Table of Contents
Headings formatted in bold-italic have changed since the last version.

	
Preface
	The Book’s Prerequisites

	What’s New in the Final Version?

	Warescription

	Source Code and Its License

	Creative Commons and the Four-to-Free (42F) Guarantee

	Acknowledgments

	
Storage Shifts
	Recapping What Happened in Android 10

	Let’s Do the Time Warp

	Extending the Opt-Out

	Raw Paths Support

	Hey, What About Writing?

	SAF Restrictions

	“All Files Access”

	
MediaStore Modifications
	Recapping What We Got in Android 10

	Getting the Right Uri

	Batched Access

	
Permission Permutations
	One-Time Permissions

	Multiple Rejections = Denial

	Background Location Changes

	Automatic Permission Removal

	
Auditing Alternatives
	Data Access Auditing

	Application Exits

	
Package Visibility
	The Way Things Were

	Social Distancing for Apps

	Whitelisting

	Escaping the Sandbox

	Effects and Ramifications

	So… Why Bother?

	Logging What Was Filtered

	
Sharing UIs
	UI Embedding: The Classic Approaches

	What Android 11 Offers

	How to Share

	Enabling Input

	
Conversations and Bubbles
	From “Chat Heads” to Bubbles

	The Basics of Conversations

	The Basics of Bubbles

	
Security Stuff
	New Foreground Service Types

	BiometricPrompt and Weak Biometrics

	Toast Restrictions

	Further CA Certificate Restrictions

	
Device Controls
	The High-Level View

	Elements of a Control Tile

	Flow… But Not That Flow

	Taking Control of the Situation

	Other APIs

	
Other Changes of Note
	Stuff That Might Break You

	Stuff That Might Interest You

Preface
Thanks!
Thanks for your continued interest in Android! Android advances year after
year, and 2020’s Android 11 (R) continues that pattern. Many developers ignore
new Android versions until some concrete problem causes them grief. Hopefully,
you are reading this in advance of when Android 11 ships to lots of devices,
so you can head off any problems before they turn into customer complaints.
(on the other hand, if you are reading this in response to Android 11 customer complaints… sorry!)
And thanks for your interest in this book and CommonsWare’s overall line
of Android books!
The Book’s Prerequisites
This book is designed for developers with 1+ years of Android app development
experience. If you are fairly new to Android, please consider reading
Elements of Android Jetpack,
Exploring Android, or both, before
continuing with this book.
Also note that this book’s examples are written in Kotlin.
What’s New in the Final Version?
This book is almost unchanged from the previous version.
Warescription
If you purchased the Warescription, read on! If you obtained this book from
other channels, feel free to jump ahead.
The Warescription entitles you, for the duration of your subscription, to digital
editions of this book and its updates, in PDF, EPUB, and Kindle (MOBI/KF8) formats,
plus the ability to read the book online at the Warescription Web site.
You also have access to other books that CommonsWare publishes during that
subscription period.
Each subscriber gets personalized editions of all editions of each title. That way,
your books are never out of date for long, and you
can take advantage of new material as it is made available.
However, you can only download the books while you have an active Warescription.
There is a grace period after your Warescription ends: you can still
download the book until the next book update comes out after your
Warescription ends. After that, you can no longer download the book.
Hence, please download your updates as they come out.
You can find out when new releases
of this book are available via:

	The CommonsBlog

	The CommonsWare Twitter feed

	Opting into emails announcing each book release — log into the
Warescription site and choose Configure from
the nav bar

	Just check back on the Warescription site every
month or two

Subscribers also have access to other benefits, including:

	“Office hours” — online chats to help you get
answers to your Android application development questions. You will find a calendar
for these on your Warescription page.

	A Stack Overflow “bump” service, to get additional attention for a question
that you have posted there that does not have an adequate answer.

	A discussion board for asking arbitrary questions about Android app development.

Source Code and Its License
The source code in this book is licensed under the
Apache 2.0 License, in case you have the
desire to reuse any of it.
Copying source code directly from the book, in the PDF editions, works best
with Adobe Reader, though it may also work with other PDF viewers. Some PDF viewers,
for reasons that remain unclear, foul up copying the source code to the clipboard
when it is selected.
Creative Commons and the Four-to-Free (42F) Guarantee
Each CommonsWare book edition will be available for use under the
Creative Commons Attribution-Noncommercial-ShareAlike 3.0
license as of the
fourth anniversary of its publication date, or when 4,000 copies of the edition
have been sold, whichever comes first. That means that, once four years have
elapsed (perhaps sooner!), you can use this prose for non-commercial purposes.
That is our Four-to-Free Guarantee to our readers and the broader community.
For the purposes of this guarantee, new Warescriptions and renewals will be
counted as sales of this edition, starting from the time the edition is
published.
This edition of this book will be available under the aforementioned Creative
Commons license on 1 November 2024. Of course, watch the CommonsWare Web
site, as this edition might be relicensed sooner based on sales.
For more details on the Creative Commons Attribution-Noncommercial-ShareAlike
3.0 license, visit the Creative Commons Web site
Note that future editions of this book will become free on later dates, each
four years from the publication of that edition or based on sales of that
specific edition. Releasing one edition under the Creative Commons license does
not automatically release all editions under that license.
Acknowledgments
The author would like to thank the Google team responsible for Android 11.
Storage Shifts
Android 10 introduced what Google calls “scoped storage” and what the author
of this book called “the death of external storage”.
Android 11 tweaks scoped storage some more, improving things in some areas
and causing new and exciting challenges in others.
Recapping What Happened in Android 10
Before we dive into the Android 11 changes to scoped storage, let’s quickly
review what happened in Android 10.

You can learn more about scoped storage in Android 10 in the "The Death of External Storage" chapter of
Elements of Android Q!

Limited Filesystem Access
While apps can still use getExternalFilesDir() and other methods on Context
to work with external and removable storage, everything else has been blocked.
Notably, the methods on Environment like getExternalStorageDirectory()
and getExternalStoragePublicDirectory() are deprecated. And, if you try
to use those directories, you will find that your app lacks access, even if
you hold READ_EXTERNAL_STORAGE and/or WRITE_EXTERNAL_STORAGE.
Roughly speaking, there are three alternatives for addressing this limitation.
Alternative #1: Storage Access Framework
For general-purpose content, Google expects you to use the Storage Access Framework:

	
ACTION_OPEN_DOCUMENT to have the user choose a piece of content

	
ACTION_CREATE_DOCUMENT to create a new piece of content in a user-chosen location

	
ACTION_OPEN_DOCUMENT_TREE to have the user choose a “document tree” (e.g., a directory)
that you can then use for reading and writing

The actual mechanics of the Storage Access Framework did not change in Android 10,
merely its importance.
Alternative #2: MediaStore

For apps that work with media and wish to place content in common media locations,
MediaStore is still an option. However, the behavior of MediaStore changed some
in Android 10 and again in Android 11 — we will explore that more in the next chapter.
Alternative #3: Opt Out of the Change
You could add android:requestLegacyExternalStorage="true" to the <application>
element in the manifest to say that you want the “legacy” storage model. In other
words, android:requestLegacyExternalStorage="true" has your app running on Android
10 behave much as it would on Android 9.
Alternatively, simply having a targetSdkVersion below 29 would give you the same
effect.
Let’s Do the Time Warp
Back when Android 10 was still Android Q, we were told that android:requestLegacyExternalStorage="true"
would no longer work once we raised targetSdkVersion to 29.
Somewhere along the line, Google rescinded that, and the author of this book
missed that change.
It appears that in the final release of Android 10, Google allowed
android:requestLegacyExternalStorage="true" regardless of targetSdkVersion.
Since Android 11 also honors it — at least until you reach targetSdkVersion 30 —
this gives you a bit more time to adapt to scoped storage.
Extending the Opt-Out
Android 11 also offers android:preserveLegacyExternalStorage="true". This says:

	For users who upgrade the app, opt out of scoped storage

	For users who freshly install the app, use scoped storage as normal

There is no timetable given for if and when android:preserveLegacyExternalStorage
might no longer be honored, though the documentation states:

Note that this may not always be respected due to policy or backwards compatibility reasons.

Also, it means that different users of the same app version will get different
storage behavior, depending on how the user got that app version (fresh install vs. upgrade).
And, of course, since this is new to Android 11, this should have no effect on Android 10
devices.
Given all of that, this seems like an attribute to avoid.
Raw Paths Support
However, even without the opt-out, READ_EXTERNAL_STORAGE works again, more or less
as it did from Android 4.4 through
Android 9. If you request it, and the user grants it, you can traverse external
storage as you were used to.
However, there are major caveats:

	You still do not have access to Android/ and its subdirectories. We will see
this limitation again with the Storage Access Framework.
Google now considers those per-app external storage directories to be private.

	You still do not have read access to certain other locations, such as Documents/
and Downloads/. Basically, if it is controlled by MediaStore, and you lack
read access through MediaStore, you also lack read access through raw paths.

	Removable storage does not appear to be supported by this “raw paths” feature.

	The documentation mentions reduced performance. This does not appear to be severe,
but it may pose issues for performance-sensitive apps.

Note that while the documentation emphasizes native libraries, read access works fine from Java/Kotlin.
Also, methods like getExternalStorageDirectory() and getExternalStoragePublicDirectory()
on Environment are still deprecated. Instead, we are supposed to use getDirectory()
on StorageVolume, which is new to Android 11. As the names suggest, this gives
us the root directory for a particular storage volume, whether that is external storage
or some removable storage device.
The
RawPaths sample module
in
the book’s sample project
is designed to demonstrate the behavior of READ_EXTERNAL_STORAGE across a variety of build
scenarios. There are five product flavors, with varying configurations:

 	Flavor
 	targetSdkVersion
 	requestLegacyExternalStorage

 	alfa
 	28
 	true

 	bravo
 	29
 	true

 	charlie
 	29
 	false

 	delta
 	30
 	true

 	echo
 	30
 	false

The UI is a crude file explorer. It shows you a list of files and directories
for a particular location, starting with some root:

[image: RawPaths, Echo Build, Running on Android 11 DP2]

Figure 1: RawPaths, Echo Build, Running on Android 11 DP2
The “SD card” toolbar button will display a checkable submenu with the available
storage volumes:

[image: RawPaths, Echo Build, Showing Storage Volume Submenu]

Figure 2: RawPaths, Echo Build, Showing Storage Volume Submenu
If you switch to a different storage volume, that volume’s root directory will
be loaded into the list.
Tapping on a file, by default, will bring up a Toast showing the CRC32 checksum
of the file, used to prove that we have read access to the file’s contents.
Tapping on a directory will load that directory’s contents into the list. However,
this is a fairly simplistic file explorer, so there is no way to traverse up
the directory tree to get back to a root.
Before loading any of this content, though, MainActivity will request
the READ_EXTERNAL_STORAGE permission.
Our viewmodel, MainMotor, gets the roster of StorageVolume objects from
the StorageManager system service:

 val volumes: List<StorageVolume> =
 context.getSystemService(StorageManager::class.java)!!.storageVolumes

(from RawPaths/src/main/java/com/commonsware/android/r/rawpaths/MainMotor.kt)
MainActivity uses that list to build up the submenu contents. If the user
taps on one, MainActivity calls a loadRoot() function on MainMotor. If
the app is running on Android 11, that in turn gets the selected StorageVolume
out of that list and retrieves its directory. On older devices, we just use
the deprecated Environment.getExternalStorageDirectory() option instead:

 fun loadRoot(volumeIndex: Int = 0) {
 if (Build.VERSION.SDK_INT < 30) {
 load(Environment.getExternalStorageDirectory())
 } else {
 load(volumes[volumeIndex].directory!!)
 }
 }

(from RawPaths/src/main/java/com/commonsware/android/r/rawpaths/MainMotor.kt)
That directory is then used by the load() function to get the directory’s contents
and calculate the CRC32 checksums for all files in the directory:

 fun load(dir: File) {
 _states.postValue(MainViewState.Loading)

 viewModelScope.launch(Dispatchers.IO) {
 try {
 val items = dir.listFiles().orEmpty()
 .sortedBy { it.name }
 .map { file ->
 if (file.isDirectory) {
 FileItem(file, isDirectory = true)
 } else {
 FileItem(file,
 crc32 = CRC32().let { crc ->
 crc.update(file.readBytes())
 crc.value
 })
 }
 }

 _states.postValue(MainViewState.Content(items))
 } catch (t: Throwable) {
 Log.e("RawPaths", "Exception loading $dir", t)
 _states.postValue(MainViewState.Error)
 }
 }
 }

(from RawPaths/src/main/java/com/commonsware/android/r/rawpaths/MainMotor.kt)
What you will find is:

	On Android 11, both delta and echo behave the same. delta requests
the scoped storage opt-out (android:requestLegacyExternalStorage="true"),
while echo does not. Yet, with READ_EXTERNAL_STORAGE, we can still access
the contents of external storage, though apparently not removable storage
and the other restricted locations noted above.

	On Android 10, android:requestLegacyExternalStorage has a clear effect.
If you use it (bravo), READ_EXTERNAL_STORAGE works, even though we have
targetSdkVersion set to 29. If you do not use
it (charlie), even if the user grants READ_EXTERNAL_STORAGE, you do not have
filesystem access to external storage.

	On Android 9, before all of these changes took effect, READ_EXTERNAL_STORAGE
works normally.

Hey, What About Writing?
You have write access to certain raw paths… even without WRITE_EXTERNAL_STORAGE.
However, the exact list of these locations is undocumented. As such, these locations
are unreliable — device manufacturers might elect to change the behavior here.
But, based on experiments and some Google comments
you should be able to write to:

	Download/

	DCIM/

	Movies/

	Music/

…and perhaps others.
SAF Restrictions
Since the beginning, the Storage Access Framework has been billed as the way for
the app to get access to whatever content the user wants to work with.
In Android 11, that is no longer the case, as the OS will prevent the user from
accessing the user’s content in scenarios that Google does not like.
ACTION_OPEN_DOCUMENT_TREE
In the Android 11 version of this UI, the user can navigate into a directory
and click a “Use this folder” button at the bottom to choose it:

[image: SAF UI, Showing Use this folder Button]

Figure 3: SAF UI, Showing “Use this folder” Button
However, that button will be grayed out in some situations.
Overall External Storage Root
The user cannot grant an app rights to work with the root of external storage,
precluding apps from placing new directories there:

[image: SAF UI, Showing Disabled Use this folder Button for External Storage Root]

Figure 4: SAF UI, Showing Disabled “Use this folder” Button for External Storage Root
Download/
The same holds true for Download/:

[image: SAF UI, Showing Disabled Use this folder Button for Download/]

Figure 5: SAF UI, Showing Disabled “Use this folder” Button for Download/
However, if the user creates a subdirectory of Download/, such as via their
USB cable or the stock Files app, they can choose that subdirectory.
Stuff in Android/

While the user can choose the Android/ directory on external or removable storage,
the user cannot access anything inside of it. In the other cases, the user could see
directories that could not be selected, but in this case, the contents simply do not
show up:

[image: SAF UI, Showing Empty Android/ Directory]

Figure 6: SAF UI, Showing “Empty” Android/ Directory
The Other SAF Actions
ACTION_OPEN_DOCUMENT and ACTION_CREATE_DOCUMENT share the last restriction
of ACTION_OPEN_DOCUMENT_TREE:
the user cannot choose or create a file within getExternalFilesDir() and kin of some
other app. Otherwise, these actions seem unaffected.
Unfortunately, the ACTION_OPEN_DOCUMENT limitation means that an app’s files
are inaccessible by the user except through that app or by copying the files elsewhere
using a device-supplied file manager.
“All Files Access”
Android 11 offers an “All Files Access” capability. The idea is that
if your app requests the MANAGE_EXTERNAL_STORAGE permission, and the user grants it,
that you would have unfettered access to most of external and removable storage. There
are a few caveats:

	
MANAGE_EXTERNAL_STORAGE is not a dangerous permission. Instead, it is one
of those specialized permissions, like SYSTEM_ALERT_WINDOW, where the user
needs to go into “Special app access” area of the Settings app to grant the
permission.

	You still do not have access to Android/data/ on external storage or any
removable volume. This limits the utility of MANAGE_EXTERNAL_STORAGE, particularly
for backup/restore apps.

	Google hints that this permission will be restricted on the Play Store. The
result probably will be akin to select other permissions, where you have to fill out
a form and get explicit approval to use this permission. Otherwise, your app might be
banned from the Play Store. It might get banned anyway, due to a bot, as Google’s
policy violation detection bots seem to be unreliable, to the detriment of
too many app developers.

	Google has indicated that
apps cannot request this permission until 2021,
presumably because they do not have the policy violation detection bots fully
set up yet.

In the RawPaths sample module, the activity has a toolbar button with the infinity symbol:

[image: Raw Paths Infinity Toolbar Button]

Figure 7: Raw Paths Infinity Toolbar Button
On Android 11 devices, tapping that will request the MANAGE_EXTERNAL_STORAGE
permission, by means of starting an ACTION_MANAGE_APP_ALL_FILES_ACCESS_PERMISSION
activity. This takes a Uri pointing to your application, using the package: scheme:

 if (item.itemId == R.id.allAccess) {
 if (Build.VERSION.SDK_INT >= 30) {
 if (hasAllFilesPermission()) {
 Toast.makeText(this, R.string.already_permission, Toast.LENGTH_LONG)
 .show()
 }

 val uri = Uri.parse("package:${BuildConfig.APPLICATION_ID}")

 startActivity(
 Intent(
 Settings.ACTION_MANAGE_APP_ALL_FILES_ACCESS_PERMISSION,
 uri
)
)
 } else {
 Toast.makeText(this, R.string.sorry, Toast.LENGTH_LONG).show()
 }

(from RawPaths/src/main/java/com/commonsware/android/r/rawpaths/MainActivity.kt)
This will bring up a Settings screen for the user to grant you the permission:

[image: All Files Access Settings Screen]

Figure 8: All Files Access Settings Screen
If the user grants you that permission, you now have write access to
external storage, akin to what you would have with WRITE_EXTERNAL_STORAGE on
Android 9 and below. In the RawPaths app, if you have write permission, tapping
on a file will make a copy of that file in the same directory, reloading the list
to show you the copy. Without MANAGE_EXTERNAL_STORAGE, you cannot write into many
directories (though, as noted earlier, you do have write access to some
locations). With MANAGE_EXTERNAL_STORAGE, you can work with a lot more.
So, on the plus side, MANAGE_EXTERNAL_STORAGE means it is conceivable that you
could have write access, at least to external storage, on Android 11. However,
that does not help for Android 10. So, you will still need some other solution
for your Android 10 users, as there will be more of them than Android 11 users for a few years.
Detecting This Permission
In Android 11, Environment now has a pair of isExternalStorageManager() methods that
will tell you if you hold MANAGE_EXTERNAL_STORAGE.
In theory, the zero-parameter isExternalStorageManager() would tell you if you
can manage external storage, and the one-parameter isExternalStorageManager()
would tell you if you can manage the storage volume containing the supplied File.
In practice, the user seems to only be able to grant MANAGE_EXTERNAL_STORAGE device-wide,
so it is unclear if there is a practical difference between the two.

MediaStore Modifications
In addition to the Storage Access Framework, Google has been pushing developers
towards MediaStore more. In Android 10, that became fairly important, due to the
restrictions placed on external and removable storage. Android 11 changes
things again, mostly improving Android’s behavior in some key areas related
to MediaStore.
Recapping What We Got in Android 10
As we did with storage, let’s first review what changed in Android 10,
as some developers are still coming to grips with those changes.

You can learn more about MediaStore in Android 10 in the "Using MediaStore" chapter of
Elements of Android Q!

Limited Access
The big thing is that, by default, you have limited access to the contents of MediaStore.
Specifically, by default, you can only see the content that your app has added
to the MediaStore.
To be able to query and retrieve content created by other apps, you need to hold
READ_EXTERNAL_STORAGE. Even then, you lost access to some things:

	Location metadata for images is redacted, with workarounds to get that metadata if
the user permits.

	The oft-reviled DATA column is deprecated. It was never reliable, and it is even
less reliable now.

RecoverableSecurityException
If you want to modify content from other apps, that can be done, albeit with a somewhat
cumbersome process… one that becomes seriously cumbersome if you are trying
to modify lots of content at once.
Your calls on ContentResolver that would require write access — such as delete()
or openOutputStream() — may now throw a RecoverableSecurityException. This indicates
that you do not have write access to that content, but you could get it via the exception.
Specifically, that exception has a getUserAction() method, one that returns a
RemoteAction. That has a getActionIntent() method that returns a PendingIntent.
You can use that PendingIntent to display a system dialog that asks the user if it
is OK for you to have write access to this piece of content. If the user agrees, you
can re-try your ContentResolver call, and it should succeed.
However, this only works on an individual basis. If you try to delete() a piece
of content using its Uri, that may give you the RecoverableSecurityException that
you need. If, instead, you use delete() with a collection Uri and a WHERE
clause, that will simply fail. In Android 10, there is no bulk option, where you can
request write access to a list of Uri values or an entire collection.
Also, not everything is writable, even with this per-content permission.
For example, you can update the TAGS column for
an image, but not the DESCRIPTION.
See
this blog post
from the author of this book for more about RecoverableSecurityException.
New Collections
Two new MediaStore collections appeared… though only one was documented.
The documented one was MediaStore.Downloads, to access the content of the
Download/ directory. The undocumented one was one for the Documents/
directory, which requires a convoluted means to access.
Both of these are restricted more than the other collections. In particular,
you can only see your own app’s content, even with READ_EXTERNAL_STORAGE.
Getting the Right Uri

A MediaStore Uri, pointing to an individual piece of content, is the combination
of a collection Uri and the ID of the content. The classic way to accomplish
that was via ContentUris.withAppendedId(), which assembles the MediaStore
Uri given those two pieces.
We now have an alternative: a two-parameter getContentUri() method on
the various MediaStore collection classes (e.g., MediaStore.Video.Media).
Whereas ContentUris.withAppendedId() takes a collection Uri and an ID,
getContentUri() takes a “volume name” and an ID. MediaStore.VOLUME_EXTERNAL works for
classic external storage as the volume name, giving us:

val contentUri = MediaStore.Video.Media.getContentUri(MediaStore.VOLUME_EXTERNAL, id)

where id is the ID of some piece of content (in this case, a video).
Batched Access
Earlier, we saw how in Android 10 we could catch a RecoverableSecurityException
and use that to get permission to modify a single piece of content. For many apps,
this is sufficient, because they only need to modify one piece of content at a time.
However, for apps that manipulate multiple pieces of content, this per-piece-permission
approach is awful. The user winds up having to accept a dialog for each piece,
and that gets tedious quickly.
Android 11 offers a batched way to get permission from the user, though the API for
it is rather odd.
The
VideoTagger sample module
in
the book’s sample project requests
READ_EXTERNAL_STORAGE permission on startup and uses that to query the MediaStore
for all the videos on external storage. Those are then presented in a checklist:

[image: VideoTagger, As Initially Launched]

Figure 9: VideoTagger, As Initially Launched
The user can check one or more of the videos, then fill in “tags” in the field
and click “Set Tags”. This will attempt to update the TAGS property of the
content… and that will fail initially. The app then requests write permission for
all of those videos at once:

[image: VideoTagger, with Permission Request Dialog]

Figure 10: VideoTagger, with Permission Request Dialog
If the user grants the permission, the app updates the TAGS and reloads
the list, showing those tags below the video title. If the user leaves the field
blank and clicks “Set Tags”, the same thing happens, except that any existing
TAGS value is simply cleared.
Obtaining the Image Uri Values
There are many ways we could have gotten Uri values for the user’s chosen set
of videos. For example, we could have used ACTION_OPEN_DOCUMENT, ACTION_GET_CONTENT,
or ACTION_PICK. In particular, ACTION_OPEN_DOCUMENT and ACTION_GET_CONTENT
should support EXTRA_ALLOW_MULTIPLE, so we can request a UI that allows the user
to pick several items at once.
However, the Uri values that we get back from those do not work with this
batched permission request feature. If we try, we get:
java.lang.IllegalArgumentException: Missing volume name: content://com.android.providers.media.documents/document/video%3A23

(for whatever Uri you happened to try)
For ACTION_OPEN_DOCUMENT and ACTION_GET_CONTENT, we get “document Uri” values.
You might think that the solution is to convert those to “media Uri” values,
using getMediaUri() on MediaStore.
While we can call that method and convert
the Uri values, the converted values also do not work, as we get:
java.lang.IllegalStateException: java.io.FileNotFoundException: No root for video

(at least for a video Uri — the error probably varies based on media type)
The way that works is the one described earlier in this chapter: use getContentUri().
That is what the VideoTagger app uses. We have a VideoModel that represents
the data that we need for a video:

package com.commonsware.android.r.videotagger

import android.net.Uri

data class VideoModel(
 val uri: Uri,
 val title: String,
 val tags: String?,
 val description: String?,
 var isChecked: Boolean = false
)

(from VideoTagger/src/main/java/com/commonsware/android/r/videotagger/VideoModel.kt)
When our VideoRepository queries the MediaStore and converts the Cursor
to a List of VideoModel, it uses getContentUri() to fill in the uri
property:

 private val resolver = context.contentResolver

 suspend fun loadVideos(): List<VideoModel> =
 withContext(Dispatchers.IO) {
 val collection =
 MediaStore.Video.Media.getContentUri(MediaStore.VOLUME_EXTERNAL)

 resolver.query(collection, PROJECTION, null, null, SORT_ORDER)
 ?.use { cursor ->
 cursor.mapToList {
 VideoModel(
 uri = MediaStore.Video.Media.getContentUri(
 MediaStore.VOLUME_EXTERNAL,
 it.getLong(0)
),
 title = it.getString(1),
 tags = it.getString(2),
 description = it.getString(3)
)
 }
 } ?: emptyList()
 }

(from VideoTagger/src/main/java/com/commonsware/android/r/videotagger/VideoRepository.kt)
Seeing If We Have Permission
Once the user has selected some videos, if the user clicks the “Set Tags” button,
we need to:

	See if we have write permission for all of those videos

	Request write permission for those that we lack

	Update the tags once we get write permissions for the videos

All of this is a bit clunky.
To see if we have permission to modify the content identified by a Uri,
we need to call checkUriPermission() on a Context. This takes four parameters:

	The Uri to check

	Your process ID (Process.myPid())

	Your app’s user ID (Process.myUid())

	The permission to check (e.g., Intent.FLAG_GRANT_WRITE_URI_PERMISSION)

This will return PackageManager.PERMISSION_GRANTED if your app holds that
particular permission.
MainActivity in VideoTagger has a neededPermissions() function that takes
the list of videos and returns the subset for which we still need to obtain permission
from the user:

 private fun neededPermissions(selections: List<Uri>) =
 selections.filter {
 checkUriPermission(
 it,
 Process.myPid(),
 Process.myUid(),
 Intent.FLAG_GRANT_WRITE_URI_PERMISSION
) != PackageManager.PERMISSION_GRANTED
 }

(from VideoTagger/src/main/java/com/commonsware/android/r/videotagger/MainActivity.kt)
Requesting the Permission
To get write permission for those Uri values where we lack it, we need to do
two things.
First, we need to call MediaStore.createWriteRequest(), supplying the
list of Uri values and a ContentResolver. This returns a PendingIntent
that represents this request for write access.
Then, we need to call startIntentSenderForResult(). If the PendingIntent
is one for an activity (PendingIntent.getActivity()), then startIntentSenderForResult()
will start that activity and send any result back to our onActivityResult()
function. This works just as it would if we called startActivityForResult() on
a regular Intent.
When the user clicks “Set Tags”, that triggers a call to an applyTags() function.
This uses neededPermissions() to find the Uri values for which we lack
write access. If we have write access to all of them, we go ahead and ask MainMotor
to update the tags. Otherwise, we call MediaStore.createWriteRequest()
and startIntentSenderForResult() to request permission from the user:

 private fun applyTags(models: List<VideoModel>) {
 val needed = neededPermissions(models.map { it.uri })

 if (needed.isEmpty()) {
 motor.applyTags(models, binding.tags.text.toString())
 } else {
 val pi = MediaStore.createWriteRequest(contentResolver, needed)

 startIntentSenderForResult(pi.intentSender, REQUEST_PERMS, null, 0, 0, 0)
 }
 }

(from VideoTagger/src/main/java/com/commonsware/android/r/videotagger/MainActivity.kt)
This is what triggers the dialog shown earlier. In our onActivityResult()
function, if our REQUEST_PERMS request succeeded, we can go ahead and
try applyTags() again.
Permission Permutations
There have been some tweaks to how runtime permissions work in Android 11.
In theory, most of these should not cause any harm to your app. Unfortunately,
not everything works the way that we think it should, and so it is possible
that you will need to make some tweaks to your app to accommodate these changes.
And, if you are using location permissions, and adjusted your app to deal
with background locations for Android 10… you have more work to do here in Android 11.
One-Time Permissions
The biggest user-visible change is what Google calls “one-time permissions”.
For a certain set of permission groups, the user will be given an “Only this time”
option in the runtime permission dialog:

[image: Runtime Permission Dialog with Only This Time Option]

Figure 11: Runtime Permission Dialog with “Only This Time” Option
The documentation is a bit unclear over exactly which permissions get this
treatment. Based on what is written, it is likely that the permissions in the
CAMERA, LOCATION, and MICROPHONE permission groups will be affected.
The documentation is also a bit vague on how long the permission grant remains in
effect — in others words, what is the scope of “Only this time”? Based on
experiments, it appears that the answer is “for the current process”, where a fresh
process will need to bring up the permission dialog again… if that process is
launched a bit after the old process ended.
Trying It Out
You can test this yourself using the
PermissionCheck sample module
in
the book’s sample project.
When you run this module, you get an activity with a Switch to request
the ACCESS_FINE_LOCATION runtime permission:

[image: PermissionCheck App, As Initially Launched]

Figure 12: PermissionCheck App, As Initially Launched
That switch will be off and enabled
if you do not hold the permission at the time of displaying the activity, and it
will be on and disabled if you do hold the permission. Also, the “Request Location”
button beneath it will be enabled if you hold the permission — clicking it will
find your location and display it where you see “(no location)” in the screenshot.
Finally, the “Launch Another Activity” button launches another instance of this
activity, where the code in the toolbar will show you which instance is which.
If you click the switch and grant the permission “Only this time”, you will find that:

	You can request the location in this activity

	You can launch another activity and request the location there without getting
the permission dialog again

	You can navigate BACK to the first activity and request the location

	You can click BACK from the first activity to exit the app, then launch the
activity again from your launcher, and you can still request the location
(since it is all the same process)

	If you swipe the app off the overview screen, then launch it again right away,
you can still request the location

	If you swipe the app off the overview screen, then launch it again only after a delay, you will
be presented with the runtime permission dialog again

Ramifications For You
In theory, your app should already handle this. After all, the user could revoke
your runtime permission from the Settings app at any point. Your process is then
terminated (if it was running), and the next time your app runs, you will need
to request permission again. All “Only this time” does is automate that work.
The documentation implies that the scope of an “Only this time” permission
is a single activity, or perhaps the combination of an activity and a foreground
service. Most likely, this is just a documentation bug.
However, you may wish to pay closer attention to this change as Android 11 evolves,
in case they revise the behavior to match the documentation.
Multiple Rejections = Denial
By now, probably you are used to the triad of permission options in the runtime permission dialog:

	Allow

	Deny

	Deny (and “don’t ask again”)

If the user chooses “don’t ask again”, you will not be able to ask for the permission
again from within your app. The system will refuse to display the runtime permission
dialog and will simply report that the permission was denied (via onRequestPermissionResult()).
However, “don’t ask again” may not appear in the runtime permission dialog
all the time. For example, in the screenshot shown earlier in this chapter, the
options are:

	Only this time

	While using the app

	Deny

However, the user still can get the “don’t ask again” effect.
If you display the dialog, and the user clicks “Deny”, then later you display
the dialog again and the user clicks “Deny”, then your app is treated as though
the user chose “Don’t ask again”.
The two “Deny” actions do not need to be sequential, so long as the user uses
the BACK button to close the dialog other times in between. So, for example,
the flow could be:

	Deny

	BACK

	BACK

	BACK

	Deny

Each of those five times, the dialog would be shown, but after that second “Deny”,
it is treated as “Don’t ask again”.
Trying It Out
You can see this effect in action with the PermissionCheck sample. Uninstall
the app (if you had it installed already). Re-run the app form the IDE,
then tap the switch and click “Deny” on the resulting permission dialog. Do that
two times, and you will find that future clicks on the switch have no practical
effect, other than incrementally wearing out your smartphone screen.
Ramifications For You
Once again, this should not really cause a problem in terms of app operation.
You have had to deal with “don’t ask again” in the past. This simply provides
that option with a different UI.
However, if you are trying to maintain decent end-user documentation, including
showing the various permission flows… well, your job just got harder.
(sorry!)
Background Location Changes
Android 10 introduced ACCESS_BACKGROUND_LOCATION as a new permission. If you
want your app to be able to access location data from the background, you need
to hold this permission. This is a dangerous permission, one that you will
need to request at runtime in addition to having it in the manifest.

You can learn more about ACCESS_BACKGROUND_LOCATION in Android 10 in the "Location Access Restrictions" chapter of
Elements of Android Q!

Android 11 does not change any of that.
However, what Android 11 does change is when you can ask for it. On Android 10,
you could request ACCESS_BACKGROUND_LOCATION at the same time as you requested
ACCESS_COARSE_LOCATION or ACCESS_FINE_LOCATION. In Android 11, you have to request
it separately and after requesting ACCESS_COARSE_LOCATION or ACCESS_FINE_LOCATION.
The
BackgroundLocation sample module
in
the book’s sample project requests
ACCESS_FINE_LOCATION, then asks for ACCESS_BACKGROUND_LOCATION after
ACCESS_FINE_LOCATION is granted (and the user clicks a button).
This module also has two product flavors, to
demonstrate two different types of builds:

 	Product Flavor
 	targetSdkVersion

 	quince
 	29

 	rutabaga
 	R

(remember: Android versions are not “tasty treats” anymore!)
The following sections illustrate what you get when you request ACCESS_FINE_LOCATION,
followed by ACCESS_BACKGROUND_LOCATION.
Android 10
We start off with a dialog offering to grant permission only while using the app:

[image: BackgroundLocation, As Initially Launched, on Android 10]

Figure 13: BackgroundLocation, As Initially Launched, on Android 10
Later, if you request ACCESS_BACKGROUND_LOCATION, the user gets a dialog offering to upgrade
your access to “all the time”:

[image: BackgroundLocation, After Background Access Request, on Android 10]

Figure 14: BackgroundLocation, After Background Access Request, on Android 10
Android 11, targetSdkVersion 29
While your targetSdkVersion remains at 29, the first difference is that the
first dialog offers the “Only this time” option, discussed earlier in this chapter:

[image: BackgroundLocation, As Initially Launched, on Android 11 with targetSdkVersion 29]

Figure 15: BackgroundLocation, As Initially Launched, on Android 11 with targetSdkVersion 29
The “upgrade” dialog that you get when you request ACCESS_BACKGROUND_LOCATION
is also a bit different. The only direct option that the user can choose is to keep
their current value:

[image: BackgroundLocation, After Background Access Request, on Android 11 with targetSdkVersion 29]

Figure 16: BackgroundLocation, After Background Access Request, on Android 11 with targetSdkVersion 29
In order to actually grant you ACCESS_BACKGROUND_LOCATION, the user has to click
that “Allow in settings” link, which will bring up the permission screen
for this permission group for your app in Settings:

[image: Android 11 Location Permission Settings Screen]

Figure 17: Android 11 Location Permission Settings Screen
Android 11, targetSdkVersion 30
Once you upgrade to targetSdkVersion of 30, the initial dialog remains unchanged.
Later, when you request ACCESS_BACKGROUND_LOCATION, the user is taken straight to the
Settings app, bypassing that intermediate dialog and its “Allow in settings” link.
The idea is that you would provide your own UI explaining what is about to happen,
before you request the ACCESS_BACKGROUND_LOCATION permission.
Automatic Permission Removal
Android 11 adds a user option to have Android automatically revoke permissions if
your app is unused for an extended period of time (months):

[image: BackgroundLocation Permissions Screen in Settings, Showing Auto Revoke Permissions Option]

Figure 18: BackgroundLocation Permissions Screen in Settings, Showing Auto Revoke Permissions Option
Once again, this should not be a major problem for well-written apps. Partly,
that is because this is not significantly different than the user revoking permissions
manually, which you have needed to handle. Partly, that is because a well-written
app is likely to be used frequently enough to avoid the automatic permission removal.
In theory, you can add android:autoRevokePermissions="disallowed" to the <application> element
 to say that
the switch would be off by default. The documentation
for this setting states “This declaration may cause an additional review when publishing your app”.
In addition, it does not work.
Another option is android:autoRevokePermissions="discouraged". This is supposed
to allow you to use ACTION_AUTO_REVOKE_PERMISSIONS to lead the user to a screen
where they can toggle the switch to the off position. However,
this does not work, insofar as it
only leads the user to the main page for your app in Settings, not to
“UI to manage auto-revoke state” as is stated in the documentation.
Auditing Alternatives
“Audit” as a term sometimes has negative connotations (“you have been cordially
invited to attend your upcoming tax audit…”). Really, though, an audit is
simply a form of testing, confirming that everything is working as you might
expect. It’s just that testing usually occurs in development, while auditing
is something that you apply in production.
Android has had some auditing options in the past, such as using TrafficStats
or NetworkStatsManager to get a sense of how much bandwidth your app is using.
Android 11 adds two more auditing options, for determining what sorts of protected
services you might be accessing, and why your application’s process is terminated.
Data Access Auditing
If your app uses dangerous permissions — the ones we need to request at runtime —
Android 11 lets you find out when and where your app uses those permissions.
That includes both direct uses in your own code and uses by any libraries that
you add as dependencies.
If you collect this data and get it back to your organization, you can determine
if your app is using these permissions in an expected fashion. Or, conversely,
you might find that some third-party library that you are using is siphoning off
user data in ways that your users (and your qualified legal counsel) might not
appreciate.
Collecting the Data
Android has had an AppOpsManager system service for a few releases. In Android
11, it now has a setNotedAppOpsCollector() method. This takes an instance of an
AppOpsManager.AppOpsCollector abstract class, which serves as your callback for the
various events. Since there is one collector per process, this is the sort of thing
that you might configure in your custom Application class.
We looked at the
PermissionCheck sample module
in
the book’s sample project in
the chapter on permission changes. This module also demonstrates the data
access auditing code. Specifically, in MainApp, along with setting up Koin
for dependency inversion, we also register an AppOpsManager.OnOpNotedCallback:

package com.commonsware.android.r.permcheck

import android.app.AppOpsManager
import android.app.Application
import android.app.AsyncNotedAppOp
import android.app.SyncNotedAppOp
import android.util.Log
import org.koin.android.ext.koin.androidContext
import org.koin.android.ext.koin.androidLogger
import org.koin.androidx.viewmodel.dsl.viewModel
import org.koin.core.context.startKoin
import org.koin.dsl.module
import java.util.concurrent.Executors

private const val TAG = "PermissionCheck"
private const val FEATURE_ID = "awesome-stuff"

class MainApp : Application() {
 private val module = module {
 viewModel { MainMotor(androidContext().createAttributionContext(FEATURE_ID)) }
 }
 private val executor = Executors.newSingleThreadExecutor()

 override fun onCreate() {
 super.onCreate()

 startKoin {
 androidLogger()
 androidContext(this@MainApp)
 modules(module)
 }

 getSystemService(AppOpsManager::class.java)
 ?.setOnOpNotedCallback(executor, object : AppOpsManager.OnOpNotedCallback() {
 override fun onNoted(op: SyncNotedAppOp) {
 Log.d(TAG, "onNoted: ${op.toDebugString()}")
 RuntimeException().printStackTrace(System.out)
 }

 override fun onSelfNoted(op: SyncNotedAppOp) {
 Log.d(TAG, "onSelfNoted: ${op.toDebugString()}")
 RuntimeException().printStackTrace(System.out)
 }

 override fun onAsyncNoted(op: AsyncNotedAppOp) {
 Log.d(TAG, "onAsyncNoted: ${op.toDebugString()}")
 RuntimeException().printStackTrace(System.out)
 }
 })
 }

 private fun SyncNotedAppOp.toDebugString() =
 "SyncNotedAppOp[attributionTag = $attributionTag, op = $op"

 private fun AsyncNotedAppOp.toDebugString() =
 "AsyncNotedAppOp[attributionTag = $attributionTag, op = $op, time = $time, uid = $notingUid, message = $message"
}

(from PermissionCheck/src/main/java/com/commonsware/android/r/permcheck/MainApp.kt)
There are three methods that you need to implement on your OnOpNotedCallback:

	
onNoted() will be called when the data access occurred synchronously with a call
from your app

	
onAsyncNoted() will be called when the data access occurred in some callback

	
onSelfNoted(), which is not very well documented

In all three cases, MainApp dumps a “debug string” to Logcat, along with
the current stack trace (culled from a RuntimeException instance).
If you run the app and request a location, you will get data access information
in Logcat (with some portions replaced with ... for the sake of brevity):
D/PermissionCheck: onNoted: SyncNotedAppOp[attributionTag = awesome-stuff, op = android:fine_location
I/System.out: java.lang.RuntimeException
I/System.out: at ...MainApp$onCreate$2.onNoted(MainApp.kt:53)
I/System.out: at android.app.AppOpsManager.readAndLogNotedAppops(AppOpsManager.java:8154)
...
I/System.out: at ...MainMotor$fetchLocationAsync$2.invokeSuspend(MainMotor.kt:75)
...
D/PermissionCheck: onAsyncNoted: AsyncNotedAppOp[attributionTag = awesome-stuff, op = android:fine_location, time = 1588186761021, uid = 1000, message = Location sent to ...MainMotor$fetchLocationAsync$2$invokeSuspend$$...
I/System.out: java.lang.RuntimeException
I/System.out: at ...MainApp$onCreate$2.onAsyncNoted(MainApp.kt:63)
...

We have one onNoted() call. As part of the SyncNotedAppOp that we receive, we
know that the op was android:fine_location, meaning that we did something that required
ACCESS_FINE_LOCATION permission. The stack trace shows that this came from the
getCurrentLocation() call on a LocationManager inside of MainMotor, our viewmodel:

package com.commonsware.android.r.permcheck

import android.Manifest
import android.content.Context
import android.content.pm.PackageManager
import android.location.Location
import android.location.LocationManager
import androidx.lifecycle.LiveData
import androidx.lifecycle.MutableLiveData
import androidx.lifecycle.ViewModel
import androidx.lifecycle.viewModelScope
import kotlinx.coroutines.*
import java.util.concurrent.Executors
import java.util.function.Consumer
import kotlin.coroutines.resume
import kotlin.coroutines.suspendCoroutine

sealed class MainViewState {
 data class Content(
 val hasPermission: Boolean,
 val location: Location? = null
) :
 MainViewState()

 object Error : MainViewState()
}

class MainMotor(private val context: Context) : ViewModel() {
 private val _states = MutableLiveData<MainViewState>()
 val states: LiveData<MainViewState> = _states

 fun checkPermission() {
 _states.value = MainViewState.Content(hasLocationPermission())
 }

 fun fetchLocation() {
 viewModelScope.launch(Dispatchers.Main) {
 _states.value =
 MainViewState.Content(hasLocationPermission(), fetchLocationAsync())
 }
 }

 private fun hasLocationPermission() =
 context.checkSelfPermission(Manifest.permission.ACCESS_FINE_LOCATION) ==
 PackageManager.PERMISSION_GRANTED

 private suspend fun fetchLocationAsync(): Location {
 val locationManager =
 context.getSystemService(LocationManager::class.java)!!
 val executor = Executors.newSingleThreadExecutor()

 return withContext(executor.asCoroutineDispatcher()) {
 suspendCoroutine<Location> { continuation ->
 val consumer =
 Consumer<Location?> { location ->
 if (isActive && location != null) continuation.resume(location)
 }

 locationManager.getCurrentLocation(
 LocationManager.GPS_PROVIDER,
 null,
 executor,
 consumer
)
 }
 }
 }
}

(from PermissionCheck/src/main/java/com/commonsware/android/r/permcheck/MainMotor.kt)
We also have one onAsyncNoted() call. Here, the op is also android:fine_location.
The message property
shows that the operation came from something inside MainMotor, but it is buried
in the suspendCoroutine() lambda expression. Probably, this is being triggered
when our Consumer receives a location, but that is just a guess, given that
we have no line number to use.
Identifying Uses by Attribution
Both logs show an attributionTag of awesome-stuff. By default, you will not have
an attributionTag value. And for many apps, that’s fine. However, if you want to be
able to tag your data access, you can do so by setting the value to appear in that
attributionTag to some string.
To do this, you need to use createAttributionContext(), a method available on Context.
This gives you another Context, one with your specified attributionTag value. You
then use that augmented Context when doing things involving the data access,
such as requesting the LocationManager system service.
In this app, we do that as part of our Koin setup in MainApp:

 private val module = module {
 viewModel { MainMotor(androidContext().createAttributionContext(FEATURE_ID)) }
 }

(from PermissionCheck/src/main/java/com/commonsware/android/r/permcheck/MainApp.kt)
When we inject a Context into MainMotor, we get the Koin androidContext(),
then call createAttributionContext() on that Context. The MainMotor gets the
Context from createAttributionContext() and uses that to get the LocationManager.
And, since we set the attributionTag to awesome-stuff in the createAttributionContext()
call, that is why we get awesome-stuff as the attributionTag in our output.
What To Do With the Results?
You might consider collecting the data and sending it to your backend, to get a sense
of what is using protected data and how frequently. You could send all of the data,
or use heuristics to determine expected-vs.-unexpected scenarios and report them differently.
One imagines that future versions of crash logging or analytics libraries will
“bake in” the ability to gather this data as part of their normal operation.
Application Exits
Your process does not live forever. In fact, your process gets terminated a lot,
particularly depending on the sort of work that you do. For example, if you are
using WorkManager to get control periodically in the background to do some work,
your process will be terminated sometime after each piece of work.
This is nothing new.
What is new is the ability to find out why your process got terminated. You
are not told this in real-time as your process is being terminated, but you can
find out past reasons for process termination.
Collecting the Data
The ActivityManager system service now has a getHistoricalProcessExitReasons()
method. This will return a list of ApplicationExitInfo objects, representing past
process termination reasons.
The
ForensicPathologist sample module
in
the book’s sample project
gets those ApplicationExitInfo objects in its MainMotor:

class MainMotor(private val context: Context) : ViewModel() {
 private val _content = MutableLiveData<List<ExitInfo>>()
 val content: LiveData<List<ExitInfo>> = _content

 init {
 _content.value =
 context.getSystemService(ActivityManager::class.java)
 ?.getHistoricalProcessExitReasons(null, 0, 0).orEmpty()
 .map { convert(it) }
 }

(from ForensicPathologist/src/main/java/com/commonsware/android/r/forensics/MainMotor.kt)
We get the ActivityManager, call getHistoricalProcessExitReasons(), coerce
null results into an empty list, and use that to populate a MutableLiveData.
getHistoricalProcessExitReasons() takes three parameters:

	The package name of app whose processes you wish to collect, or null for your
own process

	A particular process ID to examine, or 0 to not filter by process ID

	The maximum number of items to return, or 0 to return all that are available

Note that if you specify a package name from some other app, you will
need to hold the DUMP permission. This is not available to ordinary third-party
apps. And, usually, we will not know any particular process ID to filter upon.
So, typically, the call to getHistoricalProcessExitReasons() will be
getHistoricalProcessExitReasons(null, 0, 0), to collect all known process exit reasons.
The ApplicationExitInfo contains several fields that you can use. The big
one is the reason field, which says why the process was terminated. This is an
Int that maps to various REASON_ constants on ApplicationExitInfo. As part
of converting an ApplicationExitInfo into data to fill into our UI, MainMotor
converts a reason value into a string resource ID:

 @StringRes
 private fun convertReason(reason: Int): Int = when (reason) {
 ApplicationExitInfo.REASON_ANR -> R.string.reason_anr
 ApplicationExitInfo.REASON_CRASH -> R.string.reason_crash
 ApplicationExitInfo.REASON_CRASH_NATIVE -> R.string.reason_crash_native
 ApplicationExitInfo.REASON_DEPENDENCY_DIED -> R.string.reason_dependency_died
 ApplicationExitInfo.REASON_EXCESSIVE_RESOURCE_USAGE -> R.string.reason_excessive_resource_usage
 ApplicationExitInfo.REASON_EXIT_SELF -> R.string.reason_exit_self
 ApplicationExitInfo.REASON_INITIALIZATION_FAILURE -> R.string.reason_init_failure
 ApplicationExitInfo.REASON_LOW_MEMORY -> R.string.reason_low_memory
 ApplicationExitInfo.REASON_OTHER -> R.string.reason_other
 ApplicationExitInfo.REASON_PERMISSION_CHANGE -> R.string.reason_permission_change
 ApplicationExitInfo.REASON_SIGNALED -> R.string.reason_signaled
 ApplicationExitInfo.REASON_USER_REQUESTED -> R.string.reason_user_requested
 ApplicationExitInfo.REASON_USER_STOPPED -> R.string.reason_user_stopped
 else -> R.string.shrug
 }

(from ForensicPathologist/src/main/java/com/commonsware/android/r/forensics/MainMotor.kt)
The description field may contain additional details about the reason for
the process to be terminated, depending on what the reason value is. Similarly,
status may contain an additional number related to the process termination (e.g.,
if the OS signaled for process termination, status will contain the signal number)
We also have:

	
pss and rss, to tell us about the memory consumption of the process at the
time that it was terminated

	
timestamp, indicating when the process was terminated

	
importance, indicating the importance of the process at the time that it was terminated

MainMotor converts all of that stuff into ExitInfo model objects:

 private fun convert(appExitInfo: ApplicationExitInfo): ExitInfo {
 return ExitInfo(
 description = appExitInfo.description.orEmpty(),
 importance = convertImportance(appExitInfo.importance),
 pss = appExitInfo.pss,
 rss = appExitInfo.rss,
 reason = convertReason(appExitInfo.reason),
 status = appExitInfo.status,
 timestamp = DateUtils.getRelativeTimeSpanString(
 context,
 appExitInfo.timestamp
)
)
 }

 @StringRes
 private fun convertImportance(importance: Int): Int = when (importance) {
 ActivityManager.RunningAppProcessInfo.IMPORTANCE_CACHED -> R.string.importance_cached
 ActivityManager.RunningAppProcessInfo.IMPORTANCE_CANT_SAVE_STATE -> R.string.importance_cant_save_state
 ActivityManager.RunningAppProcessInfo.IMPORTANCE_FOREGROUND -> R.string.importance_foreground
 ActivityManager.RunningAppProcessInfo.IMPORTANCE_FOREGROUND_SERVICE -> R.string.importance_foreground_service
 ActivityManager.RunningAppProcessInfo.IMPORTANCE_GONE -> R.string.importance_gone
 ActivityManager.RunningAppProcessInfo.IMPORTANCE_PERCEPTIBLE -> R.string.importance_perceptible
 ActivityManager.RunningAppProcessInfo.IMPORTANCE_SERVICE -> R.string.importance_service
 ActivityManager.RunningAppProcessInfo.IMPORTANCE_TOP_SLEEPING -> R.string.importance_top_sleeping
 ActivityManager.RunningAppProcessInfo.IMPORTANCE_VISIBLE -> R.string.importance_visible
 else -> R.string.shrug
 }

(from ForensicPathologist/src/main/java/com/commonsware/android/r/forensics/MainMotor.kt)
The UI then renders the results in a RecyclerView… once ForensicPathologist
has been run a time or two and actually has results:

[image: ForensicPathologist, Showing Results After Previous Process Termination]

Figure 19: ForensicPathologist, Showing Results After Previous Process Termination
What To Do With the Results?
Similar to the data access auditing, the idea is that you might:

	Send aggregated statistics back to your server, such as the total number of
process terminations and the count of each reason type

	Identify unusual cases and report more details on those (e.g., REASON_ANR,
REASON_PERMISSION_CHANGE)

One limiting factor is that you cannot readily identify which ApplicationExitInfo
objects you have seen previously, because there is no unique ID on them.
You can attempt to work around this by checking for the last process termination
reason immediately upon startup of a fresh process. Otherwise, you might count
the same ApplicationExitInfo results multiple times.
Tracking Application State
You might find it useful to know some details about the nature of your app
as part of the application exit reasons.
For example, you might be using “feature flags” to conditionally enable
certain features. Depending on how you implemented those, you may not know, for
any given situation, which feature flags are enabled and which are disabled.
Perhaps they are random for A|B testing, or perhaps you are just worried that
the flags might change between when an application exited and when somebody gets
a chance to look at a report that you generate using these new APIs.
Apps can add a bit of information to the application exit data. If you call
setProcessStateSummary() on ActivityManager, you can provide a byte array
of data. When the application exits, if you called setProcessStateSummary()
during the life of that process, the byte array gets recorded. Later on, when
you retrieve the ApplicationExitInfo for this exit, you can call
getProcessStateSummary() to retrieve the byte array, to include its contents
in whatever your analysis does.
So, going back to the earlier example, once you find out what feature flags are
enabled and disabled, you can record those as the process state summary. Later
on, if you are trying to diagnose why your app is behaving as it is with respect
to exits, you can see what feature flags are being used and perhaps determine
if one of those flags is having a particular impact.
However:

	The documentation warns against calling setProcessStateSummary() too often

	There is no documentation on the size limit for the byte array, but you should not
assume it can hold large blobs of data

	This is not a replacement for existing ways of getting data between process
invocations of your app (saved instance state, files, preferences, etc.)

ANRs and Traces
Perhaps no single error message caused developers more angst in the early years of
Android than did “application not responding”. A dialog with that message would
appear if the app tied up the main application thread for a ridiculous amount
of time (around 10 seconds). It became so well-known that developers started
referring to it by the abbreviation ANR.
The problem with ANRs is that you do not know exactly where you are spending
your time. We have had access to ANR trace files
showing the state of our threads when an ANR occurs. However, on modern versions
of Android, this data is only accessible on certain emulators
or non-production builds, where we can achieve root access.
In Android 11, if your app exits with a reason of REASON_ANR, you can call getTraceInputStream()
on the ApplicationExitInfo
to access the trace data. You can read that in and do something with it (e.g., send it to your
server), if desired.
Package Visibility
In a somewhat surprising move, Android 11 introduces a new privacy change:
app isolation. Apps can no longer directly communicate with other apps, or even know
that other apps exist, except in fairly limited ways.
In this chapter, we will explore more about what this means for you and your app.
The Way Things Were
Once upon a time — otherwise known as “before Android 11” — all apps were visible
to all other apps. The data of those apps might be private, but the apps themselves
were not. And one app could communicate with another app, via any exposed IPC
interface, so long as permissions were met.
The quintessential example of this is a launcher. To provide the list (or grid or
whatever) of icons for launchable activities, a launcher can call queryIntentActivities() on
PackageManager, asking for all activities that have a MAIN/LAUNCHER <intent-filter>.
PackageManager would return a list of matching activities, and the launcher would
use that to populate its UI. And, when the user chooses an activity to start,
the launcher would be able to call startActivity() on an Intent identifying
that activity.
Even without PackageManager, you might still have your app communicate with other
apps. For example, an upcoming chapter has a sample with two
apps that communicate via a bound service and a pair of Messenger objects.
The client side of the pair can call bindService() to bind to the service
offered by the other app. So long as any permissions are met (e.g., android:permission
attribute on the <service> element), that binding would be allowed.
Social Distancing for Apps
With Android 11, this is no longer the case.
Suppose, as in the latter example above, you have written two apps. The user
assures you that both apps are installed. With Android 11, by default, you have
no means of verifying from one app that the other app is installed. And, with Android 11,
by default you will not be able to communicate between those apps. In the case from
above, the client app cannot bind to the service app, even with a properly-constructed
Intent.
(How does the author know this? The author beat his head against a wall for an hour
trying to figure out why the sample wouldn’t run, before remembering this new restriction…)
There are ways to whitelist certain things that will
allow your app to see other apps. And there is an option to
eliminate this restriction entirely. However, as you will
see, neither are complete solutions — you should assume that the original
forms of interoperability available to Android apps before will not be available
to you going forward.
Also note that there are a number of other built-in limits on this restriction:

	If you start an activity using an implicit Intent (e.g., ACTION_VIEW on
some Uri), that is allowed

	If you provide a fine-grained permission grant, such as FLAG_GRANT_READ_URI_PERMISSION
on a Uri from FileProvider, the recipient can use that grant (e.g., open the
content identified by the Uri)

	If you can talk to an app, the app can respond along that same IPC channel
(e.g., setResult() in response to a startActivityForResult() call)

	You can talk among your own app’s processes without restrictions

Whitelisting
The preferred way to relax this restriction is to “whitelist” certain things.
Basically, you tell Android, via a <queries> element in the manifest, what
sorts of other components you want to be able to see.
NOTE: Android Studio 4.0.1 — the current stable release of Android Studio — does
not recognize this <queries> element, even if you put it as a child of
the <manifest> element (the correct location). Just ignore the warning, and hope
that, in the future, newer versions of Android Studio will ship with knowledge
of this <queries> element.
By Package
If you wish to have your app integrate with specific other apps, you can whitelist
the package of that other app, by having a <package> element inside of
the <queries> element, listing the package that you want to use:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.r.embed.client">
 <queries>
 <package android:name="com.commonsware.android.r.embed.server" />
 </queries>

 <application
 android:name=".MainApp"
 android:allowBackup="false"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/AppTheme">
 <activity android:name=".MainActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

(from EmbedClient/src/main/AndroidManifest.xml)
Here, we have a fairly generic manifest, except for the <queries> element
towards the top. Here, we say that this app wants to be able to communicate
with the com.commonsware.android.r.embed.server app. This allows the client
app to bind to a service exposed by com.commonsware.android.r.embed.server,
and it allows that service to return data (e.g., send messages back via a supplied
Messenger).
It appears that you can have as many <package> elements as you want. However,
there is no sign of support for wildcard pattern matching — you need to know,
at compile time, what packages you need.
By Intent Signature
In our manifests, we are used to having <intent-filter> elements on components
to say that they are available to other apps via matching Intent objects.
Now, in <queries>, we can have <intent> elements — with the
same basic structure as <intent-filter> elements — advertising what other components
we want to talk to via IPC.
So, for example, a launcher might have:

<manifest package="com.example.game">
 <queries>
 <intent>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent>
 </queries>
 <!-- rest of manifest goes here -->
</manifest>

This, in principle, should allow the launcher app to query for MAIN/LAUNCHER
activities as before.
In general, everything allowed in an <intent-filter> is allowed in an <intent>
element… with some restrictions:

	There must be exactly one <action> element, though you can use wildcards

	You are limited to mimeType, scheme, and host attributes on your
<data> element, where wildcards are also supported

We will see an example of this later in the chapter.

<queries> and Gradle
The Android Gradle Plugin needs to know about new manifest elements, particularly
for the manifest merger process. The plugin has a tendency to get confused if it
sees elements in the manifest merger that it does not recognize, tossing out
build errors like: “unexpected element <queries> found in <manifest>”.
And, as you might guess from that error, the Android Gradle Plugin was not happy
about the introduction of <queries>.
The fact that this occurs from manifest merger means that simply upgrading a dependency
might bring about this error. For example, if you upgrade to the latest
version of com.awesome:awesome-library, and it contained a <queries> element
in its manifest, you would crash with the aforementioned error in your builds,
even without any actual app changes in your code.
Google released a series of patch versions of the Android Gradle Plugin to address this:

	3.3.3

	3.4.3

	3.5.4

	3.6.4

	4.0.1

If you are using an existing plugin in the 3.3.* through 4.0.* series, upgrade
to the associated patch version (or higher) from that list, and you should no longer
run into that error.
If you are using Android Studio 4.1 or higher, with a matching
Android Gradle Plugin (e.g., in the 4.1.* series), you should be fine without
any changes. Those plugin versions were already aware of <queries>.
Escaping the Sandbox
There is a QUERY_ALL_PACKAGES permission. If your app holds it, all of these
restrictions should be lifted.
This permission appears to be one with a normal value for protectionLevel.
You do not need to request it at runtime — simply having it in the manifest
is sufficient.
However it is documented as being restricted by the Play Store:

In upcoming versions of the Developer Preview, look for Google Play to provide guidelines for apps that need this permission.

Based on similar restrictions, be prepared to fill out a form to explain why your
app needs this permission. And, based on the experience of far too many developers,
be prepared to be banned from the Play Store by a bot if you try using it.
The next section will examine the impacts of holding this permission.
Effects and Ramifications
Certain types of apps will be able to cope using the whitelist mechanism. Launchers,
for example, will be able to request, via the whitelist, to be able to see all
MAIN/LAUNCHER activities, and be able to function more or less as before.
Similarly, integration between a known pair of apps — such as the client binding
to the service described above — can be whitelisted, since those apps are known
in advance.
Apps that need flexibility across both whitelist axes — needing to know about arbitrary components
in arbitrary packages — are in deep trouble. While QUERY_ALL_PACKAGES offers
an escape hatch, it is a risky one for apps distributed via the Play Store.
So, for example, various types of anti-malware app need that sort of flexibility.
In theory, these apps should be eligible for QUERY_ALL_PACKAGES usage. In
practice, unless you have a deep relationship with Google, you need to assume that
your app will be targeted for removal.
To see all of this in action, the
QueryPackages sample module
in
the book’s sample project has a UI
that lists the outcomes of the following sorts of calls on PackageManager:

	getInstalledApplications()

	getInstalledPackages()

	
getPackagesHoldingPermissions() for the INTERNET permission

	
queryBroadcastReceivers() for ACTION_BOOT_COMPLETED broadcasts

	queryContentProviders()

	
queryIntentActivities() for the launcher activities

These are then presented in a long scrolling list with section headers,
courtesy of RecyclerView and MergeAdapter.
The project also has five product flavors, for different scenarios:

 	Flavor
 	targetSdkVersion
 	
<queries> Setup
 	Requests QUERY_ALL_PACKAGES?

 	alfa
 	29
 	none
 	no

 	bravo
 	30
 	none
 	no

 	charlie
 	30
 	<package>
 	no

 	delta
 	30
 	<intent>
 	no

 	echo
 	30
 	none
 	yes

The impacts of the package visibility changes only kicks in once your targetSdkVersion rises to 30 or higher.
So, if you run alfa on an Android 11 device, you will see the full range
of results, but if you run bravo, you only see pre-installed applications and
their components. It is unclear if this is the long-term subset that you will
be able to see by default, and it is also unclear to what extent device manufacturers
can tweak this behavior.
The other three flavors opt into seeing more things.
The charlie flavor wants to be able to see the ForensicPathlogist module’s package,
from a sample profiled in another chapter:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.r.query">

 <queries>
 <package android:name="com.commonsware.android.r.forensics" />
 </queries>

</manifest>

(from QueryPackages/src/charlie/AndroidManifest.xml)
If you have that app installed, it will appear in the list of installed apps,
installed packages, and launcher activities.
The delta flavor wants to be able to see apps with launcher activities:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.r.query">

 <queries>
 <intent>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent>

 </queries>

</manifest>

(from QueryPackages/src/delta/AndroidManifest.xml)
And, indeed, if you run that flavor, you will see those activities show up
in the list of launcher activities. However, in Android 11, those apps also show up in all
the other lists, as appropriate. Since most apps have a launcher activity,
this particular <queries> setup largely reverses the restrictions placed here
by Android 11.
The echo flavor requests QUERY_ALL_PACKAGES, just as a regular permission:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.r.query">

 <uses-permission android:name="android.permission.QUERY_ALL_PACKAGES" />

</manifest>

(from QueryPackages/src/echo/AndroidManifest.xml)
Running that flavor appears to give you the same results as does the alfa
flavor, where our targetSdkVersion is still 29.
So, if Google allows you
to hold QUERY_ALL_PACKAGES (for apps distributed on the Play Store), you will be
able to have the same behavior on Android 11 as you would on older devices.
But, if you can live with just being able to opt into seeing user-installed
apps with launcher activities, the <queries> structure seen in the delta
flavor grants that, without QUERY_ALL_PACKAGES… assuming that Google does
not change anything in future Android 11 updates.
So… Why Bother?
You might wonder why Google is bothering with this, given that the whitelists allow
you to bypass the restrictions, and that’s ignoring the official
 QUERY_ALL_PACKAGES opt-out.
In general, it appears as though this is simply a tightening of the security rules
 (“principle of least access”), not tied to anything specific.
And, while Google expressly hints about possible restrictions on Play Store
 distribution for apps using QUERY_ALL_PACKAGES, do not assume that the
 whitelists are some form of escape hatch:

	Future versions of Android might present information about your whitelists
 to the user (on the Play Store or at install time). If you ask for too much,
 the user might elect to abandon your app.

	Google might put Play Store restrictions on certain whitelist options. For
 example, they might allow actual launchers to whitelist apps with MAIN/LAUNCHER
 activities, but they might ban non-launchers from doing the same.

Logging What Was Filtered
Google added Logcat messages related to filtering. They will appear
with the AppFilter tag and will be of the form:
? I/AppsFilter: interaction: PackageSetting{...} -> PackageSetting{...} BLOCKED

…where the first ... will contain your application ID and the second ...
will contain the application ID of the app that was filtered out.
This logging is enabled automatically for debug builds. If you need to test
your production app on Android 11 for this sort of filtering behavior,
you can use adb to enable it:
adb shell pm log-visibility --enable ...

…where the ... is your application ID.
Note that the Logcat output may be rather extensive, as it lists everything
that was blocked by your query. If you have a narrow whitelist, the list of
stuff outside the whitelist may be rather long.
Sharing UIs
Over Android’s history, many developers have wanted to embed the UI of one app
in another app. However, support for this pattern was lacking, in part due to the
performance limitations of early-generation Android devices.
Android 11 seems to be unwrapping a new approach to this problem, one that may make
cross-app UI embedding much more practical and powerful.
In this chapter, we will explore how this mechanism works and what its current limitations
are.
UI Embedding: The Classic Approaches
If you have ever created an app widget or a “custom view” for a Notification,
you have worked with RemoteViews. This is the primary way for one app to provide
a hunk of UI to be embedded into another app, such as the UI for an app widget
to be embedded in a home screen of a launcher. RemoteViews, though, have not
been significantly improved since API Level 11. You can use relatively
few widgets with them, and the only real event that you can respond to is a click.
Technically speaking, RemoteViews is simply a data structure describing a UI.
It is entirely possible to create your own replacement for RemoteViews that
uses a different data structure, in an attempt to get past the limitations of
RemoteViews. Android 9’s slices, for example, take this approach, even allowing
it to be available via a Jetpack library for use with older devices. However, slices
is more aimed at describing data to display, where some client code decides
how to render that data. This adds flexibility at the cost of control — graphic
designers, for example, cannot get “pixel perfect” UIs if the client can elect
to render a slice differently than does another client.
As a result, most cross-app UI work has been handled simply between activities,
with App A starting an activity of App B when needed. This certainly works, but
it is very coarse-grained, usually with each app taking over the screen of the
phone or tablet.
What Android 11 Offers
Android 11 adds SurfaceControlViewHost. The name is awkward, but the capability it
enables is enticing.
Simply put, a SurfaceControlViewHost allows one app to have a view hierarchy (e.g.,
an inflated layout) be displayed in another app.
The approach taken by RemoteViews and slices is to send a description of a UI
between processes, with the recipient being responsible for rendering the UI.
By contrast, SurfaceControlViewHost works by sharing a Surface between
the two apps, by means of the SurfaceControl class added in Android 10.
The app with the view hierarchy renders to the Surface through the SurfaceControlViewHost,
while the recipient renders the Surface itself through a SurfaceView.
Now the app with the view hierarchy has much greater control over what the result
looks like. Any desired widgets, styles, and themes are available, because there is no requirement
that the recipient have access to any of those things — all the recipient is doing
is displaying the shared Surface.
The biggest limitation is that SurfaceControlViewHost is new to Android 11, as is
the ability to connect the shared Surface to a SurfaceView. It may be possible
to backport this to Android 10, when SurfaceControl was introduced, but that is far
from certain. Since it takes years for users to get new versions of Android (usually via replacing
their devices), this means that this capability, while interesting, will have
limited real-world applicability for a while.
How to Share
The
EmbedClient sample module
in
the book’s sample project, along with
the EmbedServer module,
demonstrate how to work with SurfaceControlViewHost.
In the terminology being used in this chapter:

	The “server” is the app with the view hierarchy

	The “client” is the app that is displaying the UI from that view hierarchy

Client Setup
The first thing that the client needs is a SurfaceView, which will be where
the embedded UI will be rendered. EmbedClient has an activity_main layout
resource that consists of a SurfaceView and a Button:

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:padding="8dp"
 tools:context=".MainActivity">

 <SurfaceView
 android:id="@+id/surface"
 android:layout_width="0dp"
 android:layout_height="0dp"
 app:layout_constraintBottom_toTopOf="@id/connect"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

 <Button
 android:id="@+id/connect"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginTop="8dp"
 android:text="@string/connect"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent" />

</androidx.constraintlayout.widget.ConstraintLayout>

(from EmbedClient/src/main/res/layout/activity_main.xml)

[image: EmbedClient, As Initially Launched]

Figure 20: EmbedClient, As Initially Launched
Android 11 adds a getHostToken() method to SurfaceView, returning an IBinder
that represents the SurfaceView. The client needs to get that “host token”,
along with the ID of the Display used for that SurfaceView, and the dimensions of that SurfaceView
over to the server app. MainActivity delegates this to a MainMotor viewmodel, by
calling a bind() function when the user clicks that “Connect to Server” button:

package com.commonsware.android.r.embed.client

import android.os.Bundle
import androidx.appcompat.app.AppCompatActivity
import androidx.lifecycle.observe
import com.commonsware.android.r.embed.client.databinding.ActivityMainBinding
import org.koin.androidx.viewmodel.ext.android.viewModel

class MainActivity : AppCompatActivity() {
 private val motor: MainMotor by viewModel()

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 val binding = ActivityMainBinding.inflate(layoutInflater)

 setContentView(binding.root)

 binding.surface.setZOrderOnTop(true)

 motor.surfacePackage.observe(this) {
 binding.surface.setChildSurfacePackage(it)
 }

 binding.connect.setOnClickListener {
 motor.bind(
 binding.surface.hostToken,
 binding.surface.display.displayId,
 binding.surface.width,
 binding.surface.height
)
 }
 }
}

(from EmbedClient/src/main/java/com/commonsware/android/r/embed/client/MainActivity.kt)
IBinder can go into a Bundle, and the Int values for the display ID, width,
and height can all be transferred easily between processes. We want to ensure that
the server process runs as long as our client needs it, so EmbedClient
and EmbedServer use the bound service pattern, with EmbedServer hosting the service.
In particular, EmbedServer will expose a Messenger as its Binder, so EmbedClient
can send a Message to it with the IBinder and Int values. So, MainMotor
has a bindToService() function that uses suspendCoroutine to make the asynchronous
act of binding to a service and getting the Messenger appear synchronous:

 private suspend fun bindToService(): MessengerConnection {
 return withContext(Dispatchers.Default) {
 suspendCoroutine<MessengerConnection> { continuation ->
 context.bindService(
 Intent().setClassName(
 "com.commonsware.android.r.embed.server",
 "com.commonsware.android.r.embed.server.ViewService"
),
 MessengerConnection { if (isActive) continuation.resume(it) },
 Context.BIND_AUTO_CREATE
)
 }
 }
 }
}

private class MessengerConnection(private val onConnected: (MessengerConnection) -> Unit) :
 ServiceConnection {
 var messenger: Messenger? = null

 override fun onServiceConnected(name: ComponentName?, binder: IBinder?) {
 messenger = Messenger(binder)
 onConnected(this)
 }

 override fun onServiceDisconnected(name: ComponentName?) {
 messenger = null
 }
}

(from EmbedClient/src/main/java/com/commonsware/android/r/embed/client/MainMotor.kt)
The bind() function that MainActivity calls then binds to the service and sends
a Message with our four pieces of data:

 fun bind(
 hostToken: IBinder?,
 displayId: Int,
 width: Int,
 height: Int
) {
 viewModelScope.launch {
 conn = bindToService()

 conn?.messenger?.send(Message.obtain().apply {
 data = bundleOf(
 KEY_HOST_TOKEN to hostToken,
 KEY_DISPLAY_ID to displayId,
 KEY_WIDTH to width,
 KEY_HEIGHT to height
)
 replyTo = messenger
 })
 }
 }

(from EmbedClient/src/main/java/com/commonsware/android/r/embed/client/MainMotor.kt)
Setting up the Bundle is a bit clunky, because the bundleOf() implementation
in androidx.core:core-ktx:1.2.0 does not support IBinder,
the data type of our “host token”. So, we have to add that via a separate call
to putBinder().
Also note that our Message includes another Messenger in the replyTo property.
This Messenger will be used by the server to send data back to the client. We will
look more at that part of the process later in this chapter.
Also, as was seen in an earlier chapter, we need to whitelist
the server app in order to be able to bind to it:

 <queries>
 <package android:name="com.commonsware.android.r.embed.server" />
 </queries>

(from EmbedClient/src/main/AndroidManifest.xml)
Otherwise, any bindService() call will fail, even with a valid Intent.
Server Setup
The job of the server is to set up the SurfaceControlViewHost and the UI to be
displayed in the client.
All of that is handled by the ViewService being bound to by the client. While the
app has an activity, that is simply for convenience when launching this sample from
the IDE — the activity plays no role in the UI being served up.
The UI in question consists of a really big Button, plus a TextView:

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:background="@android:color/white"
 android:padding="8dp">

 <Button
 android:id="@+id/button"
 android:layout_width="0dp"
 android:layout_height="0dp"
 app:layout_constraintBottom_toTopOf="@id/time"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

 <TextView
 android:id="@+id/time"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginTop="8dp"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent" />
</androidx.constraintlayout.widget.ConstraintLayout>

(from EmbedServer/src/main/res/layout/embedded.xml)
In onCreate() of ViewService, we use view binding to inflate() that
layout and configure the widgets:

class ViewService : Service() {
 private lateinit var messenger: Messenger
 private val handlerThread = HandlerThread("ViewService")
 private lateinit var binding: EmbeddedBinding

 override fun onCreate() {
 super.onCreate()

 handlerThread.start()

 binding = EmbeddedBinding.inflate(LayoutInflater.from(this))
 var count = 0

 binding.button.text = getString(R.string.caption, count)
 binding.button.setOnClickListener {
 Log.d("ViewService", "button clicked")
 count += 1
 binding.button.text = getString(R.string.caption, count)
 }
 binding.time.text = Date().toString()

 messenger = Messenger(ViewHandler(this, binding, handlerThread.looper))

 Log.d("ViewService", "onCreate() finished")
 }

 override fun onBind(p0: Intent?): IBinder = messenger.binder
}

(from EmbedServer/src/main/java/com/commonsware/android/r/embed/server/ViewService.kt)
The Message from EmbedClient will be received by handleMessage() on
the ViewHandler implementation of Handler. Our job is to process that message and,
for the first message, set up the SurfaceControlViewHost:

private class ViewHandler(
 private val context: Context,
 private val binding: EmbeddedBinding,
 looper: Looper
) : Handler(looper) {
 private var host: SurfaceControlViewHost? = null

 override fun handleMessage(msg: Message) {
 Log.d("ViewService", "handleMessage() called")

 msg.data.apply {
 if (host == null) {
 val hostToken = getBinder(KEY_HOST_TOKEN)
 val displayId = getInt(KEY_DISPLAY_ID)
 val width = getInt(KEY_WIDTH)
 val height = getInt(KEY_HEIGHT)
 val display = context.getSystemService(DisplayManager::class.java)
 .getDisplay(displayId)

 host = SurfaceControlViewHost(context, display, hostToken).apply {
 setView(binding.root, width, height)

 val pkg = surfacePackage

 msg.replyTo.send(Message.obtain().apply {
 data = bundleOf(KEY_SURFACE_PACKAGE to pkg)
 })
 }
 } else {
 binding.time.text = Date().toString()
 }
 }
 }
}

(from EmbedServer/src/main/java/com/commonsware/android/r/embed/server/ViewService.kt)
If we have not set up the host previously, we grab the values out of the
Message and obtain the Display object for our display ID. We then:

	Create the SurfaceControlViewHost, passing the “host token” and SurfaceView
dimensions to the constructor

	Call setView() to attach our inflated layout to the host

	Call getSurfacePackage() on the host and send that back to the client via
the replyTo Messenger

If, on the other hand, we already have the host set up from before, we just
update the TextView to show the now-current Date.
Client Completion
The replyTo Messenger that we attached to the outbound message is set up
in the init block of MainMotor:

class MainMotor(private val context: Context) : ViewModel() {
 private var conn: MessengerConnection? = null
 private val _surfacePackage =
 MutableLiveData<SurfaceControlViewHost.SurfacePackage>()
 val surfacePackage: LiveData<SurfaceControlViewHost.SurfacePackage> =
 _surfacePackage
 private val handlerThread = HandlerThread("EmbedClient")
 private val handler: Handler
 private val messenger: Messenger

 init {
 handlerThread.start()
 handler = PackageHandler(handlerThread.looper) {
 _surfacePackage.postValue(it)
 }
 messenger = Messenger(handler)
 }

(from EmbedClient/src/main/java/com/commonsware/android/r/embed/client/MainMotor.kt)
The PackageHandler simply calls the supplied callback upon receipt of a Message,
extracting out the SurfacePackage sent by the server:

private class PackageHandler(
 looper: Looper,
 private val onPackageReceipt: (SurfaceControlViewHost.SurfacePackage) -> Unit
) : Handler(looper) {
 override fun handleMessage(msg: Message) {
 val pkg = msg.data.getParcelable<SurfaceControlViewHost.SurfacePackage>(
 KEY_SURFACE_PACKAGE
)

 pkg?.let { onPackageReceipt(it) }
 }
}

(from EmbedClient/src/main/java/com/commonsware/android/r/embed/client/MainMotor.kt)
The SurfacePackage is supplied to MainActivity via LiveData, and MainActivity
calls setChildSurfacePackage() on the SurfaceView to attach it:

 motor.surfacePackage.observe(this) {
 binding.surface.setChildSurfacePackage(it)
 }

(from EmbedClient/src/main/java/com/commonsware/android/r/embed/client/MainActivity.kt)
The Results
If you install both apps, then launch EmbedClient and click the “Connect to Server”
button, you will see the EmbedServer-supplied UI in what had been the big open
area of the SurfaceView:

[image: EmbedClient, After Connecting to Server]

Figure 21: EmbedClient, After Connecting to Server
If you click the “Connect to Server” button again, the TextView text will show
the now-current date, illustrating that the connection between client and server
is live. All the server is doing on these subsequent button clicks is updating
the text in the TextView — it is not doing anything else to “push” a new rendition
of the UI to the client. That is handled by SurfaceControlViewHost and the
underlying shared Surface.
Enabling Input
If you set the SurfaceView to be on top from a Z axis standpoint, then input events
delivered to the SurfaceView will be routed to the corresponding widgets and their
listeners.
In these examples, ViewService added an OnClickListener to the Button. If you
click the Button as viewed in EmbedClient, you see the button caption being updated
by that listener. You also see the standard ripple effect, though fine-grained animations
like that do not seem to work well, even on relatively good hardware (e.g., a Pixel 2).
The trick to making this work is setting that Z axis order, which we do in the EmbedClient
edition of MainActivity via setZOrderOnTop(true):

 binding.surface.setZOrderOnTop(true)

(from EmbedClient/src/main/java/com/commonsware/android/r/embed/client/MainActivity.kt)
Conversations and Bubbles
There are very few user-facing features in Android 11. One is the re-introduction
of “bubbles” as an extension of the notification system:

[image: Bubble, As Initially Launched]

Figure 22: Bubble, As Initially Launched

[image: Bubble, Showing Expanded State]

Figure 23: Bubble, Showing Expanded State
This is tied to a new “conversations” system for notifications, with an eye
towards messaging apps and similar sorts of situations where you are interacting
with another person.
From “Chat Heads” to Bubbles
In 2013, Facebook debuted the “chat heads” UI for their Android app. These
allowed the user to participate in Facebook chats while being (mostly) in
other apps, by having a floating avatar of your chat partner appear over
the UI of whatever app you were in.
Technically, this was somewhat of an abuse of the SYSTEM_ALERT_WINDOW
permission and related system-level windows. Facebook’s “leadership” in this
area led many other developers to apply the same technique. However,
allowing arbitrary apps to interpose arbitrary UI in front of other UI has
security risks, and Google is starting to restrict the use
of SYSTEM_ALERT_WINDOW as a result.
However, Google recognizes the utility of this sort of system, which is why
they are adding bubbles as a framework-supported, user-controllable option
for the same sort of effect… albeit one that is tied to a “conversation”.
The Basics of Conversations
Google has portrayed “conversations” as being a major thing in Android 11.
And, in truth, it is one of the few user-facing features of Android 11.
However, from a programming standpoint, “conversations” may be just a minor
extension to what you are already doing with notifications.
Conversation Presentation
Conversation notifications are placed above regular notifications in the notification
shade:

[image: A Conversation Notification in the Shade]

Figure 24: A Conversation Notification in the Shade
They have slightly different presentation, with a greater emphasis on a developer-supplied
icon, typically representing the person (or bot or other non-corporeal entity) with which
the “conversation” is being held. Tapping the caret toggles between expanded and collapsed
perspectives, and long-pressing the caret can bring up options, such as making the
conversation be priority or silent:

[image: Conversation Options from Caret Long-Press]

Figure 25: Conversation Options from Caret Long-Press
But, mostly, this is just a MessagingStyle notification.
However, you may notice an icon in the lower-left of the notification. If this
is available, the user can turn this conversation into a bubble by tapping on it.
This implies that you have set up this notification with the metadata needed for
bubbles, and we will explore that and the rest of the bubble setup and presentation
later in the chapter.
Constructing a Conversation
A conversation notification is a MessagingStyle notification with a “long-lived”
shortcut associated with it. The documentation states that the shortcut must be associated
with Person objects in the conversation, though this does not appear to be required.
The shortcut that gets created not only helps set up your conversation, but it appears
as a real shortcut, such as on a long-press of your launcher icon. As such, the shortcut
needs to be real and to work, even though the Intent associated with that shortcut
is not used with the notification itself.
The
BubbleConversation sample module
in
the book’s sample project
shows a basic recipe for getting a bubble to display and work, in the context
of a “conversation”-style notification. It has an activity with a really big button that,
when clicked, raises a conversation-style notification.
This code sets up a NotificationCompat.Builder for a conversation:

 val shortcutInfo = ShortcutInfoCompat.Builder(this, SHORTCUT_ID)
 .setLongLived(true)
 .setShortLabel("Settings")
 .setIntent(Intent(Settings.ACTION_SETTINGS))
 .setIcon(IconCompat.createWithResource(this, R.drawable.ic_one))
 .build()

 ShortcutManagerCompat.pushDynamicShortcut(this, shortcutInfo)

 val builder = NotificationCompat.Builder(
 appContext,
 CHANNEL_WHATEVER
)
 .setSmallIcon(R.drawable.ic_notification)
 .setContentTitle("Um, hi!")
 .setBubbleMetadata(bubble)
 .setShortcutInfo(shortcutInfo)

 val person = Person.Builder()
 .setBot(true)
 .setName("A Test Bot")
 .setImportant(true)
 .build()

 val style = NotificationCompat.MessagingStyle(person)
 .setConversationTitle("A Fake Chat")

 style.addMessage("Want to chat?", System.currentTimeMillis(), person)
 builder.setStyle(style)

(from BubbleConversation/src/main/java/com/commonsware/android/r/bubble/MainActivity.kt)
Most of this code is mostly there to set up the MessagingStyle
notification. And the setBubbleMetadata() call is tied to bubbles, as we will see
later in the chapter.
To make this be categorized as a conversation, we:

	Create a ShortcutInfoCompat using ShortcutInfoCompat.Builder,
providing enough information to create valid shortcut, plus setLongLived(true)

	Register that shortcut with ShortcutManagerCompat, in this case via
pushDynamicShortcut()

	Attach that shortcut to the notification using setShortcutInfo()
on NotificationCompat.Builder

In this case, the shortcut itself just launches the device’s Settings
app. A more typical solution would be to have it launch something related
to the conversation or its participants.
Note that the icon used as the primary visual indicator in the conversation
is the icon associated with the shortcut (in this case, R.drawable.ic_one).
Hence, you will want to set that icon to be something that represents
the conversation or its participants, further emphasizing the need for the shortcut
itself to be tied to the same things.
The Basics of Bubbles
A bubble is an option for a conversation-style notification. It basically
detaches the notification from the notification shade and has it be represented
by a free-floating icon that, when tapped, will display a designated activity
in a floating window. As a result, there are two main steps in enabling
bubbles for a conversation:

	Setting up that activity for the floating window

	Teaching the notification that you want a bubble as an option

Crafting the Activity
There are two elements to a bubble:

	The actual bubble dot itself

	The content that is shown when the user taps on the bubble

That content is in the form of an Android activity.
The UI
Since this is an activity, you have access to the full range of Android UI options.
There are no known technical limitations, so if you want to use a SurfaceView
or WebView or whatever, you should be fine.
However, do bear in mind that your activity is likely to be smaller than the
full screen height. Also, while it is possible for that activity to start other activities,
those by default will remain in the bubble’s window, forming its own back stack.
You are not technically restricted to simple UIs like
those of app widgets, slices, and wearables. However, a bubble activity still should
err on the side of simplicity, particularly while users are getting used to how
bubbles look and operate.
The Manifest Entry
As with any activity, the bubble content activity will have an <activity>
element in the manifest.
The documentation states that
the <activity> must have three key attributes:

	
android:allowEmbedded="true", to say that this activity can be embedded in some other UI

	
android:documentLaunchMode="always", to say that if there is a Uri associated
with the activity, different Uri values will result in different tasks and separate
activity instances

	
android:resizeableActivity="true", to say that the activity window can be resized
at will by the user

The documentation claims that if these requirements are not met, then your requested
bubble will not be created and you wind up with a plain Notification instead.
In reality, none of these are required for the bubble to appear.
In the BubbleConversation module, we have a BubbleActivity that we want
to display as the bubble content. As a result, we put those three attribute
values on the BasicBubble <activity> element:

 <activity
 android:name=".BubbleActivity"
 android:allowEmbedded="true"
 android:documentLaunchMode="always"
 android:resizeableActivity="true" />

(from BubbleConversation/src/main/AndroidManifest.xml)
BubbleActivity simply loads a layout with a Switch widget to indicate whether or
not you like bubbles:

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent" android:layout_height="match_parent">

 <Switch
 android:id="@+id/switch1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginBottom="8dp"
 android:layout_marginEnd="8dp"
 android:layout_marginStart="8dp"
 android:layout_marginTop="8dp"
 android:checked="true"
 android:switchTextAppearance="@style/TextAppearance.AppCompat.Large"
 android:text="I Like Bubbles!"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />
</androidx.constraintlayout.widget.ConstraintLayout>

(from BubbleConversation/src/main/res/layout/activity_bubble.xml)
Note that the Switch does not actually do anything. But, feel free to toggle it,
if you like!
Requesting the Bubble
To show the bubble, you need to display a conversation notification that has BubbleMetadata
attached to it.
NotificationCompat.Builder has a setBubbleMetadata() method that we can
use to request a bubble for our Notification. There is a corresponding
NotificationCompat.BubbleMetadata class, with a Builder, that we can use to create that
metadata to supply to setBubbleMetadata().
This code snippet illustrates setting up the metadata, as part of setting up
the conversation notification as seen earlier in this chapter:

 private fun buildBubbleNotification(appContext: Context, showExpanded: Boolean = false): Notification {
 val pi = PendingIntent.getActivity(
 appContext,
 0,
 Intent(appContext, BubbleActivity::class.java),
 PendingIntent.FLAG_UPDATE_CURRENT
)

 val bubble = NotificationCompat.BubbleMetadata.Builder()
 .setDesiredHeight(400)
 .setIcon(IconCompat.createWithResource(appContext, R.drawable.ic_two))
 .setIntent(pi)
 .apply { if (showExpanded) setAutoExpandBubble(true); setSuppressNotification(true) }
 .build()

 val shortcutInfo = ShortcutInfoCompat.Builder(this, SHORTCUT_ID)
 .setLongLived(true)
 .setShortLabel("Settings")
 .setIntent(Intent(Settings.ACTION_SETTINGS))
 .setIcon(IconCompat.createWithResource(this, R.drawable.ic_one))
 .build()

 ShortcutManagerCompat.pushDynamicShortcut(this, shortcutInfo)

 val builder = NotificationCompat.Builder(
 appContext,
 CHANNEL_WHATEVER
)
 .setSmallIcon(R.drawable.ic_notification)
 .setContentTitle("Um, hi!")
 .setBubbleMetadata(bubble)
 .setShortcutInfo(shortcutInfo)

 val person = Person.Builder()
 .setBot(true)
 .setName("A Test Bot")
 .setImportant(true)
 .build()

 val style = NotificationCompat.MessagingStyle(person)
 .setConversationTitle("A Fake Chat")

 style.addMessage("Want to chat?", System.currentTimeMillis(), person)
 builder.setStyle(style)

 return builder.build()
 }

(from BubbleConversation/src/main/java/com/commonsware/android/r/bubble/MainActivity.kt)
There are three key methods on NotificationCompat.BubbleMetadata.Builder:

	
setDesiredHeight() indicates how much vertical space you want for your
bubble content, measured in dp.
Note that this is a request, and your actual height may be larger or smaller than
what you request.

	
setIcon() eventually will let you specify an icon for the bubble itself.
Note that your launcher icon will appear superimposed on the bubble icon.
As a result, using the launcher icon as the bubble icon is atypical, but
we are doing that here anyway.

	
setIntent() provides the PendingIntent to start the activity that
is your bubble content. In theory, this PendingIntent could be one
for a service or receiver instead of an activity, though this may give you
undesired results.

If showExpanded is true, we also call two additional builder methods:

	
setAutoExpandBubble(), to indicate that we want the bubble to show
up in full, not just as a simple bubble

	
setSuppressNotification(), to indicate that we do not want the actual
Notification to appear if the bubble is displayed — the bubble alone is all
that we need

The resulting Notification can be displayed as normal:

 private fun showBubble(appContext: Context, showExpanded: Boolean = false) {
 NotificationManagerCompat.from(appContext).let { mgr ->
 mgr.createNotificationChannel(
 NotificationChannel(
 CHANNEL_WHATEVER,
 "Whatever",
 NotificationManager.IMPORTANCE_DEFAULT
)
)

 mgr.notify(NOTIF_ID, buildBubbleNotification(appContext, showExpanded))
 }
 }

(from BubbleConversation/src/main/java/com/commonsware/android/r/bubble/MainActivity.kt)
The UX
As was noted earlier, there is an icon in the lower-left of a conversation notification
that, when tapped, will bring up the bubble. Future uses of bubbles by your notifications for
the same channel, by default,
will bring up the bubble icon (or the expanded bubble) immediately.
In the collapsed form, the bubble consists of the shortcut icon with your app’s
launcher icon superimposed upon it:

[image: Bubble, As Initially Launched]

Figure 26: Bubble, As Initially Launched
The bubble itself can be dragged around the screen, though it will always
gravitate toward one of the sides. This allows the user to reposition it
to not obscure something of importance.
Tapping the bubble itself expands it:

[image: Bubble, Showing Expanded State]

Figure 27: Bubble, Showing Expanded State
You go directly to this expanded state if you use setAutoExpandBubble(true)
in your BubbleMetadata.Builder.
Despite the android:resizeableActivity="true" attribute in the manifest,
the system UI does not seem to allow the user to resize or move the
bubble content.
The user can:

	Tap outside of the expanded view to collapse it back into a bubble

	Get rid of the bubble by dragging it to the bottom-center of the
screen, over an X icon that appears while dragging

	Click the “Manage” button on the lower edge, to bring up a small menu of options for
the user to configure the behavior of bubbles from your app

	Click the plus icon
in a circle that appears next to your bubble above your activity, to do… something
apparently with recent bubbles (this has little documentation)

Security Stuff
Aspects of the changes to scoped storage and the MediaStore
pertain to security, as does the introduction of package filtering
and the tweaks to permissions. In this chapter, we will explore
other security changes introduced in Android 11.
New Foreground Service Types
Android 10 introduced the android:foregroundServiceType attribute for the <service> element
in the manifest. Apps using certain capabilities need to declare those intentions
using this attribute. For example, if your foreground service needs to use location APIs,
you would need android:foregroundServiceType="location". Failing to include
this attribute may mean that your app will be unable to use those capabilities when the
app only has a foreground service and no foreground UI.
Despite Google’s efforts to pretend that nothing changed here,
two new foreground service types were added in Android 11:

	camera

	microphone

In addition, these two new foreground service types have an interesting phrase
in the JavaDoc comments for their corresponding ServiceInfo constants:
FOREGROUND_SERVICE_TYPE_CAMERA
and FOREGROUND_SERVICE_TYPE_MICROPHONE:

For apps with targetSdkVersion Build.VERSION_CODES.R and above, a foreground service will not be able to access the [camera|microphone] if this type is not specified in the manifest and in Service.startForeground(int, android.app.Notification, int).

Normally, we can use the two-parameter startForeground() on Service to establish
our service as a foreground service. That method implies that we want to use all
of the foreground service type flags specified in android:foregroundServiceType in the
manifest. The documentation’s use of “and”, though, suggests that for camera
and microphone that we not only need them in the manifest but also need to pass
them specifically to the three-parameter startForeground() method, which takes a
bitmask of foreground service types as the third parameter.
However, elsewhere in the documentation,
we have:

If your app starts a foreground service while running in the background, the foreground service cannot access the microphone or camera.

So, if you use the camera or microphone APIs from a foreground service, you should test
your app early and often on Android 11.

BiometricPrompt and Weak Biometrics
BiometricPrompt is the framework class responsible for authenticating the user, in-app, based on how
the user has secured their device. Through BiometricPrompt, your app can re-confirm
that the person using the app is authorized to use the device, in case somebody else took
the device from its normal user.
There is some history behind BiometricPrompt:

	The original focus was on KeyguardManager and the entry of PINs or passwords (“device credentials”)

	
FingerprintManager focused on fingerprints; part of the reason for the change
to BiometricPrompt was to support other forms of biometrics besides fingerprints

Android 11 now divides the biometric options into “strong” and “weak”. Fingerprints
are strong; face recognition is weak. When you set up your BiometricPrompt, you can
indicate what authenticators are considered to be acceptable, so you can opt into
supporting weak biometrics if you choose to.
The
SecureCheq sample module
in
the book’s sample project
is an updated version of a sample from Elements of Android Q
that re-authenticates the user when they tap a large fingerprint icon:

[image: SecureCheq Sample App, As Initially Launched]

Figure 28: SecureCheq Sample App, As Initially Launched
New to the RSampler project’s edition of SecureCheq is the RadioGroup
at the top, allowing the user to choose an authenticator. This, in turn, maps
to a BiometricManager.Authenticators constant:

	BIOMETRIC_STRONG

	BIOMETRIC_WEAK

	DEVICE_CREDENTIAL

setAllowedAuthenticators(), called on a BiometricPrompt.Builder, lets you specify which
of those three options you support. The method accepts a vararg, so you can pass as
many of these authenticator options as you wish. This sample only passes in one, based
on the selected radio button:

 val prompt = BiometricPrompt.Builder(this)
 .setTitle("This is the title")
 .setDescription("This is the description")
 .setSubtitle("This is the subtitle")
 .apply {
 when {
 Build.VERSION.SDK_INT > 29 && strong.isChecked ->
 setAllowedAuthenticators(BiometricManager.Authenticators.BIOMETRIC_STRONG)
 Build.VERSION.SDK_INT > 29 && weak.isChecked ->
 setAllowedAuthenticators(BiometricManager.Authenticators.BIOMETRIC_WEAK)
 Build.VERSION.SDK_INT > 29 ->
 setAllowedAuthenticators(BiometricManager.Authenticators.DEVICE_CREDENTIAL)
 Build.VERSION.SDK_INT > 28 -> {
 setDeviceCredentialAllowed(true)
 }
 else -> {
 setNegativeButton(
 getString(R.string.btn_negative),
 mainExecutor,
 DialogInterface.OnClickListener { _, _ ->
 fingerprint.setImageDrawable(off)
 Toast.makeText(
 this@MainActivity,
 R.string.msg_negative,
 Toast.LENGTH_LONG
).show()
 })
 }
 }
 }
 .build()

(from SecureCheq/src/main/java/com/commonsware/android/r/auth/MainActivity.kt)
However, since this app supports older versions, we have a few possible patterns:

	On Android 11, we call setAllowedAuthenticators() with the user-selected authenticator

	On Android 10, we instead call setDeviceCredentialAllowed(true), which roughly equates to
passing BiometricManager.Authenticators.DEVICE_CREDENTIAL to setAllowedAuthenticators()

	On Android 9.0, we settle for configuring a “negative” button that the user can click to exit the biometric prompt

What you get depends on the authenticator and the user’s device. So, for example,
if the device is set up for fingerprints, and the user chooses “Strong Authentication”,
the fingerprint dialog appears. That dialog is now protected using FLAG_SECURE, blocking
people (such as book authors) from taking screenshots.
If, on the other hand, the device is not set up for fingerprints, even BIOMETRIC_STRONG
falls back to DEVICE_CREDENTIAL, and the user is prompted for their PIN or password.
Right now, the author of this book does not have an Android 11-equipped device
that offers weak authentication options (e.g., face recognition). This section
will be updated later in 2020 with more details on how that works with
the new BiometricPrompt.

Toast Restrictions
There are a number of new limitations on Toast that you will need to take into account.
The big one is displaying a Toast with a custom View (via setView()). This is
still allowed, but only from the foreground. If you try this from the background,
the Toast is not displayed and a warning about the violation is recorded in Logcat.
For apps with a targetSdkVersion of 30 or higher, you also:

	Cannot call getView() to get the View displayed by the Toast (it just returns null)

	Cannot modify the margins or gravity

	Cannot retrieve the margins or gravity (return values from methods like getGravity()
“don’t reflect the actual values, so you shouldn’t rely on them in your app”)

The rationale for all of these is to prevent the user from using a Toast to
occlude critical aspects of the UI. For example, in principle, an app could
display a custom Toast over top of a system permissions dialog. The Toast
could show a message that implies that the permission being requested is more benign
than it really is. While this attack is unreliable, given the short and transient
nature of a Toast, it could still work.
Further CA Certificate Restrictions
In general, having custom certificate authority (CA) certificates in a device
opens up security problems. CAs are used to verify SSL/TLS certificate chains,
and a fraudulent CA certificate makes it possible for malicious parties to
pretend to be Web sites and services that they are not. Google has been slowly
tightening the screws on where these certificates can come from for years.
However, there are plenty of legitimate uses for them, including enterprises
(who sometimes use custom certificate authorities to help secure their own internal
Web sites) and debugging tools (HTTP Toolkit, Charles Proxy, etc.).
Android 11 adds a lightly-documented new restriction: apps cannot ask users to install
a certificate via KeyChain.createInstallIntent(). Added back in Android 4.1,
this method would build an Intent where you could supply a CA certificate
via an Intent extra, and a startActivityForResult() call would ask the user
if she wanted that certificate to be installed. For CA certificates, on Android 11
and higher, this no longer works.
Instead, users now need to do this manually:

	Go to the Security screen in the Settings app

	In there, navigate to “Encryption & credentials” > “Install a certificate” > “CA certificate”

	Agree to proceed, despite a security warning

	Use the Storage Access Framework UI to find the CA certificate and choose to open it

	Confirm the installation

And, of course, these instructions will vary by manufacturer, as manufacturers
have a habit of changing how the Settings app looks and works.
See this blog post
for more on the subject.
Device Controls
As was noted earlier, few significant user-facing new features were added in Android 11. One is
“device controls”. Akin to how Android 8.0 allowed developers to offer items to show
in the notification shade through a TileService, Android 11 allows developers
ControlsProviderService.
In this chapter, we will explore what our options are for device controls.
The High-Level View
Android has long supported a “power menu” that is triggered by a long-press
on the device’s POWER button. Traditionally, this had an option for a complete
device shutdown, where a short press of the POWER button just turns off the screen.
Later versions of Android started offering other items here, such as a device
reboot or capturing of a screenshot. Android 11 restyles this “menu” once again,
now taking up the entire screen… and part of that screen represents stuff
that we as developers can control.
What the User Gets
If you long-press the POWER button on an Android 11 device, a screen akin to this
one will appear:

[image: Android 11 Power Menu, As Initially Launched]

Figure 29: Android 11 Power Menu, As Initially Launched
In the middle of the screen is a “Device controls” card. Tapping that will display
various sources of device controls:

[image: Device Controls Sources List]

Figure 30: Device Controls Sources List
Tapping one of those will give you a lineup of available devices to control, perhaps
based on other configuration performed in the main app:

[image: Device Controls From Sample App]

Figure 31: Device Controls From Sample App
You can check and uncheck the checkboxes in the lower right corner of each of those
tiles to determine which of these you want to appear on your “power menu”. They
will then show up on the main “power menu” screen, and you can interact with them,
as we will explore more later in this chapter.
How We Build It
Your graphic designers might look at this and envision all sorts of possibilities
for what they might do in this space.
Your graphic designers will be very disappointed.
We do not directly control the look or interactivity of these tiles. Instead,
we describe what we want in fairly generic terms (“we want the user to control a
value in a range from 1 to 10”), and Android renders that how Android sees fit.
In this respect, this is reminiscent of Android 9.0’s flagship feature: slices.
There, we did not provide the direct UI of a slice, but instead described the general
structure of what we want, and the slice host would decide how to render that
structure.
(and, if you forgot about slices, or never heard of them in the first place,
you did not miss much…)
A subclass of ControlsProviderService provides the API that you will
expose to Android to supply the contents of these tiles. So, to offer device control
tiles to your users, you will create a ControlsProviderService subclass
and implement its API to publish the roster of possible tiles and support
the user interacting with a chosen subset of those tiles.
Elements of a Control Tile
Each tile is represented by a Control. When we create instances of a Control,
we get to define a Template and a device type for that Control, plus we get
to react to an Action when one is raised.
Template
The element that determines what a tile looks and works like is the template.
As the name suggests, it provides a general structure for a tile, where you get
to fill in the details, such as the text that appears in the tile.
Templates are defined via subclasses of ControlTemplate, where the specific subclass
determines the type of interactivity:

	
ToggleTemplate allows the user to toggle between two states (e.g., on and off)

	
RangeTemplate allows the user to choose a value within a range, reminiscent
of a SeekBar

	
ToggleRangeTemplate allows the user to do both of those: turn something on/off
and, if on, control the value within a range

	
TemperatureControlTemplate supports toggling between multiple distinct
modes (e.g., heat, cool, “eco”), in addition to wrapping one of the aforementioned
template types (e.g., allow the user to toggle between heating and cooling, plus
specify a value within a temperature range)

All of those have an associated state that the user is modifying via the tile.
The assumption is that your app has the ability to determine the current state
of whatever the tile controls and pass along the user’s requested changes to that state.
There is also a StatelessTemplate. While you can find out about taps on this
type of tile (via actions, covered in the next section), there is no state that
your app — or the device controls framework — needs to track.
Action
Your choice of template in turn drives how the user can interact with it. Your app
will find out about the user’s choices via an action. Actions are represented by
subclasses of ControlAction. The subclasses represent the type of data
that is being tracked as state for this tile; your app, upon receiving the action, is supposed
to change the state of the associated device to that new value:

 	Action Class
 	State Data Type
 	Associated Templates

 	BooleanAction
 	boolean
 	
ToggleTemplate, ToggleRangeTemplate, TemperatureControlTemplate

 	FloatAction
 	float
 	
RangeTemplate, ToggleRangeTemplate, TemperatureControlTemplate

 	ModeAction
 	int
 	TemperatureControlTemplate

There is also a CommandAction, emitted by a StatelessTemplate, that just tells you
that the user clicked on the tile. The idea is that you might use this to send some
command to the device that is not necessarily tied to any state.
Device Type
Our choice of “device type” for a tile primarily controls an icon that goes
in the upper-start corner of the tile. Secondarily, it might have other visual
effects, such as changing the default color that gets used.
A device type is represented by an Int value. DeviceTypes contains a list
of Int constants for the supported device types. This is a long list, containing
both obvious device types (lights, thermostats), esoteric ones (hood, mop,
drawer), and generic ones (on/off, lock/unlock, temperature).
In reality, not every one of these gets a distinct icon, at least in stock versions
of Android 11.
Control
All of the above get wrapped up into a Control. You create instances
of a Control via builders. Principally, you will use Control.StatefulBuilder to not
only provide the details of the control but also the current state value associated
with the device (e.g., is it on or off for a ToggleTemplate). There
is also a Control.StatelessBuilder that you will use for a specific initial-loading
scenario (but, despite the name, this is only somewhat related to StatelessControl).

Flow… But Not That Flow

The point behind device controls is to give the user an accessible UI for manipulating
some device via your app — a thermostat, an overhead door, a lamp, etc. There may
be some delays involved in your app finding out the current state of the device and
in changing that state via the user’s interaction with these tiles. Plus, the state
often might change via other inputs, such as somebody pushing a button or flipping
a switch, so you might need to deliver state changes over time.
This calls for an asynchronous API, where you can have some time to deliver responses,
use background threads, and so on.
You might think that Google would use LiveData here. However, LiveData is
specifically designed for dealing with lifecycles, and there isn’t really a “lifecycle”
involved with this work. Plus, LiveData is a Jetpack library, and framework classes
like ControlsProviderService cannot depend upon Jetpack libraries.
You might think that given Google’s strong interest in Kotlin that they would use
coroutines, such as Flow. However, while Google overall is Kotlin-friendly,
the framework is not. Google’s coroutine-centric APIs are all in Jetpack libraries.
The device controls API needs to be more readily usable by Java apps.
You might think that Google would go “retro” and use callbacks or listeners, since they are still
all over the place in the Android SDK. Or, perhaps they would use some sort
of Future or one of the seemingly-endless number of classes and interfaces
named Observable.
Instead, they chose to use the Reactive Streams API…
somewhat.
The Reactive Streams API is a cross-platform initiative for defining reactive
APIs. Android 11 includes the JDK 9 edition of an API based on Reactive Streams,
in the form of interfaces like Flow.Publisher, used to provide a stream of results
to some subscriber.
However, Android 11 does not include an implementation of Reactive Streams, just
the API embodied in those interfaces. The expectation is that you will use a third-party
library that can provide implementations of those interfaces, where the leading
contender for this is RxJava.
If your project already uses RxJava, great! However, the Reactive Streams classes
in RxJava may be different than the ones that you are used to. In RxJava, typically
we use Observable and Subject, but the Reactive Streams RxJava equivalents
are Flowable and Processor. Still, the concepts are fairly similar.
If your project does not use RxJava right now… you get to start! Isn’t that fun!
(narrator: it will not be fun, but many Android developers use RxJava successfully,
so you will be able to do so as well)
Taking Control of the Situation
The
TakeControl sample module
in
the book’s sample project
contains a ControlsProviderService implementation that offers two tiles to
the user: one based on a ToggleTemplate and one based on a RangeTemplate.
The screenshots shown earlier in this chapter show “Take Control Demo” and those
two tiles.
The Dependencies
While ControlsProviderService, ControlTemplate, and such are all part of the
Android SDK, your Reactive Streams implementation is not. So, you will need to
add in dependencies for that implementation.
This sample app uses RxJava 2, and so we have dependencies for it and the
reactive-streams library that helps adapt RxJava 2 to the JDK’s Flow...
set of interfaces:

 implementation "org.reactivestreams:reactive-streams:1.0.3"
 implementation "io.reactivex.rxjava2:rxjava:2.2.9"

(from TakeControl/build.gradle)
The <service> Element
TakeControlService is our ControlsProviderService implementation.
Like any Service, TakeControlService appears in the manifest with a <service>
element. However, the <service> element has a few important pieces, beyond the
android:name attribute that identifies the service class:

 <service
 android:name=".TakeControlService"
 android:label="@string/serviceLabel"
 android:permission="android.permission.BIND_CONTROLS">
 <intent-filter>
 <action android:name="android.service.controls.ControlsProviderService" />
 </intent-filter>
 </service>

(from TakeControl/src/main/AndroidManifest.xml)
The two that are documented are:

	You need the <intent-filter> to advertise that your service is a ControlsProviderService

	You need the android:permission attribute to ensure that only the OS will be
able to bind to your service

The requirement that is undocumented
is android:label. This forms the display name of your ControlsProviderService.
In the screenshots, where you see “Take Control Demo” is where your service’s
android:label value appears, such as on the list of available providers:

[image: Device Controls Provider Chooser, with Demo Provider Display Name Highlighted]

Figure 32: Device Controls Provider Chooser, with Demo Provider Display Name Highlighted
Publishing All Available Controls
There are three abstract functions that we need to override in a ControlsProviderService.
The first is createPublisherForAllAvailable(). Here, “all available” is referring
to the roster of controls: we need to tell Android what are all the possible controls
that can be offered to the user. This is what populates the control picker screen
that we saw earlier:

[image: Device Controls From Sample App]

Figure 33: Device Controls From Sample App
This function needs to return a Flow.Publisher that will emit the Control
objects as they become available… or all at once, as is the case in the sample:

 override fun createPublisherForAllAvailable(): Flow.Publisher<Control> =
 FlowAdapters.toFlowPublisher(
 Flowable.fromIterable(
 listOf(
 buildStatelessControl(TOGGLE_ID, TOGGLE_TITLE, TOGGLE_TYPE),
 buildStatelessControl(RANGE_ID, RANGE_TITLE, RANGE_TYPE)
)
)
)

(from TakeControl/src/main/java/com/commonsware/android/r/control/TakeControlService.kt)
With the RxJava 2 and Reactive Streams libraries, the easiest way to create
this Flow.Publisher is to create an RxJava Flowable, then convert it to
a Flow.Publisher via FlowAdapters.toFlowPublisher(). And, the easiest
possible Flowable (other than an empty one) is to create one from a List
of objects using Flowable.fromIterable().
The Control objects that we need to emit on our Flow.Publisher must be made
using Control.StatelessBuilder. At least in part, that is because the
control picker screen is showing tiles representing controls, but not anything
regarding the current state of the device that those controls control.
To that end, TakeControlService has a buildStatelessControl() function
that uses Control.StatelessBuilder to build a Control.
We pass in a unique Int ID, a string resource representing a title, and a DeviceType
value, defined as constants:

private const val TOGGLE_ID = 1337
private const val TOGGLE_TITLE = R.string.toggleTitle
private const val TOGGLE_TYPE = DeviceTypes.TYPE_GENERIC_ON_OFF
private const val RANGE_ID = 1338
private const val RANGE_TITLE = R.string.rangeTitle
private const val RANGE_TYPE = DeviceTypes.TYPE_THERMOSTAT

(from TakeControl/src/main/java/com/commonsware/android/r/control/TakeControlService.kt)
buildStatelessControl(), in turn, builds the stateless Control:

 private fun buildStatelessControl(
 id: Int,
 @StringRes titleRes: Int,
 type: Int
): Control {
 val title = getString(titleRes)
 val intent = MainActivity.buildIntent(this, title)
 .addFlags(Intent.FLAG_ACTIVITY_NEW_TASK)
 val actionPI = PendingIntent.getActivity(
 this,
 id,
 intent,
 PendingIntent.FLAG_UPDATE_CURRENT
)

 return Control.StatelessBuilder(id.toString(), actionPI)
 .setTitle(title)
 .setDeviceType(type)
 .build()
 }

(from TakeControl/src/main/java/com/commonsware/android/r/control/TakeControlService.kt)
The Control.StatelessBuilder constructor takes a unique ID (as a String) for this
control, along with a PendingIntent. That PendingIntent will be invoked if the
user long-taps on the tile for a control. It needs to be an activity PendingIntent,
and it will be displayed in a system-supplied bottom sheet. That “embed the activity
in a bottom sheet” hack has a side effect: the Intent used to build the PendingIntent
must have FLAG_ACTIVITY_NEW_TASK on it, or else that bottom sheet will crash when it
goes to display the activity. Alas, that requirement is undocumented.
As the name suggests, Control.StatelessBuilder is a class with a builder-style
API. There are two configuration methods that we need to call, before we call build()
to build the actual Control:

	
setTitle() sets the title that you see at the top of the tile

	
setDeviceType() sets the DeviceType Int value that controls the icon
associated with the tile

In a real app, you would be examining what devices the user has configured in
your app, determining what controls you can offer for those, building stateless
Control objects for those, and then emitting them via your Flow.Publisher.
This sample hard-codes the available controls for simplicity.
If you have a lot of controls, you might also consider overriding createPublisherForSuggested().
This allows you to supply a separate Flow.Publisher for a subset of your controls,
indicating ones that you feel are most likely to be of use to the user.
Updating Specific Controls
The second required method is createPublisherFor(). This will be called with a list
of the string IDs of the controls that the user selected from the control picker.
Your job is emit stateful Control objects on a Flow.Publisher for those
controls, both initially and if the device state represented by the control changes.
So, for example, if you have a control representing the on/off state of a light
switch, you will need to emit a stateful Control to indicate the current state
of that switch as of the call to createPublisherFor() and if the state of that
switch changes.
This time, since (in theory) we are delivering results over time, we cannot
just create a Flowable from a List. Instead, we use RxJava’s ReplayProcessor:

 override fun createPublisherFor(controlIds: List<String>): Flow.Publisher<Control> {
 val flow: ReplayProcessor<Control> = ReplayProcessor.create(controlIds.size)

 controlIds.forEach { controlFlows[it] = flow }

 executor.execute {
 // TODO real work to figure out the state, simulated by a one-second delay
 SystemClock.sleep(1000)

 flow.onNext(buildToggleStatefulControl())

 // TODO real work to figure out the state, simulated by a one-second delay
 SystemClock.sleep(1000)

 flow.onNext(buildRangeStatefulControl())
 }

 return FlowAdapters.toFlowPublisher(flow)
 }

(from TakeControl/src/main/java/com/commonsware/android/r/control/TakeControlService.kt)
We are going to need to use that Flow.Publisher over time, and the API for
ControlsProviderService does not hand it back to us. In theory, we might
be called with createPublisherFor() several times for several lists of
controls — this is not well-documented. So, the sample holds onto
the ReplayProcessor in a MutableMap, keyed by the string ID value:

 private val controlFlows =
 mutableMapOf<String, ReplayProcessor<Control>>()

(from TakeControl/src/main/java/com/commonsware/android/r/control/TakeControlService.kt)
And, at the end of our createPublisherFor() function, use use FlowAdapters.toFlowPublisher()
to convert that ReplayProcessor into a Flow.Publisher for Android to use.
We also need to arrange to emit the stateful controls for those IDs. However,
this may take time — you might need to talk to some hardware over a slow BLE connection,
for example. To simulate this, the sample uses a single-thread Executor
and a couple of sleep() calls to pretend to do work. Then, we use a buildToggleStatefulControl()
and buildRangeStatefulControl() to emit Control objects representing
the now-current state.
Those two functions mostly delegate to a buildStatefulControl() function, just
passing in a bunch of values:

 private fun buildToggleStatefulControl() = buildStatefulControl(
 TOGGLE_ID,
 TOGGLE_TITLE,
 TOGGLE_TYPE,
 toggleState,
 ToggleTemplate(
 TOGGLE_ID.toString(),
 ControlButton(
 toggleState,
 toggleState.toString().toUpperCase(Locale.getDefault())
)
)
)

 private fun buildRangeStatefulControl() = buildStatefulControl(
 RANGE_ID,
 RANGE_TITLE,
 RANGE_TYPE,
 rangeState,
 RangeTemplate(
 RANGE_ID.toString(),
 1f,
 10f,
 rangeState,
 0.1f,
 "%1.1f"
)
)

(from TakeControl/src/main/java/com/commonsware/android/r/control/TakeControlService.kt)
We need to supply the same ID, title, and type as we did with the stateless
controls. We also need to supply the value of the current state, which for a toggle is
a Boolean and for a range is a Float. Those are simply held onto as properties
in the service in this trivial sample:

 private var toggleState = false
 private var rangeState = 5f

(from TakeControl/src/main/java/com/commonsware/android/r/control/TakeControlService.kt)
A real app would be getting them from the actual device being controlled by this service.
And, a real app would not make any assumptions about how long the ControlsProviderService
instance might be running — the framework could destroy and recreate the service
as it sees fit. But, for a sample, this will suffice.
buildStatefulControl() also takes the ControlTemplate for the control
that we are trying to build. In the case of the toggle control, that is a ToggleTemplate,
and in the case of the range control that is a RangeTemplate. A template also
gets a unique ID as a string, though reusing the same ID as is used for the
Control the template goes into seems to work, at least for simple templates
like these. The rest of the template configuration is based on the type of the template:

	A ToggleTemplate just takes a ControlButton, with a boolean value to indicate
if it is checked and a seemingly-pointless String parameter

	A RangeTemplate takes the minimum and maximum values of the range (e.g., 1f to 10f),
the current value, how granular the changes should be (e.g., 0.1f), and a “format string”
that will be used to format the state for display

Here, “format string” refers to the sort of template that you use with String.format()
or string resources. Here, we use %1.1f to show the current value to one decimal point.
buildStatefulControl() then uses all of that stuff and assembles our Control
using Control.StatefulBuilder:

 private fun <T> buildStatefulControl(
 id: Int,
 @StringRes titleRes: Int,
 type: Int,
 state: T,
 template: ControlTemplate
): Control {
 val title = getString(titleRes)
 val intent = MainActivity.buildIntent(this, "$title $state")
 .addFlags(Intent.FLAG_ACTIVITY_NEW_TASK)
 val actionPI = PendingIntent.getActivity(
 this,
 id,
 intent,
 PendingIntent.FLAG_UPDATE_CURRENT
)

 return Control.StatefulBuilder(id.toString(), actionPI)
 .setTitle(title)
 .setDeviceType(type)
 .setStatus(Control.STATUS_OK)
 .setControlTemplate(template)
 .build()
 }

(from TakeControl/src/main/java/com/commonsware/android/r/control/TakeControlService.kt)
Control.StatefulBuilder has a builder-style API with the same setTitle() and
setDeviceType() methods as does Control.StatelessBuilder. You also need to
call:

	
setStatus(), typically with STATUS_OK, to indicate that you are able to determine
the status of the control

	
setControlTemplate(), with your configured ControlTemplate for this control

There are other methods that you can call, such as setStatusText(), which provides
the String to show after the icon (and, in the case of RangeTemplate, before
the formatted value of the current selection).
Once you deliver those to Android — by calling onNext() on your ReplayProcessor —
Android will update the UI of the tile to show the state, if the user happens to have
the power menu open at the time. You will be called with createPublisherFor()
each time the user opens the power menu.
Responding to Actions
The third method that you need to override is performControlAction(). This will
be called when the user interacts with the control, other than via a long-click
(which invokes your PendingIntent). Your job is to update the device based
on that action, then emit a fresh stateful Control with the updated state.

 override fun performControlAction(
 controlId: String,
 action: ControlAction,
 consumer: Consumer<Int>
) {
 controlFlows[controlId]?.let { flow ->
 when (controlId) {
 TOGGLE_ID.toString() -> {
 consumer.accept(ControlAction.RESPONSE_OK)
 if (action is BooleanAction) toggleState = action.newState
 flow.onNext(buildToggleStatefulControl())
 }
 RANGE_ID.toString() -> {
 consumer.accept(ControlAction.RESPONSE_OK)
 if (action is FloatAction) rangeState = action.newValue
 flow.onNext(buildRangeStatefulControl())
 }
 else -> consumer.accept(ControlAction.RESPONSE_FAIL)
 }
 } ?: consumer.accept(ControlAction.RESPONSE_FAIL)
 }

(from TakeControl/src/main/java/com/commonsware/android/r/control/TakeControlService.kt)
The first parameter to performControlAction() is the String ID of the control
that the user used. We use that both to look up the cached ReplayProcessor for
that control and to branch in a when() to process the action.
The second parameter is a ControlAction object, representing the actual action
that the user performed. For a ToggleTemplate control, it should be a BooleanAction,
and for a RangeTemplate control, it should be a FloatAction.
The third parameter is a Consumer, which we use to tell Android whether we understood
the request. Call accept() on the Consumer with RESPONSE_OK if you are able to process the action
or RESPONSE_FAIL if you cannot for some reason.
In our case, we:

	Look up the ReplayProcessor for the supplied ID

	If we recognize the ID, call accept() with RESPONSE_OK

	Update the state property for that control based on the value contained in the action

	Use buildToggleStatefulControl() or buildRangeStatefulControl() to build a fresh
stateful Control representing the updated state, then emit that using onNext()
on our ReplayProcessor

Here, the sample does all of that immediately. In a real app, updating the device
with the new state may take time, and so you would have some background thread
do that work and emit the updated Control when the device has been modified.
The Results
If the user chooses “Take Control Demo” from the available control providers, they will
see the stateless editions of our tiles as samples:

[image: Device Controls From Sample App, In Control Picker]

Figure 34: Device Controls From Sample App, In Control Picker
If they check both of those, those tiles will appear in the power menu, initially
as stateless editions:

[image: Chosen Device Controls From Sample App, Shortly After POWER Long Press]

Figure 35: Chosen Device Controls From Sample App, Shortly After POWER Long Press
Eventually, the stateful editions of our tiles are displayed. In particular, the
“Sample Range” tile shows our current value (via that format string) and has a shaded
fill to highlight how far along the range the current value is:

[image: Chosen Device Controls, in Stateful Form]

Figure 36: Chosen Device Controls, in Stateful Form
The user can tap on the “Sample Toggle” to toggle it on, which shows up with a
highlight when on:

[image: Chosen Device Controls, With Toggle Switched On]

Figure 37: Chosen Device Controls, With Toggle Switched On
Similarly, the user can slide their finger horizontally across the range tile to
change its value.
As the user makes changes, actions get sent to our performControlAction() implementation,
and it is our emitted stateful control in response that helps determine the end
visual state.
If the user long-presses on a tile, the activity identified in our PendingIntent
is created and shown… in a bottom sheet:

[image: Activity Launched from Tile Long-Press]

Figure 38: Activity Launched from Tile Long-Press
The icon in the upper-right allows the user to expand the activity into a traditional
full-screen size.
Ideally, the activity will show something of relevance to the tile just long-pressed-upon.
Other APIs
You can call ControlsProviderService.requestAddControl() to ask the system to
ask the user if a particular control should be added to the POWER screen. For example,
you might do this in response to some user input or configuration of a device for
which you offer controls.
In addition to the elements that we configured on controls in the sample, you can
supply:

	A subtitle to appear below the title

	A “structure” and a “zone”, to help the user identify the specific device
managed by the tile (e.g., which light switch?)

	A custom color or icon to use in the tile

Also, stateful controls can have “status text”, which is shown adjacent to the icon
and gives you another way to textually represent the current status of whatever
the tile manages.
Other Changes of Note
There are lots of other changes in Android 11, far more than can be presented
in this book. This chapter covers a variety of additional changes that you may
want to pay attention to.
Stuff That Might Break You
The scariest batch of changes in any Android release are the ones that may
break existing app behavior. Things like package visibility might
qualify for that.
Here are a few other smaller changes that may cause problems for reasonably-ordinary
apps.
Dismissable Ongoing Notifications
For your foreground services, you may be used to raising “ongoing” notifications.
These normally are not dismissable by the user.
However, in Android 11, they are.
On the plus side, this does not appear to affect your process importance. You
are still registered as having a foreground service, even if the user gets
rid of your notification.
However, if you were used to that notification always being there to give the
user control over that background work… now the user might remove that
notification, intentionally or accidentally. Make sure that your app can
still function reasonably, from a UX standpoint, if the user dismisses your
notification.
Phone Number Permissions
Some Android SDK methods let you attempt to get the phone number of the device,
such as getLine1Number() on TelephonyManager. In practice, these are not very reliable,
but you are welcome to try to use them.
For years, in order to call those methods, you needed the READ_PHONE_STATE permission.
This is a dangerous permission, and you needed to use runtime permissions to further
request it on Android 6.0+.
In Android 11, once your targetSdkVersion reaches 30, you need to request a different
permission for those methods: READ_PHONE_NUMBERS. This too is a dangerous permission.
As a result, you need to decide which of those permissions you need based on API
level, and include the correct permission in the array that you pass to requestPermissions().
If the only reason you were requesting READ_PHONE_STATE was to use these methods,
you may find that you no longer need it on Android 11+ devices. If so, you
could elect to add android:maxSdkVersion="29" to your <uses-permission>
element for READ_PHONE_STATE to drop it off for API Level 30 and higher devices:

<uses-permission android:name="READ_PHONE_STATE" android:maxSdkVersion="29" />

Conversely, if you are using READ_PHONE_STATE for other things, you will need
to request both READ_PHONE_STATE and READ_PHONE_NUMBERS on API Level 30
devices, but only READ_PHONE_STATE on older devices.
Overlay Tweak
Hopefully, you are not using the SYSTEM_ALERT_WINDOW permission in your app.
If you are, then you probably have noticed that Google is continuing to
“tighten the screws” with each passing release. While it is possible that they will
never outright ban SYSTEM_ALERT_WINDOW, they certainly seem intent upon making
it more aggravating for developers and users.
In Android 11, the change is to ACTION_MANAGE_OVERLAY_PERMISSION.
SYSTEM_ALERT_WINDOW
is one of those special permissions that does not go through the standard dangerous
runtime permission system. Rather, the user needs to go into the “Special app access”
section of the Apps screen in Settings, and from there go into “Display over other apps”.
There, the user can tap on an app that is requesting SYSTEM_ALERT_WINDOW and
elect to grant or reject that permission for that app.
ACTION_MANAGE_OVERLAY_PERMISSION is an Intent action that allows you to send
the user to this place in Settings. In Android 6.0 through 10, there were two
ways to use this Intent:

	On its own, to lead the user to the “Display over other apps” screen

	With a package Uri tied to your application ID, to lead the user straight
to the screen where they can grant (or deny) that permission for your app

In Android 11, that latter option is no longer available.
You can provide the Uri, but it will be ignored by the Settings app. The
user is always taken to the “Display over other apps” screen, where the user will
need to click on your app, then grant the permission.
No Third-Party Image Capture Support
ACTION_IMAGE_CAPTURE is a popular means for an app to take a picture, by asking
a camera app to do the “heavy lifting”. This means that the app can skip all of the
headache of setting up a camera itself (e.g., via the CameraX library) and does not
need the CAMERA permission. There are also ACTION_IMAGE_CAPTURE_SECURE and
ACTION_VIDEO_CAPTURE Intent actions that perform similar operations.
The problem is that pre-installed camera apps often do not test these actions much, so
they tend to have bugs. In lieu of dumping these actions and doing the camera work
directly in the app, many apps simply guide the user to install a third-party
camera app, one that is known to have a good implementation of things like
ACTION_IMAGE_CAPTURE. Then, when the app invokes the ACTION_IMAGE_CAPTURE Intent,
the user could choose the third-party camera app in the chooser.
That is no longer an option on Android 11, once your targetSdkVersion reaches 30.
Those three Intent actions will only start a pre-installed camera app. User-installed
camera apps are ignored. Even if the user has disabled all pre-installed camera apps,
user-installed camera apps are still ignored —
Android throws an ActivityNotFoundException instead.
At minimum, if you are using these Intent actions, you will need to handle
the ActivityNotFoundException scenario. You really needed that anyway, as
work policies or similar constraints might have caused that Intent to fail anyway.
Even if you try enabling package visibility for your desired Intent action,
you will find that third-party apps are ignored.
An explicit Intent works for the startActivity()/startActivityForResult() call,
if you happen to know of a camera app to try (e.g., net.sourceforge.opencamera for
Open Camera). This also works with queryIntentActivities() on PackageManager,
if you also enable package visibility, so you can determine whether the Intent
would succeed or not before trying to start the activity.
The
CamChooser sample module
in
the book’s sample project
demonstrates a related approach: adding candidate camera apps to a chooser:

package com.commonsware.android.r.camchooser

import android.content.Context
import android.content.Intent

private val CAMERA_CANDIDATES = listOf(
 "net.sourceforge.opencamera"
)

fun enhanceCameraIntent(
 context: Context,
 baseIntent: Intent,
 title: String
): Intent {
 val pm = context.packageManager

 val cameraIntents =
 CAMERA_CANDIDATES.map { Intent(baseIntent).setPackage(it) }
 .filter { pm.queryIntentActivities(it, 0).isNotEmpty() }
 .toTypedArray()

 return if (cameraIntents.isEmpty()) {
 baseIntent
 } else {
 Intent
 .createChooser(baseIntent, title)
 .putExtra(Intent.EXTRA_INITIAL_INTENTS, cameraIntents)
 }
}

(from CamChooser/src/main/java/com/commonsware/android/r/camchooser/CameraIntent.kt)
The enhanceCameraIntent() function will sift through the application IDs
from CAMERA_CANDIDATES and see if any appear to exist and support
some Intent action (e.g., ACTION_IMAGE_CAPTURE). If there are some,
they are attached to Intent.createChooser() via EXTRA_INITIAL_INTENTS.
You can then use the returned Intent with startActivityForResult().
The result is:

	If the user only has a pre-installed camera app available, that app is
launched directly

	If the user only has a matching third-party camera app installed, that app
is launched directly

	If the user has both, a chooser appears

	If the user has none, you get an ActivityNotFoundException

So, you still need to worry about ActivityNotFoundException, but that was always
the case with these Intent actions. The user might be running in a restricted
profile and lack access to any camera apps, for example.
This sample only shows one candidate camera app, that being Open Camera. Enterprising
developers might create a broader list of candidate apps that could be detected and
used. The overall CamChooser sample app implements a testbed, to allow you to see
whether these media capture Intent actions appear to work properly for your selected
camera app. The checks are rudimentary, mostly confirming that we did not crash
and did get the expected result (e.g., Bitmap returned to us, photo/video stored
in the EXTRA_OUTPUT location).
Maps V1 Removed
If your app is very old, it is possible that you are still trying to limp along
with the original Google Maps on Android implementation, sometimes referred
to as “Maps v1”. If you are using classes like com.google.android.maps.MapView
and have a <uses-library android:name="com.google.android.maps" /> manifest entry, you are
using Maps v1.
And you need to stop. Maps v1 has been deprecated for quite some time, it stopped working
in Android 10, and in Android 11, it is simply gone.
If you have <uses-library android:name="com.google.android.maps" android:required="false" />,
and you are checking at runtime for the existence of com.google.android.maps.MapView
(e.g., Class.forName("com.google.android.maps.MapView")), your app should not
find that class, and you should go through whatever sort of “graceful degradation”
code path that you have set up for such devices.
Stuff That Might Interest You
Then, we have some items that will not break your app but represent features
that you might want to opt into, for Android 11 devices.
Wireless Debugging
Android has offered adb access over a network connection for several years,
though the support on devices has been somewhat “hit or miss”, and it usually required
short-term adb access via a USB cable. This feature
has been overhauled in Android 11 and is now a first-class option, with improved
security and (presumably) no USB cable requirement.
However, it does take several steps to set up.
First, if you do not already have adb in your PATH, this would be a fine time to add it!
Next, you need to find the “Wireless Debugging” option in the Developer Options
screen in the Settings app:

[image: Developer Options, Wireless Debugging Option Highlighted]

Figure 39: Developer Options, Wireless Debugging Option Highlighted
Tap on the switch to turn it on. This will bring up a dialog confirming that you want
to enable this option:

[image: Wireless Debugging Network Confirmation Dialog]

Figure 40: Wireless Debugging Network Confirmation Dialog
After accepting the dialog, tap on the “Wireless Debugging” option itself (not the switch).
This brings up the dedicated wireless debugging screen:

[image: Developer Options, Wireless Debugging Screen]

Figure 41: Developer Options, Wireless Debugging Screen
There, tap on “Pair device with pairing code”, to bring up a dialog with a pairing
code and an IP address and port number:

[image: Wireless Debugging Pairing Dialog]

Figure 42: Wireless Debugging Pairing Dialog
At the command line on your development machine, run adb pair ...:..., where
the ...:... is the IP address and port combination shown in the pairing dialog.
You will then be asked to enter the pairing code shown on the dialog. The adb pair
command will tell you if this succeeds or fails.
If it succeeds, and you are running macOS, you should be done. If you are using
Windows or Linux, you then need to run adb connect ...:..., where
this ...:... is the IP address and port combination shown in the Wireless Debugging screen.
In particular, the port number will be different than the one that you used for the
pairing operation.
If that command succeeds, then you will be set up for wireless debugging, both
from adb (e.g., adb logcat) and from Android Studio. Use adb disconnect ...:...,
using the same IP address/port combination that you used for adb connect, to disconnect
from the device from a debugging standpoint.
Night Mode Tweaks
Android 11 allows the user to schedule when to enable and disable the “dark theme” mode:

[image: Dark Theme in Settings, Showing Scheduling Options]

Figure 43: Dark Theme in Settings, Showing Scheduling Options
On its own, this does not affect apps. However, it does increase the likelihood that your users
will be using the dark theme option, which puts increasing pressure on you to support it.
However, while Android has had support for what the SDK calls “night mode” for years,
there was never a way to determine whether or not we were in night mode programmatically.
If you needed that, you had to have your own boolean resources in res/values/ and
res/values-night/ to distinguish between the cases.
Android 11, though, gives us isNightModeActive() on Configuration. You get a
Configuration from Resources, which you can get from any Context (such as your
Activity):

val mode: Boolean = resources.configuration.isNightModeActive

Since this is only available on Android 11 and higher, most likely you will wind up
continuing to use the boolean-resource trick for the time being, until such time
as you can raise your minSdKVersion past 29.

You can learn more about theme support for night mode in Android 10 in the "Dark Mode" chapter of
Elements of Android Q!

Shared Datasets
In principle, Android 11 allows multiple apps to share large blobs of data.
Cited examples include machine learning datasets and media for playback.
Through BlobStoreManager, your app can contribute such blobs to the device
and indicate the level of access — such as allowSameSignatureAccess()
to allow a set of apps in a suite to all access the blobs.
In practice, this feature is very poorly documented.
Per-Connection SQL
When working with SQLite, you may want some common setup for your database
connections. There may be certain PRAGMA statements that you want to execute,
for example. However, SQLiteDatabase can elect to disconnect and reconnect
to SQLite. So, even if you try executing those statements as soon as you
open a database, you may find later that you have a connection on which you
did not execute those statements.
To help with this, Android 11 offers execPerConnectionSQL(). The syntax
is the same as execSQL(), taking the SQL statement and an optional array
of positional parameter values. And, like execSQL(), your SQL is executed immediately.
However, it is also cached by the SQLiteDatabase and re-executed on any
new database connection that is created.
Note that this implies that your parameters to execPerConnectionSQL() will
be held onto as long as the SQLiteDatabase object is around. If you use this, be certain not
to introduce a memory leak!
Dynamic Intent Filters
One of the big limitations of the manifest is that it is declared at compile time.
There are very few options for changing what is in the manifest at runtime,
beyond setComponentEnabledSetting() on PackageManager.
Android 11 gives us another option: we can dynamically declare MIME types to be
supported by an <intent-filter>. The stated reason is to support:

virtualization apps (such as virtual machines and remote desktops) because they have no way of knowing exactly what software the user will install inside them

That is a rather esoteric scenario, and it is likely that developers will
find other uses for this.
There are two steps for implementing this.
First, in one or more <intent-filter> elements, you can use android:mimeGroup,
instead of android:mimeType, in a <data> element:

 <activity
 android:name=".MainActivity"
 android:launchMode="singleTop">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:mimeGroup="testMimeGroup" />
 <data android:scheme="content" />
 </intent-filter>
 </activity>

(from DynFilter/src/main/AndroidManifest.xml)
Here, we have an <activity> with two <intent-filter> elements. The second
one uses android:mimeGroup="testMimeGroup" in a <data> element as part
of declaring an ACTION_VIEW handler.
The second step is to define at runtime what MIME types belong to the group,
using setMimeGroup() on PackageManager:

 private fun updateMimeGroup(prefs: SharedPreferences) {
 val types = prefs.getStringSet(mimeTypesKey, emptySet()).orEmpty()

 packageManager.setMimeGroup("testMimeGroup", types)
 }

(from DynFilter/src/main/java/com/commonsware/android/r/dynfilter/MainActivity.kt)
This code, pulled from the
DynFilter sample module
in
the book’s sample project,
retrieves the value of a MultiSelectListPreference and uses that for the MIME
types to pass to setMimeGroup(). setMimeGroup() simply takes the name of the
MIME group (that you used in the android:mimeGroup attribute) and a Set
of strings representing the MIME types.
When you call setMimeGroup(), Android will update its metadata for your app
and cause your <intent-filter> to be valid for all of the requested MIME types.
Note, though, that apps that look up matching activities via methods like
queryIntentActivities() may not react to the change right away, if they cache
results from before your setMimeGroup() call. However, standard system options,
such as the Intent chooser, will handle the revised set of MIME types fairly quickly.
ACTION_CLEAR_APP_CACHE
There is a new Intent action, found on StorageManager: ACTION_CLEAR_APP_CACHE.
Simply put, launching it with startActivityForResult() pops up a dialog to allow
the user to clear “app external cache directories”:

[image: AppCache Sample App, Showing System Clear-Cache Dialog]

Figure 44: AppCache Sample App, Showing System Clear-Cache Dialog
Presumably, “app external cache directories” refers to getExternalCacheDirs() for all apps.
If you get RESULT_OK in onActivityResult(), then the user accepted the dialog
and cleared the caches. If you get RESULT_CANCELED, the user declined your offer.
However, note that you need to hold MANAGE_EXTERNAL_STORAGE, which is the scary new permission
covered earlier in the book.
Copyright Notice and Terms
Copyright © 2008-2020 CommonsWare, LLC. All Rights Reserved.
The CommonsWare name and logo, “Busy Coder's Guide”, and related trade dress are trademarks of CommonsWare, LLC.
All other trademarks referenced in this book are trademarks of their respective firms.
The publisher and author(s) assume no responsibility for errors or omissions or for damages resulting from the use of the information contained herein.
OEBPS/LiberationSans-Regular.ttf

OEBPS/DroidSansMono.otf

OEBPS/MediaStore-02.png
12556 @

Let Video Tagger change 2
videos?

o ve

OEBPS/UIShare-02.png
140 @

EmbedClient

#of button clcks: O

'CONNECT TO SERVER

OEBPS/MediaStore-01.png
1254 @
Video Tagger

Demystify the Data in Android
O Studio Profilers (Android Dev
Summit '19)-v4kCRZ_O4Lc.mp4

Developing Themes with
O Style (Android Dev Summit
'19)-Owkf8DhAOS0.mp4

(notag

Fighting Regressions
with Benchmarks in Cl
(Android Dev Summit
'19)-ynBPcFs600k.mp4

(notags)

From Gradle Properties to AGP
O APIs (Android Dev Summit
'19)-0TANozHzgPc.mp4

SETTAGS

OEBPS/UIShare-01.png
‘CONNECT TO SERVER

OEBPS/bookxref.png

OEBPS/nav.xhtml

 Table of Contents

 		
 Table of Contents

 		
 Preface

 		
 Storage Shifts

 		

MediaStore Modifications

 		
 Permission Permutations

 		
 Auditing Alternatives

 		
 Package Visibility

 		
 Sharing UIs

 		
 Conversations and Bubbles

 		
 Security Stuff

 		
 Device Controls

 		
 Other Changes of Note

 		
 Copyright Notice and Terms

OEBPS/Security-01.png
1216 G

SecureCheq

(@ strong Authentication
O Weak Authentication
O Device Credential

a2

OEBPS/DataAccess-01.png
37 @

Forensic Pathologist

User Requested

remove task

OEBPS/Bubbles-07.png
Sun, Aug 9

Conversations

Settings - BubbleConversation *
ATest Bot

Want to chat?

Notifications

@ Android System

USB debugging connected
Tap to turn off USB debugging

now *

OEBPS/Bubbles-08.png
Conversations

Settings
BubbleConversation

D Priority

Q) Default

May ring or vibrate based on phone settings

N silent

OEBPS/Bubbles-04.png
944 G A A

Qe

BubbleConversation

ILike Subblest @)

Manage

OEBPS/Bubbles-01.png

OEBPS/DeviceControl-04.png
Choose app to add controls

. Home

. Take Control Demo

~

OEBPS/DeviceControl-05.png
G Pay

‘Add payment method

Take Control Demo
89 Loading... 8 Loading..
Sample Toggle. ‘Sample Range

OEBPS/DeviceControl-02.png
743 @ A Z1]

Choose app to add controls

@ rome

@ Toke Contoibemo

Cancel

OEBPS/DeviceControl-03.png
746 G A Z1]

Take Control Demo

Choose controls to access from the power menu

.]
‘Sample Toggle Somple Range.
See other apps. Save

OEBPS/Perms-01.png
518 @

9

Allow Permission Check to
access this device’s location?

Only this time

‘While using the app.

Deny

ovn

OEBPS/DeviceControl-01.png
G Pay

‘Add payment method

Device controls

Ad contros for your connected devices

OEBPS/cover.jpg
Elements of

Android
R

Mark L. Murphy <@

OEBPS/Perms-04.png
0

Allow Background Location to
access this device’s location all
the time?

App currently can access location only
while you're using the app

Allow all the time
Keep while-in-use access

Keep and don't ask again

OEBPS/ScopedStorage-05.png
741 @

= Android

Pixel2 > Android

FILES IN ANDROID

Noitems

.o

OEBPS/Perms-05.png
9

Allow Background Location to
access this device’s location?

Only this time
While using the app

Deny

OEBPS/ScopedStorage-02.png
1057 G A

Pixel 2

<o

(@ Cen'tuse this folder

To protect you privacy choose anothr folder

0 0D o0Doooo

Cre

Alarms.

Audiobooks

Documents

FromDeskiop

Movies

Notifications

Podcasts

te new folder

Android

oM

Download

Fromfiles

Music

Pictures.

o0 o0 oooooeo

Ringtones

Use this folder

OEBPS/Perms-02.png
524 @

Permission Check: 22fa5

Fine Location Permission

LAUNCH ANOTHER ACTIVITY

OEBPS/ScopedStorage-03.png
1057 G A

Download

(@ Cen'tuse this folder

]

‘o protect yourprivacy, choose another folder

Create new folder

®

D

[y bundietootall1..
2405 M8 10:44 AM

Use this folder

< °

<0

OEBPS/Perms-03.png
%

Allow Background Location to
access this device's location?

Allow only while using the app

Deny

OEBPS/ScopedStorage-08.png
SN e
& Allfiles access Qa @

&

Raw E Paths
10

Allow access to manage al files »

@ Allowthis app o ead moiy and delte all fes
on'his device or any comnected sorage volumes f
granted, app may access fles without your expicit
knowledge

OEBPS/Perms-08.png
330 @ o

& App permissions a @

“e

Background Location

Atoweo

@ Locatin

Only while app s in use.

DENIED

No permissions denied

— Auto revoke permissions »

@ Joprotect your data, permissions for thisapp will
be removed f the app isrit used for a few months.

Location permission will be removed.

< (] []

OEBPS/DeviceControl-08.png
x

Take Control

OEBPS/ScopedStorage-09.png

OEBPS/ScopedStorage-06.png
316 @

Raw E Paths

03 Alarms

Android

o

DCIM

Download

Movies

Music

Notifications

Pictures

Po

Ringtones

c_launcher_round-copy.png

00000 0OOCCDO

ic_launch

r_round.png

OEBPS/Perms-06.png
9

Change location access for
Background Location?

This app wants to access your location all
the time, even when you're not using the

app. Allow in settings.

Keep “Only this time”

OEBPS/DeviceControl-06.png
Take Control Demo

8 8 74

Sample Toggle Sample Range

OEBPS/ScopedStorage-07.png
318 @

Raw E Paths Intemal shared storage

3 Alarms

Android

o

DCIM

Download

Movies

Music

Notifications

Pictures

gocoOo0oC

Po

Ringtones

® 0

ic_launcher_round-copy.png

B ic_tauncher_round.png

OEBPS/Perms-07.png
238 G

<«

O ® O O

Location permission

Background Location

LOCATION ACCESS FOR THIS APP.

Allow all the time
Allow only while using the app
Ask every time

Deny

‘See all Background Location permissions.

See all apps with this permission

<o

OEBPS/DeviceControl-07.png
Take Control Demo

OEBPS/ScopedStorage-01.png
1056 G A vo

Podcasts [x]

Noitems

<4 L] -

OEBPS/OtherChanges-01.png
12:46 @

.o

Dark theme aQa e

Schedule
Turms on at custom time

Start time
0700 PM

End time
0600 AM

Dark theme uses a black background to help keep
your battery alive longer. Dark theme schedules
Wait to turm on until your screen s off,

OEBPS/OtherChanges-04.png
120 @ .o

& Wireless debugging aQa @
Device name
Pixel 2

1P address & Port
192.168.3.191:37659

Pair device with OR code
Pai new devices using QR code Scanner

Pai device with pairing code:
Pair new devices using six digit code

PAIRED DEVICES

P,)

OEBPS/OtherChanges-05.png
Pair with device

Wi-Fi pairing code
628528

IP address & Port

Cancel

OEBPS/OtherChanges-02.png
116 @ *n

< Developer options Q
DEBUGGING
USB debugging PY

Debug mode when USB is connected

Revoke USB debugging authorizations

Wireless debugging
Debug mode when Wi-Fi is connected

OEBPS/OtherChanges-03.png
Allow wireless debugging on this
network?
Network Name (SSID)

Wi-Fi Address (BSSID)

[7] Always allow on this network

Cancel Allow

OEBPS/OtherChanges-06.png
856 O f

Clear temporary app files?

App Cache would like to clear some
temporary files. This may resultin an

increased usage of battery or cellular data

o

