

Elements of Android Q

by Mark L. Murphy

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Elements of Android Q
by Mark L. Murphy

Copyright © 2019 CommonsWare, LLC. All Rights Reserved.
Printed in the United States of America.

Printing History:
November 2019: FINAL

The CommonsWare name and logo, “Busy Coder's Guide”, and related trade dress are trademarks of CommonsWare,
LLC.

All other trademarks referenced in this book are trademarks of their respective firms.

The publisher and author(s) assume no responsibility for errors or omissions or for damages resulting from the use of the
information contained herein.

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Table of Contents
Headings formatted in bold-italic have changed since the last version.

• Preface
◦ The Book’s Prerequisites ... iii
◦ What’s New in the FINAL Version? .. iii
◦ Warescription ... iv
◦ Source Code and Its License ... v
◦ Creative Commons and the Four-to-Free (42F) Guarantee v
◦ Acknowledgments ... v

• The Death of External Storage
◦ Introducing the Filter ... 1
◦ Controlling the Behavior .. 2
◦ What Will Happen in Android R? ... 4
◦ Adapting to Scoped Storage ... 5
◦ But I Need a File!!! ... 7
◦ Other Problems To Consider .. 9
◦ Related Deprecations That Might Affect You 12

• Using MediaStore
◦ What Not To Do ... 13
◦ MediaStore and Permissions ... 14
◦ How to Consume Media ... 14
◦ How to Create Media ... 17
◦ Other MediaStore Changes ... 21

• Location Access Restrictions
◦ Background Location Access .. 23
◦ EXIF Metadata Redaction ... 29

• Share Targets
◦ What Came Before .. 33
◦ Implementing the New Approach ... 35
◦ The User Experience ... 38

• Dark Mode
◦ Turning to the Dark Side .. 43
◦ The Dark-All-The-Time Solution .. 45
◦ The System Override Solution .. 46
◦ The DayNight Solution ... 47
◦ Dark Mode and Configuration Changes .. 53

• Gesture Navigation

i

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

◦ A Tale of Three (or More) Nav Patterns 55
◦ Impacts on Apps ... 57

• Installing Apps Using PackageInstaller
◦ Applying PackageInstaller ... 60

• Other Changes of Note
◦ Stuff That Might Break You .. 65
◦ Stuff That Might Interest You ... 73
◦ Mystifying Things ... 85

ii

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Preface

Thanks!

Thanks for your continued interest in Android! Android advances year after year,
and 2019’s Android 10 (Q) continues that pattern. Many developers ignore new
Android versions until some concrete problem causes them grief. Hopefully, you
are reading this in advance of when Android 10 ships to lots of devices, so you can
head off any problems before they turn into customer complaints.

(on the other hand, if you are reading this in response to Android 10 customer
complaints… sorry!)

And thanks for your interest in this book and CommonsWare’s overall line of
Android books!

The Book’s Prerequisites
This book is designed for developers with 1+ years of Android app development
experience. If you are fairly new to Android, please consider reading Elements of
Android Jetpack, Exploring Android, or both, before continuing with this book.

Also note that this book’s examples are written in Kotlin.

What’s New in the FINAL Version?
This update replaces many of the “Q” references with “10”, and makes other changes
to reflect the fact that Android 10 is now shipping. This update also fixes various
bugs and adds a few bits of late-breaking news.

iii

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://commonsware.com/Jetpack
https://commonsware.com/Jetpack
https://commonsware.com/AndExplore

Note that this book will not receive further updates, given that Android 10’s SDK is
final and that Android 10 is shipping.

Warescription
If you purchased the Warescription, read on! If you obtained this book from other
channels, feel free to jump ahead.

The Warescription entitles you, for the duration of your subscription, to digital
editions of this book and its updates, in PDF, EPUB, and Kindle (MOBI/KF8)
formats, plus the ability to read the book online at the Warescription Web site. You
also have access to other books that CommonsWare publishes during that
subscription period.

Each subscriber gets personalized editions of all editions of each title. That way,
your books are never out of date for long, and you can take advantage of new
material as it is made available.

However, you can only download the books while you have an active Warescription.
There is a grace period after your Warescription ends: you can still download the
book until the next book update comes out after your Warescription ends. After
that, you can no longer download the book. Hence, please download your
updates as they come out. You can find out when new releases of this book are
available via:

1. The CommonsBlog
2. The CommonsWare Twitter feed
3. Opting into emails announcing each book release — log into the

Warescription site and choose Configure from the nav bar
4. Just check back on the Warescription site every month or two

Subscribers also have access to other benefits, including:

• “Office hours” — online chats to help you get answers to your Android
application development questions. You will find a calendar for these on
your Warescription page.

• A Stack Overflow “bump” service, to get additional attention for a question
that you have posted there that does not have an adequate answer.

• A discussion board for asking arbitrary questions about Android app
development.

PREFACE

iv

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://wares.commonsware.com/
https://commonsware.com/blog
http://twitter.com/CommonsWare
https://wares.commonsware.com/
https://wares.commonsware.com/

Source Code and Its License
The source code in this book is licensed under the Apache 2.0 License, in case you
have the desire to reuse any of it.

Copying source code directly from the book, in the PDF editions, works best with
Adobe Reader, though it may also work with other PDF viewers. Some PDF viewers,
for reasons that remain unclear, foul up copying the source code to the clipboard
when it is selected.

Creative Commons and the Four-to-Free (42F)
Guarantee
Each CommonsWare book edition will be available for use under the Creative
Commons Attribution-Noncommercial-ShareAlike 3.0 license as of the fourth
anniversary of its publication date, or when 4,000 copies of the edition have been
sold, whichever comes first. That means that, once four years have elapsed (perhaps
sooner!), you can use this prose for non-commercial purposes. That is our Four-to-
Free Guarantee to our readers and the broader community. For the purposes of this
guarantee, new Warescriptions and renewals will be counted as sales of this edition,
starting from the time the edition is published.

This edition of this book will be available under the aforementioned Creative
Commons license on 1 November 2023. Of course, watch the CommonsWare Web
site, as this edition might be relicensed sooner based on sales.

For more details on the Creative Commons Attribution-Noncommercial-ShareAlike
3.0 license, visit the Creative Commons Web site

Note that future editions of this book will become free on later dates, each four years
from the publication of that edition or based on sales of that specific edition.
Releasing one edition under the Creative Commons license does not automatically
release all editions under that license.

Acknowledgments
The author would like to thank the Google team responsible for Android Q.

The author would also like to thank:

PREFACE

v

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

http://www.apache.org/licenses/LICENSE-2.0.html
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

• John De Lancie
• The late Desmond Llewelyn
• The occasionally-late John Cleese

PREFACE

vi

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://en.wikipedia.org/wiki/Q_(Star_Trek)
https://en.wikipedia.org/wiki/Q_(James_Bond)#Desmond_Llewelyn:_1963%E2%80%931999
https://en.wikipedia.org/wiki/Q_(James_Bond)#John_Cleese:_1999_(as_%22R%22),_2002_(as_Q)

The Death of External Storage

When Q Beta 1 was released, the biggest change for developers in Android 10 — by
far — was what Google calls “scoped storage”. In a nutshell, your ability to work
with files and the filesystem was substantially curtailed. As a result, you had to
adapt your app within a few months, to be ready by the time Android 10 shipped.

Everything will be affected in Android R, but there are steps that you can take to
opt out of the changes for Android 10, at least until you are ready. And apps with a
targetSdkVersion of 28 or lower will be unaffected… but eventually you are going
to need to raise that level, at least if you plan on shipping your app through the
Play Store.

Hence, if your app requests the READ_EXTERNAL_STORAGE or
WRITE_EXTERNAL_STORAGE permissions, you are going to want to start adapting your
app to the changes. One of the problems from the Q Beta 1 announcement was the
short timeframe that we had for adapting; you do not want to be stuck with a similar
short timeframe in 2020.

Introducing the Filter
In Android 1.0 through 9.0, external storage was relatively simple. All apps could
access it with permission, and starting with Android 4.4 apps could access parts of it
without permission (e.g., getExternalFilesDir() on Context). What the user saw
and what all the apps saw were the same.

Scoped storage — when your app has to start working with it — changes this
completely.

1

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

What Your App Sees

Your app can work with the external and removable storage location roots supplied
by Context, just as it did in previous releases. So, getExternalFilesDir(),
getExternalCacheDir(), and others work as they have.

Everything else, such as Environment.getExternalStorageDirectory() and
Environment.getExternalStoragePublicDirectory(), is inaccessible. You can
neither read nor write. In fact, those Environment methods are now deprecated —
even though they will still return the correct values, those values are useless, as you
cannot use those locations.

A side effect of this is that you cannot see, let alone modify, the files created by other
apps on external storage.

What Other Apps See

Other apps are limited in the same way yours is. You cannot see those apps’ files on
external storage, and they cannot see yours, when using normal filesystem APIs.

Pre-installed apps from the device manufacturer represent a notable exception.
Usually device manufacturers have ways of granting pre-installed apps more rights.

What the User Sees

Technically, there is no impact on the user. External storage can be seen using a
desktop OS and a USB cable as before.

From a practical standpoint, the user will see fewer files in traditional locations, like
Documents/, as fewer apps can write there.

And the user’s on-device ability to see what is on external storage will be limited by
the app that is used.

Controlling the Behavior
Fortunately, for Android 10 at least, your app has control over whether it has
traditional (“legacy”) external storage access or has “filtered” access.

THE DEATH OF EXTERNAL STORAGE

2

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Opting Out… For Now

To stick with legacy external storage, even on Android 10 devices, add
android:requestLegacyExternalStorage="true" to your <application> element
in your manifest.

With that in place, everything will work as it did in Android 4.4 through 9.0.

Opting In

Conversely, android:requestLegacyExternalStorage="false" opts into the
“filtered” behavior. This works regardless of targetSdkVersion, so even if your
targetSdkVersion is 28 or older, you can see how your app behaves when it is using
scoped storage.

If you want, you can have android:requestLegacyExternalStorage be controlled by
a bool resource value. The StorageExplorer sample module in the book’s sample
project does this:

<application<application
android:name=".KoinApp"
android:allowBackup="false"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:roundIcon="@mipmap/ic_launcher_round"
android:supportsRtl="true"
android:theme="@style/AppTheme"
tools:ignore="GoogleAppIndexingWarning"
android:requestLegacyExternalStorage="@bool/useLegacy">>

(from StorageExplorer/src/main/AndroidManifest.xml)

The module has three flavor dimensions. One is called legacy, and it has two
flavors: legacy and normal. Those drive the configuration of the useLegacy resource,
via resValue:

normal {
dimension "legacy"
applicationIdSuffix ".normal"
resValue "bool", "useLegacy", "false"

}

legacy {
dimension "legacy"

THE DEATH OF EXTERNAL STORAGE

3

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-q/tree/master/StorageExplorer
https://gitlab.com/commonsguy/cw-android-q/tree/master/StorageExplorer
https://gitlab.com/commonsguy/cw-android-q
https://gitlab.com/commonsguy/cw-android-q
https://gitlab.com/commonsguy/cw-android-q/blob/vFINAL/StorageExplorer/src/main/AndroidManifest.xml

applicationIdSuffix ".legacy"
resValue "bool", "useLegacy", "true"

}

(from StorageExplorer/build.gradle)

The result: a legacy build opts into the legacy external storage behavior, while a
normal opts into “the new normal” filtered external storage.

Default Conditions

If your targetSdkVersion is 28 or lower, you will have legacy external storage
behavior by default, as if you have opted out via
android:requestLegacyExternalStorage="true".

However, once you set your targetSdkVersion to 29, you will have filtered
external storage by default.

It is best if you add android:requestLegacyExternalStorage yourself and declare,
positively, what scoped storage behavior you want to have for when your app runs
on Android 10 devices.

To check whether you have scoped storage or not, you can call
isExternalStorageLegacy() on Environment:

valval msg =
ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.Q && Environment.isExternalStorageLegacy())

"This app has legacy external storage"
elseelse "This app has Q-normal external storage"

(from StorageExplorer/src/main/java/com/commonsware/android/storage/MainActivity.kt)

Note, though, that this will only return a valid value if you have a <uses-
permission> element for READ_EXTERNAL_STORAGE or WRITE_EXTERNAL_STORAGE in
the manifest. Otherwise, it always returns false, even if you have opted into legacy
storage.

What Will Happen in Android R?
The author of this book is a time traveler, but only in the forward direction at a rate
of one millisecond per millisecond.

(in other words, the author of this book is not really a time traveler)

THE DEATH OF EXTERNAL STORAGE

4

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-q/blob/vFINAL/StorageExplorer/build.gradle
https://gitlab.com/commonsguy/cw-android-q/blob/vFINAL/StorageExplorer/src/main/java/com/commonsware/android/storage/MainActivity.kt

We have no guaranteed way of knowing what 2020 and Android R will bring… but
we can make some guesses.

Official Warning

In April 2019, Google announced that the then-forthcoming Q Beta 3 would allow
apps to opt out of scoped storage. In that announcement, though, they wrote:

Scoped Storage will be required in next year’s major platform release for all
apps, independent of target SDK level, so we recommend you add support
to your app well in advance.

Hoped-For Outcome

With luck, Google will come to its senses, and only enable scoped storage on
Android R for apps with a targetSdkVersion of 29 (or perhaps 'R') or higher. This
would be in line with how targetSdkVersion normally works. And, given that the
Play Store will require a targetSdkVersion of 29 in the second half of 2020, this
policy will affect all actively-maintained apps. Yet, it would not break legacy apps
that will not be updated to avoid the Environment methods or other ways of
attempting to access inaccessible areas of external storage.

At the 2019 Android Developer Summit, Google made some statements that
suggest that this indeed is their plan.

Adapting to Scoped Storage
One way or another, it seems likely that apps will be given filtered external storage
eventually. While opting out is a good tactical decision, you need to plan out your
work to discontinue or minimize your use of external storage. This is particularly
true if you want to have files that remain on the device after your app is uninstalled.

Consuming Content

Perhaps there is content that already exists that you want to be able to read in. You
might even want to modify that content yourself, if appropriate.

THE DEATH OF EXTERNAL STORAGE

5

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://android-developers.googleblog.com/2019/04/android-q-scoped-storage-best-practices.html
https://android-developers.googleblog.com/2019/04/android-q-scoped-storage-best-practices.html

ACTION_OPEN_DOCUMENTACTION_OPEN_DOCUMENT

The best general-purpose solution is the Storage Access Framework. Specifically, for
existing content, ACTION_OPEN_DOCUMENT is the Android equivalent of the “file open”
dialogs that you might see on other platforms. The biggest difference is that you are
really opening content, not files.

Offering the user the opportunity to pick a piece of content is merely a matter of a
single startActivityForResult() call:

startActivityForResult(
Intent(Intent.ACTION_OPEN_DOCUMENT).apply {

addCategory(Intent.CATEGORY_OPENABLE); type = "*/*"
},
REQUEST_DOC

)

If there is a particular MIME type associated with your desired content, use that in
place of */*.

In onActivityResult(), if the result is for your request code (RESULT_DOC here) and
the result code is RESULT_OK, then the Intent should have a Uri that points to the
piece of content. You can use that directly with ContentResolver and methods like
openInputStream()/openOutputStream(). And you can use
DocumentFile.fromSingleUri() to create a DocumentFile to help you get at things
like a display name or the content’s length in bytes.

Inbound Actions

You might also consider setting up a suitable activity to support ACTION_VIEW and/or
ACTION_SEND. Then, in onCreate() and onNewIntent(), you can get the Uri that the
user wished your app to view or send. At that point, you can use ContentResolver,
though perhaps not DocumentFile, to work with the content.

Other Options

If you need access to images, audio files, or video files, the next chapter will give you
some additional options.

There are also a variety of miscellaneous ways to get Uri values from the user, by way
of other apps, such as the clipboard and drag-and-drop.

THE DEATH OF EXTERNAL STORAGE

6

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Creating Content

Perhaps you want to create new content from scratch, rather than working with
something that already exists.

Filesystem… Maybe

You are welcome to still use getExternalFilesDir() and similar methods on
Context. This requires the user to navigate into Android/data/.../files/ —
where ... is your application ID — in order to get access to those files. That is not
particularly user-friendly.

ACTION_CREATE_DOCUMENTACTION_CREATE_DOCUMENT

ACTION_CREATE_DOCUMENT works much like ACTION_OPEN_DOCUMENT, except that you
will get a Uri where you can create a new piece of content, rather than it pointing to
an existing piece of content. This offers the user the most flexibility and is not that
difficult to use for most cases.

Media

If you wish to save images, audio files, or video files for the user, MediaStore and
related classes may be relevant options.

Sharing Content

If you want to get your content to another app directly, such as via ACTION_VIEW or
ACTION_SEND, your only options in a world of scoped storage are:

• FileProvider (or equivalent ContentProvider implementations)
• MediaStore

But I Need a FileFile!!!
Not everything can work with a Uri:

• Some libraries insist on files, possibly for the ability to randomly read (or
perhaps write) to locations in the file, or to be able to start over reading the
file from the beginning

THE DEATH OF EXTERNAL STORAGE

7

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

• Some framework classes, like those for SQLite, can only work with files
• The NDK has no direct ability to work with Uri values
• And so on

Unfortunately, with the external storage restrictions placed on external storage, your
options are very limited here.

Option #1: See if the API Supports File-Like Stuff

If the API you are using supports InputStream or FileDescriptor, you can use those
with a Uri pointing to content… probably. Not all content Uri values necessarily
support FileDescriptor. You can get an InputStream or FileDescriptor on your
content via ContentResolver.

Similarly, some NDK code can work with file descriptors.

Option #2: Ask User to Put in App-Specific Location

You can ask the user to place the file in your app-specific directories on external or
removable storage. If you are using methods like getExternalFilesDir() on
Context, you would ask the users to put the files in locations inside Android/
data/.../ (where ... is your application ID). Note, though, that these directories
may not exist initially — be sure to create the directory first before expecting the
user to use it.

As noted above, this will be aggravating for the user. Partly, that is because the
directory structure is not very user-friendly, particularly given the long list of
application IDs on many devices. It also may make it more difficult for the user to
also use this file with other apps.

Option #3: Copy Stream to Local File

Otherwise, if you get a Uri from something like the Storage Access Framework, you
are left with the unappetizing option of copying that content to some file that you
control (e.g., on internal storage), then using that file.

On the plus side, you control your copy of the content and can manipulate it
however you wish.

However, there are costs:

THE DEATH OF EXTERNAL STORAGE

8

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

• The copy may take a while, for larger files
• You use additional storage space for the copy
• If you modify the copy, the only way that the user gets those modifications is

through your app or if you copy the data back out to some Uri-identified
content

• Depending on your use case for file, you might not know when a good time
is to remove your copy (e.g., you use FileProvider to give access to some
other app)

Other Problems To Consider
We will be running into all sorts of problems as a result of scoped storage. Some we
can identify now, while others will become apparent over the coming months as we
start to grapple with the changes.

Here are some possible problems that you will need to consider with your app.

Advertising Support for Files in the Manifest

With scoped storage, there will be files on the external storage filesystem that
another app can access that your app cannot. The other app might try using a file:
Uri with some implicit Intent, such as ACTION_VIEW. While the file: scheme is
banned on Android 7.0+, that is a soft ban implemented by StrictMode, and there
are ways for apps to get around that. Or, the app may be rather old, pre-dating the
ban.

However, it is very unlikely that your app will be able to work with such a file: Uri,
as you have virtually no access to external storage that might be accessible to
another app.

As such, if you have an <intent-filter> with a <data> element for
android:scheme="file", you may receive Uri values that you cannot use.

Consider moving that <intent-filter> to an <activity-alias>, where you use a
boolean version-dependent resource to conditionally enable that <activity-
alias> on Android 9.0 and older. Then, you will not accept file: Uri values on
Android 10 and newer devices. The ConditionalFile sample module in the book’s
sample project demonstrates this technique.

We have a boolean resource named supportFileScheme. This is set to true in res/

THE DEATH OF EXTERNAL STORAGE

9

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-q/tree/master/ConditionalFile
https://gitlab.com/commonsguy/cw-android-q/tree/master/ConditionalFile
https://gitlab.com/commonsguy/cw-android-q
https://gitlab.com/commonsguy/cw-android-q

values/bools.xml and false in res/values-v29/bools.xml. So,
supportFileScheme will be false for Android 10 and higher, true otherwise.

In our manifest, we have one <activity> element, for the typical MainActivity
class. It has two <intent-filter> elements: the standard launcher, and one
advertising support for ACTION_VIEW for text/plain content:

<activity<activity android:name=".MainActivity">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN" />/>

<category<category android:name="android.intent.category.LAUNCHER" />/>
</intent-filter></intent-filter>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.VIEW" />/>

<category<category android:name="android.intent.category.DEFAULT" />/>
<category<category android:name="android.intent.category.BROWSABLE" />/>

<data<data android:scheme="https" />/>
<data<data android:scheme="content" />/>
<data<data android:mimeType="text/plain" />/>

</intent-filter></intent-filter>
</activity></activity>

(from ConditionalFile/src/main/AndroidManifest.xml)

Notably, this advertises support for the https and content schemes, both of which
are supported on Android 10 as well as older versions of Android. On older versions
of Android, you could have file in here as well, but we want to avoid that on
Android 10. Unfortunately, neither <data> nor <intent-filter> have an
android:enabled option that we can use.

So, we split the file support out to an <activity-alias>:

<activity-alias<activity-alias
android:name=".FileAlias"
android:enabled="@bool/supportFileScheme"
android:targetActivity=".MainActivity">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.VIEW" />/>

<category<category android:name="android.intent.category.DEFAULT" />/>
<category<category android:name="android.intent.category.BROWSABLE" />/>

<data<data android:scheme="file" />/>

THE DEATH OF EXTERNAL STORAGE

10

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-q/blob/vFINAL/ConditionalFile/src/main/AndroidManifest.xml

<data<data android:mimeType="text/plain" />/>
</intent-filter></intent-filter>

</activity-alias></activity-alias>

(from ConditionalFile/src/main/AndroidManifest.xml)

This alias points to MainActivity, so the effect is that it adds another <intent-
filter> to MainActivity. That <intent-filter> is a clone of the ACTION_VIEW one
from MainActivity, except that the scheme list is now just file. And, on the
<activity-alias> itself, we have android:enabled="@bool/supportFileScheme", so
this alias will only be enabled on Android 9.0 and older.

The activity itself just shows a Toast with the string representation of the Intent
used to start the activity.

This will give us what we want: ACTION_VIEW support for file only for Android 9.0
and older, with support for https and content for all Android versions.

Since the app does not actually use the Uri values supplied to it, you can test this
behavior using simple adb commands. This one will pop up the Toast on all Android
versions, as it uses a Uri with a content scheme:

adb shell am start -t-t text/plain -d-d content://respect.mah.authoritah/whatever

This one, though, will not match on Android 10, since it uses the file scheme:

adb shell am start -t-t text/plain -d-d file:///storage/emulated/0/whatever.txt

Assuming Valid UriUri Values from ACTION_SENDACTION_SEND

Unfortunately, the way that ACTION_SEND works does not allow you to filter incoming
requests by scheme. As a result, you may get EXTRA_STREAM values with a file: Uri
that you cannot access.

Ordinarily, you might just allow those errors to bring up some generic “oops” dialog,
snackbar, etc. In this case, you should consider adding a more specific error
message, indicating that the app that was used to send content to you is old and
needs to be updated.

THE DEATH OF EXTERNAL STORAGE

11

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-q/blob/vFINAL/ConditionalFile/src/main/AndroidManifest.xml

Assuming Valid UriUri Values from the Clipboard

Similarly, you can get a Uri from the clipboard or via drag-and-drop, where you
cannot filter by scheme. Add custom error messages here as well, indicating that the
source of the Uri is old and needs to be updated.

Assuming Content is Seekable

Methods like mark() and reset() on InputStream may or may not work on a stream
obtained for content identified by a Uri. Those methods usually work if the stream
is backed directly by a file on the filesystem. They usually will not work for a stream
that requires the ContentProvider to process the data, such as decrypting an
encrypted file.

As a result, a Uri from things like the Storage Access Framework may or may not
work with code that relies on the ability to rewind the stream, such as some media
libraries.

If you in your own code rely on mark() and reset(), try to switch to some sort of
buffering strategy, so your “rewind” operations work on data that you already read
and do not assume that you can rewind the stream itself.

Related Deprecations That Might Affect You
StorageVolume.createAccessIntent() is deprecated. More importantly, it will fail
fast. This was used to request access to one of the Environment public directories,
as an alternative to needing READ_EXTERNAL_STORAGE and therefore getting access to
the entire external storage area. It would appear that the scoped storage feature not
only replaces this but is incompatible with this. So, if you are using
createAccessIntent(), you will need to add code to take a new approach on
Android 10 and higher devices.

THE DEATH OF EXTERNAL STORAGE

12

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Using MediaStoreMediaStore

One of the Google-recommended alternatives to working directly with external
storage is to use MediaStore. MediaStore, unfortunately, has never had particularly
good documentation. And, some aspects of using MediaStore changed in Android
10.

For general-purpose apps, the Storage Access Framework is a better solution for
storing content. However, if your app has a particular focus on audio, video, or image
media, then MediaStore is well worth consideration.

What Not To Do
Due to the shortage of documentation, proper use of MediaStore has always been a
mess, rife with anti-patterns.

The biggest anti-pattern involves the use of the DATA column. Too many developers
try using query() on a ContentResolver, given a MediaStore Uri, to get the DATA
column. Those developers then treat the result as a filesystem path to access the
media.

However:

• There is no requirement that the DATA column have a value
• There is no requirement that the DATA column have a filesystem path
• There is no requirement that the filesystem path in the DATA column be a file

that you can access, even with READ_EXTERNAL_STORAGE

And, on Android 10, the MediaStore specifically will redact the DATA column from
any query results.

13

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

To get a Uri that you can use with ContentResolver for things like
openInputStream():

• Query for the _ID column
• Use ContentUris.withAppendedId() to assemble a MediaStore Uri from

the base Uri that you used in the query() and that ID value returned by the
query()

MediaStoreMediaStore and Permissions
No permissions are required to work with the MediaStore, in terms of writing your
own content. According to the documentation, READ_EXTERNAL_STORAGE is required,
though, for consuming the content added to the MediaStore by others.

And, the documentation suggests that in the future, if you try to modify another
app’s content, the exception that will be raised will be a subclass of
RecoverableSecurityException. This contains, among other things, a RemoteAction
that can be used to present an option to the user for recovering from the problem. In
this case, presumably it will display some sort of system dialog to have the user grant
rights for your app to modify that content.

How to Consume Media
First, let’s look at how you can get access to media that has been indexed by the
MediaStore.

In particular, we will examine the ConferenceVideos sample module in the book’s
sample project. This app has a list of videos of presentations delivered by the book’s
author at various conferences. The app will see if these videos are already
downloaded and indexed by MediaStore. For those that are not, the user will be able
to download them, with the app handing the videos over to MediaStore. For the
downloaded videos, the user can request to play the video using some existing video
player app on the device.

Querying MediaStoreMediaStore

Consuming media centers around the media’s Uri. You have two main approaches
for getting such a Uri:

USING MEDIASTORE

14

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-q/tree/master/ConferenceVideos
https://gitlab.com/commonsguy/cw-android-q/tree/master/ConferenceVideos
https://gitlab.com/commonsguy/cw-android-q
https://gitlab.com/commonsguy/cw-android-q

1. Ask some other app to help the user choose a piece of media, via
ACTION_PICK, ACTION_GET_CONTENT, or ACTION_OPEN_DOCUMENT

2. Query the MediaStore yourself to find options and, where relevant, derive
media Uri values for them

In the case of the ConferenceVideos app, we know what the videos are supposed to
be, but we do not know if they have been downloaded or not. So, the second option
is the right choice, as we can query to see which videos of our set are already known
to MediaStore or not.

Getting the Root UriUri

Classically, we would use some fixed values for querying MediaStore, typed by the
sort of media we wanted:

• MediaStore.Audio.Media.EXTERNAL_CONTENT_URI
• MediaStore.Image.Media.EXTERNAL_CONTENT_URI
• MediaStore.Video.Media.EXTERNAL_CONTENT_URI

In principle, those should still work.

Another, albeit ill-used option, is getContentUri(). This is a method on classes like
MediaStore.Video.Media. Given the name of some “volume”, it returns a Uri for
querying that volume. The Android 10 documentation steers you in the direction of
getContentUri(), in part because there is a getExternalVolumeNames() method on
MediaStore that returns a list of values that you could supply to getContentUri().
Mediastore.VOLUME_EXTERNAL should give you a representation including both
external and removable storage.

ConferenceVideos is a fairly unsophisticated app, so it just uses
MediaStore.VOLUME_EXTERNAL on Android 10 devices, falling back to
MediaStore.Video.Media.EXTERNAL_CONTENT_URI on older devices:

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.Q) MediaStore.Video.Media.getContentUri(
MediaStore.VOLUME_EXTERNAL

) elseelse MediaStore.Video.Media.EXTERNAL_CONTENT_URI

(from ConferenceVideos/src/main/java/com/commonsware/android/conferencevideos/VideoRepository.kt)

MediaStore also has some “decorator” methods that can be used to augment a Uri
with some parameters to opt into certain behavior. These methods take a Uri and
return a new Uri based on the one that you supplied, “decorated” with additional

USING MEDIASTORE

15

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-q/blob/vFINAL/ConferenceVideos/src/main/java/com/commonsware/android/conferencevideos/VideoRepository.kt

information. For example, setIncludePending() will decorate a Uri to indicate that
you want to see pending and final results in your query results, where a “pending”
result means that the content may not yet be ready (e.g., it is being downloaded).

Deriving a Media Content UriUri

Given a root Uri, query() on ContentResolver is unchanged in Android 10. You
provide the root Uri, a “projection” of columns to return, your query, any
arguments to that query, and something to serve as the equivalent of a SQL ORDER
BY clause. It returns a Cursor with the results.

The ConferenceVideos sample module has a VideoRepository that is responsible
for communications with MediaStore and the CommonsWare Web server (where
the videos are available for download). It has a getLocalUri() function that tries to
derive the Uri for a video, given the video’s filename:

suspendsuspend funfun getLocalUri(filename: StringString): UriUri? =
withContext(Dispatchers.IO) {

valval resolver = context.contentResolver

resolver.query(collection, PROJECTION, QUERY, arrayOf(filename), nullnull)
?.use { cursor ->

ifif (cursor.count > 0) {
cursor.moveToFirst()
returnreturn@withContext ContentUris.withAppendedId(

collection,
cursor.getLong(0)

)
}

}

nullnull
}

(from ConferenceVideos/src/main/java/com/commonsware/android/conferencevideos/VideoRepository.kt)

Here, PROJECTION and QUERY are defined as constants:

privateprivate valval PROJECTION = arrayOf(MediaStore.Video.Media._ID)
privateprivate constconst valval QUERY = MediaStore.Video.Media.DISPLAY_NAME + " = ?"

(from ConferenceVideos/src/main/java/com/commonsware/android/conferencevideos/VideoRepository.kt)

If the query returns a Cursor with a row, we move to that row and use
ContentUris.withAppendedId() to assemble the Uri from the collection root Uri

USING MEDIASTORE

16

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-q/blob/vFINAL/ConferenceVideos/src/main/java/com/commonsware/android/conferencevideos/VideoRepository.kt
https://gitlab.com/commonsguy/cw-android-q/blob/vFINAL/ConferenceVideos/src/main/java/com/commonsware/android/conferencevideos/VideoRepository.kt

and the _ID value returned from the query.

Using a Media Content UriUri

Given the Uri to a piece of media, you have lots of options. The sample module just
wraps it in an ACTION_VIEW Intent when the user taps on the video (represented in a
row in a RecyclerView), to play back that video.

If you want to consume the content directly in your app, you have lots of options on
ContentResolver, including:

• openInputStream()
• openOutputStream()
• openFileDescriptor()

Android 10 adds a loadThumbnail() method on ContentResolver. This will attempt
to give you a Bitmap representation of the content identified by the Uri. The exact
source of the data is undocumented but probably amounts to:

• Images: the image itself
• Audio: album art, if any
• Video: a frame of the video itself

How to Create Media
It used to be that creating media was a matter of writing the media to some file on
external storage, then getting the MediaStore to index it (e.g., via
MediaScannerConnection). However, now that writing to external storage is less of
an option, we need to switch techniques. The technique that the Android 10
documentation cites is to use insert() on ContentResolver… though that
approach only works on Android 10, as you will see.

Getting the Root UriUri

Once again, you will need a Uri identifying the collection (audio, image, video) of
the content that you want to create, and possibly the storage volume on which to
create it. This is the same as for querying, where you can use getContentUri() or try
one of the legacy constants (e.g., MediaStore.Video.Media.EXTERNAL_CONTENT_URI).

The ConferenceVideos sample uses the same collection value that we used for

USING MEDIASTORE

17

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

querying:

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.Q) MediaStore.Video.Media.getContentUri(
MediaStore.VOLUME_EXTERNAL

) elseelse MediaStore.Video.Media.EXTERNAL_CONTENT_URI

(from ConferenceVideos/src/main/java/com/commonsware/android/conferencevideos/VideoRepository.kt)

Crafting the Metadata

insert() takes a ContentValues that describes the content that you wish to add to
the media collection identified by the Uri that you supply. At minimum, your
ContentValues needs to provide DISPLAY_NAME (for a human-readable identifier for
this content) and MIME_TYPE (to indicate what sort of content this is).

Android 10 adds a few additional options that you can consider.

IS_PENDINGIS_PENDING

One is IS_PENDING. As the name suggests, this indicates whether or not the content
is “pending”. “Pending” implies that the content is not yet ready for use — for
example, the MediaStore database entry is created, but we are still downloading the
content. IS_PENDING controls whether other apps, querying the MediaStore, will see
this entry:

• 1 means that the content is pending, and other apps will not see this content
by default (unless they use setIncludePending())

• 0 means that the content is ready for use

Hence, the recipe is to set IS_PENDING to 1 initially, then flip it to 0 via an update()
call on a ContentResolver when the content is ready for consumption by other apps.

Directory Hints

Android 10 also offers RELATIVE_PATH. This addresses a key problem with
MediaStore: controlling where the media goes on the device.

Suppose you are downloading MP3 files representing songs. Typically, those would
go in Music/[artist]/[album]/ as a directory, substituting in suitable values for
<artist> and <album>. However, if the content itself lacks the metadata (e.g., MP3
tags), MediaStore will not realize that the MP3 should go in this location.

USING MEDIASTORE

18

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-q/blob/vFINAL/ConferenceVideos/src/main/java/com/commonsware/android/conferencevideos/VideoRepository.kt

RELATIVE_PATH allows your code to assemble that relative path and suggest it to
MediaStore. It should be a relative path from a storage root (e.g., the root of external
storage) that identifies a directory which MediaStore should create (if needed) and
use for the content.

This is a hint, and there is no requirement for MediaStore to honor the request. In
particular, if the top-level path segment of the relative path makes no sense (e.g.,
Stuff/Goes/Here), MediaStore may elect to ignore the request.

Using the Media Content UriUri

insert() returns a Uri that represents where you can write your content. You can
use that with openOutputStream() or openFileDescriptor() to write your content
to the designated location. Afterwards, if you set IS_PENDING to 1, you can use
update() and that Uri to reset it to 0 and allow other apps to see your content.

The VideoRepository has a downloadQ() function that:

• Assembles a URL to the video
• Uses OkHttp to request that video
• Uses insert() to get the Uri to where the video should be saved, with
RELATIVE_PATH suggesting to put the video in a ConferenceVideos/ directory
off of the stock Movies/ directory

• Writes the video content to that location
• Uses update() to set IS_PENDING to 0

privateprivate suspendsuspend funfun downloadQ(filename: StringString): UriUri =
withContext(Dispatchers.IO) {

valval url = URL_BASE + filename
valval response = ok.newCall(Request.Builder().url(url).build()).execute()

ifif (response.isSuccessful) {
valval values = ContentValues().apply {

put(MediaStore.Video.Media.DISPLAY_NAME, filename)
put(MediaStore.Video.Media.RELATIVE_PATH, "Movies/ConferenceVideos")
put(MediaStore.Video.Media.MIME_TYPE, "video/mp4")
put(MediaStore.Video.Media.IS_PENDING, 1)

}

valval resolver = context.contentResolver
valval uri = resolver.insert(collection, values)

uri?.let {

USING MEDIASTORE

19

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

resolver.openOutputStream(uri)?.use { outputStream ->
valval sink = Okio.buffer(Okio.sink(outputStream))

response.body()?.source()?.let { sink.writeAll(it) }
sink.close()

}

values.clear()
values.put(MediaStore.Video.Media.IS_PENDING, 0)
resolver.update(uri, values, nullnull, nullnull)

} ?: throwthrow RuntimeException("MediaStore failed for some reason")

uri
} elseelse {

throwthrow RuntimeException("OkHttp failed for some reason")
}

}

(from ConferenceVideos/src/main/java/com/commonsware/android/conferencevideos/VideoRepository.kt)

Backwards-Compatibility Woe

Unfortunately, this does not work well on prior versions of Android:

• While what you write to the Uri location is saved to disk, it is not obvious
where that location actually is

• The content metadata, such as the filename, does not seem to be saved in
MediaStore

So, in the sample, downloadQ() is wrapped by a download() function that only uses
downloadQ() on Android 10 devices:

suspendsuspend funfun download(filename: StringString): UriUri =
ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.Q) downloadQ(filename)
elseelse downloadLegacy(filename)

(from ConferenceVideos/src/main/java/com/commonsware/android/conferencevideos/VideoRepository.kt)

download() delegates to downloadLegacy() on older devices, using the classic
approach of writing the content to external storage, then indexing the result:

privateprivate suspendsuspend funfun downloadLegacy(filename: StringString): UriUri =
withContext(Dispatchers.IO) {

valval file = File(
Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_MOVIES),
filename

)

USING MEDIASTORE

20

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-q/blob/vFINAL/ConferenceVideos/src/main/java/com/commonsware/android/conferencevideos/VideoRepository.kt
https://gitlab.com/commonsguy/cw-android-q/blob/vFINAL/ConferenceVideos/src/main/java/com/commonsware/android/conferencevideos/VideoRepository.kt

valval url = URL_BASE + filename
valval response = ok.newCall(Request.Builder().url(url).build()).execute()

ifif (response.isSuccessful) {
valval sink = Okio.buffer(Okio.sink(file))

response.body()?.source()?.let { sink.writeAll(it) }
sink.close()

MediaScannerConnection.scanFile(
context,
arrayOf(file.absolutePath),
arrayOf("video/mp4"),
nullnull

)

FileProvider.getUriForFile(context, AUTHORITY, file)
} elseelse {

throwthrow RuntimeException("OkHttp failed for some reason")
}

}

(from ConferenceVideos/src/main/java/com/commonsware/android/conferencevideos/VideoRepository.kt)

However, we no longer have a Uri representing the video this way, and the indexing
operation is asynchronous. So, we settle for FileProvider to give us access in the
short term. Future runs of the app should see the content in the MediaStore and be
able to use a MediaStore-supplied Uri to work with it.

Also note that we use MediaScannerConnection.scanFile() in this scenario. That is
not needed with downloadQ(), as we are directly putting the image into the
MediaStore.

Other MediaStoreMediaStore Changes
There have been a few other MediaStore changes of note in Android 10.

Removed Fields

A bunch of fields from MediaStore.MediaColumns were removed, including
ORIENTATION, DURATION, and DATE_TAKEN. If your app has been querying on those
columns, they may no longer be available to you.

MediaStore.DownloadsMediaStore.Downloads

There is a new collection, called MediaStore.Downloads. This appears to map to the
Downloads/ directory on external storage. However, it is largely undocumented.

USING MEDIASTORE

21

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-q/blob/vFINAL/ConferenceVideos/src/main/java/com/commonsware/android/conferencevideos/VideoRepository.kt

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Location Access Restrictions

One of the bigger privacy issues in Android is the availability of location data. Users
like certain types of apps, such as navigation assistants, knowing where the user is.
Users do not like arbitrary use of location data, though, and various ad networks and
malicious apps have been harvesting location data inappropriately.

So, in Android 10, location access gets locked down even further than before.

Background Location Access
The change that will get the most attention is that there are new limitations on
getting location data in the background. There are two main scenarios for this:

1. The app had been in the foreground, but the user switches to another app.
For example, the user might be using a navigation app but then receive a
phone call, at which point the device UI switches to an in-call screen.
Ideally, the navigation app will continue to receive location data, despite
being (temporarily) in the background… but in Android 10, this requires a
bit of additional work.

2. The app is operating purely in the background (e.g., JobScheduler jobs)
and wants to get the user’s location. This requires an additional permission
on Android 10.

You can learn more about LocationManager in the "Accessing
Location-Based Services" chapter of The Busy Coder's Guide to
Android Development!

23

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://commonsware.com/Android
https://commonsware.com/Android

Started from Foreground

Your app might mostly need locations in the foreground, but its UI might be moved
to the background based on user interactions. You might want to keep getting the
location updates while your UI is not in the foreground, so when you do return to
the foreground, you have up-to-date location data.

The recommended pattern to make this work is to start a foreground service when
your app moves to the background, where that service has
android:foregroundServiceType="location" on its <service> manifest element.
Then, the service can continue receiving notification updates, even though the UI is
not in the foreground.

The LocationForeground sample module in the book’s sample project illustrates this
process.

The app has an activity that displays the latitude, longitude, and fix time of the
latest GPS fix. It gets those from a LocationRepository that exposes the location
updates via LiveData:

packagepackage com.commonsware.android.q.loc.fgcom.commonsware.android.q.loc.fg

importimport android.Manifestandroid.Manifest
importimport android.content.Contextandroid.content.Context
importimport android.content.pm.PackageManagerandroid.content.pm.PackageManager
importimport android.location.Locationandroid.location.Location
importimport android.location.LocationListenerandroid.location.LocationListener
importimport android.location.LocationManagerandroid.location.LocationManager
importimport android.os.Bundleandroid.os.Bundle
importimport androidx.lifecycle.LiveDataandroidx.lifecycle.LiveData
importimport androidx.lifecycle.MutableLiveDataandroidx.lifecycle.MutableLiveData

classclass LocationRepositoryLocationRepository(privateprivate valval context: Context) {
privateprivate valval _locations = MutableLiveData<Location>()
valval locations: LiveData<Location> = _locations
privateprivate varvar locationsRequested = falsefalse

init {
initRequest()

}

funfun initRequest() {
ifif (!locationsRequested) {

valval mgr = context.getSystemService(LocationManager::classclass.java)

ifif (context.checkSelfPermission(Manifest.permission.ACCESS_FINE_LOCATION) ==
PackageManager.PERMISSION_GRANTED

) {
locationsRequested = truetrue
mgr.requestLocationUpdates(

LocationManager.GPS_PROVIDER,

LOCATION ACCESS RESTRICTIONS

24

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-q/tree/master/LocationForeground
https://gitlab.com/commonsguy/cw-android-q/tree/master/LocationForeground
https://gitlab.com/commonsguy/cw-android-q

0,
0.0f,
objectobject : LocationListenerLocationListener {

overrideoverride funfun onLocationChanged(location: LocationLocation) {
_locations.postValue(location)

}

overrideoverride funfun onStatusChanged(p0: StringString?, p1: IntInt, p2: BundleBundle?) {
// unused

}

overrideoverride funfun onProviderEnabled(p0: StringString?) {
// unused

}

overrideoverride funfun onProviderDisabled(p0: StringString?) {
// unused

}
})

}
}

}
}

(from LocationForeground/src/main/java/com/commonsware/android/q/loc/fg/LocationRepository.kt)

The activity has a viewmodel that gets the LocationRepository (via Koin-supplied
dependency injection), and the activity gets the data to provide to data binding from
that viewmodel.

This works great when the UI is in the foreground. However, we also want to ensure
that LocationRepository can continue getting location data when the UI moves to
the background.

For that, we have a ForegroundService. Not surprisingly, ForegroundService is a
foreground service. It too gets the LocationRepository and dumps the latitude and
longitude to Logcat:

packagepackage com.commonsware.android.q.loc.fgcom.commonsware.android.q.loc.fg

importimport android.app.Notificationandroid.app.Notification
importimport android.app.NotificationChannelandroid.app.NotificationChannel
importimport android.app.NotificationManagerandroid.app.NotificationManager
importimport android.app.PendingIntentandroid.app.PendingIntent
importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver
importimport android.content.Contextandroid.content.Context
importimport android.content.Intentandroid.content.Intent
importimport android.os.Buildandroid.os.Build
importimport android.util.Logandroid.util.Log
importimport androidx.core.app.NotificationCompatandroidx.core.app.NotificationCompat
importimport androidx.lifecycle.LifecycleServiceandroidx.lifecycle.LifecycleService

LOCATION ACCESS RESTRICTIONS

25

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-q/blob/vFINAL/LocationForeground/src/main/java/com/commonsware/android/q/loc/fg/LocationRepository.kt

importimport androidx.lifecycle.Observerandroidx.lifecycle.Observer
importimport org.koin.android.ext.android.injectorg.koin.android.ext.android.inject

privateprivate constconst valval CHANNEL_WHATEVER = "channel_whatever"
privateprivate constconst valval FOREGROUND_ID = 1338

classclass ForegroundServiceForegroundService : LifecycleService() {
privateprivate valval repo: LocationRepository byby inject()

overrideoverride funfun onCreate() {
supersuper.onCreate()

valval mgr = getSystemService(NotificationManager::classclass.java)!!

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O &&
mgr.getNotificationChannel(CHANNEL_WHATEVER) == nullnull

) {
mgr.createNotificationChannel(

NotificationChannel(
CHANNEL_WHATEVER,
"Whatever",
NotificationManager.IMPORTANCE_DEFAULT

)
)

}

startForeground(FOREGROUND_ID, buildForegroundNotification())

repo.locations.observe(thisthis, Observer {
Log.d(

"LocationForeground",
"Latitude: ${it.latitude} Longitude: ${it.longitude}"

)
})

}

privateprivate funfun buildForegroundNotification(): NotificationNotification {
valval pi = PendingIntent.getBroadcast(

thisthis,
1337,
Intent(thisthis, StopServiceReceiver::classclass.java),
0

)
valval b = NotificationCompat.Builder(thisthis, CHANNEL_WHATEVER)

b.setOngoing(truetrue)
.setContentTitle(getString(R.string.app_name))
.setContentText(getString(R.string.notif_text))

LOCATION ACCESS RESTRICTIONS

26

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

.setSmallIcon(R.drawable.ic_notification)

.setContentIntent(pi)

returnreturn b.build()
}

}

classclass StopServiceReceiverStopServiceReceiver : BroadcastReceiver() {
overrideoverride funfun onReceive(context: ContextContext, intent: IntentIntent) {

context.stopService(Intent(context, ForegroundService::classclass.java))
}

}

(from LocationForeground/src/main/java/com/commonsware/android/q/loc/fg/ForegroundService.kt)

Its manifest entry has the new android:foregroundServiceType attribute:

<service<service
android:name=".ForegroundService"
android:foregroundServiceType="location" />/>

(from LocationForeground/src/main/AndroidManifest.xml)

This attribute is used to tell Android that the service:

• Will be a foreground service, and
• Will want to continue using some class of API (in this case, location)

Then, to start and stop the service, we leverage ProcessLifecycleOwner from the
Architecture Components. This lets us know when our UI comes to the foreground
or moves to the background overall. In this case, we have only one activity, but most
apps have more than one activity, so ProcessLifecycleOwner will be a better choice,
as it reports the overall foreground/background status, not just for a single activity.
So, our custom Application subclass (KoinApp), in addition to setting up Koin
dependency injection, also registers a DefaultLifecycleObserver to find out about
the UI state changes:

packagepackage com.commonsware.android.q.loc.fgcom.commonsware.android.q.loc.fg

importimport android.app.Applicationandroid.app.Application
importimport android.content.Intentandroid.content.Intent
importimport androidx.lifecycle.DefaultLifecycleObserverandroidx.lifecycle.DefaultLifecycleObserver
importimport androidx.lifecycle.LifecycleOwnerandroidx.lifecycle.LifecycleOwner
importimport androidx.lifecycle.ProcessLifecycleOwnerandroidx.lifecycle.ProcessLifecycleOwner
importimport org.koin.android.ext.android.startKoinorg.koin.android.ext.android.startKoin
importimport org.koin.android.ext.koin.androidContextorg.koin.android.ext.koin.androidContext
importimport org.koin.androidx.viewmodel.ext.koin.viewModelorg.koin.androidx.viewmodel.ext.koin.viewModel
importimport org.koin.dsl.module.moduleorg.koin.dsl.module.module

LOCATION ACCESS RESTRICTIONS

27

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-q/blob/vFINAL/LocationForeground/src/main/java/com/commonsware/android/q/loc/fg/ForegroundService.kt
https://gitlab.com/commonsguy/cw-android-q/blob/vFINAL/LocationForeground/src/main/AndroidManifest.xml

classclass KoinAppKoinApp : Application() {
privateprivate valval koinModule = module {

single { LocationRepository(androidContext()) }
viewModel { MainMotor(getget()) }

}

overrideoverride funfun onCreate() {
supersuper.onCreate()

startKoin(thisthis, listOf(koinModule))

ProcessLifecycleOwner.getget()
.lifecycle
.addObserver(objectobject : DefaultLifecycleObserverDefaultLifecycleObserver {

overrideoverride funfun onStart(owner: LifecycleOwnerLifecycleOwner) {
stopService(Intent(thisthis@KoinApp, ForegroundService::classclass.java))

}

overrideoverride funfun onStop(owner: LifecycleOwnerLifecycleOwner) {
startForegroundService(Intent(thisthis@KoinApp, ForegroundService::classclass.java))

}
})

}
}

(from LocationForeground/src/main/java/com/commonsware/android/q/loc/fg/KoinApp.kt)

When the UI moves to the background, we start the ForegroundService. When the
UI moves to the foreground, we stop the ForegroundService (even if the service was
not necessarily started, as stopService() does not crash or anything if you do that).

This “run the service while the UI is in the background” approach works reasonably
well… except that it always starts this service, which may include some times when
the user does not really want it. For the purposes of the book sample, the
notification itself will stop the service if the user clicks on it. A production-grade
app may need greater sophistication here.

However, for the purposes of the Android 10 problem, we are able to continue
receiving location updates, even when our UI is no longer in the foreground.

Requested from Background

Doing work purely in the background is difficult on modern versions of Android,
owing to all the changes related to Doze mode and similar features. Getting location
data purely in the background already was a pain, as some of the preferred
background options — such as WorkManager — do not integrate well with
asynchronous APIs like we have with the location APIs.

LOCATION ACCESS RESTRICTIONS

28

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-q/blob/vFINAL/LocationForeground/src/main/java/com/commonsware/android/q/loc/fg/KoinApp.kt

In light of that, Android 10’s changes are not a big deal.

There is a new permission, ACCESS_BACKGROUND_LOCATION, that you will need to
request. This is a dangerous permission, so you not only need the <uses-
permission> element for it in the manifest, but you need to request it at runtime.
Since you are already requesting ACCESS_COARSE_LOCATION or
ACCESS_FINE_LOCATION, this additional permission just adds a bit of incremental
code.

The user winds up with three basic options in terms of granting rights to your app:

• Unfettered access to location
• “Only while the app is in use”, which translates to “only while the app has UI

in the foreground”
• No access at all

The middle option will mean that your app will hold ACCESS_COARSE_LOCATION or
ACCESS_FINE_LOCATION (whichever you requested) but not
ACCESS_BACKGROUND_LOCATION. And, if you do not hold
ACCESS_BACKGROUND_LOCATION, you cannot obtain location data from the
background, unless you originally were getting the locations in the foreground, as
we saw in the preceding section.

However, this just means that your background code will need to check for this new
permission and handle it the same as if the user revoked your
ACCESS_COARSE_LOCATION or ACCESS_FINE_LOCATION rights. Once again, this adds a
bit of additional code, and it adds a new scenario (foreground location access but
not background location access), but it should not cause much significant harm to
your app’s functionality.

EXIF Metadata Redaction
JPEG images can have EXIF metadata “tags”. For example, one important one is
orientation, indicating how the device was being held at the time the picture was
taken. This allows image-viewing code to rotate the image as needed to properly
orient it for viewing.

“Geotagged” photos represent another set of EXIF tags. A camera app can elect to
include location information in photos as tags. This enables a lot of interesting
features and services, such as allowing a user to browse a photo gallery via a map

LOCATION ACCESS RESTRICTIONS

29

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

instead of only chronologically.

However, geotagged photos represent semi-intentional leaks of location information.
For example, if a photo was created five minutes ago and has GPS coordinates, it is
reasonable to think that the device is still in the general vicinity. This is less true of a
photo created five months ago… but if there are a lot of photos in a similar area,
there is a decent chance that the user lives in that area and is taking photos of local
events.

As a result, in Android 10, access to this information is much more restricted than it
had been.

At least, in theory it is.

Individual Files

According to the documentation, EXIF data is supposed to be redacted when
reading in images.

However, that does not seem to be working, at least for:

• Files that you can access on the filesystem
• Content that you can access via the Storage Access Framework

However, it does work, by default, for a Uri from the MediaStore. For example,
consider this function:

funfun gimmeTehTags(image: UriUri) {
context.contentResolver.openInputStream(image)?.use { src ->

valval exif = ExifInterface(src)
valval location = exif.latLong

}
}

We get a valid location for images that have those EXIF tags if the Uri:

• Has the file scheme (e.g., a file on the filesystem that you can access)
• Is from the Storage Access Framework

By default, we get null if the Uri came from the MediaStore.

However, we still can get the location information, even from the MediaStore. This

LOCATION ACCESS RESTRICTIONS

30

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://issuetracker.google.com/issues/131889251

requires two things, in theory:

1. Your app needs to hold the ACCESS_MEDIA_LOCATION permission (which is
dangerous and needs to go through runtime permissions)

2. Your app needs to call MediaStore.setRequireOriginal(), supplying the
Uri for which you would like the location — this method then returns a
decorated Uri that can be used with openInputStream()

Then, if you use openInputStream() for the setRequireOriginal()-supplied Uri,
you will get a stream that includes the location EXIF tags.

MediaStoreMediaStore

As part of indexing the images available on external storage, the MediaStore used to
examine the EXIF headers and save location data. That could then be accessed by
querying the MediaStore for MediaStore.Images.Media.LATITUDE and
MediaStore.Images.Media.LONGITUDE values.

However, that is not done on Android 10, and therefore you will be unable to obtain
this data. This is not dependent upon targetSdkVersion — MediaStore simply
does not seem to aggregate this data.

As a result, your only option appears to be to get the Uri for each individual image
and use ExifInterface, as shown above. This is far slower than obtaining the data
directly from MediaStore, so ideally you are not attempting to get this data in bulk.

LOCATION ACCESS RESTRICTIONS

31

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Share Targets

Android 10 is changing the “share sheet” that is displayed when an ACTION_SEND
Intent is used. A new system of “share targets” is available, to help the user not
only send content to your app, but send it to some specific context. To do this,
Android 10 hacks in a change to dynamic shortcuts, reusing those for ACTION_SEND
scenarios.

What Came Before
Android 10, in effect, implements a mash-up of the old “direct share” system with
the old “dynamic shortcuts” system to create the new “share targets” system.

Direct Share

Many apps that support responding to ACTION_SEND just do that, nothing more.
Android 6.0, though, added a “direct share” API that allows apps to offer not only
the app as a place to share, but something specific within the app:

• A messaging client might offer sharing to a particular contact
• A note-taking app might offer “sharing” to a particular category, filing the

shared content under that category for later retrieval
• A file manager might offer “sharing” to a particular directory, saving the

content as a file in that specified location
• And so on

This involved:

• Creating a subclass of ChooserTargetService
• Registering it in the manifest with an <intent-filter> having <action

33

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

android:name="android.service.chooser.ChooserTargetService"/>
• Having your ACTION_SEND activity have a <meta-data> element pointing to

the service
• Implementing onGetChooserTargets() to supply a list of ChooserTarget

options based on the IntentFilter matched for your ACTION_SEND activity

The ChooserTarget objects would contain a title, an icon, and a Bundle of extras.
The Bundle would be merged into the rest of the ACTION_SEND Intent if the user
chose that particular ChooserTarget, where the icon and title would be shown as an
additional option on the “share sheet” UI that appeared for an ACTION_SEND request

This worked, but it had performance implications. This approach was a “pull”
mechanism, where Android would need to collect the ChooserTarget objects before
the “share sheet” could be fully displayed. For any candidate apps that lacked
running processes, this would involve forking fresh processes for those apps, so their
ChooserTargetService subclasses could do their work. This added a lot of overhead,
particularly for users who installed a bunch of ACTION_SEND-capable apps that
advertised support for a wide range of content (e.g., */* as a MIME type).

Part of the reason for Android 10’s changes is to switch to a “push” mechanism,
whereby apps can register possible share targets in advance. That way, the data is
available immediately when an ACTION_SEND is requested, and the “share sheet” can
be displayed more rapidly.

Dynamic Shortcuts

Android 7.1 added app shortcuts. This is a way for an app to advertise additional
entry points into the app, without having multiple launcher icons. Instead, the app
can teach Android additional shortcuts, which launcher apps (or other apps) could
then present to the user. For example, long-pressing on a launcher icon might pop
up a list of these shortcuts for a user to choose from.

Static shortcuts are the easiest ones to set up, as they just require a resource and a
manifest entry. However, they are fixed options. Dynamic shortcuts, by comparison,
allow your app to offer shortcuts based on user data and behavior (e.g., have a
shortcut to compose an email to a particular contact). However, they are more
complex to set up, requiring you to work with a ShortcutManager system service and
define the available shortcuts from your Java or Kotlin code.

SHARE TARGETS

34

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://developer.android.com/about/versions/nougat/android-7.1#shortcuts

Implementing the New Approach
In effect, Android 10 allows dynamic shortcuts to serve as share targets, in lieu of
using a ChooserTargetService.

However, it will be years before Android 10 and higher devices become dominant.
Google is making available an AndroidX library that uses the new Android 10
solution on compatible devices and falls back to ChooserTargetService for older
ones.

The ShareTargets sample module in the book’s sample project demonstrates how
this works.

Add the Dependency

The AndroidX dependency that lets Android 10 share targets work on older devices
is androidx.sharetarget:

implementation "androidx.sharetarget:sharetarget:$sharetarget_version"

(from ShareTargets/build.gradle)

sharetarget_version = "1.0.0-beta02"

(from build.gradle)

This library provides a ChooserTargetService implementation called
androidx.sharetarget.ChooserTargetServiceCompat. We get its <service>
manifest element automatically through the manifest merger process. However, we
have to add an android.service.chooser.chooser_target_service <meta-data>
element to the <activity> element that represents our ACTION_SEND
implementation, where the <meta-data> points to this supplied service:

<activity<activity android:name=".ShareActivity">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.SEND" />/>
<category<category android:name="android.intent.category.DEFAULT" />/>
<data<data android:mimeType="*/*" />/>

</intent-filter></intent-filter>
<meta-data<meta-data

android:name="android.service.chooser.chooser_target_service"
android:value="androidx.sharetarget.ChooserTargetServiceCompat" />/>

</activity></activity>

SHARE TARGETS

35

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-q/tree/master/ShareTargets
https://gitlab.com/commonsguy/cw-android-q/tree/master/ShareTargets
https://gitlab.com/commonsguy/cw-android-q
https://gitlab.com/commonsguy/cw-android-q/blob/vFINAL/ShareTargets/build.gradle
https://gitlab.com/commonsguy/cw-android-q/blob/vFINAL/build.gradle

(from ShareTargets/src/main/AndroidManifest.xml)

Declare Share Targets

We then need to have an XML resource (res/xml/) that contains our share targets.
For projects that already use static shortcuts, you can add a <share-target> element
to your existing static shortcuts resource. Otherwise, you will need to create one.

So, our sample module has a res/xml/share_targets.xml resource to fulfill this
requirement:

<?xml version="1.0" encoding="utf-8"?>
<shortcuts<shortcuts xmlns:android="http://schemas.android.com/apk/res/android">>

<share-target<share-target android:targetClass="com.commonsware.android.q.sharetargets.ShareActivity">>
<data<data android:mimeType="*/*" />/>
<category<category android:name="com.commonsware.android.q.sharetargets.CUSTOM_SHARE_TARGET" />/>

</share-target></share-target>
</shortcuts></shortcuts>

(from ShareTargets/src/main/res/xml/share_targets.xml)

Your <share-target> element will need an android:targetClass attribute,
containing the fully-qualified class name of the ACTION_SEND activity. You also need:

• A <data> element identifying the MIME type pattern that you wish to
receive

• A <category> element with a unique “category” name

In this case, the category is not an <intent-filter> category. Rather, it is simply an
identifier that we will use to connect this <share-target> element with some
corresponding dynamic shortcuts.

You can have as many <share-target> elements as needed, though a typical app will
not need more than one ACTION_SEND activity. An individual <share-target>
element can have as many <data> and <category> elements as needed, and in this
case, more than one <data> element may be needed to match the desired roster of
MIME types.

As with regular static shortcuts, this XML resource needs to be identified by a
android.app.shortcuts <meta-data> element on the LAUNCHER <activity> element:

<activity<activity
android:name=".MainActivity"
android:theme="@android:style/Theme.Translucent.NoTitleBar">>
<intent-filter><intent-filter>

SHARE TARGETS

36

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-q/blob/vFINAL/ShareTargets/src/main/AndroidManifest.xml
https://gitlab.com/commonsguy/cw-android-q/blob/vFINAL/ShareTargets/src/main/res/xml/share_targets.xml

<action<action android:name="android.intent.action.MAIN" />/>

<category<category android:name="android.intent.category.LAUNCHER" />/>
</intent-filter></intent-filter>
<intent-filter><intent-filter>

<action<action android:name="${applicationId}.ACTION_WHATEVER" />/>

<category<category android:name="android.intent.category.DEFAULT" />/>
</intent-filter></intent-filter>

<meta-data<meta-data
android:name="android.app.shortcuts"
android:resource="@xml/share_targets" />/>

</activity></activity>

(from ShareTargets/src/main/AndroidManifest.xml)

(we will discuss that odd second <intent-filter> shortly)

Register Dynamic Shortcuts

We then need to register dynamic shortcuts using ShortcutManager (or the
AndroidX ShortcutManagerCompat). These represent the actual entries that should
show up in the “share sheet” UI. And, in particular, they need to have a category that
matches a category used in a <share-target> element from the shortcuts XML
resource.

The app’s MainActivity will create those dynamic shortcuts in onCreate(), if they
have not already been registered:

packagepackage com.commonsware.android.q.sharetargetscom.commonsware.android.q.sharetargets

importimport android.content.Intentandroid.content.Intent
importimport android.os.Bundleandroid.os.Bundle
importimport android.widget.Toastandroid.widget.Toast
importimport androidx.annotation.DrawableResandroidx.annotation.DrawableRes
importimport androidx.annotation.StringResandroidx.annotation.StringRes
importimport androidx.appcompat.app.AppCompatActivityandroidx.appcompat.app.AppCompatActivity
importimport androidx.core.content.pm.ShortcutInfoCompatandroidx.core.content.pm.ShortcutInfoCompat
importimport androidx.core.content.pm.ShortcutManagerCompatandroidx.core.content.pm.ShortcutManagerCompat
importimport androidx.core.graphics.drawable.IconCompatandroidx.core.graphics.drawable.IconCompat

data classdata class ShareTargetShareTarget(
valval id: String,
@StringRes valval shortLabelRes: Int,
@DrawableRes valval iconRes: Int

)

privateprivate valval SHARE_CATEGORIES =
setOf("com.commonsware.android.q.sharetargets.CUSTOM_SHARE_TARGET")

SHARE TARGETS

37

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-q/blob/vFINAL/ShareTargets/src/main/AndroidManifest.xml

privateprivate valval TARGETS = listOf(
ShareTarget("one", R.string.tag_one, R.drawable.ic_looks_one_black_24dp),
ShareTarget("two", R.string.tag_two, R.drawable.ic_looks_two_black_24dp),
ShareTarget("five", R.string.tag_five, R.drawable.ic_looks_5_black_24dp)

)

classclass MainActivityMainActivity : AppCompatActivity() {

overrideoverride funfun onCreate(savedInstanceState: BundleBundle?) {
supersuper.onCreate(savedInstanceState)

ifif (ShortcutManagerCompat.getDynamicShortcuts(thisthis).size == 0) {
valval intent = Intent("$packageName.ACTION_WHATEVER")

ShortcutManagerCompat.addDynamicShortcuts(thisthis, TARGETS.map { tag ->
ShortcutInfoCompat.Builder(thisthis, tag.id)

.setShortLabel(getString(tag.shortLabelRes))

.setIcon(IconCompat.createWithResource(thisthis, tag.iconRes))

.setIntent(intent)

.setLongLived(truetrue)

.setCategories(SHARE_CATEGORIES)

.build()
})

Toast.makeText(thisthis, "Share targets ready!", Toast.LENGTH_LONG).show()
} elseelse {

Toast.makeText(thisthis, "${intent.action} received!", Toast.LENGTH_LONG).show()
}

finish()
}

}

(from ShareTargets/src/main/java/com/commonsware/android/q/sharetargets/MainActivity.kt)

Here, we iterate over a TARGETS list of ShareTarget objects. Those simply aggregate
some metadata that we need for the dynamic shortcuts: an ID, an icon, and a label.
We convert those to ShortcutInfoCompat objects via ShortcutInfoCompat.Builder.
Each of those ShortcutInfoCompat objects also gets:

• A set of categories (CATEGORIES) that includes the category that we used in
the <share-target> element

• An Intent for a custom action (ACTION_WHATEVER in the namespace of the
application), and that Intent will be used if the user actually uses this
dynamic shortcut

The User Experience
From a sharing standpoint, the user experience is about what you would expect…
albeit with a side-effect that may be less than ideal for some apps.

SHARE TARGETS

38

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-q/blob/vFINAL/ShareTargets/src/main/java/com/commonsware/android/q/sharetargets/MainActivity.kt

Sharing

If an app requests an ACTION_SEND that matches your desired MIME type(s), your
dynamic shortcuts will appear in the “share sheet”:

Figure 1: Android 10 “Share Sheet”, Showing Custom Share Targets

It is unclear how Android 10 will decide which of your share targets to show, if you
have a lot of them.

If the user chooses one of those, your ACTION_SEND activity will be started. Among
the extras will be an Intent.EXTRA_SHORTCUT_ID value that is the ID that you
supplied to the ShortcutInfoCompat.Builder for the dynamic shortcut. You can use
this to look up relevant information to determine the context for the user’s choice of
share targets.

SHARE TARGETS

39

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Shortcuts

However, your share targets also show up as dynamic shortcuts:

Figure 2: Pixel Launcher, Showing Share Targets as Shortcuts

This all but eliminates your app’s ability to use shortcuts for anything else.

It also means that your share targets have to make sense in cases where the user is
not sharing anything, because they clicked a dynamic shortcut.

Apparently, this is working as intended.

If the user taps one of the dynamic shortcuts, whatever Intent you gave to the
ShortcutInfoCompat.Builder will be invoked. This Intent can be for whatever
activity you want, not necessarily the ACTION_SEND activity. In the sample module,
we use ACTION_WHATEVER for the Intent and have a corresponding <intent-filter>
for it on MainActivity, not on ShareActivity.

Pre-10

If you named your shortcut XML resource shortcuts.xml, then on Android 6.0-9.0

SHARE TARGETS

40

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://issuetracker.google.com/issues/128553870

devices, your share targets will show up in the “share sheet”, courtesy of
androidx.sharetarget:

Figure 3: Android 9.0 “Share Sheet”, Showing Two Custom Share Targets

And, on Android 7.1-9.0 devices, your share targets will also show up as dynamic
shortcuts.

SHARE TARGETS

41

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Dark Mode

Android 10 offers a system-level option to enable “dark mode”. In dark mode, light
UI backgrounds get flipped to dark ones. This primarily affects system UI, but apps
can elect to react to this change as well, or otherwise support a dark theme for their
apps.

In this chapter, we will explore Android 10’s dark mode options and see how our
apps might adopt a dark theme.

Turning to the Dark Side
In the early days of Android, dark themes were typical. Then, starting with Android
4.x and increasing afterwards, Google started encouraging light themes. Now, Google
is back to endorsing dark themes.

Reasons

Partly, this is for the user experience. People using their devices at night can do so
more easily if the UI is darker and therefore offers less glare. This is why navigation
apps often switch into a dark mode at different points (e.g., when ambient light
seems to be low), so drivers do not have this bright light shining at them constantly.
Also, some users may have visual impairments or other conditions where such glare
is a bigger problem than for other people.

Also, with some types of modern displays, black pixels consume less power.

User Actions

Users can switch to dark mode via the Settings app and the “Dark theme” option in

43

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

the Display screen:

Figure 4: Dark Theme in Settings

DARK MODE

44

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

The user can also add a tile to the notification shade to be able to rapidly toggle
between normal and dark modes:

Figure 5: Dark Theme Tile

Also, according to the documentation:

On Pixel devices, the Battery Saver mode also enables Dark theme at the
same time. Other OEMs may or may not support this behavior.

And, if you use AppCompat with its DayNight support, you could offer an in-app
toggle between light and dark themes, as we will explore later in the chapter.

The Dark-All-The-Time Solution
The simplest solution for supporting dark mode is simply to always have a dark
theme. This means you have just one theme with one set of colors and artwork, to
minimize the work of graphic designers. The user gets the benefits all the time, and
the dark theme benefits users across Android versions (not just Android 10 users).

However, if you already have a light theme, this will require some amount of work to

DARK MODE

45

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

revise the design.

The System Override Solution
You could try to cheat a bit and have the system create a dark theme for you on the
fly. For that, add this entry to your theme resource:

<item<item name="android:forceDarkAllowed">>true</item></item>

Then, on Android 10 and higher devices, the system will examine your UI and swap
colors to try to make the app appear dark. It even has the smarts to determine
whether an ImageView appears to be containing an icon (that might be converted)
or a photo (that should not be converted).

So, in the default mode, you might have:

Figure 6: Sample App, in Normal Mode

DARK MODE

46

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

…while if the user opts into the dark mode, android:forceDarkAllowed="true" will
give the user:

Figure 7: Sample App, in Force-Dark Mode

This is quick and easy. However:

• You do not have any control over the color substitutions, which may make
your designers unhappy

• Some things may get converted by accident, requiring you to add
android:forceDarkAllowed="false" to individual widgets to get them to
be left alone

• This only works on Android 10 and higher, so you will have different
behavior by OS version

The DayNightDayNight Solution
Google’s preferred solution is for you to use a theme that adapts based upon
whether the device is in dark mode or not. That way, you can have a light theme
“normally” while having a dark theme in dark mode.

DARK MODE

47

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

In particular, AppCompat supports this via its DayNight theme family, though for
best results on Android 10 you should use 1.1.0-beta01 or newer.

The TypeInfo sample module uses a DayNight theme. This sample presents
information about a bunch of MIME types, as will be discussed in an upcoming
chapter.

Use a DayNightDayNight Theme

Switching to a DayNight theme, in many cases, only requires you to change the
parent theme to Theme.AppCompat.DayNight (or to another theme that extends from
Theme.AppCompat.DayNight):

<resources><resources>

<!-- Base application theme. -->
<style<style name="AppTheme" parent="Theme.AppCompat.DayNight">>

<!-- Customize your theme here. -->
<item<item name="colorPrimary">>@color/colorPrimary</item></item>
<item<item name="colorPrimaryDark">>@color/colorPrimaryDark</item></item>
<item<item name="colorAccent">>@color/colorAccent</item></item>

</style></style>

</resources></resources>

(from TypeInfo/src/main/res/values/styles.xml)

In dark mode, Theme.AppCompat.DayNight inherits from Theme.AppCompat, and so it
has a dark base to the theme. Otherwise, Theme.AppCompat.DayNight inherits from
Theme.AppCompat.Light, and so it has a light base to the theme. And, there are sub-
themes, such as Theme.AppCompat.DayNight.DarkActionBar, that might fit your
needs better.

Define -night-night Resources

Then, you can create alternative versions of colors, drawables, etc. that will be used
in dark mode. These should go in resource sets with the -night qualifier.

For example, you might have one set of colors for normal mode in res/values/:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<color<color name="colorPrimary">>#ffc107</color></color>

DARK MODE

48

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-q/tree/master/TypeInfo
https://gitlab.com/commonsguy/cw-android-q/tree/master/TypeInfo
https://gitlab.com/commonsguy/cw-android-q/blob/vFINAL/TypeInfo/src/main/res/values/styles.xml

<color<color name="colorPrimaryDark">>#ffaa00</color></color>
<color<color name="colorAccent">>#536dfe</color></color>

</resources></resources>

(from TypeInfo/src/main/res/values/colors.xml)

…and replacements for some of those colors in res/values-night/:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<color<color name="colorPrimary">>#3F51B5</color></color>
<color<color name="colorPrimaryDark">>#303F9F</color></color>
<color<color name="colorAccent">>#FFC107</color></color>

</resources></resources>

(from TypeInfo/src/main/res/values-night/colors.xml)

DARK MODE

49

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-q/blob/vFINAL/TypeInfo/src/main/res/values/colors.xml
https://gitlab.com/commonsguy/cw-android-q/blob/vFINAL/TypeInfo/src/main/res/values-night/colors.xml

The combination of the DayNight theme and your custom -night resources will
allow your app to adapt automatically as the user switches between normal and dark
mode:

Figure 8: Sample App, in Normal Mode

DARK MODE

50

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Figure 9: Sample App, in Dark Mode

Setting the Dark Mode Policy

You can teach AppCompat — specifically AppCompatDelegate — how you want your
DayNight theme to behave, such as forcing it to always use dark mode.

Policy Options

There are four main options, identified by constants on AppCompatDelegate:

DARK MODE

51

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Constant Meaning

MODE_NIGHT_NO Use a light theme

MODE_NIGHT_YES Use a dark theme

MODE_NIGHT_FOLLOW_SYSTEM
Use a light or dark theme based on Android 10’s

system status

MODE_NIGHT_AUTO_BATTERY
Use a dark theme when the device battery level is

low, otherwise use a light theme

The overall default is MODE_NIGHT_FOLLOW_SYSTEM, even though this only really
works on Android 10. The effect of this mode on older devices is undocumented.

Policy Locations

If you pass one of those constants to AppCompat.setDefaultNightMode(), this will
update all current activities for that new policy, plus that policy will be used for
future activities in your running process.

If you want to affect only a single activity, you can call getDelegate() to retrieve the
AppCompatDelegate instance for your AppCompatActivity, then call
setLocalNightMode() on it.

The TypeInfo sample app uses AppCompat.setDefaultNightMode(), even though
there is only one activity.

Policy Persistence

setLocalNightMode() affects only that one activity instance, while
AppCompat.setDefaultNightMode() affects your entire process. However, neither is
persisted. You will want to establish your policy on each process invocation, such as
in a custom Application subclass.

The TypeInfo sample app, since it contains only one activity, applies the policy in
that activity (MainActivity). MainActivity has a checkable overflow menu to allow
the user to toggle the policy. MainMotor persists that in SharedPreferences, plus
loads the last-saved value on startup.

DARK MODE

52

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Policy Policies

If you are bothering with DayNight, presumably there are cases where you want light
themes and cases where you want dark themes. As a result, there are three main
patterns for using these policies:

1. You elect to use MODE_NIGHT_FOLLOW_SYSTEM or MODE_NIGHT_AUTO_BATTERY,
putting control over the light/dark decision into the system and AppCompat
implementation

2. You elect to allow the user to choose between these modes, perhaps via a
preference screen (or, as in the case of the TypeInfo sample, a menu)

3. You elect to toggle modes yourself based on other criteria (ambient light
sensor, particular times of the day, etc.)

The Design Problem

Technically, supporting DayNight is easy.

From a design standpoint, now you need two designs, with two color schemes, two
sets of artwork, etc. Careful creation of those designs can minimize the differences,
to help both the designers and the developers maintain these things over time.
However, the designs are needed, to confirm that both the light and dark themes are
usable (e.g., text is readable in both themes, despite changing text and background
colors).

Dark Mode and Configuration Changes
When the device changes between normal and dark mode, any visible activities
immediately will undergo a configuration change, for the uiMode configuration. Even
manual changes to DayNight (e.g., setDefaultNightMode()) will recreate your
activity, as if it underwent a configuration change.

If your activities already handle configuration changes (e.g., screen rotation), you
should be fine. However:

• If you have activities where you skipped supporting configuration changes,
you will need to fix that soon

• If you have activities where you are handling configuration changes
manually, via android:configChanges in the manifest, consider whether you
want to handle uiMode manually as well

DARK MODE

53

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Gesture Navigation

Android 10 offers users yet another option for system navigation, such as “home”
and “back” actions. The particular implementation — edge swipe gestures — may
cause problems for users with some Android apps.

A Tale of Three (or More) Nav Patterns
Way back in the beginning, navigation actions were handled by hardware buttons.
Android 3.0 introduced the notion of a “navigation bar” for handling “home”, “back”,
and “overview” navigation actions, leading to the classic three-button bar:

Figure 10: Three-Button Android Nav Bar

Android 9.0 added another option for users: a two-button nav, where “home” and
“overview” actions were handled by gestures on a central pill affordance:

Figure 11: Button-and-Pill Android 9.0 Nav Bar

Android 10 adds a new nav option that is based on gestures:

55

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Action Associated Gesture

Home swipe up from bottom screen edge

Back swipe inward from the screen edge on left or right

Overview swipe up from the bottom screen edge and hold

Users can choose among those three by visiting Settings > System > Gestures >
“System navigation”:

Figure 12: System Navigation Settings in Android 10

The user can choose between gesture-based nav, the Android 9.0 button-and-pill
option, or the classic three-button nav option. Note, though, that not all users will
have access to all of those options. Pixel 4 users, for example, cannot choose the
two-button nav option.

On top of this, some device manufacturers have created their own gesture-based
nav options. Device manufacturers will be allowed to continue coming up with
their own schemes for this, meaning that a user might have three or four navigation

GESTURE NAVIGATION

56

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

options on Android 10 devices.

Impacts on Apps
The system “steals” touch events from apps to handle these navigation gestures. If
your app relies upon touch events near the edges, you may run into some problems.
In particular, the user may get confused when trying to use your app, trying to apply
your gestures and winding up with system responses. While simple taps will be
passed through to your app from these system edge areas, anything else is
indeterminate.

For example, suppose that you have a ViewPager that spans the width of the screen.
Based on a subtle and invisible line of demarcation, the same gesture might either
switch pages in your pager or invoke a “back” action (probably navigating out of this
screen).

You may need to consider redesigning your UI to:

• Avoid expecting swipe gestures near screen edges, and
• Provide a visual distinction of where swipe gestures are valid, to help the

user learn where to swipe to control your UI

Technically, there is a way that you can tell the system to ignore “back” gestures and
pass those along to your app. However, from a practical standpoint, this has
problems:

• The user may not know how to exit this screen and may get frustrated as a
result

• This approach may not be honored by manufacturer-specific nav schemes

Avoiding the edges is a safer approach.

The OS informs your app about “window insets”, to indicate areas where the system
will steal your touch events. This library helps you leverage that information to
adjust your UI based upon the particular device’s window insets, based on device
model and whether the user has enabled gesture-based nav or not.

GESTURE NAVIGATION

57

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://developer.android.com/preview/features/gesturalnav#back-gestures
https://github.com/chrisbanes/insetter

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Installing Apps Using
PackageInstallerPackageInstaller

In the beginning, to install an APK, you would use an ACTION_VIEW Intent, with a
file Uri pointing to the APK. Pass that to startActivity(), and Android would
take over from there.

This process evolved over the years, such as adding ACTION_INSTALL_PACKAGE in
Android 4.0 and adding content Uri support in Android 7.0. A PackageInstaller
class was added in Android 5.0, but it seemed complicated, so a lot of developers
stuck with the earlier Intent-based solutions.

However, ACTION_INSTALL_PACKAGE was deprecated in API Level 29, with a request
that we use PackageInstaller instead. While not specifically deprecated, one
imagines that ACTION_VIEW is also frowned upon for installing apps.

PackageInstaller is designed for more complex scenarios, including dealing with
split APKs, where a single app might require more than one APK to completely
install. As a result, it has a convoluted API, to go along with the typical skimpy
documentation.

So, in this chapter, we will examine how to use PackageInstaller to install a simple
APK, for a functional equivalent to the deprecated ACTION_INSTALL_PACKAGE.

Note that ACTION_UNINSTALL_PACKAGE was also deprecated in Android 10. However,
while PackageInstaller has a pair of uninstall() methods, these cannot be used
by ordinary apps.

59

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

Applying PackageInstallerPackageInstaller

The AppInstaller sample module in the book’s sample project has a stub activity
with an “open” action bar item. Clicking that will open the standard
ACTION_OPEN_DOCUMENT content picker UI, for you to find an APK to install. If you
select an APK, the app then uses PackageInstaller to install that APK, with a bit of
an assist from you as the user.

Permissions

Android 6.0 debuted the REQUEST_INSTALL_PACKAGES permission, and Android 8.0
started enforcing it for apps using ACTION_INSTALL_PACKAGE. Not surprisingly, you
need it for PackageInstaller as well. This is a normal permission, so you do not
need to request it at runtime — just have the <uses-permission> element in the
manifest:

<uses-permission<uses-permission android:name="android.permission.REQUEST_INSTALL_PACKAGES" />/>

(from AppInstaller/src/main/AndroidManifest.xml)

Creating and Using a Session

The AppInstaller app uses the same sort of architecture pattern as seen in several
of the other samples, where we have a ViewModel implementation called MainMotor
that our UI layer uses. In this case, MainActivity calls an install() function on
MainMotor, handing over the Uri that it received from the ACTION_OPEN_DOCUMENT
request.

MainMotor actually is an AndroidViewModel, as we need two things tied to a Context:

• A PackageInstaller instance, obtained by requesting one from
PackageManager

• A ContentResolver instance

privateprivate valval installer = app.packageManager.packageInstaller
privateprivate valval resolver = app.contentResolver

(from AppInstaller/src/main/java/com/commonsware/q/appinstaller/MainMotor.kt)

Unlike ACTION_INSTALL_PACKAGE, we need to do our own I/O to install APKs using
PackageInstaller. So, install() in MainMotor turns around and calls an
installCoroutine() function, launched from viewModelScope:

INSTALLING APPS USING PACKAGEINSTALLER

60

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-q/tree/master/AppInstaller
https://gitlab.com/commonsguy/cw-android-q/tree/master/AppInstaller
https://gitlab.com/commonsguy/cw-android-q
https://gitlab.com/commonsguy/cw-android-q/blob/vFINAL/AppInstaller/src/main/AndroidManifest.xml
https://gitlab.com/commonsguy/cw-android-q/blob/vFINAL/AppInstaller/src/main/java/com/commonsware/q/appinstaller/MainMotor.kt

funfun install(apkUri: UriUri) {
viewModelScope.launch(Dispatchers.Main) {

installCoroutine(apkUri)
}

}

(from AppInstaller/src/main/java/com/commonsware/q/appinstaller/MainMotor.kt)

installCoroutine(), in turn, is a suspend function that wraps its work in a
withContext(Dispatchers.IO) block, to have our I/O be performed on a
background thread:

privateprivate suspendsuspend funfun installCoroutine(apkUri: UriUri) =
withContext(Dispatchers.IO) {

resolver.openInputStream(apkUri)?.use { apkStream ->
valval length =

DocumentFile.fromSingleUri(getApplication(), apkUri)?.length() ?: -1
valval params =

PackageInstaller.SessionParams(PackageInstaller.SessionParams.MODE_FULL_INSTALL)
valval sessionId = installer.createSession(params)
valval session = installer.openSession(sessionId)

session.openWrite(NAME, 0, length).use { sessionStream ->
apkStream.copyTo(sessionStream)
session.fsync(sessionStream)

}

valval intent = Intent(getApplication(), InstallReceiver::classclass.java)
valval pi = PendingIntent.getBroadcast(

getApplication(),
PI_INSTALL,
intent,
PendingIntent.FLAG_UPDATE_CURRENT

)

session.commit(pi.intentSender)
session.close()

}
}

(from AppInstaller/src/main/java/com/commonsware/q/appinstaller/MainMotor.kt)

First, we get an InputStream on the content identified by the Uri and use
DocumentFile to find out the length of that content.

Then, we create and open a PackageInstaller.Session. To create a session, we call
createSession() on PackageManager, providing a
PackageInstaller.SessionParams object as a parameter. Most of the time, you will
use MODE_FULL_INSTALL as the type of session that we want, to install an app from
scratch — there is also a MODE_INHERIT_EXISTING to add new split APKs to an
already-installed app. createSession() does not give us the Session object, though

INSTALLING APPS USING PACKAGEINSTALLER

61

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-q/blob/vFINAL/AppInstaller/src/main/java/com/commonsware/q/appinstaller/MainMotor.kt
https://gitlab.com/commonsguy/cw-android-q/blob/vFINAL/AppInstaller/src/main/java/com/commonsware/q/appinstaller/MainMotor.kt

— we get an Int identifier instead, and we need to call openSession() to get the
actual Session.

With ACTION_INSTALL_PACKAGE, we provided a Uri that pointed to the APK to
install. With PackageInstaller, instead, we need to provide the bytes of that APK
manually. And, instead of us just passing an InputStream to
PackageInstaller.Session, we have a more complex API:

• Call openWrite() on the Session to get an OutputStream
• Copy the bytes from our InputStream to that OutputStream
• Call fsync() on the Session to say “we’re done, please ensure everything is

written to disk”

The three parameters to openWrite() are:

• Some seemingly arbitrary “name” string
• The offset into the bytes that the Session should start using (typically pass
0)

• The number of bytes that will need to be read in, or -1 if you do not know
the length

We then call commit() and close() on the Session to request the actual install to
occur. commit() takes an IntentSender object — typically you get one of these by
calling getIntentSender() on some PendingIntent that you create.

Getting the Results

Roughly speaking, there are three possible outcomes of our request:

• It succeeds
• It fails for some reason (e.g., duplicate ContentProvider authority conflict)
• The user needs to approve the installation

For an ordinary app, that third outcome will always happen, en route to some final
success or failure state.

We find out about all of this via the PendingIntent that we set up. In this case, that
pointed to an InstallReceiver, a manifest-registered BroadcastReceiver that will
be invoked when needed:

packagepackage com.commonsware.q.appinstallercom.commonsware.q.appinstaller

INSTALLING APPS USING PACKAGEINSTALLER

62

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver
importimport android.content.Contextandroid.content.Context
importimport android.content.Intentandroid.content.Intent
importimport android.content.pm.PackageInstallerandroid.content.pm.PackageInstaller
importimport android.media.AudioManagerandroid.media.AudioManager
importimport android.media.ToneGeneratorandroid.media.ToneGenerator
importimport android.util.Logandroid.util.Log

privateprivate constconst valval TAG = "AppInstaller"

classclass InstallReceiverInstallReceiver : BroadcastReceiver() {
overrideoverride funfun onReceive(context: ContextContext, intent: IntentIntent) {

whenwhen (valval status = intent.getIntExtra(PackageInstaller.EXTRA_STATUS, -1)) {
PackageInstaller.STATUS_PENDING_USER_ACTION -> {

valval activityIntent =
intent.getParcelableExtra<Intent>(Intent.EXTRA_INTENT)

context.startActivity(activityIntent.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK))
}
PackageInstaller.STATUS_SUCCESS ->

ToneGenerator(AudioManager.STREAM_NOTIFICATION, 100)
.startTone(ToneGenerator.TONE_PROP_ACK)

elseelse -> {
valval msg = intent.getStringExtra(PackageInstaller.EXTRA_STATUS_MESSAGE)

Log.e(TAG, "received $status and $msg")
}

}
}

}

(from AppInstaller/src/main/java/com/commonsware/q/appinstaller/InstallReceiver.kt)

We find out which of those scenarios occurs via the
PackageInstaller.EXTRA_STATUS extra on the Intent delivered to the component.
This is an Int value that will correspond to one of a set of STATUS_ constants on
PackageInstaller.

When we get the PackageInstaller.STATUS_PENDING_USER_ACTION status, we can
get a pre-populated Intent from the Intent.EXTRA_INTENT extra on the Intent that
we received. We can then use that with startActivity() to bring up system dialogs
for the user to confirm that they want us to be able to install apps and they want this
particular app to be installed. Note, though, that since we are calling
startActivity() from onReceive() of a BroadcastReceiver, we need to add
FLAG_ACTIVITY_NEW_TASK to be able to start the activity.

If we get PackageInstaller.STATUS_SUCCESS, then the APK was successfully
installed. This app simply plays an acknowledgment tone via ToneGenerator, but a
more sophisticated app would update its UI, display a Notification, or something.

INSTALLING APPS USING PACKAGEINSTALLER

63

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-q/blob/vFINAL/AppInstaller/src/main/java/com/commonsware/q/appinstaller/InstallReceiver.kt

Any other status code indicates some type of error condition, such as “this app is
already installed with the same or higher version” (STATUS_FAILURE_CONFLICT) or
“this app is incompatible with the device” (STATUS_FAILURE_INCOMPATIBLE). A
human-readable status message should be in the
PackageInstaller.EXTRA_STATUS_MESSAGE extra. This sample app just logs that
information to Logcat, but a more sophisticated app might have some sort of error
state in the UI, such as an error dialog.

System Notification, Maybe

In theory, the system is supposed to display a notification on Android 10 devices
after the app is installed. In practice, that is not working. If someday it starts
working, though, there are two <meta-data> elements that you can add to tailor the
icon for that notification:

• com.android.packageinstaller.notification.smallIcon, pointing to a
drawable resource representing your desired icon

• com.android.packageinstaller.notification.color, pointing to a color
resource for your desired tint on that icon (presumably)

The AppInstaller app customizes the icon but leaves the color alone:

<meta-data<meta-data
android:name="com.android.packageinstaller.notification.smallIcon"
android:resource="@drawable/ic_install_notification" />/>

(from AppInstaller/src/main/AndroidManifest.xml)

However, in the short term, you can ignore those <meta-data> elements, as they
have no effect.

INSTALLING APPS USING PACKAGEINSTALLER

64

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://issuetracker.google.com/issues/138144278
https://gitlab.com/commonsguy/cw-android-q/blob/vFINAL/AppInstaller/src/main/AndroidManifest.xml

Other Changes of Note

There are lots of other changes in Android 10, far more than can be presented in
this book. This chapter covers a variety of additional changes that you may want to
pay attention to.

Stuff That Might Break You
The scariest batch of changes in any Android release are the ones that may break
existing app behavior. Things like scoped storage certainly qualify for that.

Here are a few other smaller changes that may cause problems for reasonably-
ordinary apps.

Background Activity Starts Banned

Starting an activity from the background is banned on Android 10. This change
affects all apps, not just those with a targetSdkVersion of 29 or higher.

Definition of “Background Start”

Your app will be considered to be starting an activity from the background if it calls
startActivity() (or equivalent methods) when it does not have a foreground
activity.

The system can start one of your activities from the background — after all, that is
how you get to the foreground in the first place. And select system-triggered events
that execute a PendingIntent can start an activity from the background, notably a
PendingIntent tied to a Notification.

65

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

However, a foreground service is not “foreground enough” to be considered starting
an activity from the foreground.

What Happens

If you try to start an activity from the background… nothing visible happens. A
system app will file a warning message in Logcat:

W/ActivityTaskManager: Background activity start [callingPackage:
com.commonsware.android.q.attention; ...]

But, otherwise, that’s it.

In the Q beta releases, a Toast would appear, but this was removed in the final
shipping version.

The Full-Screen Notification Alternative

What Google wants you to do is to switch to a Notification that uses the “full-
screen Intent” feature. A high-importance, high-priority Notification that uses
this feature will get a heads-up presentation, where if the user taps on the bubble,
the PendingIntent associated with the full-screen feature will be executed. That
same PendingIntent is executed if the Notification is raised while the screen is off,
so the user can be taken to your activity immediately upon getting through the
keyguard.

The idea is that this “full-screen” option still allows rapid access to your activity,
while not interfering with the user while the user is using their device.

The PayAttention sample module in the book’s sample project serves as a
playground for doing both background activity starts and background full-screen
notifications.

The UI consists of two really big buttons, one to start an activity, and the other to
show a notification. When the user clicks one of those buttons, the MainActivity
uses WorkManager to do some work in 10 seconds, then calls finish() to destroy the
activity and ensure that we are in the background:

packagepackage com.commonsware.android.q.attentioncom.commonsware.android.q.attention

importimport android.os.Bundleandroid.os.Bundle

OTHER CHANGES OF NOTE

66

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-q/tree/master/PayAttention
https://gitlab.com/commonsguy/cw-android-q/tree/master/PayAttention
https://gitlab.com/commonsguy/cw-android-q

importimport androidx.appcompat.app.AppCompatActivityandroidx.appcompat.app.AppCompatActivity
importimport androidx.work.OneTimeWorkRequestBuilderandroidx.work.OneTimeWorkRequestBuilder
importimport androidx.work.WorkManagerandroidx.work.WorkManager
importimport kotlinx.android.synthetic.main.activity_main.*kotlinx.android.synthetic.main.activity_main.*
importimport java.util.concurrent.TimeUnitjava.util.concurrent.TimeUnit

classclass MainActivityMainActivity : AppCompatActivity() {
privateprivate valval workManager byby lazy { WorkManager.getInstance() }

overrideoverride funfun onCreate(savedInstanceState: BundleBundle?) {
supersuper.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)

toolbar.title = getString(R.string.app_name)

activity.setOnClickListener {
workManager.enqueue(OneTimeWorkRequestBuilder<StartActivityWorker>()

.setInitialDelay(10, TimeUnit.SECONDS)

.build())
finish()

}

notification.setOnClickListener {
workManager.enqueue(OneTimeWorkRequestBuilder<ShowNotificationWorker>()

.setInitialDelay(10, TimeUnit.SECONDS)

.build())
finish()

}
}

}

(from PayAttention/src/main/java/com/commonsware/android/q/attention/MainActivity.kt)

StartActivityWorker just starts an activity, though it needs to use
FLAG_ACTIVITY_NEW_TASK since we are starting the activity using the Application
context:

classclass StartActivityWorkerStartActivityWorker(
privateprivate valval appContext: Context,
workerParams: WorkerParametersWorkerParameters

) : WorkerWorker(appContext, workerParams) {
overrideoverride funfun doWork(): ResultResult {

appContext.startActivity(
Intent(

appContext,
MainActivity::classclass.java

).addFlags(Intent.FLAG_ACTIVITY_NEW_TASK)

OTHER CHANGES OF NOTE

67

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-q/blob/vFINAL/PayAttention/src/main/java/com/commonsware/android/q/attention/MainActivity.kt

)

returnreturn Result.success()
}

}

(from PayAttention/src/main/java/com/commonsware/android/q/attention/Work.kt)

ShowNotificationWorker, by contrast, sets up a Notification that uses
setFullScreenIntent() to make it a full-screen notification:

classclass ShowNotificationWorkerShowNotificationWorker(
privateprivate valval appContext: Context,
workerParams: WorkerParametersWorkerParameters

) : WorkerWorker(appContext, workerParams) {
overrideoverride funfun doWork(): ResultResult {

valval pi = PendingIntent.getActivity(
appContext,
0,
Intent(appContext, MainActivity::classclass.java),
PendingIntent.FLAG_UPDATE_CURRENT

)

valval builder = NotificationCompat.Builder(appContext, CHANNEL_WHATEVER)
.setSmallIcon(R.drawable.ic_notification)
.setContentTitle("Um, hi!")
.setContentText("remove me")
.setAutoCancel(truetrue)
.setPriority(NotificationCompat.PRIORITY_HIGH)
.setFullScreenIntent(pi, truetrue)

valval mgr = appContext.getSystemService(NotificationManager::classclass.java)

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O
&& mgr.getNotificationChannel(CHANNEL_WHATEVER) == nullnull

) {
mgr.createNotificationChannel(

NotificationChannel(
CHANNEL_WHATEVER,
"Whatever",
NotificationManager.IMPORTANCE_HIGH

)
)

}

mgr.notify(NOTIF_ID, builder.build())

returnreturn Result.success()

OTHER CHANGES OF NOTE

68

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-q/blob/vFINAL/PayAttention/src/main/java/com/commonsware/android/q/attention/Work.kt

}

(from PayAttention/src/main/java/com/commonsware/android/q/attention/Work.kt)

Note that the Notification needs to be PRIORITY_HIGH and the channel needs to be
IMPORTANCE_HIGH for this to work.

The module has two product flavors:

• legacy has targetSdkVersion set to 28
• q has targetSdkVersion set to 29

Partly, this is so you can see the behavior of both existing apps and Android
10-ready apps on Android 10.

Partly, though, it is to point out another requirement of using full-screen
notifications on Android 10. If your app has targetSdkVersion 29, you need to
request the USE_FULL_SCREEN_INTENT permission. This is a normal permission, so
all you need is the <uses-permission> element for it in your manifest. This module
handles that through a manifest in the q source set, so the <uses-permission>
element only gets merged in for q builds:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest package="com.commonsware.android.q.attention"

xmlns:android="http://schemas.android.com/apk/res/android">>

<uses-permission<uses-permission android:name="android.permission.USE_FULL_SCREEN_INTENT" />/>

</manifest></manifest>

(from PayAttention/src/q/AndroidManifest.xml)

If you skip this permission, your notification will still be displayed, but the full-
screen feature will not be enabled.

APIs Newly Requiring ACCESS_FINE_LOCATIONACCESS_FINE_LOCATION

A long list of APIs have been added to those that require your app to hold the
ACCESS_FINE_LOCATION permission. While none of these methods give you GPS
coordinates, they do provide information that can be used to derive the user’s
location.

ACCESS_FINE_LOCATION is a dangerous permission, so you will need to both have the

OTHER CHANGES OF NOTE

69

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-q/blob/vFINAL/PayAttention/src/main/java/com/commonsware/android/q/attention/Work.kt
https://gitlab.com/commonsguy/cw-android-q/blob/vFINAL/PayAttention/src/q/AndroidManifest.xml
https://developer.android.com/preview/privacy/camera-connectivity#fine-location-telephony-wifi-bt

<uses-permission> element for it and request it at runtime.

Alternatively, see if you can find some way to avoid needing to call those methods.

Continued Fight Against “Non-SDK Interfaces”

Starting with Android 9.0, Google began blocking your ability to access classes and
members marked with the @hide pseudo-annotation, plus private and package-
private members. Simply put, if it is not documented in the Android SDK, you may
not be able to refer to it at compile time by using Java reflection or similar
techniques.

Android 10 adds yet more methods that are restricted.

The previous “dark greylist”/“light greylist” distinction has been replaced by a new
system. Restricted methods may have an indication of whether they are allowed for
certain targetSdkVersion values or not. Look for @UnsupportedAppUsage
annotations in the AOSP source code, as those represent the banned methods. If
they have a maxTargetSdk value, that indicates the highest targetSdkVersion for
which those methods are supported — otherwise, they are banned. If maxTargetSdk
is 0, that method is banned for all targetSdkVersion values.

Developers should examine their code bases for any signs of using reflection to
access hidden members: Class.forName(), getConstructor(), getField(), and so
on. This is particularly important for library authors, as issues with a library get
amplified by the number of library users.

Remember that StrictMode offers callbacks to find out when violations occur, and
treats these violations as part of the VM policy. So, you could arrange to have
StrictMode report these violations to you, where you then log the stack trace
somewhere. For example, you might modify your test suites to enable StrictMode to
collect this information, then write the output somewhere that your tests can pick
up and incorporate into their results.

If you would like to be more proactive about dealing with this, the warning system
for non-SDK usage is integrated with StrictMode. detectNonSdkApiUsage() is an
option for StrictMode.VmPolicy.Builder, so you can tie it into your overall
StrictMode reporting approach (e.g., crash app in debug builds, but in release
builds just use the listener option on Android 9+ to integrate with your crash
reporting engine).

OTHER CHANGES OF NOTE

70

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://android-developers.googleblog.com/2018/02/improving-stability-by-reducing-usage.html
https://android-developers.googleblog.com/2018/02/improving-stability-by-reducing-usage.html
https://android-developers.googleblog.com/2018/02/improving-stability-by-reducing-usage.html
https://developer.android.com/preview/non-sdk-q#greylist-now-restricted

SYSTEM_ALERT_WINDOWSYSTEM_ALERT_WINDOW Restrictions

SYSTEM_ALERT_WINDOW is a special permission that allows an app to draw over other
apps. First made prominent by Facebook’s “chat heads” feature, a dizzying array of
apps now request SYSTEM_ALERT_WINDOW. However, the ability to draw over other
apps raises serious security issues.

At minimum, Android 10 is set to block SYSTEM_ALERT_WINDOW on low-end Android
Go devices, citing performance concerns.

Beyond that, Android Police claims that there are more significant limitations
applied across the board:

• Apps that were installed via the Play Store and received
SYSTEM_ALERT_WINDOW automatically lose it upon a device reboot

• Apps that were “side-loaded” (i.e., installed from somewhere other than the
Play Store) lose the permission 30 seconds after installation

If your app relies upon SYSTEM_ALERT_WINDOW, you will need to investigate these
items further and perhaps come up with some other solution for your problem. That
might involve bubbles, at least starting in 2020.

ContactsContractContactsContract Field Deprecations

A handful of data elements that you can request from ContactsContract are
“obsolete”. Reading between the lines of the note in the JavaDocs about this, it
appears that Google is proactively flushing this data.

And, if that is correct, it would appear that this data is not reliable on any relevant
version of Android, not just Android 10.

In particular, they mention that these four values are affected:

• ContactsContract.ContactOptionsColumns.LAST_TIME_CONTACTED
• ContactsContract.ContactOptionsColumns.TIMES_CONTACTED
• ContactsContract.DataUsageStatColumns.LAST_TIME_USED
• ContactsContract.DataUsageStatColumns.TIMES_USED

These have privacy implications beyond merely knowing who the contact is, as they
give insight into the contact’s behavior.

OTHER CHANGES OF NOTE

71

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://www.androidpolice.com/2019/03/16/android-q-steps-up-the-fight-up-against-overlay-based-malware/
https://developer.android.com/guide/topics/providers/contacts-provider#ObsoleteData

If you use ContactsContract, please review the note and determine if you are
affected.

Background Clipboard Access Banned

Apps no longer have access to the clipboard, unless:

• They are the default input method editor, or
• They are “the app that currently has focus”

In a typical single-window environment, this would mean that your activity is in the
foreground. In split-screen or multi-window environments, this phrasing suggests
that even if your activity is visible, it may not have access to the clipboard, if it lacks
the focus. In other words, if your activity has been called with onResume() but not
onPause(), you should have access to the clipboard.

android:sharedUserIdandroid:sharedUserId Deprecated

android:sharedUserId is an attribute that you can have in the manifests of multiple
apps to try to have them share a common Linux-style user account when installed
on Android. This would allow them to read and write each other’s internal storage
directly.

This feature was added largely for the benefit of pre-installed apps. It always
represented a fair amount of risk for ordinary app developers. In particular, if you
changed the android:sharedUserId value — including adding one when one did
not exist — now your own app would be unable to access its own internal storage
from any previously installed version of the app. Those files were owned by some
other Linux-style user account, not the new account requested by the new
android:sharedUserId value.

In Android 10, android:sharedUserId is deprecated, and it is slated for outright
removal in some future release.

If you are using android:sharedUserId, start switching to IPC-based means of app-
to-app communication, rather than having one app modify another app’s files
“behind its back”.

DownloadManagerDownloadManager Deprecations

DownloadManager deprecated some things, presuambly as a side effect of scoped

OTHER CHANGES OF NOTE

72

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://developer.android.com/guide/topics/providers/contacts-provider#ObsoleteData

storage:

• addCompletedDownload()
• allowScanningByMediaScanner() on DownloadManager.Request
• setVisibleInDownloadsUi() on DownloadManager.Request

Items listed in the new MediaStore.Downloads collection will be what appears in the
Downloads UI now. So, if you have content that was not downloaded to the
Downloads/ directory by DownloadManager, and you want it to appear in the
Downloads UI, you need to write it to a Uri supplied by MediaStore.Downloads.

Moar Densities!

There are four new DisplayMetrics screen densities: 140, 180, 200, 220. Those are
the first new low-end densities we have had in years, and it is unclear what hardware
would have such screens. Most developers will not need to worry about these, as
Android will scale mdpi or hdpi drawables for you. But, if you have other code that
cares about these DENSITY_ constants on DisplayMetrics, you have four more to
deal with.

Stuff That Might Interest You
Then, we have some items that will not break your app but represent features that
you might want to opt into, for Android 10 devices.

PreferencePreference Deprecation

The framework set of Preference classes are marked as deprecated on Android 10.

This makes some sense. Preference and its subclasses (e.g., EditTextPreference,
ListPreference) are wrappers around widgets. However, those wrappers wrap
framework widgets and therefore may not adapt to AppCompat themes.

Google steers you in the direction of the AndroidX preference library
(androidx.preference:preference and androidx.preference:preference-ktx).
This appears to be their direction, at least for the next few years.

Note, though, that the AndroidX preference library does not have a
RingtonePreference, nor does Google plan to add one. On the other hand, the
AndroidX preference library does offer DropDownPreference and

OTHER CHANGES OF NOTE

73

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://issuetracker.google.com/issues/37057453

SeekBarPreference, which were lacking in the native preference system.

ACTION_SENDACTION_SEND Previews

Android 10 offers a new content preview feature when using ACTION_SEND, where
the user can see a customized preview of what it is that they are sharing.

To implement this, you can:

• Add EXTRA_TITLE to the ACTION_SEND Intent, with some text to appear as
the title of the preview

• Add a ClipData to the ACTION_SEND Intent, via setClipData(), that
represents the image to show as part of the preview

On the plus side, this requires no new APIs, so this code will work on older versions
of Android.

However, this feature has issues:

• This does not work with an android.resource Uri for the preview image —
the Uri that you use must be a content Uri (e.g., from FileProvider)

• If you provide both a title and a preview image, you only get the preview
image

Settings Panels

We have long had a series of Intent actions defined on the Settings class to be able
to launch into a particular screen of the Settings app, using startActivity().

OTHER CHANGES OF NOTE

74

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://issuetracker.google.com/issues/130469521
https://issuetracker.google.com/issues/130469521
https://issuetracker.google.com/issues/130469521
https://issuetracker.google.com/issues/144218590
https://issuetracker.google.com/issues/144218590

Android 10 extends this with “panel” actions. These launch a screen in the Settings
app that is styled as a bottom-sheet dialog:

Figure 13: Internet Connectivity Settings Panel

There are four such panel actions:

• Settings.Panel.ACTION_INTERNET_CONNECTIVITY
• Settings.Panel.ACTION_NFC
• Settings.Panel.ACTION_VOLUME
• Settings.Panel.ACTION_WIFI

Changes in Device Authentication

If you have been using KeyguardManager and its
createConfirmDeviceCredentialIntent() method to authenticate the user, it has
been deprecated on Android 10. Like most deprecations, this method still works.
However, Google is steering you in a different direction: using
setDeviceCredentialAllowed() with BiometricPrompt.

OTHER CHANGES OF NOTE

75

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

A Quick Device Authentication Recap

Sometimes, we want to confirm that the person holding the device is the authorized
user of that device, before proceeding with something sensitive.

For devices with a minSdkVersion of 21 or higher, the simple solution was to use
createConfirmDeviceCredentialIntent() on KeyguardManager. This would return
an Intent that you could pass to startActivityForResult(). It would bring up the
system PIN/password screen to authenticate the user, letting you know of success or
failure via onActivityResult().

However, that approach only offers the PIN/password option. It does not allow the
user to use biometrics, such as a fingerprint, to authenticate. For that, we have
BiometricPrompt on Android 9.0+ (or FingerprintManager and FingerprintDialog
for API Level 23-27). Those allow the user to authenticate using biometrics… but
only via biometrics. That does not work for users who have not set up a biometric
authentication option, or for devices that lack biometric capability.

Compounding the complexity is Android 10’s deprecation of
createConfirmDeviceCredentialIntent().

setDeviceCredentialAllowed()setDeviceCredentialAllowed()

The replacement is setDeviceCredentialAllowed() on BiometricPrompt. On
Android 10 devices, this brings up the PIN/password screen if either:

• The user does not have a registered fingerprint or other biometric
authentication option, or

• The user elects to skip the biometric check and use the PIN/password
instead

Presumably, it will also use the PIN/password screen for devices that lack any
biometric hardware, though this has not been tested.

The SecureCheq sample module in the book’s sample project demonstrates the use
of setDeviceCredentialAllowed(). This sample app is based on a sample that
originally appeared in The Busy Coder’s Guide to Android Development for showing
how to use BiometricPrompt. Here, it is converted to Kotlin and tweaked to employ
setDeviceCredentialAllowed(), along with another new Android 10 method,
setConfirmationRequired().

OTHER CHANGES OF NOTE

76

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-q/tree/master/SecureCheq
https://gitlab.com/commonsguy/cw-android-q/tree/master/SecureCheq
https://gitlab.com/commonsguy/cw-android-q
https://commonsware.com/Android

As with that earlier sample, here use a BiometricPrompt.Builder to create an
instance of BiometricPrompt:

valval prompt = BiometricPrompt.Builder(thisthis)
.setTitle("This is the title")
.setDescription("This is the description")
.setSubtitle("This is the subtitle")
.setConfirmationRequired(truetrue)
.setDeviceCredentialAllowed(truetrue)
.build()

(from SecureCheq/src/main/java/com/commonsware/android/q/auth/check/MainActivity.kt)

setConfirmationRequired() is primarily for non-fingerprint sorts of biometrics,
such as face recognition. Those can be fairly automatic: if the user happens to be
looking at the screen at the time of authentication, no actual user input is required.
This may be too easy, and it is why Android allows the user to disable “passive”
authentication. You too can disable passive authentication, via
setConfirmationRequired(true). This indicates that for biometrics like face
recognition, that you want the user both to authenticate and tap an on-screen
button to confirm that they wish to proceed. This is new to Android 10.

Also new to Android 10 is setDeviceCredentialAllowed(). As noted, this will fall
back to PIN/password authentication, if biometrics are unavailable or opted-out by
the user, though there appears to be a bug here. In the sample code, we call
setDeviceCredentialAllowed(true) to request this behavior. If you do not call
setDeviceCredentialAllowed(true) — either by passing false or skipping the call
entirely — you must call setNegativeButton(), to provide details of what to do if
the user elects to skip the authentication process entirely. We will see an example
of that shortly.

Nothing changes with our authenticate() call or the AuthenticationCallback
object. However, there should be a slight behavior change with the
onAuthenticationError() function on the AuthenticationCallback.
onAuthenticationError() can be called with an error code of
BiometricPrompt.BIOMETRIC_ERROR_NO_BIOMETRICS to indicate that the user has not
enrolled any fingerprints or other biometric identifiers. In the case of
setAllowDeviceCredential(true), though, this should not occur. Instead, if the
user has no registered identifiers, the user will be sent to the PIN/password screen to
authenticate that way.

Note that the androidx.biometric library offers a backwards-compatible

OTHER CHANGES OF NOTE

77

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-q/blob/vFINAL/SecureCheq/src/main/java/com/commonsware/android/q/auth/check/MainActivity.kt
https://issuetracker.google.com/issues/142740104

implementation of BiometricPrompt that includes an implementation of
setDeviceCredentialAllowed(). This does not give prior versions of Android this
capability, but it will “gracefully degrade” on older devices.

Learning More About MIME Types

ContentResolver offers a getTypeInfo() method. Given a MIME type, it returns a
MimeTypeInfo object. This offers:

• A label
• A content description, which might be the same as the label
• An icon

The TypeInfo sample module contains a small app that presents a list of 65 MIME
types and the associated label and icon from Android 10’s MimeTypeInfo:

Figure 14: TypeInfo Sample App, Showing Some MIME Types

Given a long listOf() MIME types named MIME_TYPES, MainMotor loads them in the
background using a ContentResolver and maps the MimeTypeInfo data into a
RowState for use by the UI:

OTHER CHANGES OF NOTE

78

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-q/tree/master/TypeInfo
https://gitlab.com/commonsguy/cw-android-q/tree/master/TypeInfo

privateprivate suspendsuspend funfun mapTypes(context: ContextContext) =
withContext(Dispatchers.Default) {

valval resolver = context.contentResolver

MIME_TYPES
.map { RowState(it, resolver.getTypeInfo(it)) }
.sortedBy { it.description.toString() }

}

(from TypeInfo/src/main/java/com/commonsware/android/q/typeinfo/MainMotor.kt)

This is useful for cases where you have an arbitrary Uri and you want to have more
information about it for presentation, whether in a list like TypeInfo or for
single-Uri “attachments”. Given a Uri and DocumentFile.fromSingleUri(), you can
get the MIME type and display name; MimeTypeInfo just gives you more information
about the type.

However, the data returned in a MimeTypeInfo object is very generic in general.
Mostly, they seem to have a category of types, which controls the icon and part of
the label (e.g., “Archive”, “Audio”). In many cases, if the MIME type is not
recognized, the label is simply “File”. For casual use, this may be acceptable, but
serious apps should consider serious solutions (and ones that are not tied to
Android 10).

Foreground Service Types

Depending on what your app does, you may start seeing crashes with the following
sort of error message:

Caused by: java.lang.SecurityException: Media projections require a foreground
service of type ServiceInfo.FOREGROUND_SERVICE_TYPE_MEDIA_PROJECTION

Android 10 adds an android:foregroundServiceType attribute to the <service>
element in the manifest. We saw this used for a location value in the chapter on
location changes. While this is not documented on the <service> element itself,
there is a bit of documentation in the R.attr JavaDocs.

Depending on what your app does in its service, you may have a total of three
requirements now:

• Have it be a foreground service, to get past the runtime limitations imposed
by Android 8.0

• Request the FOREGROUND_SERVICE permission

OTHER CHANGES OF NOTE

79

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://gitlab.com/commonsguy/cw-android-q/blob/vFINAL/TypeInfo/src/main/java/com/commonsware/android/q/typeinfo/MainMotor.kt
https://issuetracker.google.com/issues/135430897
https://issuetracker.google.com/issues/135430897
https://developer.android.com/reference/android/R.attr.html#foregroundServiceType
https://developer.android.com/reference/android/R.attr.html#foregroundServiceType

• Have a android:foregroundServiceType attribute that lists the protected
operations that your foreground service intends to perform

Right now, there are six possible values:

Constant Value Apparently Required If You…

connectedDevice …use Bluetooth, Android Auto, or Android TV APIs

dataSync …perform Internet operations

location …work with LocationManager or things layered atop of it

mediaPlayback …work with audio/video APIs (e.g., MediaPlayer)

mediaProjection
…capture screenshots or record screencasts with
MediaProjection

phoneCall …participate in an “ongoing phone call or video conference”

It is unclear what actual code might trigger some of these. For example, it is unclear
if any Internet operations require dataSync or only certain things (e.g.,
DownloadManager).

If your service might perform more than one of these, you can combine these values
with | operators (e.g.,
android:foregroundServiceType="location|mediaProjection").

Audio Capture

Since Android 5.0, we have had an API for capturing screenshots and recording
screencasts. However, any such screencast was a “silent film”, consisting only of
video, not audio.

Android 10 introduces an official solution for capturing audio from other apps, tied
to the same “media projection” system used for screenshots and screencasts.

OTHER CHANGES OF NOTE

80

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

You can learn more about MediaProjectionManager in the "The
Media Projection APIs" chapter of The Busy Coder's Guide to
Android Development!

Capturing Audio

There are three major requirements for your app to be able to capture audio from
other apps:

1. You will need to request the RECORD_AUDIO permission. This is a dangerous
permission and therefore will require you to request it both in the manifest
and at runtime via ActivityCompat.requestPermissions().

2. If the audio capture will be performed by a service (the typical case), that
service will need to be a foreground service and have its
android:foregroundServiceType <service> attribute contain
mediaProjection (along with any other values that you might need.

3. You will need to obtain a MediaProjection object.

You get a MediaProjection through a slightly-annoying process:

• Use startActivityForResult() to start the createScreenCaptureIntent()
supplied by MediaProjectionManager:

valval mgr =
getSystemService(Context.MEDIA_PROJECTION_SERVICE) asas MediaProjectionManager

startActivityForResult(mgr.createScreenCaptureIntent(), REQUEST_SCREENCAST)

• Hand the resultCode and data from the request to getMediaProjection()
on the MediaProjectionManager to get the MediaProjection object:

overrideoverride funfun onActivityResult(
requestCode: IntInt,
resultCode: IntInt,
data: IntentIntent?

) {
ifif (requestCode == REQUEST_SCREENCAST) {

ifif (resultCode == RESULT_OK) {
valval projection = mgr.getMediaProjection(resultCode, data!!)

// TODO something with this

OTHER CHANGES OF NOTE

81

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://commonsware.com/Android
https://commonsware.com/Android

}
}

}

Given all of that, in theory, you can:

• Create an AudioPlaybackCaptureConfiguration using that MediaProjection
object:

valval playbackConfig = AudioPlaybackCaptureConfiguration.Builder(projection).build()

• Include that in an AudioRecord.Builder using
setAutoPlaybackCaptureConfig():

valval audioRecord = AudioRecord.Builder()
.setAudioFormat(TODO())
.setAudioPlaybackCaptureConfig(playbackConfig)
.setAudioSource(TODO())
.setBufferSizeInBytes(TODO())
.build()

(with TODO() shown as placeholders for the rest of the AudioRecord configuration)

• Use that AudioRecord object the same way that you might use it to record off
of the microphone

However, the documentation for AudioRecord is sketchy in general, and even worse
with respect to audio capture. For example, it is unclear what the value should be for
setAudioSource() and what the configuration should be for the AudioFormat passed
to setAudioFormat().

Note that the result of this will be an audio file (or some other collection of audio
bytes). If you are also trying to capture the screen using MediaProjection, this
approach may give you the audio, but it will not synchronize that audio with the
video, let alone put it in the same file as the video.

Note that not all apps’ audio can be captured, as we will explore in the next section.

Availability of Audio Capture

Only apps that allow audio capture can have their audio captured. In effect, apps
can opt out of audio capture, just as they can use FLAG_SECURE to opt out of screen

OTHER CHANGES OF NOTE

82

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

capture.

One way to block audio capture is to generate audio that is of a type that is not
designed for capture. Specifically, the only audio that can be captured is audio
flagged as USAGE_MEDIA, USAGE_GAME, or USAGE_UNKNOWN, referring to constants on
AudioAttributes. Apps using AudioTrack for audio playback get to specify this
value; other APIs might set their own value (e.g., MediaPlayer uses USAGE_MEDIA).
So, if you cannot capture the audio from some app, it may be that the app —
intentionally or accidentally — has specified some other usage type, such as
USAGE_VOICE_COMMUNICATIONS.

In addition, an app can have an overall capture policy. The default is:

• To block capture for apps with a targetSdkVersion of 28 or lower
• To allow capture for apps with a targetSdkVersion of 29 or higher

If you wish to control this more directly for your app, you can:

• Configure capture of specific audio by using setAllowedCapturePolicy()
on an AudioAttributes (for use with AudioTrack) or AAudioStreamBuilder
(for use with AAudio)

• Configure capture of all audio from your app dynamically by calling
setAllowedCapturePolicy() on an instance of AudioManager

• Configure capture of all audio from your app statically by setting
android:allowAudioPlaybackCapture on an undocumented element in the
manifest (try <application>)

setAllowedCapturePolicy() has three possible values:

• ALLOW_CAPTURE_BY_ALL allows the system and third-party apps to capture
the audio

• ALLOW_CAPTURE_BY_SYSTEM allows only system apps to capture the audio
• ALLOW_CAPTURE_BY_NONE blocks all audio capture, even by system apps

Deep Presses

Via methods like onTouchEvent(), you can get MotionEvent objects describing low-
level interactions between the user and input devices, particularly touchscreens.

Android 10 adds a “classification” of touch event: a deep press. This is described as
stemming from “the user intentionally pressing harder on the screen”.

OTHER CHANGES OF NOTE

83

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://developer.android.com/reference/android/view/MotionEvent.html#CLASSIFICATION_DEEP_PRESS

Android Police surmises that this may lead to iOS-like “3D Touch” behavior. At
present, though, it is unclear whether all hardware will support these events or if
they require a special digitizer.

useEmbeddedDexuseEmbeddedDex

Your APK contains your code and the code from the libraries that you add to your
app. That compiled code is packaged as “DEX” files representing Dalvik bytecode.
Smaller apps might have a single DEX file, larger apps might have more than one
(“multidex”).

On Android 4.3 and below, the Dalvik runtime would read the DEX content directly
from the APK. APKs are digitally signed, so there is no way for an outside party to
tamper with the code before Dalvik loads and runs it. This is great from a security
standpoint but adds overhead.

On Android 4.4 and higher, the Dalvik and ART runtimes started pre-processing
those DEX files, including the ahead-of-time (AOT) compilation added in Android
5.0. The output of that work is stored as ordinary files, and so processes with root
privileges could tamper with them. The result is improved app performance at the
cost of weakened security.

Android 10 allows you to set android:useEmbeddedDex to true in your
<application> element. This tells ART to go back to Android 4.3-style approaches,
avoiding the pre-processing and only using the DEX files packaged in the APK. This
allows developers to opt into the tighter security, for cases where that security is
worth the performance penalties (e.g., no ahead-of-time compilation).

hasFragileUserDatahasFragileUserData

XDA-Developers pointed out that there is an android:hasFragileUserData flag in
Android 10. This is lightly documented — we know the flag exists, but the
documentation fails to indicate where the flag belongs.

According to the article, setting this to true will prompt the user whether to keep
your app’s data when the system uninstalls the app. In principle, this would allow
the user to get back at your data if they later re-install the app. In practice, it
remains to be seen how well this works.

OTHER CHANGES OF NOTE

84

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://www.androidpolice.com/2019/04/07/android-q-to-support-3d-touch-like-pressure-sensitive-actions/
https://www.xda-developers.com/android-10-manifest-flag-developers-retain-app-data-before-uninstalling/
https://issuetracker.google.com/issues/144217316
https://issuetracker.google.com/issues/144217316

Mystifying Things
A couple of items were introduced in Android 10 but were removed from being
public-facing for the final release. It is possible that these will become more
important in future versions of Android.

Roles

Q Beta 1 introduced roles and RoleManager.

Q Beta 2 removed the documentation and, um, primary role for RoleManager.

Q Beta 3 through the Android 10 release still have RoleManager, but there is no sign
of whether it is being used.

Here is what we know about what roles were to be used for, in case they show up
again.

What Is a Role?

A role is a bit like a runtime permission:

• You need to have stuff in the manifest to be eligible for it
• You need to have code to detect if you have the role — and if not, to ask the

user to grant you the role
• The user can grant or revoke roles at any point (e.g., via the Settings app)
• The role helps determine what your app can do

However, a permission is a statement of a desired capability, such as “I want to be
able to read files on external storage”. A role, rather, is a statement of what job the
app will fulfill for the user.

According to the RoleManager JavaDocs, there are eight available roles:

• ROLE_ASSISTANT
• ROLE_BROWSER
• ROLE_CALL_REDIRECTION
• ROLE_CALL_SCREENING
• ROLE_DIALER
• ROLE_EMERGENCY

OTHER CHANGES OF NOTE

85

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

• ROLE_HOME
• ROLE_SMS

In general, the names of the roles indicate their purpose. For example, ROLE_BROWSER
represents a Web browser, while ROLE_SMS represents a messaging client.

If your app requests and is granted a role, you get certain capabilities. For example,
an app with ROLE_GALLERY has access to more of the device content than does an
ordinary app, as part of the new scoped storage system.

There Can Only Be One

One substantial difference between permissions and roles is that any number of
apps can hold a permission, while only one app can hold a role. If an app requests a
role and some other app holds that role, if that second app asks the user for the role
and is granted it, the first app loses the role.

For some roles, other system limitations already imply that only one app could fill a
role. For example, an Android device cannot readily handle more than one home
screen. In other cases, the “there can only be one” rule for roles may introduce some
user headaches, such as when switching between Web browsers.

Becoming Role-Eligible

As noted above, to become eligible for a role, there are a few things that you will
need in your manifest.

The direct determining factor of whether you are eligible for a role comes from an
<intent-filter>.

On your MAIN/LAUNCHER activity, you need to add two more <category> elements:

• <category android:name="android.intent.category.DEFAULT" />, to
declare your wish to be the default app for the role

• A second <category> element tied to the specific role

Unfortunately, for the current set of roles, the categories are undocumented.

OTHER CHANGES OF NOTE

86

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://issuetracker.google.com/issues/129213523

Obtaining a Role

Just because you request a permission in the manifest does not mean that your app
holds it — on Android 6.0+, you need to request dangerous permissions at runtime,
using functions like ActivityCompat.requestPermissions().

Similarly, just because you have the right stuff in the manifest to be eligible for a
role does not mean that your app holds that role. Instead, you need to ask the user
for that role, using a RoleManager system service added to Android 10.

There are three key functions on RoleManager:

• isRoleAvailable() indicates if the version of Android and the device that
you are on knows about a particular role that you want, identified by a
ROLE_-prefixed name defined as constants on RoleManager. Google reserves
the right to change the mix of roles over time, and it is conceivable that
device manufacturers might make their own changes. So, you need to call
isRoleAvailable() and be able to cope if it returns false.

• isRoleHeld() returns true if your app has been granted the role, false
otherwise. This is reminiscent of calling checkSelfPermission() to see if
you hold a runtime permission.

• createRequestRoleIntent() does pretty much what the name indicates: it
creates an Intent for you to be able to ask the user to be able to hold a role.
You pass that Intent to startActivityForResult(), and in
onActivityResult() you can find out if you got the role (by looking for an
ACTIVITY_OK response or calling isRoleHeld() again)

Losing a Role

The user is welcome to go into the Settings app and revoke your role.

Similar to losing a runtime permission, if you lose a role, Android will terminate
your process. Hence, just as you should check to see if you hold a runtime
permission on every start of your app, you should check to see if you hold any
desired roles on every start of your app.

However, due to another bug, RoleManager will incorrectly return true from
isRoleHeld() after a user revokes the role. As a result, there is no great way to
determine whether you really hold the role or you held it previously and now no
longer hold it.

OTHER CHANGES OF NOTE

87

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://issuetracker.google.com/issues/129200231

Role Powers

Due to the very limited role documentation, it is unclear how to obtain roles and
what apps holding those roles can do (and what apps without those roles) cannot
do.

Bubbles

In 2013, Facebook debuted the “chat heads” UI for their Android app. These allowed
the user to participate in Facebook chats while being (mostly) in other apps, by
having a floating avatar of your chat partner appear over the UI of whatever app you
were in.

Technically, this was somewhat of an abuse of the SYSTEM_ALERT_WINDOW permission
and related system-level windows. Facebook’s “leadership” in this area led many
other developers to apply the same technique. However, allowing arbitrary apps to
interpose arbitrary UI in front of other UI has security risks, and Google is slowly
starting to restrict the use of SYSTEM_ALERT_WINDOW as a result.

In Q Beta 1, Google announced that they were introducing “bubbles” and indicated
that this would be a long-term replacement for SYSTEM_ALERT_WINDOW. In Q Beta 3,
Google announced that bubbles would be limited to developers, with an opt-in
toggle in the developer options to allow them to be seen. That remains the status
with the shipping version of Android 10: bubbles are available for developers but
not for ordinary users.

As a result, it is quite possible that bubbles never become available for users, just as
Android 9.0’ slices have been largely unused, at least as of May 2019. Most likely, you
should just leave bubbles alone until Android R, then worry about implementing
them at that point.

OTHER CHANGES OF NOTE

88

Published under the Creative Commons
Attribution-ShareAlike 4.0 International license.

Visit https://commonsware.com/licenses to learn more!

https://issuetracker.google.com/issues/129213523

	Table of Contents
	Preface
	The Book’s Prerequisites
	What’s New in the FINAL Version?
	Warescription
	Source Code and Its License
	Creative Commons and the Four-to-Free (42F) Guarantee
	Acknowledgments

	The Death of External Storage
	Introducing the Filter
	What Your App Sees
	What Other Apps See
	What the User Sees

	Controlling the Behavior
	Opting Out… For Now
	Opting In
	Default Conditions

	What Will Happen in Android R?
	Official Warning
	Hoped-For Outcome

	Adapting to Scoped Storage
	Consuming Content
	ACTION_OPEN_DOCUMENT
	Inbound Actions
	Other Options

	Creating Content
	Filesystem… Maybe
	ACTION_CREATE_DOCUMENT
	Media

	Sharing Content

	But I Need a File!!!
	Option #1: See if the API Supports File-Like Stuff
	Option #2: Ask User to Put in App-Specific Location
	Option #3: Copy Stream to Local File

	Other Problems To Consider
	Advertising Support for Files in the Manifest
	Assuming Valid Uri Values from ACTION_SEND
	Assuming Valid Uri Values from the Clipboard
	Assuming Content is Seekable

	Related Deprecations That Might Affect You

	Using MediaStore
	What Not To Do
	MediaStore and Permissions
	How to Consume Media
	Querying MediaStore
	Getting the Root Uri
	Deriving a Media Content Uri

	Using a Media Content Uri

	How to Create Media
	Getting the Root Uri
	Crafting the Metadata
	IS_PENDING
	Directory Hints

	Using the Media Content Uri
	Backwards-Compatibility Woe

	Other MediaStore Changes
	Removed Fields
	MediaStore.Downloads

	Location Access Restrictions
	Background Location Access
	Started from Foreground
	Requested from Background

	EXIF Metadata Redaction
	Individual Files
	MediaStore

	Share Targets
	What Came Before
	Direct Share
	Dynamic Shortcuts

	Implementing the New Approach
	Add the Dependency
	Declare Share Targets
	Register Dynamic Shortcuts

	The User Experience
	Sharing
	Shortcuts
	Pre-10

	Dark Mode
	Turning to the Dark Side
	Reasons
	User Actions

	The Dark-All-The-Time Solution
	The System Override Solution
	The DayNight Solution
	Use a DayNight Theme
	Define -night Resources
	Setting the Dark Mode Policy
	Policy Options
	Policy Locations
	Policy Persistence
	Policy Policies

	The Design Problem

	Dark Mode and Configuration Changes

	Gesture Navigation
	A Tale of Three (or More) Nav Patterns
	Impacts on Apps

	Installing Apps Using PackageInstaller
	Applying PackageInstaller
	Permissions
	Creating and Using a Session
	Getting the Results
	System Notification, Maybe

	Other Changes of Note
	Stuff That Might Break You
	Background Activity Starts Banned
	Definition of “Background Start”
	What Happens
	The Full-Screen Notification Alternative

	APIs Newly Requiring ACCESS_FINE_LOCATION
	Continued Fight Against “Non-SDK Interfaces”
	SYSTEM_ALERT_WINDOW Restrictions
	ContactsContract Field Deprecations
	Background Clipboard Access Banned
	android:sharedUserId Deprecated
	DownloadManager Deprecations
	Moar Densities!

	Stuff That Might Interest You
	Preference Deprecation
	ACTION_SEND Previews
	Settings Panels
	Changes in Device Authentication
	A Quick Device Authentication Recap
	setDeviceCredentialAllowed()

	Learning More About MIME Types
	Foreground Service Types
	Audio Capture
	Capturing Audio
	Availability of Audio Capture

	Deep Presses
	useEmbeddedDex
	hasFragileUserData

	Mystifying Things
	Roles
	What Is a Role?
	There Can Only Be One
	Becoming Role-Eligible
	Obtaining a Role
	Losing a Role
	Role Powers

	Bubbles

