fairly limited ways.

In this chapter, we will explore more about what this means for you and your app.

The Way Things Were
Once upon a time — otherwise known as “before Android 11” — all apps were visible
to all other apps. The data of those apps might be private, but the apps themselves
were not. And one app could communicate with another app, via any exposed IPC
interface, so long as permissions were met.

The quintessential example of this is a launcher. To provide the list (or grid or
whatever) of icons for launchable activities, a launcher can call
queryIntentActivities() on PackageManager, asking for all activities that have a
MAIN/LAUNCHER <intent-filter>. PackageManager would return a list of matching
activities, and the launcher would use that to populate its UI. And, when the user
chooses an activity to start, the launcher would be able to call startActivity() on
an Intent identifying that activity.

Even without PackageManager, you might still have your app communicate with
other apps. For example, an upcoming chapter has a sample with two apps that
communicate via a bound service and a pair of Messenger objects. The client side of
the pair can call bindService() to bind to the service offered by the other app. So
long as any permissions are met (e.g., android:permission attribute on the
<service> element), that binding would be allowed.

53

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Social Distancing for Apps
With Android 11, this is no longer the case.

Suppose, as in the latter example above, you have written two apps. The user assures
you that both apps are installed. With Android 11, by default, you have no means of
verifying from one app that the other app is installed. And, with Android 11, by
default you will not be able to communicate between those apps. In the case from
above, the client app cannot bind to the service app, even with a properly-
constructed Intent.

(How does the author know this? The author beat his head against a wall for an
hour trying to figure out why the sample wouldn’t run, before remembering this new
restriction…)

There are ways to whitelist certain things that will allow your app to see other apps.
And there is an option to eliminate this restriction entirely. However, as you will see,
neither are complete solutions — you should assume that the original forms of
interoperability available to Android apps before will not be available to you going
forward.

Also note that there are a number of other built-in limits on this restriction:

• If you start an activity using an implicit Intent (e.g., ACTION_VIEW on some
Uri), that is allowed

• If you provide a fine-grained permission grant, such as
FLAG_GRANT_READ_URI_PERMISSION on a Uri from FileProvider, the
recipient can use that grant (e.g., open the content identified by the Uri)

• If you can talk to an app, the app can respond along that same IPC channel
(e.g., setResult() in response to a startActivityForResult() call)

• You can talk among your own app’s processes without restrictions

Whitelisting
The preferred way to relax this restriction is to “whitelist” certain things. Basically,
you tell Android, via a <queries> element in the manifest, what sorts of other
components you want to be able to see.

NOTE: Android Studio 4.0.1 — the current stable release of Android Studio — does
not recognize this <queries> element, even if you put it as a child of the <manifest>

PACKAGE VISIBILITY

54

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

element (the correct location). Just ignore the warning, and hope that, in the future,
newer versions of Android Studio will ship with knowledge of this <queries>
element.

By Package

If you wish to have your app integrate with specific other apps, you can whitelist the
package of that other app, by having a <package> element inside of the <queries>
element, listing the package that you want to use:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.r.embed.client">>
<queries><queries>

<package<package android:name="com.commonsware.android.r.embed.server" />/>
</queries></queries>

<application<application
android:name=".MainApp"
android:allowBackup="false"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:roundIcon="@mipmap/ic_launcher_round"
android:supportsRtl="true"
android:theme="@style/AppTheme">>
<activity<activity android:name=".MainActivity">>

<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN" />/>

<category<category android:name="android.intent.category.LAUNCHER" />/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

(from EmbedClient/src/main/AndroidManifest.xml)

Here, we have a fairly generic manifest, except for the <queries> element towards
the top. Here, we say that this app wants to be able to communicate with the
com.commonsware.android.r.embed.server app. This allows the client app to bind
to a service exposed by com.commonsware.android.r.embed.server, and it allows
that service to return data (e.g., send messages back via a supplied Messenger).

It appears that you can have as many <package> elements as you want. However,

PACKAGE VISIBILITY

55

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/EmbedClient/src/main/AndroidManifest.xml

there is no sign of support for wildcard pattern matching — you need to know, at
compile time, what packages you need.

By Intent Signature

In our manifests, we are used to having <intent-filter> elements on components
to say that they are available to other apps via matching Intent objects.

Now, in <queries>, we can have <intent> elements — with the same basic structure
as <intent-filter> elements — advertising what other components we want to talk
to via IPC.

So, for example, a launcher might have:

<manifest<manifest package="com.example.game">>
<queries><queries>

<intent><intent>
<action<action android:name="android.intent.action.MAIN" />/>
<category<category android:name="android.intent.category.LAUNCHER" />/>

</intent></intent>
</queries></queries>
<!-- rest of manifest goes here -->

</manifest></manifest>

This, in principle, should allow the launcher app to query for MAIN/LAUNCHER
activities as before.

In general, everything allowed in an <intent-filter> is allowed in an <intent>
element… with some restrictions:

• There must be exactly one <action> element, though you can use wildcards
• You are limited to mimeType, scheme, and host attributes on your <data>

element, where wildcards are also supported

We will see an example of this later in the chapter.

<queries><queries> and Gradle

The Android Gradle Plugin needs to know about new manifest elements,
particularly for the manifest merger process. The plugin has a tendency to get
confused if it sees elements in the manifest merger that it does not recognize,
tossing out build errors like: “unexpected element <queries> found in <manifest>”.

PACKAGE VISIBILITY

56

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

And, as you might guess from that error, the Android Gradle Plugin was not happy
about the introduction of <queries>.

The fact that this occurs from manifest merger means that simply upgrading a
dependency might bring about this error. For example, if you upgrade to the latest
version of com.awesome:awesome-library, and it contained a <queries> element in
its manifest, you would crash with the aforementioned error in your builds, even
without any actual app changes in your code.

Google released a series of patch versions of the Android Gradle Plugin to address
this:

• 3.3.3
• 3.4.3
• 3.5.4
• 3.6.4
• 4.0.1

If you are using an existing plugin in the 3.3.* through 4.0.* series, upgrade to the
associated patch version (or higher) from that list, and you should no longer run
into that error.

If you are using Android Studio 4.1 or higher, with a matching Android Gradle
Plugin (e.g., in the 4.1.* series), you should be fine without any changes. Those
plugin versions were already aware of <queries>.

Escaping the Sandbox
There is a QUERY_ALL_PACKAGES permission. If your app holds it, all of these
restrictions should be lifted.

This permission appears to be one with a normal value for protectionLevel. You do
not need to request it at runtime — simply having it in the manifest is sufficient.

However it is documented as being restricted by the Play Store:

In upcoming versions of the Developer Preview, look for Google Play to
provide guidelines for apps that need this permission.

Based on similar restrictions, be prepared to fill out a form to explain why your app
needs this permission. And, based on the experience of far too many developers, be

PACKAGE VISIBILITY

57

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://developer.android.com/preview/privacy/package-visibility#all-apps

prepared to be banned from the Play Store by a bot if you try using it.

The next section will examine the impacts of holding this permission.

Effects and Ramifications
Certain types of apps will be able to cope using the whitelist mechanism. Launchers,
for example, will be able to request, via the whitelist, to be able to see all
MAIN/LAUNCHER activities, and be able to function more or less as before. Similarly,
integration between a known pair of apps — such as the client binding to the service
described above — can be whitelisted, since those apps are known in advance.

Apps that need flexibility across both whitelist axes — needing to know about
arbitrary components in arbitrary packages — are in deep trouble. While
QUERY_ALL_PACKAGES offers an escape hatch, it is a risky one for apps distributed via
the Play Store. So, for example, various types of anti-malware app need that sort of
flexibility. In theory, these apps should be eligible for QUERY_ALL_PACKAGES usage. In
practice, unless you have a deep relationship with Google, you need to assume that
your app will be targeted for removal.

To see all of this in action, the QueryPackages sample module in the book’s sample
project has a UI that lists the outcomes of the following sorts of calls on
PackageManager:

• getInstalledApplications()
• getInstalledPackages()
• getPackagesHoldingPermissions() for the INTERNET permission
• queryBroadcastReceivers() for ACTION_BOOT_COMPLETED broadcasts
• queryContentProviders()
• queryIntentActivities() for the launcher activities

These are then presented in a long scrolling list with section headers, courtesy of
RecyclerView and MergeAdapter.

The project also has five product flavors, for different scenarios:

PACKAGE VISIBILITY

58

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/tree/master/QueryPackages
https://gitlab.com/commonsguy/cw-android-r/tree/master/QueryPackages
https://gitlab.com/commonsguy/cw-android-r
https://gitlab.com/commonsguy/cw-android-r

Flavor targetSdkVersiontargetSdkVersion
<queries><queries>

Setup
Requests

QUERY_ALL_PACKAGESQUERY_ALL_PACKAGES?

alfa 29 none no

bravo 30 none no

charlie 30 <package> no

delta 30 <intent> no

echo 30 none yes

The impacts of the package visibility changes only kicks in once your
targetSdkVersion rises to 30 or higher. So, if you run alfa on an Android 11 device,
you will see the full range of results, but if you run bravo, you only see pre-installed
applications and their components. It is unclear if this is the long-term subset that
you will be able to see by default, and it is also unclear to what extent device
manufacturers can tweak this behavior.

The other three flavors opt into seeing more things.

The charlie flavor wants to be able to see the ForensicPathlogist module’s
package, from a sample profiled in another chapter:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.r.query">>

<queries><queries>
<package<package android:name="com.commonsware.android.r.forensics" />/>

</queries></queries>

</manifest></manifest>

(from QueryPackages/src/charlie/AndroidManifest.xml)

If you have that app installed, it will appear in the list of installed apps, installed
packages, and launcher activities.

The delta flavor wants to be able to see apps with launcher activities:

PACKAGE VISIBILITY

59

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/QueryPackages/src/charlie/AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.r.query">>

<queries><queries>
<intent><intent>

<action<action android:name="android.intent.action.MAIN" />/>
<category<category android:name="android.intent.category.LAUNCHER" />/>

</intent></intent>

</queries></queries>

</manifest></manifest>

(from QueryPackages/src/delta/AndroidManifest.xml)

And, indeed, if you run that flavor, you will see those activities show up in the list of
launcher activities. However, in Android 11, those apps also show up in all the other
lists, as appropriate. Since most apps have a launcher activity, this particular
<queries> setup largely reverses the restrictions placed here by Android 11.

The echo flavor requests QUERY_ALL_PACKAGES, just as a regular permission:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.r.query">>

<uses-permission<uses-permission android:name="android.permission.QUERY_ALL_PACKAGES" />/>

</manifest></manifest>

(from QueryPackages/src/echo/AndroidManifest.xml)

Running that flavor appears to give you the same results as does the alfa flavor,
where our targetSdkVersion is still 29.

So, if Google allows you to hold QUERY_ALL_PACKAGES (for apps distributed on the
Play Store), you will be able to have the same behavior on Android 11 as you would
on older devices. But, if you can live with just being able to opt into seeing user-
installed apps with launcher activities, the <queries> structure seen in the delta
flavor grants that, without QUERY_ALL_PACKAGES… assuming that Google does not
change anything in future Android 11 updates.

PACKAGE VISIBILITY

60

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/QueryPackages/src/delta/AndroidManifest.xml
https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/QueryPackages/src/echo/AndroidManifest.xml

So… Why Bother?
You might wonder why Google is bothering with this, given that the whitelists allow
you to bypass the restrictions, and that’s ignoring the official QUERY_ALL_PACKAGES
opt-out.

In general, it appears as though this is simply a tightening of the security rules
(“principle of least access”), not tied to anything specific.

And, while Google expressly hints about possible restrictions on Play Store
distribution for apps using QUERY_ALL_PACKAGES, do not assume that the whitelists
are some form of escape hatch:

• Future versions of Android might present information about your whitelists
to the user (on the Play Store or at install time). If you ask for too much, the
user might elect to abandon your app.

• Google might put Play Store restrictions on certain whitelist options. For
example, they might allow actual launchers to whitelist apps with
MAIN/LAUNCHER activities, but they might ban non-launchers from doing the
same.

Logging What Was Filtered
Google added Logcat messages related to filtering. They will appear with the
AppFilter tag and will be of the form:

? I/AppsFilter: interaction: PackageSetting{...} -> PackageSetting{...}
BLOCKED

…where the first ... will contain your application ID and the second ... will
contain the application ID of the app that was filtered out.

This logging is enabled automatically for debug builds. If you need to test your
production app on Android 11 for this sort of filtering behavior, you can use adb to
enable it:

adb shell pm log-visibility --enable ...

…where the ... is your application ID.

PACKAGE VISIBILITY

61

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Note that the Logcat output may be rather extensive, as it lists everything that was
blocked by your query. If you have a narrow whitelist, the list of stuff outside the
whitelist may be rather long.

PACKAGE VISIBILITY

62

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Sharing UIs

Over Android’s history, many developers have wanted to embed the UI of one app in
another app. However, support for this pattern was lacking, in part due to the
performance limitations of early-generation Android devices.

Android 11 seems to be unwrapping a new approach to this problem, one that may
make cross-app UI embedding much more practical and powerful. In this chapter,
we will explore how this mechanism works and what its current limitations are.

UI Embedding: The Classic Approaches
If you have ever created an app widget or a “custom view” for a Notification, you
have worked with RemoteViews. This is the primary way for one app to provide a
hunk of UI to be embedded into another app, such as the UI for an app widget to be
embedded in a home screen of a launcher. RemoteViews, though, have not been
significantly improved since API Level 11. You can use relatively few widgets with
them, and the only real event that you can respond to is a click.

Technically speaking, RemoteViews is simply a data structure describing a UI. It is
entirely possible to create your own replacement for RemoteViews that uses a
different data structure, in an attempt to get past the limitations of RemoteViews.
Android 9’s slices, for example, take this approach, even allowing it to be available
via a Jetpack library for use with older devices. However, slices is more aimed at
describing data to display, where some client code decides how to render that data.
This adds flexibility at the cost of control — graphic designers, for example, cannot
get “pixel perfect” UIs if the client can elect to render a slice differently than does
another client.

As a result, most cross-app UI work has been handled simply between activities,

63

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

with App A starting an activity of App B when needed. This certainly works, but it is
very coarse-grained, usually with each app taking over the screen of the phone or
tablet.

What Android 11 Offers
Android 11 adds SurfaceControlViewHost. The name is awkward, but the capability
it enables is enticing. Simply put, a SurfaceControlViewHost allows one app to have
a view hierarchy (e.g., an inflated layout) be displayed in another app.

The approach taken by RemoteViews and slices is to send a description of a UI
between processes, with the recipient being responsible for rendering the UI. By
contrast, SurfaceControlViewHost works by sharing a Surface between the two
apps, by means of the SurfaceControl class added in Android 10. The app with the
view hierarchy renders to the Surface through the SurfaceControlViewHost, while
the recipient renders the Surface itself through a SurfaceView.

Now the app with the view hierarchy has much greater control over what the result
looks like. Any desired widgets, styles, and themes are available, because there is no
requirement that the recipient have access to any of those things — all the recipient
is doing is displaying the shared Surface.

The biggest limitation is that SurfaceControlViewHost is new to Android 11, as is the
ability to connect the shared Surface to a SurfaceView. It may be possible to
backport this to Android 10, when SurfaceControl was introduced, but that is far
from certain. Since it takes years for users to get new versions of Android (usually via
replacing their devices), this means that this capability, while interesting, will have
limited real-world applicability for a while.

How to Share
The EmbedClient sample module in the book’s sample project, along with the
EmbedServer module, demonstrate how to work with SurfaceControlViewHost.

In the terminology being used in this chapter:

• The “server” is the app with the view hierarchy
• The “client” is the app that is displaying the UI from that view hierarchy

SHARING UIS

64

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/tree/master/EmbedClient
https://gitlab.com/commonsguy/cw-android-r/tree/master/EmbedClient
https://gitlab.com/commonsguy/cw-android-r
https://gitlab.com/commonsguy/cw-android-r/tree/master/EmbedServer
https://gitlab.com/commonsguy/cw-android-r/tree/master/EmbedServer

Client Setup

The first thing that the client needs is a SurfaceView, which will be where the
embedded UI will be rendered. EmbedClient has an activity_main layout resource
that consists of a SurfaceView and a Button:

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout<androidx.constraintlayout.widget.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:padding="8dp"
tools:context=".MainActivity">>

<SurfaceView<SurfaceView
android:id="@+id/surface"
android:layout_width="0dp"
android:layout_height="0dp"
app:layout_constraintBottom_toTopOf="@id/connect"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent" />/>

<Button<Button
android:id="@+id/connect"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_marginTop="8dp"
android:text="@string/connect"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent" />/>

</androidx.constraintlayout.widget.ConstraintLayout></androidx.constraintlayout.widget.ConstraintLayout>

SHARING UIS

65

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

(from EmbedClient/src/main/res/layout/activity_main.xml)

Figure 20: EmbedClient, As Initially Launched

Android 11 adds a getHostToken() method to SurfaceView, returning an IBinder
that represents the SurfaceView. The client needs to get that “host token”, along
with the ID of the Display used for that SurfaceView, and the dimensions of that
SurfaceView over to the server app. MainActivity delegates this to a MainMotor
viewmodel, by calling a bind() function when the user clicks that “Connect to
Server” button:

packagepackage com.commonsware.android.r.embed.clientcom.commonsware.android.r.embed.client

importimport android.os.Bundleandroid.os.Bundle
importimport androidx.appcompat.app.AppCompatActivityandroidx.appcompat.app.AppCompatActivity
importimport androidx.lifecycle.observeandroidx.lifecycle.observe
importimport com.commonsware.android.r.embed.client.databinding.ActivityMainBindingcom.commonsware.android.r.embed.client.databinding.ActivityMainBinding
importimport org.koin.androidx.viewmodel.ext.android.viewModelorg.koin.androidx.viewmodel.ext.android.viewModel

classclass MainActivityMainActivity : AppCompatActivityAppCompatActivity() {
privateprivate valval motor: MainMotorMainMotor byby viewModel()

overrideoverride funfun onCreate(savedInstanceState: BundleBundle?) {
supersuper.onCreate(savedInstanceState)

SHARING UIS

66

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/EmbedClient/src/main/res/layout/activity_main.xml

valval binding = ActivityMainBindingActivityMainBinding.inflate(layoutInflater)

setContentView(binding.root)

binding.surface.setZOrderOnTop(truetrue)

motor.surfacePackage.observe(thisthis) {
binding.surface.setChildSurfacePackage(it)

}

binding.connect.setOnClickListener {
motor.bind(

binding.surface.hostToken,
binding.surface.display.displayId,
binding.surface.width,
binding.surface.height

)
}

}
}

(from EmbedClient/src/main/java/com/commonsware/android/r/embed/client/MainActivity.kt)

IBinder can go into a Bundle, and the Int values for the display ID, width, and
height can all be transferred easily between processes. We want to ensure that the
server process runs as long as our client needs it, so EmbedClient and EmbedServer
use the bound service pattern, with EmbedServer hosting the service. In particular,
EmbedServer will expose a Messenger as its Binder, so EmbedClient can send a
Message to it with the IBinder and Int values. So, MainMotor has a bindToService()
function that uses suspendCoroutine to make the asynchronous act of binding to a
service and getting the Messenger appear synchronous:

privateprivate suspendsuspend funfun bindToService(): MessengerConnectionMessengerConnection {
returnreturn withContext(DispatchersDispatchers.DefaultDefault) {

suspendCoroutine<MessengerConnectionMessengerConnection> { continuation ->
context.bindService(

IntentIntent().setClassName(
"com.commonsware.android.r.embed.server",
"com.commonsware.android.r.embed.server.ViewService"

),
MessengerConnectionMessengerConnection { ifif (isActive) continuation.resume(it) },
ContextContext.BIND_AUTO_CREATEBIND_AUTO_CREATE

)
}

}
}

}

privateprivate classclass MessengerConnectionMessengerConnection(privateprivate valval onConnected: (MessengerConnectionMessengerConnection) -> UnitUnit) :

SHARING UIS

67

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/EmbedClient/src/main/java/com/commonsware/android/r/embed/client/MainActivity.kt

ServiceConnectionServiceConnection {
varvar messenger: MessengerMessenger? = nullnull

overrideoverride funfun onServiceConnected(name: ComponentNameComponentName?, binder: IBinderIBinder?) {
messenger = MessengerMessenger(binder)
onConnected(thisthis)

}

overrideoverride funfun onServiceDisconnected(name: ComponentNameComponentName?) {
messenger = nullnull

}
}

(from EmbedClient/src/main/java/com/commonsware/android/r/embed/client/MainMotor.kt)

The bind() function that MainActivity calls then binds to the service and sends a
Message with our four pieces of data:

funfun bind(
hostToken: IBinderIBinder?,
displayId: IntInt,
width: IntInt,
height: IntInt

) {
viewModelScope.launch {

conn = bindToService()

conn?.messenger?.send(MessageMessage.obtain().apply {
data = bundleOf(

KEY_HOST_TOKENKEY_HOST_TOKEN to hostToken,
KEY_DISPLAY_IDKEY_DISPLAY_ID to displayId,
KEY_WIDTHKEY_WIDTH to width,
KEY_HEIGHTKEY_HEIGHT to height

)
replyTo = messenger

})
}

}

(from EmbedClient/src/main/java/com/commonsware/android/r/embed/client/MainMotor.kt)

Setting up the Bundle is a bit clunky, because the bundleOf() implementation in
androidx.core:core-ktx:1.2.0 does not support IBinder, the data type of our
“host token”. So, we have to add that via a separate call to putBinder().

Also note that our Message includes another Messenger in the replyTo property.
This Messenger will be used by the server to send data back to the client. We will
look more at that part of the process later in this chapter.

SHARING UIS

68

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/EmbedClient/src/main/java/com/commonsware/android/r/embed/client/MainMotor.kt
https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/EmbedClient/src/main/java/com/commonsware/android/r/embed/client/MainMotor.kt
https://issuetracker.google.com/issues/152542390
https://issuetracker.google.com/issues/152542390

Also, as was seen in an earlier chapter, we need to whitelist the server app in order
to be able to bind to it:

<queries><queries>
<package<package android:name="com.commonsware.android.r.embed.server" />/>

</queries></queries>

(from EmbedClient/src/main/AndroidManifest.xml)

Otherwise, any bindService() call will fail, even with a valid Intent.

Server Setup

The job of the server is to set up the SurfaceControlViewHost and the UI to be
displayed in the client.

All of that is handled by the ViewService being bound to by the client. While the
app has an activity, that is simply for convenience when launching this sample from
the IDE — the activity plays no role in the UI being served up.

The UI in question consists of a really big Button, plus a TextView:

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout<androidx.constraintlayout.widget.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:background="@android:color/white"
android:padding="8dp">>

<Button<Button
android:id="@+id/button"
android:layout_width="0dp"
android:layout_height="0dp"
app:layout_constraintBottom_toTopOf="@id/time"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent" />/>

<TextView<TextView
android:id="@+id/time"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginTop="8dp"

SHARING UIS

69

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/EmbedClient/src/main/AndroidManifest.xml

app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent" />/>

</androidx.constraintlayout.widget.ConstraintLayout></androidx.constraintlayout.widget.ConstraintLayout>

(from EmbedServer/src/main/res/layout/embedded.xml)

In onCreate() of ViewService, we use view binding to inflate() that layout and
configure the widgets:

classclass ViewServiceViewService : ServiceService() {
privateprivate lateinitlateinit varvar messenger: MessengerMessenger
privateprivate valval handlerThread = HandlerThreadHandlerThread("ViewService")
privateprivate lateinitlateinit varvar binding: EmbeddedBindingEmbeddedBinding

overrideoverride funfun onCreate() {
supersuper.onCreate()

handlerThread.start()

binding = EmbeddedBindingEmbeddedBinding.inflate(LayoutInflaterLayoutInflater.from(thisthis))
varvar count = 0

binding.button.text = getString(RR.string.caption, count)
binding.button.setOnClickListener {

LogLog.d("ViewService", "button clicked")
count += 1
binding.button.text = getString(RR.string.caption, count)

}
binding.time.text = DateDate().toString()

messenger = MessengerMessenger(ViewHandlerViewHandler(thisthis, binding, handlerThread.looper))

LogLog.d("ViewService", "onCreate() finished")
}

overrideoverride funfun onBind(p0: IntentIntent?): IBinderIBinder = messenger.binder
}

(from EmbedServer/src/main/java/com/commonsware/android/r/embed/server/ViewService.kt)

The Message from EmbedClient will be received by handleMessage() on the
ViewHandler implementation of Handler. Our job is to process that message and, for
the first message, set up the SurfaceControlViewHost:

SHARING UIS

70

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/EmbedServer/src/main/res/layout/embedded.xml
https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/EmbedServer/src/main/java/com/commonsware/android/r/embed/server/ViewService.kt

privateprivate classclass ViewHandlerViewHandler(
privateprivate valval context: ContextContext,
privateprivate valval binding: EmbeddedBindingEmbeddedBinding,
looper: LooperLooper

) : HandlerHandler(looper) {
privateprivate varvar host: SurfaceControlViewHostSurfaceControlViewHost? = nullnull

overrideoverride funfun handleMessage(msg: MessageMessage) {
LogLog.d("ViewService", "handleMessage() called")

msg.data.apply {
ifif (host == nullnull) {

valval hostToken = getBinder(KEY_HOST_TOKENKEY_HOST_TOKEN)
valval displayId = getInt(KEY_DISPLAY_IDKEY_DISPLAY_ID)
valval width = getInt(KEY_WIDTHKEY_WIDTH)
valval height = getInt(KEY_HEIGHTKEY_HEIGHT)
valval display = context.getSystemService(DisplayManagerDisplayManager::classclass.java)

.getDisplay(displayId)

host = SurfaceControlViewHostSurfaceControlViewHost(context, display, hostToken).apply {
setView(binding.root, width, height)

valval pkg = surfacePackage

msg.replyTo.send(MessageMessage.obtain().apply {
data = bundleOf(KEY_SURFACE_PACKAGEKEY_SURFACE_PACKAGE to pkg)

})
}

} elseelse {
binding.time.text = DateDate().toString()

}
}

}
}

(from EmbedServer/src/main/java/com/commonsware/android/r/embed/server/ViewService.kt)

If we have not set up the host previously, we grab the values out of the Message and
obtain the Display object for our display ID. We then:

• Create the SurfaceControlViewHost, passing the “host token” and
SurfaceView dimensions to the constructor

• Call setView() to attach our inflated layout to the host
• Call getSurfacePackage() on the host and send that back to the client via

the replyTo Messenger

SHARING UIS

71

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/EmbedServer/src/main/java/com/commonsware/android/r/embed/server/ViewService.kt

If, on the other hand, we already have the host set up from before, we just update
the TextView to show the now-current Date.

Client Completion

The replyTo Messenger that we attached to the outbound message is set up in the
init block of MainMotor:

classclass MainMotorMainMotor(privateprivate valval context: ContextContext) : ViewModelViewModel() {
privateprivate varvar conn: MessengerConnectionMessengerConnection? = nullnull
privateprivate valval _surfacePackage =

MutableLiveDataMutableLiveData<SurfaceControlViewHostSurfaceControlViewHost.SurfacePackageSurfacePackage>()
valval surfacePackage: LiveDataLiveData<SurfaceControlViewHostSurfaceControlViewHost.SurfacePackageSurfacePackage> =

_surfacePackage
privateprivate valval handlerThread = HandlerThreadHandlerThread("EmbedClient")
privateprivate valval handler: HandlerHandler
privateprivate valval messenger: MessengerMessenger

init {
handlerThread.start()
handler = PackageHandlerPackageHandler(handlerThread.looper) {

_surfacePackage.postValue(it)
}
messenger = MessengerMessenger(handler)

}

(from EmbedClient/src/main/java/com/commonsware/android/r/embed/client/MainMotor.kt)

The PackageHandler simply calls the supplied callback upon receipt of a Message,
extracting out the SurfacePackage sent by the server:

privateprivate classclass PackageHandlerPackageHandler(
looper: LooperLooper,
privateprivate valval onPackageReceipt: (SurfaceControlViewHostSurfaceControlViewHost.SurfacePackageSurfacePackage) -> UnitUnit

) : HandlerHandler(looper) {
overrideoverride funfun handleMessage(msg: MessageMessage) {

valval pkg = msg.data.getParcelable<SurfaceControlViewHostSurfaceControlViewHost.SurfacePackageSurfacePackage>(
KEY_SURFACE_PACKAGEKEY_SURFACE_PACKAGE

)

pkg?.let { onPackageReceipt(it) }
}

}

(from EmbedClient/src/main/java/com/commonsware/android/r/embed/client/MainMotor.kt)

SHARING UIS

72

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/EmbedClient/src/main/java/com/commonsware/android/r/embed/client/MainMotor.kt
https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/EmbedClient/src/main/java/com/commonsware/android/r/embed/client/MainMotor.kt

The SurfacePackage is supplied to MainActivity via LiveData, and MainActivity
calls setChildSurfacePackage() on the SurfaceView to attach it:

motor.surfacePackage.observe(thisthis) {
binding.surface.setChildSurfacePackage(it)

}

(from EmbedClient/src/main/java/com/commonsware/android/r/embed/client/MainActivity.kt)

The Results

If you install both apps, then launch EmbedClient and click the “Connect to Server”
button, you will see the EmbedServer-supplied UI in what had been the big open
area of the SurfaceView:

Figure 21: EmbedClient, After Connecting to Server

If you click the “Connect to Server” button again, the TextView text will show the
now-current date, illustrating that the connection between client and server is live.
All the server is doing on these subsequent button clicks is updating the text in the
TextView — it is not doing anything else to “push” a new rendition of the UI to the
client. That is handled by SurfaceControlViewHost and the underlying shared
Surface.

SHARING UIS

73

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/EmbedClient/src/main/java/com/commonsware/android/r/embed/client/MainActivity.kt

Enabling Input
If you set the SurfaceView to be on top from a Z axis standpoint, then input events
delivered to the SurfaceView will be routed to the corresponding widgets and their
listeners.

In these examples, ViewService added an OnClickListener to the Button. If you
click the Button as viewed in EmbedClient, you see the button caption being
updated by that listener. You also see the standard ripple effect, though fine-grained
animations like that do not seem to work well, even on relatively good hardware
(e.g., a Pixel 2).

The trick to making this work is setting that Z axis order, which we do in the
EmbedClient edition of MainActivity via setZOrderOnTop(true):

binding.surface.setZOrderOnTop(truetrue)

(from EmbedClient/src/main/java/com/commonsware/android/r/embed/client/MainActivity.kt)

SHARING UIS

74

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/EmbedClient/src/main/java/com/commonsware/android/r/embed/client/MainActivity.kt

Conversations and Bubbles

There are very few user-facing features in Android 11. One is the re-introduction of
“bubbles” as an extension of the notification system:

Figure 22: Bubble, As Initially Launched

75

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Figure 23: Bubble, Showing Expanded State

This is tied to a new “conversations” system for notifications, with an eye towards
messaging apps and similar sorts of situations where you are interacting with
another person.

From “Chat Heads” to Bubbles
In 2013, Facebook debuted the “chat heads” UI for their Android app. These allowed
the user to participate in Facebook chats while being (mostly) in other apps, by
having a floating avatar of your chat partner appear over the UI of whatever app you
were in.

Technically, this was somewhat of an abuse of the SYSTEM_ALERT_WINDOW permission
and related system-level windows. Facebook’s “leadership” in this area led many
other developers to apply the same technique. However, allowing arbitrary apps to
interpose arbitrary UI in front of other UI has security risks, and Google is starting
to restrict the use of SYSTEM_ALERT_WINDOW as a result.

However, Google recognizes the utility of this sort of system, which is why they are
adding bubbles as a framework-supported, user-controllable option for the same

CONVERSATIONS AND BUBBLES

76

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

sort of effect… albeit one that is tied to a “conversation”.

The Basics of Conversations
Google has portrayed “conversations” as being a major thing in Android 11. And, in
truth, it is one of the few user-facing features of Android 11. However, from a
programming standpoint, “conversations” may be just a minor extension to what you
are already doing with notifications.

Conversation Presentation

Conversation notifications are placed above regular notifications in the notification
shade:

Figure 24: A Conversation Notification in the Shade

CONVERSATIONS AND BUBBLES

77

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

They have slightly different presentation, with a greater emphasis on a developer-
supplied icon, typically representing the person (or bot or other non-corporeal
entity) with which the “conversation” is being held. Tapping the caret toggles
between expanded and collapsed perspectives, and long-pressing the caret can bring
up options, such as making the conversation be priority or silent:

Figure 25: Conversation Options from Caret Long-Press

But, mostly, this is just a MessagingStyle notification.

However, you may notice an icon in the lower-left of the notification. If this is
available, the user can turn this conversation into a bubble by tapping on it. This
implies that you have set up this notification with the metadata needed for bubbles,
and we will explore that and the rest of the bubble setup and presentation later in
the chapter.

Constructing a Conversation

A conversation notification is a MessagingStyle notification with a “long-lived”
shortcut associated with it. The documentation states that the shortcut must be
associated with Person objects in the conversation, though this does not appear to
be required. The shortcut that gets created not only helps set up your conversation,

CONVERSATIONS AND BUBBLES

78

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

but it appears as a real shortcut, such as on a long-press of your launcher icon. As
such, the shortcut needs to be real and to work, even though the Intent associated
with that shortcut is not used with the notification itself.

The BubbleConversation sample module in the book’s sample project shows a basic
recipe for getting a bubble to display and work, in the context of a “conversation”-
style notification. It has an activity with a really big button that, when clicked, raises
a conversation-style notification.

This code sets up a NotificationCompat.Builder for a conversation:

valval shortcutInfo = ShortcutInfoCompatShortcutInfoCompat.BuilderBuilder(thisthis, SHORTCUT_IDSHORTCUT_ID)
.setLongLived(truetrue)
.setShortLabel("Settings")
.setIntent(IntentIntent(SettingsSettings.ACTION_SETTINGSACTION_SETTINGS))
.setIcon(IconCompatIconCompat.createWithResource(thisthis, RR.drawable.ic_one))
.build()

ShortcutManagerCompatShortcutManagerCompat.pushDynamicShortcut(thisthis, shortcutInfo)

valval builder = NotificationCompatNotificationCompat.BuilderBuilder(
appContext,
CHANNEL_WHATEVERCHANNEL_WHATEVER

)
.setSmallIcon(RR.drawable.ic_notification)
.setContentTitle("Um, hi!")
.setBubbleMetadata(bubble)
.setShortcutInfo(shortcutInfo)

valval person = PersonPerson.BuilderBuilder()
.setBot(truetrue)
.setName("A Test Bot")
.setImportant(truetrue)
.build()

valval style = NotificationCompatNotificationCompat.MessagingStyleMessagingStyle(person)
.setConversationTitle("A Fake Chat")

style.addMessage("Want to chat?", SystemSystem.currentTimeMillis(), person)
builder.setStyle(style)

(from BubbleConversation/src/main/java/com/commonsware/android/r/bubble/MainActivity.kt)

Most of this code is mostly there to set up the MessagingStyle notification. And the
setBubbleMetadata() call is tied to bubbles, as we will see later in the chapter.

CONVERSATIONS AND BUBBLES

79

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/tree/master/BubbleConversation
https://gitlab.com/commonsguy/cw-android-r/tree/master/BubbleConversation
https://gitlab.com/commonsguy/cw-android-r
https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/BubbleConversation/src/main/java/com/commonsware/android/r/bubble/MainActivity.kt

To make this be categorized as a conversation, we:

• Create a ShortcutInfoCompat using ShortcutInfoCompat.Builder,
providing enough information to create valid shortcut, plus
setLongLived(true)

• Register that shortcut with ShortcutManagerCompat, in this case via
pushDynamicShortcut()

• Attach that shortcut to the notification using setShortcutInfo() on
NotificationCompat.Builder

In this case, the shortcut itself just launches the device’s Settings app. A more typical
solution would be to have it launch something related to the conversation or its
participants.

Note that the icon used as the primary visual indicator in the conversation is the
icon associated with the shortcut (in this case, R.drawable.ic_one). Hence, you will
want to set that icon to be something that represents the conversation or its
participants, further emphasizing the need for the shortcut itself to be tied to the
same things.

The Basics of Bubbles
A bubble is an option for a conversation-style notification. It basically detaches the
notification from the notification shade and has it be represented by a free-floating
icon that, when tapped, will display a designated activity in a floating window. As a
result, there are two main steps in enabling bubbles for a conversation:

• Setting up that activity for the floating window
• Teaching the notification that you want a bubble as an option

Crafting the Activity

There are two elements to a bubble:

• The actual bubble dot itself
• The content that is shown when the user taps on the bubble

That content is in the form of an Android activity.

CONVERSATIONS AND BUBBLES

80

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

The UI

Since this is an activity, you have access to the full range of Android UI options.
There are no known technical limitations, so if you want to use a SurfaceView or
WebView or whatever, you should be fine.

However, do bear in mind that your activity is likely to be smaller than the full
screen height. Also, while it is possible for that activity to start other activities, those
by default will remain in the bubble’s window, forming its own back stack.

You are not technically restricted to simple UIs like those of app widgets, slices, and
wearables. However, a bubble activity still should err on the side of simplicity,
particularly while users are getting used to how bubbles look and operate.

The Manifest Entry

As with any activity, the bubble content activity will have an <activity> element in
the manifest.

The documentation states that the <activity> must have three key attributes:

• android:allowEmbedded="true", to say that this activity can be embedded
in some other UI

• android:documentLaunchMode="always", to say that if there is a Uri
associated with the activity, different Uri values will result in different tasks
and separate activity instances

• android:resizeableActivity="true", to say that the activity window can
be resized at will by the user

The documentation claims that if these requirements are not met, then your
requested bubble will not be created and you wind up with a plain Notification
instead. In reality, none of these are required for the bubble to appear.

In the BubbleConversation module, we have a BubbleActivity that we want to
display as the bubble content. As a result, we put those three attribute values on the
BasicBubble <activity> element:

CONVERSATIONS AND BUBBLES

81

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://developer.android.com/guide/topics/ui/bubbles

<activity<activity
android:name=".BubbleActivity"
android:allowEmbedded="true"
android:documentLaunchMode="always"
android:resizeableActivity="true" />/>

(from BubbleConversation/src/main/AndroidManifest.xml)

BubbleActivity simply loads a layout with a Switch widget to indicate whether or
not you like bubbles:

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout<androidx.constraintlayout.widget.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent" android:layout_height="match_parent">>

<Switch<Switch
android:id="@+id/switch1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginBottom="8dp"
android:layout_marginEnd="8dp"
android:layout_marginStart="8dp"
android:layout_marginTop="8dp"
android:checked="true"
android:switchTextAppearance="@style/TextAppearance.AppCompat.Large"
android:text="I Like Bubbles!"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent" />/>

</androidx.constraintlayout.widget.ConstraintLayout></androidx.constraintlayout.widget.ConstraintLayout>

(from BubbleConversation/src/main/res/layout/activity_bubble.xml)

Note that the Switch does not actually do anything. But, feel free to toggle it, if you
like!

Requesting the Bubble

To show the bubble, you need to display a conversation notification that has
BubbleMetadata attached to it.

NotificationCompat.Builder has a setBubbleMetadata() method that we can use

CONVERSATIONS AND BUBBLES

82

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/BubbleConversation/src/main/AndroidManifest.xml
https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/BubbleConversation/src/main/res/layout/activity_bubble.xml

to request a bubble for our Notification. There is a corresponding
NotificationCompat.BubbleMetadata class, with a Builder, that we can use to
create that metadata to supply to setBubbleMetadata().

This code snippet illustrates setting up the metadata, as part of setting up the
conversation notification as seen earlier in this chapter:

privateprivate funfun buildBubbleNotification(appContext: ContextContext, showExpanded: BooleanBoolean = falsefalse): NotificationNotification {
valval pi = PendingIntentPendingIntent.getActivity(

appContext,
0,
IntentIntent(appContext, BubbleActivityBubbleActivity::classclass.java),
PendingIntentPendingIntent.FLAG_UPDATE_CURRENTFLAG_UPDATE_CURRENT

)

valval bubble = NotificationCompatNotificationCompat.BubbleMetadataBubbleMetadata.BuilderBuilder()
.setDesiredHeight(400)
.setIcon(IconCompatIconCompat.createWithResource(appContext, RR.drawable.ic_two))
.setIntent(pi)
.apply { ifif (showExpanded) setAutoExpandBubble(truetrue); setSuppressNotification(truetrue) }
.build()

valval shortcutInfo = ShortcutInfoCompatShortcutInfoCompat.BuilderBuilder(thisthis, SHORTCUT_IDSHORTCUT_ID)
.setLongLived(truetrue)
.setShortLabel("Settings")
.setIntent(IntentIntent(SettingsSettings.ACTION_SETTINGSACTION_SETTINGS))
.setIcon(IconCompatIconCompat.createWithResource(thisthis, RR.drawable.ic_one))
.build()

ShortcutManagerCompatShortcutManagerCompat.pushDynamicShortcut(thisthis, shortcutInfo)

valval builder = NotificationCompatNotificationCompat.BuilderBuilder(
appContext,
CHANNEL_WHATEVERCHANNEL_WHATEVER

)
.setSmallIcon(RR.drawable.ic_notification)
.setContentTitle("Um, hi!")
.setBubbleMetadata(bubble)
.setShortcutInfo(shortcutInfo)

valval person = PersonPerson.BuilderBuilder()
.setBot(truetrue)
.setName("A Test Bot")
.setImportant(truetrue)
.build()

valval style = NotificationCompatNotificationCompat.MessagingStyleMessagingStyle(person)
.setConversationTitle("A Fake Chat")

style.addMessage("Want to chat?", SystemSystem.currentTimeMillis(), person)
builder.setStyle(style)

returnreturn builder.build()
}

(from BubbleConversation/src/main/java/com/commonsware/android/r/bubble/MainActivity.kt)

CONVERSATIONS AND BUBBLES

83

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/BubbleConversation/src/main/java/com/commonsware/android/r/bubble/MainActivity.kt

There are three key methods on NotificationCompat.BubbleMetadata.Builder:

• setDesiredHeight() indicates how much vertical space you want for your
bubble content, measured in dp. Note that this is a request, and your actual
height may be larger or smaller than what you request.

• setIcon() eventually will let you specify an icon for the bubble itself. Note
that your launcher icon will appear superimposed on the bubble icon. As a
result, using the launcher icon as the bubble icon is atypical, but we are
doing that here anyway.

• setIntent() provides the PendingIntent to start the activity that is your
bubble content. In theory, this PendingIntent could be one for a service or
receiver instead of an activity, though this may give you undesired results.

If showExpanded is true, we also call two additional builder methods:

• setAutoExpandBubble(), to indicate that we want the bubble to show up in
full, not just as a simple bubble

• setSuppressNotification(), to indicate that we do not want the actual
Notification to appear if the bubble is displayed — the bubble alone is all
that we need

The resulting Notification can be displayed as normal:

privateprivate funfun showBubble(appContext: ContextContext, showExpanded: BooleanBoolean = falsefalse) {
NotificationManagerCompatNotificationManagerCompat.from(appContext).let { mgr ->

mgr.createNotificationChannel(
NotificationChannelNotificationChannel(

CHANNEL_WHATEVERCHANNEL_WHATEVER,
"Whatever",
NotificationManagerNotificationManager.IMPORTANCE_DEFAULTIMPORTANCE_DEFAULT

)
)

mgr.notify(NOTIF_IDNOTIF_ID, buildBubbleNotification(appContext, showExpanded))
}

}

(from BubbleConversation/src/main/java/com/commonsware/android/r/bubble/MainActivity.kt)

The UX

As was noted earlier, there is an icon in the lower-left of a conversation notification
that, when tapped, will bring up the bubble. Future uses of bubbles by your

CONVERSATIONS AND BUBBLES

84

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/BubbleConversation/src/main/java/com/commonsware/android/r/bubble/MainActivity.kt

notifications for the same channel, by default, will bring up the bubble icon (or the
expanded bubble) immediately.

In the collapsed form, the bubble consists of the shortcut icon with your app’s
launcher icon superimposed upon it:

Figure 26: Bubble, As Initially Launched

The bubble itself can be dragged around the screen, though it will always gravitate
toward one of the sides. This allows the user to reposition it to not obscure
something of importance.

CONVERSATIONS AND BUBBLES

85

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Tapping the bubble itself expands it:

Figure 27: Bubble, Showing Expanded State

You go directly to this expanded state if you use setAutoExpandBubble(true) in your
BubbleMetadata.Builder.

Despite the android:resizeableActivity="true" attribute in the manifest, the
system UI does not seem to allow the user to resize or move the bubble content.

The user can:

• Tap outside of the expanded view to collapse it back into a bubble
• Get rid of the bubble by dragging it to the bottom-center of the screen, over

an X icon that appears while dragging
• Click the “Manage” button on the lower edge, to bring up a small menu of

options for the user to configure the behavior of bubbles from your app
• Click the plus icon in a circle that appears next to your bubble above your

activity, to do… something apparently with recent bubbles (this has little
documentation)

CONVERSATIONS AND BUBBLES

86

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Security Stuff

Aspects of the changes to scoped storage and the MediaStore pertain to security, as
does the introduction of package filtering and the tweaks to permissions. In this
chapter, we will explore other security changes introduced in Android 11.

New Foreground Service Types
Android 10 introduced the android:foregroundServiceType attribute for the
<service> element in the manifest. Apps using certain capabilities need to declare
those intentions using this attribute. For example, if your foreground service needs
to use location APIs, you would need android:foregroundServiceType="location".
Failing to include this attribute may mean that your app will be unable to use those
capabilities when the app only has a foreground service and no foreground UI.

Despite Google’s efforts to pretend that nothing changed here, two new foreground
service types were added in Android 11:

• camera
• microphone

In addition, these two new foreground service types have an interesting phrase in
the JavaDoc comments for their corresponding ServiceInfo constants:
FOREGROUND_SERVICE_TYPE_CAMERA and FOREGROUND_SERVICE_TYPE_MICROPHONE:

For apps with targetSdkVersion Build.VERSION_CODES.R and above, a
foreground service will not be able to access the [camera|microphone] if
this type is not specified in the manifest and in
Service.startForeground(int, android.app.Notification, int).

87

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://issuetracker.google.com/issues/150203073
https://developer.android.com/reference/android/content/pm/ServiceInfo#FOREGROUND_SERVICE_TYPE_CAMERA
https://developer.android.com/reference/android/content/pm/ServiceInfo#FOREGROUND_SERVICE_TYPE_CAMERA
https://developer.android.com/reference/android/content/pm/ServiceInfo#FOREGROUND_SERVICE_TYPE_MICROPHONE
https://developer.android.com/reference/android/content/pm/ServiceInfo#FOREGROUND_SERVICE_TYPE_MICROPHONE

Normally, we can use the two-parameter startForeground() on Service to establish
our service as a foreground service. That method implies that we want to use all of
the foreground service type flags specified in android:foregroundServiceType in
the manifest. The documentation’s use of “and”, though, suggests that for camera
and microphone that we not only need them in the manifest but also need to pass
them specifically to the three-parameter startForeground() method, which takes a
bitmask of foreground service types as the third parameter.

However, elsewhere in the documentation, we have:

If your app starts a foreground service while running in the background, the
foreground service cannot access the microphone or camera.

So, if you use the camera or microphone APIs from a foreground service, you should
test your app early and often on Android 11.

BiometricPromptBiometricPrompt and Weak Biometrics
BiometricPrompt is the framework class responsible for authenticating the user, in-
app, based on how the user has secured their device. Through BiometricPrompt,
your app can re-confirm that the person using the app is authorized to use the
device, in case somebody else took the device from its normal user.

There is some history behind BiometricPrompt:

• The original focus was on KeyguardManager and the entry of PINs or
passwords (“device credentials”)

• FingerprintManager focused on fingerprints; part of the reason for the
change to BiometricPrompt was to support other forms of biometrics
besides fingerprints

Android 11 now divides the biometric options into “strong” and “weak”. Fingerprints
are strong; face recognition is weak. When you set up your BiometricPrompt, you
can indicate what authenticators are considered to be acceptable, so you can opt
into supporting weak biometrics if you choose to.

SECURITY STUFF

88

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://developer.android.com/about/versions/11/privacy/foreground-services#restrictions

The SecureCheq sample module in the book’s sample project is an updated version
of a sample from Elements of Android Q that re-authenticates the user when they
tap a large fingerprint icon:

Figure 28: SecureCheq Sample App, As Initially Launched

New to the RSampler project’s edition of SecureCheq is the RadioGroup at the top,
allowing the user to choose an authenticator. This, in turn, maps to a
BiometricManager.Authenticators constant:

• BIOMETRIC_STRONG
• BIOMETRIC_WEAK
• DEVICE_CREDENTIAL

setAllowedAuthenticators(), called on a BiometricPrompt.Builder, lets you
specify which of those three options you support. The method accepts a vararg, so
you can pass as many of these authenticator options as you wish. This sample only
passes in one, based on the selected radio button:

valval prompt = BiometricPromptBiometricPrompt.BuilderBuilder(thisthis)
.setTitle("This is the title")
.setDescription("This is the description")
.setSubtitle("This is the subtitle")
.apply {

SECURITY STUFF

89

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/tree/master/SecureCheq
https://gitlab.com/commonsguy/cw-android-r/tree/master/SecureCheq
https://gitlab.com/commonsguy/cw-android-r
https://commonsware.com/

whenwhen {
BuildBuild.VERSIONVERSION.SDK_INTSDK_INT > 29 && strong.isChecked ->

setAllowedAuthenticators(BiometricManagerBiometricManager.AuthenticatorsAuthenticators.BIOMETRIC_STRONGBIOMETRIC_STRONG)
BuildBuild.VERSIONVERSION.SDK_INTSDK_INT > 29 && weak.isChecked ->

setAllowedAuthenticators(BiometricManagerBiometricManager.AuthenticatorsAuthenticators.BIOMETRIC_WEAKBIOMETRIC_WEAK)
BuildBuild.VERSIONVERSION.SDK_INTSDK_INT > 29 ->

setAllowedAuthenticators(BiometricManagerBiometricManager.AuthenticatorsAuthenticators.DEVICE_CREDENTIALDEVICE_CREDENTIAL)
BuildBuild.VERSIONVERSION.SDK_INTSDK_INT > 28 -> {

setDeviceCredentialAllowed(truetrue)
}
elseelse -> {

setNegativeButton(
getString(RR.string.btn_negative),
mainExecutor,
DialogInterfaceDialogInterface.OnClickListenerOnClickListener { _, _ ->

fingerprint.setImageDrawable(off)
ToastToast.makeText(

thisthis@MainActivity,
RR.string.msg_negative,
ToastToast.LENGTH_LONGLENGTH_LONG

).show()
})

}
}

}
.build()

(from SecureCheq/src/main/java/com/commonsware/android/r/auth/MainActivity.kt)

However, since this app supports older versions, we have a few possible patterns:

• On Android 11, we call setAllowedAuthenticators() with the user-selected
authenticator

• On Android 10, we instead call setDeviceCredentialAllowed(true), which
roughly equates to passing
BiometricManager.Authenticators.DEVICE_CREDENTIAL to
setAllowedAuthenticators()

• On Android 9.0, we settle for configuring a “negative” button that the user
can click to exit the biometric prompt

What you get depends on the authenticator and the user’s device. So, for example, if
the device is set up for fingerprints, and the user chooses “Strong Authentication”,
the fingerprint dialog appears. That dialog is now protected using FLAG_SECURE,
blocking people (such as book authors) from taking screenshots.

If, on the other hand, the device is not set up for fingerprints, even
BIOMETRIC_STRONG falls back to DEVICE_CREDENTIAL, and the user is prompted for
their PIN or password.

Right now, the author of this book does not have an Android 11-equipped device that

SECURITY STUFF

90

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/SecureCheq/src/main/java/com/commonsware/android/r/auth/MainActivity.kt

offers weak authentication options (e.g., face recognition). This section will be
updated later in 2020 with more details on how that works with the new
BiometricPrompt.

ToastToast Restrictions
There are a number of new limitations on Toast that you will need to take into
account.

The big one is displaying a Toast with a custom View (via setView()). This is still
allowed, but only from the foreground. If you try this from the background, the
Toast is not displayed and a warning about the violation is recorded in Logcat.

For apps with a targetSdkVersion of 30 or higher, you also:

• Cannot call getView() to get the View displayed by the Toast (it just returns
null)

• Cannot modify the margins or gravity
• Cannot retrieve the margins or gravity (return values from methods like
getGravity() “don’t reflect the actual values, so you shouldn’t rely on them
in your app”)

The rationale for all of these is to prevent the user from using a Toast to occlude
critical aspects of the UI. For example, in principle, an app could display a custom
Toast over top of a system permissions dialog. The Toast could show a message that
implies that the permission being requested is more benign than it really is. While
this attack is unreliable, given the short and transient nature of a Toast, it could still
work.

Further CA Certificate Restrictions
In general, having custom certificate authority (CA) certificates in a device opens up
security problems. CAs are used to verify SSL/TLS certificate chains, and a
fraudulent CA certificate makes it possible for malicious parties to pretend to be
Web sites and services that they are not. Google has been slowly tightening the
screws on where these certificates can come from for years.

However, there are plenty of legitimate uses for them, including enterprises (who
sometimes use custom certificate authorities to help secure their own internal Web
sites) and debugging tools (HTTP Toolkit, Charles Proxy, etc.).

SECURITY STUFF

91

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Android 11 adds a lightly-documented new restriction: apps cannot ask users to
install a certificate via KeyChain.createInstallIntent(). Added back in Android
4.1, this method would build an Intent where you could supply a CA certificate via
an Intent extra, and a startActivityForResult() call would ask the user if she
wanted that certificate to be installed. For CA certificates, on Android 11 and higher,
this no longer works.

Instead, users now need to do this manually:

• Go to the Security screen in the Settings app
• In there, navigate to “Encryption & credentials” > “Install a certificate” > “CA

certificate”
• Agree to proceed, despite a security warning
• Use the Storage Access Framework UI to find the CA certificate and choose

to open it
• Confirm the installation

And, of course, these instructions will vary by manufacturer, as manufacturers have
a habit of changing how the Settings app looks and works.

See this blog post for more on the subject.

SECURITY STUFF

92

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://httptoolkit.tech/blog/android-11-trust-ca-certificates/

Device Controls

As was noted earlier, few significant user-facing new features were added in Android
11. One is “device controls”. Akin to how Android 8.0 allowed developers to offer
items to show in the notification shade through a TileService, Android 11 allows
developers ControlsProviderService.

In this chapter, we will explore what our options are for device controls.

The High-Level View
Android has long supported a “power menu” that is triggered by a long-press on the
device’s POWER button. Traditionally, this had an option for a complete device
shutdown, where a short press of the POWER button just turns off the screen. Later
versions of Android started offering other items here, such as a device reboot or
capturing of a screenshot. Android 11 restyles this “menu” once again, now taking up
the entire screen… and part of that screen represents stuff that we as developers can
control.

93

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

What the User Gets

If you long-press the POWER button on an Android 11 device, a screen akin to this
one will appear:

Figure 29: Android 11 Power Menu, As Initially Launched

DEVICE CONTROLS

94

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

In the middle of the screen is a “Device controls” card. Tapping that will display
various sources of device controls:

Figure 30: Device Controls Sources List

DEVICE CONTROLS

95

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Tapping one of those will give you a lineup of available devices to control, perhaps
based on other configuration performed in the main app:

Figure 31: Device Controls From Sample App

You can check and uncheck the checkboxes in the lower right corner of each of
those tiles to determine which of these you want to appear on your “power menu”.
They will then show up on the main “power menu” screen, and you can interact with
them, as we will explore more later in this chapter.

How We Build It

Your graphic designers might look at this and envision all sorts of possibilities for
what they might do in this space.

Your graphic designers will be very disappointed.

We do not directly control the look or interactivity of these tiles. Instead, we
describe what we want in fairly generic terms (“we want the user to control a value
in a range from 1 to 10”), and Android renders that how Android sees fit.

In this respect, this is reminiscent of Android 9.0’s flagship feature: slices. There, we

DEVICE CONTROLS

96

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

did not provide the direct UI of a slice, but instead described the general structure of
what we want, and the slice host would decide how to render that structure.

(and, if you forgot about slices, or never heard of them in the first place, you did not
miss much…)

A subclass of ControlsProviderService provides the API that you will expose to
Android to supply the contents of these tiles. So, to offer device control tiles to your
users, you will create a ControlsProviderService subclass and implement its API to
publish the roster of possible tiles and support the user interacting with a chosen
subset of those tiles.

Elements of a Control Tile
Each tile is represented by a Control. When we create instances of a Control, we get
to define a Template and a device type for that Control, plus we get to react to an
Action when one is raised.

Template

The element that determines what a tile looks and works like is the template. As the
name suggests, it provides a general structure for a tile, where you get to fill in the
details, such as the text that appears in the tile.

Templates are defined via subclasses of ControlTemplate, where the specific
subclass determines the type of interactivity:

• ToggleTemplate allows the user to toggle between two states (e.g., on and
off)

• RangeTemplate allows the user to choose a value within a range, reminiscent
of a SeekBar

• ToggleRangeTemplate allows the user to do both of those: turn something
on/off and, if on, control the value within a range

• TemperatureControlTemplate supports toggling between multiple distinct
modes (e.g., heat, cool, “eco”), in addition to wrapping one of the
aforementioned template types (e.g., allow the user to toggle between
heating and cooling, plus specify a value within a temperature range)

All of those have an associated state that the user is modifying via the tile. The
assumption is that your app has the ability to determine the current state of

DEVICE CONTROLS

97

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

whatever the tile controls and pass along the user’s requested changes to that state.

There is also a StatelessTemplate. While you can find out about taps on this type
of tile (via actions, covered in the next section), there is no state that your app — or
the device controls framework — needs to track.

Action

Your choice of template in turn drives how the user can interact with it. Your app
will find out about the user’s choices via an action. Actions are represented by
subclasses of ControlAction. The subclasses represent the type of data that is being
tracked as state for this tile; your app, upon receiving the action, is supposed to
change the state of the associated device to that new value:

Action Class
State Data

Type
Associated Templates

BooleanAction boolean
ToggleTemplate, ToggleRangeTemplate,

TemperatureControlTemplate

FloatAction float
RangeTemplate, ToggleRangeTemplate,

TemperatureControlTemplate

ModeAction int TemperatureControlTemplate

There is also a CommandAction, emitted by a StatelessTemplate, that just tells you
that the user clicked on the tile. The idea is that you might use this to send some
command to the device that is not necessarily tied to any state.

Device Type

Our choice of “device type” for a tile primarily controls an icon that goes in the
upper-start corner of the tile. Secondarily, it might have other visual effects, such as
changing the default color that gets used.

A device type is represented by an Int value. DeviceTypes contains a list of Int
constants for the supported device types. This is a long list, containing both obvious
device types (lights, thermostats), esoteric ones (hood, mop, drawer), and generic
ones (on/off, lock/unlock, temperature).

DEVICE CONTROLS

98

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

In reality, not every one of these gets a distinct icon, at least in stock versions of
Android 11.

Control

All of the above get wrapped up into a Control. You create instances of a Control via
builders. Principally, you will use Control.StatefulBuilder to not only provide the
details of the control but also the current state value associated with the device (e.g.,
is it on or off for a ToggleTemplate). There is also a Control.StatelessBuilder that
you will use for a specific initial-loading scenario (but, despite the name, this is only
somewhat related to StatelessControl).

FlowFlow… But Not That FlowFlow

The point behind device controls is to give the user an accessible UI for
manipulating some device via your app — a thermostat, an overhead door, a lamp,
etc. There may be some delays involved in your app finding out the current state of
the device and in changing that state via the user’s interaction with these tiles. Plus,
the state often might change via other inputs, such as somebody pushing a button or
flipping a switch, so you might need to deliver state changes over time.

This calls for an asynchronous API, where you can have some time to deliver
responses, use background threads, and so on.

You might think that Google would use LiveData here. However, LiveData is
specifically designed for dealing with lifecycles, and there isn’t really a “lifecycle”
involved with this work. Plus, LiveData is a Jetpack library, and framework classes
like ControlsProviderService cannot depend upon Jetpack libraries.

You might think that given Google’s strong interest in Kotlin that they would use
coroutines, such as Flow. However, while Google overall is Kotlin-friendly, the
framework is not. Google’s coroutine-centric APIs are all in Jetpack libraries. The
device controls API needs to be more readily usable by Java apps.

You might think that Google would go “retro” and use callbacks or listeners, since
they are still all over the place in the Android SDK. Or, perhaps they would use some
sort of Future or one of the seemingly-endless number of classes and interfaces
named Observable.

Instead, they chose to use the Reactive Streams API… somewhat.

DEVICE CONTROLS

99

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://www.reactive-streams.org/

The Reactive Streams API is a cross-platform initiative for defining reactive APIs.
Android 11 includes the JDK 9 edition of an API based on Reactive Streams, in the
form of interfaces like Flow.Publisher, used to provide a stream of results to some
subscriber.

However, Android 11 does not include an implementation of Reactive Streams, just
the API embodied in those interfaces. The expectation is that you will use a third-
party library that can provide implementations of those interfaces, where the
leading contender for this is RxJava.

If your project already uses RxJava, great! However, the Reactive Streams classes in
RxJava may be different than the ones that you are used to. In RxJava, typically we
use Observable and Subject, but the Reactive Streams RxJava equivalents are
Flowable and Processor. Still, the concepts are fairly similar.

If your project does not use RxJava right now… you get to start! Isn’t that fun!

(narrator: it will not be fun, but many Android developers use RxJava successfully, so
you will be able to do so as well)

Taking Control of the Situation
The TakeControl sample module in the book’s sample project contains a
ControlsProviderService implementation that offers two tiles to the user: one
based on a ToggleTemplate and one based on a RangeTemplate. The screenshots
shown earlier in this chapter show “Take Control Demo” and those two tiles.

The Dependencies

While ControlsProviderService, ControlTemplate, and such are all part of the
Android SDK, your Reactive Streams implementation is not. So, you will need to add
in dependencies for that implementation.

This sample app uses RxJava 2, and so we have dependencies for it and the
reactive-streams library that helps adapt RxJava 2 to the JDK’s Flow... set of
interfaces:

implementation "org.reactivestreams:reactive-streams:1.0.3"
implementation "io.reactivex.rxjava2:rxjava:2.2.9"

(from TakeControl/build.gradle)

DEVICE CONTROLS

100

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/tree/master/TakeControl
https://gitlab.com/commonsguy/cw-android-r/tree/master/TakeControl
https://gitlab.com/commonsguy/cw-android-r
https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/TakeControl/build.gradle

The <service><service> Element

TakeControlService is our ControlsProviderService implementation. Like any
Service, TakeControlService appears in the manifest with a <service> element.
However, the <service> element has a few important pieces, beyond the
android:name attribute that identifies the service class:

<service<service
android:name=".TakeControlService"
android:label="@string/serviceLabel"
android:permission="android.permission.BIND_CONTROLS">>
<intent-filter><intent-filter>

<action<action android:name="android.service.controls.ControlsProviderService" />/>
</intent-filter></intent-filter>

</service></service>

(from TakeControl/src/main/AndroidManifest.xml)

The two that are documented are:

• You need the <intent-filter> to advertise that your service is a
ControlsProviderService

• You need the android:permission attribute to ensure that only the OS will
be able to bind to your service

DEVICE CONTROLS

101

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/TakeControl/src/main/AndroidManifest.xml

The requirement that is undocumented is android:label. This forms the display
name of your ControlsProviderService. In the screenshots, where you see “Take
Control Demo” is where your service’s android:label value appears, such as on the
list of available providers:

Figure 32: Device Controls Provider Chooser, with Demo Provider Display Name
Highlighted

DEVICE CONTROLS

102

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://issuetracker.google.com/issues/171393072

Publishing All Available Controls

There are three abstract functions that we need to override in a
ControlsProviderService. The first is createPublisherForAllAvailable(). Here,
“all available” is referring to the roster of controls: we need to tell Android what are
all the possible controls that can be offered to the user. This is what populates the
control picker screen that we saw earlier:

Figure 33: Device Controls From Sample App

This function needs to return a Flow.Publisher that will emit the Control objects
as they become available… or all at once, as is the case in the sample:

overrideoverride funfun createPublisherForAllAvailable(): FlowFlow.PublisherPublisher<ControlControl> =
FlowAdaptersFlowAdapters.toFlowPublisher(

FlowableFlowable.fromIterable(
listOf(

buildStatelessControl(TOGGLE_IDTOGGLE_ID, TOGGLE_TITLETOGGLE_TITLE, TOGGLE_TYPETOGGLE_TYPE),
buildStatelessControl(RANGE_IDRANGE_ID, RANGE_TITLERANGE_TITLE, RANGE_TYPERANGE_TYPE)

)
)

)

(from TakeControl/src/main/java/com/commonsware/android/r/control/TakeControlService.kt)

DEVICE CONTROLS

103

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/TakeControl/src/main/java/com/commonsware/android/r/control/TakeControlService.kt

With the RxJava 2 and Reactive Streams libraries, the easiest way to create this
Flow.Publisher is to create an RxJava Flowable, then convert it to a Flow.Publisher
via FlowAdapters.toFlowPublisher(). And, the easiest possible Flowable (other
than an empty one) is to create one from a List of objects using
Flowable.fromIterable().

The Control objects that we need to emit on our Flow.Publisher must be made
using Control.StatelessBuilder. At least in part, that is because the control picker
screen is showing tiles representing controls, but not anything regarding the current
state of the device that those controls control.

To that end, TakeControlService has a buildStatelessControl() function that
uses Control.StatelessBuilder to build a Control. We pass in a unique Int ID, a
string resource representing a title, and a DeviceType value, defined as constants:

privateprivate constconst valval TOGGLE_ID = 1337
privateprivate constconst valval TOGGLE_TITLE = RR.string.toggleTitle
privateprivate constconst valval TOGGLE_TYPE = DeviceTypesDeviceTypes.TYPE_GENERIC_ON_OFFTYPE_GENERIC_ON_OFF
privateprivate constconst valval RANGE_ID = 1338
privateprivate constconst valval RANGE_TITLE = RR.string.rangeTitle
privateprivate constconst valval RANGE_TYPE = DeviceTypesDeviceTypes.TYPE_THERMOSTATTYPE_THERMOSTAT

(from TakeControl/src/main/java/com/commonsware/android/r/control/TakeControlService.kt)

buildStatelessControl(), in turn, builds the stateless Control:

privateprivate funfun buildStatelessControl(
id: IntInt,
@StringRes titleRes: IntInt,
type: IntInt

): ControlControl {
valval title = getString(titleRes)
valval intent = MainActivityMainActivity.buildIntent(thisthis, title)

.addFlags(IntentIntent.FLAG_ACTIVITY_NEW_TASKFLAG_ACTIVITY_NEW_TASK)
valval actionPI = PendingIntentPendingIntent.getActivity(

thisthis,
id,
intent,
PendingIntentPendingIntent.FLAG_UPDATE_CURRENTFLAG_UPDATE_CURRENT

)

returnreturn ControlControl.StatelessBuilderStatelessBuilder(id.toString(), actionPI)
.setTitle(title)

DEVICE CONTROLS

104

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/TakeControl/src/main/java/com/commonsware/android/r/control/TakeControlService.kt

.setDeviceType(type)

.build()
}

(from TakeControl/src/main/java/com/commonsware/android/r/control/TakeControlService.kt)

The Control.StatelessBuilder constructor takes a unique ID (as a String) for this
control, along with a PendingIntent. That PendingIntent will be invoked if the user
long-taps on the tile for a control. It needs to be an activity PendingIntent, and it
will be displayed in a system-supplied bottom sheet. That “embed the activity in a
bottom sheet” hack has a side effect: the Intent used to build the PendingIntent
must have FLAG_ACTIVITY_NEW_TASK on it, or else that bottom sheet will crash when
it goes to display the activity. Alas, that requirement is undocumented.

As the name suggests, Control.StatelessBuilder is a class with a builder-style API.
There are two configuration methods that we need to call, before we call build() to
build the actual Control:

• setTitle() sets the title that you see at the top of the tile
• setDeviceType() sets the DeviceType Int value that controls the icon

associated with the tile

In a real app, you would be examining what devices the user has configured in your
app, determining what controls you can offer for those, building stateless Control
objects for those, and then emitting them via your Flow.Publisher. This sample
hard-codes the available controls for simplicity.

If you have a lot of controls, you might also consider overriding
createPublisherForSuggested(). This allows you to supply a separate
Flow.Publisher for a subset of your controls, indicating ones that you feel are most
likely to be of use to the user.

Updating Specific Controls

The second required method is createPublisherFor(). This will be called with a list
of the string IDs of the controls that the user selected from the control picker. Your
job is emit stateful Control objects on a Flow.Publisher for those controls, both
initially and if the device state represented by the control changes. So, for example, if
you have a control representing the on/off state of a light switch, you will need to
emit a stateful Control to indicate the current state of that switch as of the call to
createPublisherFor() and if the state of that switch changes.

DEVICE CONTROLS

105

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/TakeControl/src/main/java/com/commonsware/android/r/control/TakeControlService.kt
https://issuetracker.google.com/issues/171137289

This time, since (in theory) we are delivering results over time, we cannot just create
a Flowable from a List. Instead, we use RxJava’s ReplayProcessor:

overrideoverride funfun createPublisherFor(controlIds: ListList<StringString>): FlowFlow.PublisherPublisher<ControlControl> {
valval flow: ReplayProcessorReplayProcessor<ControlControl> = ReplayProcessorReplayProcessor.create(controlIds.size)

controlIds.forEach { controlFlows[it] = flow }

executor.execute {
// TODO real work to figure out the state, simulated by a one-second delay
SystemClockSystemClock.sleep(1000)

flow.onNext(buildToggleStatefulControl())

// TODO real work to figure out the state, simulated by a one-second delay
SystemClockSystemClock.sleep(1000)

flow.onNext(buildRangeStatefulControl())
}

returnreturn FlowAdaptersFlowAdapters.toFlowPublisher(flow)
}

(from TakeControl/src/main/java/com/commonsware/android/r/control/TakeControlService.kt)

We are going to need to use that Flow.Publisher over time, and the API for
ControlsProviderService does not hand it back to us. In theory, we might be called
with createPublisherFor() several times for several lists of controls — this is not
well-documented. So, the sample holds onto the ReplayProcessor in a MutableMap,
keyed by the string ID value:

privateprivate valval controlFlows =
mutableMapOf<StringString, ReplayProcessorReplayProcessor<ControlControl>>()

(from TakeControl/src/main/java/com/commonsware/android/r/control/TakeControlService.kt)

And, at the end of our createPublisherFor() function, use use
FlowAdapters.toFlowPublisher() to convert that ReplayProcessor into a
Flow.Publisher for Android to use.

We also need to arrange to emit the stateful controls for those IDs. However, this
may take time — you might need to talk to some hardware over a slow BLE
connection, for example. To simulate this, the sample uses a single-thread Executor
and a couple of sleep() calls to pretend to do work. Then, we use a
buildToggleStatefulControl() and buildRangeStatefulControl() to emit
Control objects representing the now-current state.

Those two functions mostly delegate to a buildStatefulControl() function, just
passing in a bunch of values:

DEVICE CONTROLS

106

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/TakeControl/src/main/java/com/commonsware/android/r/control/TakeControlService.kt
https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/TakeControl/src/main/java/com/commonsware/android/r/control/TakeControlService.kt

privateprivate funfun buildToggleStatefulControl() = buildStatefulControl(
TOGGLE_IDTOGGLE_ID,
TOGGLE_TITLETOGGLE_TITLE,
TOGGLE_TYPETOGGLE_TYPE,
toggleState,
ToggleTemplateToggleTemplate(

TOGGLE_IDTOGGLE_ID.toString(),
ControlButtonControlButton(

toggleState,
toggleState.toString().toUpperCase(LocaleLocale.getDefault())

)
)

)

privateprivate funfun buildRangeStatefulControl() = buildStatefulControl(
RANGE_IDRANGE_ID,
RANGE_TITLERANGE_TITLE,
RANGE_TYPERANGE_TYPE,
rangeState,
RangeTemplateRangeTemplate(

RANGE_IDRANGE_ID.toString(),
1f,
10f,
rangeState,
0.1f,
"%1.1f"

)
)

(from TakeControl/src/main/java/com/commonsware/android/r/control/TakeControlService.kt)

We need to supply the same ID, title, and type as we did with the stateless controls.
We also need to supply the value of the current state, which for a toggle is a Boolean
and for a range is a Float. Those are simply held onto as properties in the service in
this trivial sample:

privateprivate varvar toggleState = falsefalse
privateprivate varvar rangeState = 5f

(from TakeControl/src/main/java/com/commonsware/android/r/control/TakeControlService.kt)

A real app would be getting them from the actual device being controlled by this
service. And, a real app would not make any assumptions about how long the
ControlsProviderService instance might be running — the framework could
destroy and recreate the service as it sees fit. But, for a sample, this will suffice.

DEVICE CONTROLS

107

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/TakeControl/src/main/java/com/commonsware/android/r/control/TakeControlService.kt
https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/TakeControl/src/main/java/com/commonsware/android/r/control/TakeControlService.kt

buildStatefulControl() also takes the ControlTemplate for the control that we are
trying to build. In the case of the toggle control, that is a ToggleTemplate, and in the
case of the range control that is a RangeTemplate. A template also gets a unique ID
as a string, though reusing the same ID as is used for the Control the template goes
into seems to work, at least for simple templates like these. The rest of the template
configuration is based on the type of the template:

• A ToggleTemplate just takes a ControlButton, with a boolean value to
indicate if it is checked and a seemingly-pointless String parameter

• A RangeTemplate takes the minimum and maximum values of the range
(e.g., 1f to 10f), the current value, how granular the changes should be (e.g.,
0.1f), and a “format string” that will be used to format the state for display

Here, “format string” refers to the sort of template that you use with
String.format() or string resources. Here, we use %1.1f to show the current value
to one decimal point.

buildStatefulControl() then uses all of that stuff and assembles our Control using
Control.StatefulBuilder:

privateprivate funfun <TT> buildStatefulControl(
id: IntInt,
@StringRes titleRes: IntInt,
type: IntInt,
state: TT,
template: ControlTemplateControlTemplate

): ControlControl {
valval title = getString(titleRes)
valval intent = MainActivityMainActivity.buildIntent(thisthis, "$title $state")

.addFlags(IntentIntent.FLAG_ACTIVITY_NEW_TASKFLAG_ACTIVITY_NEW_TASK)
valval actionPI = PendingIntentPendingIntent.getActivity(

thisthis,
id,
intent,
PendingIntentPendingIntent.FLAG_UPDATE_CURRENTFLAG_UPDATE_CURRENT

)

returnreturn ControlControl.StatefulBuilderStatefulBuilder(id.toString(), actionPI)
.setTitle(title)
.setDeviceType(type)
.setStatus(ControlControl.STATUS_OKSTATUS_OK)
.setControlTemplate(template)
.build()

}

DEVICE CONTROLS

108

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

(from TakeControl/src/main/java/com/commonsware/android/r/control/TakeControlService.kt)

Control.StatefulBuilder has a builder-style API with the same setTitle() and
setDeviceType() methods as does Control.StatelessBuilder. You also need to
call:

• setStatus(), typically with STATUS_OK, to indicate that you are able to
determine the status of the control

• setControlTemplate(), with your configured ControlTemplate for this
control

There are other methods that you can call, such as setStatusText(), which provides
the String to show after the icon (and, in the case of RangeTemplate, before the
formatted value of the current selection).

Once you deliver those to Android — by calling onNext() on your ReplayProcessor
— Android will update the UI of the tile to show the state, if the user happens to
have the power menu open at the time. You will be called with
createPublisherFor() each time the user opens the power menu.

Responding to Actions

The third method that you need to override is performControlAction(). This will be
called when the user interacts with the control, other than via a long-click (which
invokes your PendingIntent). Your job is to update the device based on that action,
then emit a fresh stateful Control with the updated state.

overrideoverride funfun performControlAction(
controlId: StringString,
action: ControlActionControlAction,
consumer: ConsumerConsumer<IntInt>

) {
controlFlows[controlId]?.let { flow ->

whenwhen (controlId) {
TOGGLE_IDTOGGLE_ID.toString() -> {

consumer.accept(ControlActionControlAction.RESPONSE_OKRESPONSE_OK)
ifif (action isis BooleanActionBooleanAction) toggleState = action.newState
flow.onNext(buildToggleStatefulControl())

}
RANGE_IDRANGE_ID.toString() -> {

consumer.accept(ControlActionControlAction.RESPONSE_OKRESPONSE_OK)
ifif (action isis FloatActionFloatAction) rangeState = action.newValue
flow.onNext(buildRangeStatefulControl())

}

DEVICE CONTROLS

109

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/TakeControl/src/main/java/com/commonsware/android/r/control/TakeControlService.kt

elseelse -> consumer.accept(ControlActionControlAction.RESPONSE_FAILRESPONSE_FAIL)
}

} ?: consumer.accept(ControlActionControlAction.RESPONSE_FAILRESPONSE_FAIL)
}

(from TakeControl/src/main/java/com/commonsware/android/r/control/TakeControlService.kt)

The first parameter to performControlAction() is the String ID of the control that
the user used. We use that both to look up the cached ReplayProcessor for that
control and to branch in a when() to process the action.

The second parameter is a ControlAction object, representing the actual action that
the user performed. For a ToggleTemplate control, it should be a BooleanAction,
and for a RangeTemplate control, it should be a FloatAction.

The third parameter is a Consumer, which we use to tell Android whether we
understood the request. Call accept() on the Consumer with RESPONSE_OK if you are
able to process the action or RESPONSE_FAIL if you cannot for some reason.

In our case, we:

• Look up the ReplayProcessor for the supplied ID
• If we recognize the ID, call accept() with RESPONSE_OK
• Update the state property for that control based on the value contained in

the action
• Use buildToggleStatefulControl() or buildRangeStatefulControl() to

build a fresh stateful Control representing the updated state, then emit that
using onNext() on our ReplayProcessor

Here, the sample does all of that immediately. In a real app, updating the device
with the new state may take time, and so you would have some background thread
do that work and emit the updated Control when the device has been modified.

DEVICE CONTROLS

110

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/TakeControl/src/main/java/com/commonsware/android/r/control/TakeControlService.kt

The Results

If the user chooses “Take Control Demo” from the available control providers, they
will see the stateless editions of our tiles as samples:

Figure 34: Device Controls From Sample App, In Control Picker

DEVICE CONTROLS

111

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

If they check both of those, those tiles will appear in the power menu, initially as
stateless editions:

Figure 35: Chosen Device Controls From Sample App, Shortly After POWER Long
Press

DEVICE CONTROLS

112

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Eventually, the stateful editions of our tiles are displayed. In particular, the “Sample
Range” tile shows our current value (via that format string) and has a shaded fill to
highlight how far along the range the current value is:

Figure 36: Chosen Device Controls, in Stateful Form

The user can tap on the “Sample Toggle” to toggle it on, which shows up with a
highlight when on:

Figure 37: Chosen Device Controls, With Toggle Switched On

Similarly, the user can slide their finger horizontally across the range tile to change
its value.

DEVICE CONTROLS

113

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

As the user makes changes, actions get sent to our performControlAction()
implementation, and it is our emitted stateful control in response that helps
determine the end visual state.

If the user long-presses on a tile, the activity identified in our PendingIntent is
created and shown… in a bottom sheet:

Figure 38: Activity Launched from Tile Long-Press

The icon in the upper-right allows the user to expand the activity into a traditional
full-screen size.

Ideally, the activity will show something of relevance to the tile just long-pressed-
upon.

Other APIs
You can call ControlsProviderService.requestAddControl() to ask the system to
ask the user if a particular control should be added to the POWER screen. For
example, you might do this in response to some user input or configuration of a
device for which you offer controls.

DEVICE CONTROLS

114

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

In addition to the elements that we configured on controls in the sample, you can
supply:

• A subtitle to appear below the title
• A “structure” and a “zone”, to help the user identify the specific device

managed by the tile (e.g., which light switch?)
• A custom color or icon to use in the tile

Also, stateful controls can have “status text”, which is shown adjacent to the icon and
gives you another way to textually represent the current status of whatever the tile
manages.

DEVICE CONTROLS

115

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Other Changes of Note

There are lots of other changes in Android 11, far more than can be presented in this
book. This chapter covers a variety of additional changes that you may want to pay
attention to.

Stuff That Might Break You
The scariest batch of changes in any Android release are the ones that may break
existing app behavior. Things like package visibility might qualify for that.

Here are a few other smaller changes that may cause problems for reasonably-
ordinary apps.

Dismissable Ongoing Notifications

For your foreground services, you may be used to raising “ongoing” notifications.
These normally are not dismissable by the user.

However, in Android 11, they are.

On the plus side, this does not appear to affect your process importance. You are still
registered as having a foreground service, even if the user gets rid of your
notification.

However, if you were used to that notification always being there to give the user
control over that background work… now the user might remove that notification,
intentionally or accidentally. Make sure that your app can still function reasonably,
from a UX standpoint, if the user dismisses your notification.

117

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Phone Number Permissions

Some Android SDK methods let you attempt to get the phone number of the device,
such as getLine1Number() on TelephonyManager. In practice, these are not very
reliable, but you are welcome to try to use them.

For years, in order to call those methods, you needed the READ_PHONE_STATE
permission. This is a dangerous permission, and you needed to use runtime
permissions to further request it on Android 6.0+.

In Android 11, once your targetSdkVersion reaches 30, you need to request a
different permission for those methods: READ_PHONE_NUMBERS. This too is a
dangerous permission.

As a result, you need to decide which of those permissions you need based on API
level, and include the correct permission in the array that you pass to
requestPermissions().

If the only reason you were requesting READ_PHONE_STATE was to use these methods,
you may find that you no longer need it on Android 11+ devices. If so, you could elect
to add android:maxSdkVersion="29" to your <uses-permission> element for
READ_PHONE_STATE to drop it off for API Level 30 and higher devices:

<uses-permission<uses-permission android:name="READ_PHONE_STATE" android:maxSdkVersion="29" />/>

Conversely, if you are using READ_PHONE_STATE for other things, you will need to
request both READ_PHONE_STATE and READ_PHONE_NUMBERS on API Level 30 devices,
but only READ_PHONE_STATE on older devices.

Overlay Tweak

Hopefully, you are not using the SYSTEM_ALERT_WINDOW permission in your app. If
you are, then you probably have noticed that Google is continuing to “tighten the
screws” with each passing release. While it is possible that they will never outright
ban SYSTEM_ALERT_WINDOW, they certainly seem intent upon making it more
aggravating for developers and users.

In Android 11, the change is to ACTION_MANAGE_OVERLAY_PERMISSION.

SYSTEM_ALERT_WINDOW is one of those special permissions that does not go through
the standard dangerous runtime permission system. Rather, the user needs to go

OTHER CHANGES OF NOTE

118

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

into the “Special app access” section of the Apps screen in Settings, and from there
go into “Display over other apps”. There, the user can tap on an app that is
requesting SYSTEM_ALERT_WINDOW and elect to grant or reject that permission for that
app.

ACTION_MANAGE_OVERLAY_PERMISSION is an Intent action that allows you to send the
user to this place in Settings. In Android 6.0 through 10, there were two ways to use
this Intent:

• On its own, to lead the user to the “Display over other apps” screen
• With a package Uri tied to your application ID, to lead the user straight to

the screen where they can grant (or deny) that permission for your app

In Android 11, that latter option is no longer available. You can provide the Uri, but
it will be ignored by the Settings app. The user is always taken to the “Display over
other apps” screen, where the user will need to click on your app, then grant the
permission.

No Third-Party Image Capture Support

ACTION_IMAGE_CAPTURE is a popular means for an app to take a picture, by asking a
camera app to do the “heavy lifting”. This means that the app can skip all of the
headache of setting up a camera itself (e.g., via the CameraX library) and does not
need the CAMERA permission. There are also ACTION_IMAGE_CAPTURE_SECURE and
ACTION_VIDEO_CAPTURE Intent actions that perform similar operations.

The problem is that pre-installed camera apps often do not test these actions much,
so they tend to have bugs. In lieu of dumping these actions and doing the camera
work directly in the app, many apps simply guide the user to install a third-party
camera app, one that is known to have a good implementation of things like
ACTION_IMAGE_CAPTURE. Then, when the app invokes the ACTION_IMAGE_CAPTURE
Intent, the user could choose the third-party camera app in the chooser.

That is no longer an option on Android 11, once your targetSdkVersion reaches 30.

Those three Intent actions will only start a pre-installed camera app. User-installed
camera apps are ignored. Even if the user has disabled all pre-installed camera apps,
user-installed camera apps are still ignored — Android throws an
ActivityNotFoundException instead.

At minimum, if you are using these Intent actions, you will need to handle the

OTHER CHANGES OF NOTE

119

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://developer.android.com/preview/behavior-changes-all#manage_overlay
https://issuetracker.google.com/issues/162643544
https://issuetracker.google.com/issues/162643544
https://issuetracker.google.com/issues/162643544

ActivityNotFoundException scenario. You really needed that anyway, as work
policies or similar constraints might have caused that Intent to fail anyway.

Even if you try enabling package visibility for your desired Intent action, you will
find that third-party apps are ignored.

An explicit Intent works for the startActivity()/startActivityForResult() call,
if you happen to know of a camera app to try (e.g., net.sourceforge.opencamera for
Open Camera). This also works with queryIntentActivities() on PackageManager,
if you also enable package visibility, so you can determine whether the Intent would
succeed or not before trying to start the activity.

The CamChooser sample module in the book’s sample project demonstrates a related
approach: adding candidate camera apps to a chooser:

packagepackage com.commonsware.android.r.camchoosercom.commonsware.android.r.camchooser

importimport android.content.Contextandroid.content.Context
importimport android.content.Intentandroid.content.Intent

privateprivate valval CAMERA_CANDIDATES = listOf(
"net.sourceforge.opencamera"

)

funfun enhanceCameraIntent(
context: ContextContext,
baseIntent: IntentIntent,
title: StringString

): IntentIntent {
valval pm = context.packageManager

valval cameraIntents =
CAMERA_CANDIDATESCAMERA_CANDIDATES.map { IntentIntent(baseIntent).setPackage(it) }

.filter { pm.queryIntentActivities(it, 0).isNotEmpty() }

.toTypedArray()

returnreturn ifif (cameraIntents.isEmpty()) {
baseIntent

} elseelse {
IntentIntent

.createChooser(baseIntent, title)

.putExtra(IntentIntent.EXTRA_INITIAL_INTENTSEXTRA_INITIAL_INTENTS, cameraIntents)
}

}

OTHER CHANGES OF NOTE

120

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/tree/master/CamChooser
https://gitlab.com/commonsguy/cw-android-r/tree/master/CamChooser
https://gitlab.com/commonsguy/cw-android-r

(from CamChooser/src/main/java/com/commonsware/android/r/camchooser/CameraIntent.kt)

The enhanceCameraIntent() function will sift through the application IDs from
CAMERA_CANDIDATES and see if any appear to exist and support some Intent action
(e.g., ACTION_IMAGE_CAPTURE). If there are some, they are attached to
Intent.createChooser() via EXTRA_INITIAL_INTENTS. You can then use the
returned Intent with startActivityForResult(). The result is:

• If the user only has a pre-installed camera app available, that app is
launched directly

• If the user only has a matching third-party camera app installed, that app is
launched directly

• If the user has both, a chooser appears
• If the user has none, you get an ActivityNotFoundException

So, you still need to worry about ActivityNotFoundException, but that was always
the case with these Intent actions. The user might be running in a restricted profile
and lack access to any camera apps, for example.

This sample only shows one candidate camera app, that being Open Camera.
Enterprising developers might create a broader list of candidate apps that could be
detected and used. The overall CamChooser sample app implements a testbed, to
allow you to see whether these media capture Intent actions appear to work
properly for your selected camera app. The checks are rudimentary, mostly
confirming that we did not crash and did get the expected result (e.g., Bitmap
returned to us, photo/video stored in the EXTRA_OUTPUT location).

Maps V1 Removed

If your app is very old, it is possible that you are still trying to limp along with the
original Google Maps on Android implementation, sometimes referred to as “Maps
v1”. If you are using classes like com.google.android.maps.MapView and have a
<uses-library android:name="com.google.android.maps" /> manifest entry, you
are using Maps v1.

And you need to stop. Maps v1 has been deprecated for quite some time, it stopped
working in Android 10, and in Android 11, it is simply gone.

If you have <uses-library android:name="com.google.android.maps"
android:required="false" />, and you are checking at runtime for the existence of
com.google.android.maps.MapView (e.g.,

OTHER CHANGES OF NOTE

121

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/CamChooser/src/main/java/com/commonsware/android/r/camchooser/CameraIntent.kt
https://developer.android.com/preview/behavior-changes-all#maps-v1-removed

Class.forName("com.google.android.maps.MapView")), your app should not find
that class, and you should go through whatever sort of “graceful degradation” code
path that you have set up for such devices.

Stuff That Might Interest You
Then, we have some items that will not break your app but represent features that
you might want to opt into, for Android 11 devices.

Wireless Debugging

Android has offered adb access over a network connection for several years, though
the support on devices has been somewhat “hit or miss”, and it usually required
short-term adb access via a USB cable. This feature has been overhauled in Android
11 and is now a first-class option, with improved security and (presumably) no USB
cable requirement. However, it does take several steps to set up.

First, if you do not already have adb in your PATH, this would be a fine time to add it!

OTHER CHANGES OF NOTE

122

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Next, you need to find the “Wireless Debugging” option in the Developer Options
screen in the Settings app:

Figure 39: Developer Options, Wireless Debugging Option Highlighted

OTHER CHANGES OF NOTE

123

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Tap on the switch to turn it on. This will bring up a dialog confirming that you want
to enable this option:

Figure 40: Wireless Debugging Network Confirmation Dialog

OTHER CHANGES OF NOTE

124

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

After accepting the dialog, tap on the “Wireless Debugging” option itself (not the
switch). This brings up the dedicated wireless debugging screen:

Figure 41: Developer Options, Wireless Debugging Screen

OTHER CHANGES OF NOTE

125

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

There, tap on “Pair device with pairing code”, to bring up a dialog with a pairing
code and an IP address and port number:

Figure 42: Wireless Debugging Pairing Dialog

At the command line on your development machine, run adb pair ...:..., where
the ...:... is the IP address and port combination shown in the pairing dialog. You
will then be asked to enter the pairing code shown on the dialog. The adb pair
command will tell you if this succeeds or fails.

If it succeeds, and you are running macOS, you should be done. If you are using
Windows or Linux, you then need to run adb connect ...:..., where this ...:...
is the IP address and port combination shown in the Wireless Debugging screen. In
particular, the port number will be different than the one that you used for the
pairing operation.

If that command succeeds, then you will be set up for wireless debugging, both from
adb (e.g., adb logcat) and from Android Studio. Use adb disconnect ...:...,
using the same IP address/port combination that you used for adb connect, to
disconnect from the device from a debugging standpoint.

OTHER CHANGES OF NOTE

126

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Night Mode Tweaks

Android 11 allows the user to schedule when to enable and disable the “dark theme”
mode:

Figure 43: Dark Theme in Settings, Showing Scheduling Options

On its own, this does not affect apps. However, it does increase the likelihood that
your users will be using the dark theme option, which puts increasing pressure on
you to support it.

However, while Android has had support for what the SDK calls “night mode” for
years, there was never a way to determine whether or not we were in night mode
programmatically. If you needed that, you had to have your own boolean resources
in res/values/ and res/values-night/ to distinguish between the cases.

Android 11, though, gives us isNightModeActive() on Configuration. You get a
Configuration from Resources, which you can get from any Context (such as your
Activity):

valval mode: BooleanBoolean = resources.configuration.isNightModeActive

OTHER CHANGES OF NOTE

127

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Since this is only available on Android 11 and higher, most likely you will wind up
continuing to use the boolean-resource trick for the time being, until such time as
you can raise your minSdKVersion past 29.

You can learn more about theme support for night mode in
Android 10 in the "Dark Mode" chapter of Elements of Android Q!

Shared Datasets

In principle, Android 11 allows multiple apps to share large blobs of data. Cited
examples include machine learning datasets and media for playback. Through
BlobStoreManager, your app can contribute such blobs to the device and indicate
the level of access — such as allowSameSignatureAccess() to allow a set of apps in
a suite to all access the blobs.

In practice, this feature is very poorly documented.

Per-Connection SQL

When working with SQLite, you may want some common setup for your database
connections. There may be certain PRAGMA statements that you want to execute, for
example. However, SQLiteDatabase can elect to disconnect and reconnect to SQLite.
So, even if you try executing those statements as soon as you open a database, you
may find later that you have a connection on which you did not execute those
statements.

To help with this, Android 11 offers execPerConnectionSQL(). The syntax is the same
as execSQL(), taking the SQL statement and an optional array of positional
parameter values. And, like execSQL(), your SQL is executed immediately. However,
it is also cached by the SQLiteDatabase and re-executed on any new database
connection that is created.

Note that this implies that your parameters to execPerConnectionSQL() will be held
onto as long as the SQLiteDatabase object is around. If you use this, be certain not
to introduce a memory leak!

OTHER CHANGES OF NOTE

128

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://commonsware.com/Q
https://developer.android.com/training/data-storage/shared/datasets

Dynamic Intent Filters

One of the big limitations of the manifest is that it is declared at compile time.
There are very few options for changing what is in the manifest at runtime, beyond
setComponentEnabledSetting() on PackageManager.

Android 11 gives us another option: we can dynamically declare MIME types to be
supported by an <intent-filter>. The stated reason is to support:

virtualization apps (such as virtual machines and remote desktops) because
they have no way of knowing exactly what software the user will install
inside them

That is a rather esoteric scenario, and it is likely that developers will find other uses
for this.

There are two steps for implementing this.

First, in one or more <intent-filter> elements, you can use android:mimeGroup,
instead of android:mimeType, in a <data> element:

<activity<activity
android:name=".MainActivity"
android:launchMode="singleTop">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN" />/>

<category<category android:name="android.intent.category.LAUNCHER" />/>
</intent-filter></intent-filter>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.VIEW" />/>
<category<category android:name="android.intent.category.DEFAULT" />/>
<data<data android:mimeGroup="testMimeGroup" />/>
<data<data android:scheme="content" />/>

</intent-filter></intent-filter>
</activity></activity>

(from DynFilter/src/main/AndroidManifest.xml)

Here, we have an <activity> with two <intent-filter> elements. The second one
uses android:mimeGroup="testMimeGroup" in a <data> element as part of declaring
an ACTION_VIEW handler.

The second step is to define at runtime what MIME types belong to the group, using

OTHER CHANGES OF NOTE

129

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://developer.android.com/preview/features#dynamic-intent-filters
https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/DynFilter/src/main/AndroidManifest.xml

setMimeGroup() on PackageManager:

privateprivate funfun updateMimeGroup(prefs: SharedPreferencesSharedPreferences) {
valval types = prefs.getStringSet(mimeTypesKey, emptySet()).orEmpty()

packageManager.setMimeGroup("testMimeGroup", types)
}

(from DynFilter/src/main/java/com/commonsware/android/r/dynfilter/MainActivity.kt)

This code, pulled from the DynFilter sample module in the book’s sample project,
retrieves the value of a MultiSelectListPreference and uses that for the MIME
types to pass to setMimeGroup(). setMimeGroup() simply takes the name of the
MIME group (that you used in the android:mimeGroup attribute) and a Set of strings
representing the MIME types.

When you call setMimeGroup(), Android will update its metadata for your app and
cause your <intent-filter> to be valid for all of the requested MIME types. Note,
though, that apps that look up matching activities via methods like
queryIntentActivities() may not react to the change right away, if they cache
results from before your setMimeGroup() call. However, standard system options,
such as the Intent chooser, will handle the revised set of MIME types fairly quickly.

OTHER CHANGES OF NOTE

130

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-r/blob/vFINAL/DynFilter/src/main/java/com/commonsware/android/r/dynfilter/MainActivity.kt
https://gitlab.com/commonsguy/cw-android-r/tree/master/DynFilter
https://gitlab.com/commonsguy/cw-android-r/tree/master/DynFilter
https://gitlab.com/commonsguy/cw-android-r

ACTION_CLEAR_APP_CACHEACTION_CLEAR_APP_CACHE

There is a new Intent action, found on StorageManager: ACTION_CLEAR_APP_CACHE.
Simply put, launching it with startActivityForResult() pops up a dialog to allow
the user to clear “app external cache directories”:

Figure 44: AppCache Sample App, Showing System Clear-Cache Dialog

Presumably, “app external cache directories” refers to getExternalCacheDirs() for
all apps.

If you get RESULT_OK in onActivityResult(), then the user accepted the dialog and
cleared the caches. If you get RESULT_CANCELED, the user declined your offer.

However, note that you need to hold MANAGE_EXTERNAL_STORAGE, which is the scary
new permission covered earlier in the book.

OTHER CHANGES OF NOTE

131

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

	Table of Contents
	Preface
	The Book’s Prerequisites
	What’s New in the Final Version?
	Warescription
	Source Code and Its License
	Creative Commons and the Four-to-Free (42F) Guarantee
	Acknowledgments

	Storage Shifts
	Recapping What Happened in Android 10
	Limited Filesystem Access
	Alternative #1: Storage Access Framework
	Alternative #2: MediaStore
	Alternative #3: Opt Out of the Change

	Let’s Do the Time Warp
	Extending the Opt-Out
	Raw Paths Support
	Hey, What About Writing?
	SAF Restrictions
	ACTION_OPEN_DOCUMENT_TREE
	Overall External Storage Root
	Download/
	Stuff in Android/

	The Other SAF Actions

	“All Files Access”
	Detecting This Permission

	MediaStore Modifications
	Recapping What We Got in Android 10
	Limited Access
	RecoverableSecurityException
	New Collections

	Getting the Right Uri
	Batched Access
	Obtaining the Image Uri Values
	Seeing If We Have Permission
	Requesting the Permission

	Permission Permutations
	One-Time Permissions
	Trying It Out
	Ramifications For You

	Multiple Rejections = Denial
	Trying It Out
	Ramifications For You

	Background Location Changes
	Android 10
	Android 11, targetSdkVersion 29
	Android 11, targetSdkVersion 30

	Automatic Permission Removal

	Auditing Alternatives
	Data Access Auditing
	Collecting the Data
	Identifying Uses by Attribution
	What To Do With the Results?

	Application Exits
	Collecting the Data
	What To Do With the Results?
	Tracking Application State
	ANRs and Traces

	Package Visibility
	The Way Things Were
	Social Distancing for Apps
	Whitelisting
	By Package
	By Intent Signature
	<queries> and Gradle

	Escaping the Sandbox
	Effects and Ramifications
	So… Why Bother?
	Logging What Was Filtered

	Sharing UIs
	UI Embedding: The Classic Approaches
	What Android 11 Offers
	How to Share
	Client Setup
	Server Setup
	Client Completion
	The Results

	Enabling Input

	Conversations and Bubbles
	From “Chat Heads” to Bubbles
	The Basics of Conversations
	Conversation Presentation
	Constructing a Conversation

	The Basics of Bubbles
	Crafting the Activity
	The UI
	The Manifest Entry

	Requesting the Bubble
	The UX

	Security Stuff
	New Foreground Service Types
	BiometricPrompt and Weak Biometrics
	Toast Restrictions
	Further CA Certificate Restrictions

	Device Controls
	The High-Level View
	What the User Gets
	How We Build It

	Elements of a Control Tile
	Template
	Action
	Device Type
	Control

	Flow… But Not That Flow
	Taking Control of the Situation
	The Dependencies
	The <service> Element
	Publishing All Available Controls
	Updating Specific Controls
	Responding to Actions
	The Results

	Other APIs

	Other Changes of Note
	Stuff That Might Break You
	Dismissable Ongoing Notifications
	Phone Number Permissions
	Overlay Tweak
	No Third-Party Image Capture Support
	Maps V1 Removed

	Stuff That Might Interest You
	Wireless Debugging
	Night Mode Tweaks
	Shared Datasets
	Per-Connection SQL
	Dynamic Intent Filters
	ACTION_CLEAR_APP_CACHE

