Table of Contents
Headings formatted in bold-italic have changed since the last version.

	
Preface
	The Book’s Prerequisites

	What’s New in the FINAL Version?

	Warescription

	Source Code and Its License

	Creative Commons and the Four-to-Free (42F) Guarantee

	Acknowledgments

	
The Death of External Storage
	Introducing the Filter

	Controlling the Behavior

	What Will Happen in Android R?

	Adapting to Scoped Storage

	But I Need a File!!!

	Other Problems To Consider

	Related Deprecations That Might Affect You

	
Using MediaStore
	What Not To Do

	MediaStore and Permissions

	How to Consume Media

	How to Create Media

	Other MediaStore Changes

	
Location Access Restrictions
	Background Location Access

	EXIF Metadata Redaction

	
Share Targets
	What Came Before

	Implementing the New Approach

	The User Experience

	
Dark Mode
	Turning to the Dark Side

	The Dark-All-The-Time Solution

	The System Override Solution

	The DayNight Solution

	Dark Mode and Configuration Changes

	
Gesture Navigation
	A Tale of Three (or More) Nav Patterns

	Impacts on Apps

	
Installing Apps Using PackageInstaller	Applying PackageInstaller

	
Other Changes of Note
	Stuff That Might Break You

	Stuff That Might Interest You

	Mystifying Things

Preface
Thanks!
Thanks for your continued interest in Android! Android advances year after
year, and 2019’s Android 10 (Q) continues that pattern. Many developers ignore
new Android versions until some concrete problem causes them grief. Hopefully,
you are reading this in advance of when Android 10 ships to lots of devices,
so you can head off any problems before they turn into customer complaints.
(on the other hand, if you are reading this in response to Android 10 customer complaints… sorry!)
And thanks for your interest in this book and CommonsWare’s overall line
of Android books!
The Book’s Prerequisites
This book is designed for developers with 1+ years of Android app development
experience. If you are fairly new to Android, please consider reading
Elements of Android Jetpack,
Exploring Android, or both, before
continuing with this book.
Also note that this book’s examples are written in Kotlin.
What’s New in the FINAL Version?
This update replaces many of the “Q” references with “10”, and makes other changes
to reflect the fact that Android 10 is now shipping. This update also fixes various
bugs and adds a few bits of late-breaking news.
Note that this book will not receive further updates, given that Android 10’s SDK
is final and that Android 10 is shipping.
Warescription
If you purchased the Warescription, read on! If you obtained this book from
other channels, feel free to jump ahead.
The Warescription entitles you, for the duration of your subscription, to digital
editions of this book and its updates, in PDF, EPUB, and Kindle (MOBI/KF8) formats,
plus the ability to read the book online at the Warescription Web site.
You also have access to other books that CommonsWare publishes during that
subscription period.
Each subscriber gets personalized editions of all editions of each title. That way,
your books are never out of date for long, and you
can take advantage of new material as it is made available.
However, you can only download the books while you have an active Warescription.
There is a grace period after your Warescription ends: you can still
download the book until the next book update comes out after your
Warescription ends. After that, you can no longer download the book.
Hence, please download your updates as they come out.
You can find out when new releases
of this book are available via:

	The CommonsBlog

	The CommonsWare Twitter feed

	Opting into emails announcing each book release — log into the
Warescription site and choose Configure from
the nav bar

	Just check back on the Warescription site every
month or two

Subscribers also have access to other benefits, including:

	“Office hours” — online chats to help you get
answers to your Android application development questions. You will find a calendar
for these on your Warescription page.

	A Stack Overflow “bump” service, to get additional attention for a question
that you have posted there that does not have an adequate answer.

	A discussion board for asking arbitrary questions about Android app development.

Source Code and Its License
The source code in this book is licensed under the
Apache 2.0 License, in case you have the
desire to reuse any of it.
Copying source code directly from the book, in the PDF editions, works best
with Adobe Reader, though it may also work with other PDF viewers. Some PDF viewers,
for reasons that remain unclear, foul up copying the source code to the clipboard
when it is selected.
Creative Commons and the Four-to-Free (42F) Guarantee
Each CommonsWare book edition will be available for use under the
Creative Commons Attribution-Noncommercial-ShareAlike 3.0
license as of the
fourth anniversary of its publication date, or when 4,000 copies of the edition
have been sold, whichever comes first. That means that, once four years have
elapsed (perhaps sooner!), you can use this prose for non-commercial purposes.
That is our Four-to-Free Guarantee to our readers and the broader community.
For the purposes of this guarantee, new Warescriptions and renewals will be
counted as sales of this edition, starting from the time the edition is
published.
This edition of this book will be available under the aforementioned Creative
Commons license on 1 November 2023. Of course, watch the CommonsWare Web
site, as this edition might be relicensed sooner based on sales.
For more details on the Creative Commons Attribution-Noncommercial-ShareAlike
3.0 license, visit the Creative Commons Web site
Note that future editions of this book will become free on later dates, each
four years from the publication of that edition or based on sales of that
specific edition. Releasing one edition under the Creative Commons license does
not automatically release all editions under that license.
Acknowledgments
The author would like to thank the Google team responsible for Android Q.
The author would also like to thank:

	John De Lancie

	The late Desmond Llewelyn

	The occasionally-late John Cleese

The Death of External Storage
When Q Beta 1 was released, the biggest change for developers in Android 10 —
by far — was what Google
calls “scoped storage”. In a nutshell, your ability to work with files and
the filesystem was substantially curtailed. As a result, you had to adapt your app within a few months, to
be ready by the time Android 10 shipped.
Everything will be affected in Android R,
but there are steps that you can take to opt out of the changes for Android 10,
at least until you are ready. And apps with a targetSdkVersion of 28 or lower will
be unaffected… but eventually you are going to need to raise that level, at least if you
plan on shipping your app through the Play Store.
Hence, if your app requests the
READ_EXTERNAL_STORAGE or WRITE_EXTERNAL_STORAGE permissions, you are going
to want to start adapting your app to the changes. One of the problems from the
Q Beta 1 announcement was the short timeframe that we had for adapting; you do not
want to be stuck with a similar short timeframe in 2020.
Introducing the Filter
In Android 1.0 through 9.0, external storage was relatively simple. All apps could
access it with permission, and starting with Android 4.4 apps could access parts
of it without permission (e.g., getExternalFilesDir() on Context). What the
user saw and what all the apps saw were the same.
Scoped storage — when your app has to start working with it — changes this completely.
What Your App Sees
Your app can work with the external and removable storage location roots supplied
by Context, just as it did in previous releases. So, getExternalFilesDir(),
getExternalCacheDir(), and others work as they have.
Everything else, such as Environment.getExternalStorageDirectory() and
Environment.getExternalStoragePublicDirectory(), is inaccessible.
You can neither read nor write. In fact, those Environment methods are now
deprecated — even though they will still return the correct values, those values
are useless, as you cannot use those locations.
A side effect of this is that you cannot see, let alone modify, the files
created by other apps on external storage.
What Other Apps See
Other apps are limited in the same way yours is. You
cannot see those apps’ files on external storage, and they cannot see yours, when
using normal filesystem APIs.
Pre-installed apps from the device manufacturer represent a notable exception.
Usually device manufacturers have ways of granting pre-installed apps more rights.
What the User Sees
Technically, there is no impact on the user. External storage can be seen using
a desktop OS and a USB cable as before.
From a practical standpoint, the user will see fewer files in traditional
locations, like Documents/, as fewer apps can write there.
And the user’s on-device ability to see what is on external storage will be limited
by the app that is used.
Controlling the Behavior
Fortunately, for Android 10 at least, your app has control over whether it has
traditional (“legacy”) external storage access or has “filtered” access.
Opting Out… For Now
To stick with legacy external storage, even on Android 10 devices,
add android:requestLegacyExternalStorage="true" to your <application>
element in your manifest.
With that in place, everything will work as it did in Android 4.4 through 9.0.
Opting In
Conversely, android:requestLegacyExternalStorage="false" opts into the
“filtered” behavior. This works regardless of targetSdkVersion, so even if your
targetSdkVersion is 28 or older, you can see how your app behaves when it
is using scoped storage.
If you want, you can have android:requestLegacyExternalStorage be controlled
by a bool resource value.
The
StorageExplorer sample module
in
the book’s sample project does this:

 <application
 android:name=".KoinApp"
 android:allowBackup="false"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/AppTheme"
 tools:ignore="GoogleAppIndexingWarning"
 android:requestLegacyExternalStorage="@bool/useLegacy">

(from StorageExplorer/src/main/AndroidManifest.xml)
The module has three flavor dimensions. One is called legacy, and it has
two flavors: legacy and normal. Those drive the configuration of the useLegacy
resource, via resValue:

 normal {
 dimension "legacy"
 applicationIdSuffix ".normal"
 resValue "bool", "useLegacy", "false"
 }

 legacy {
 dimension "legacy"
 applicationIdSuffix ".legacy"
 resValue "bool", "useLegacy", "true"
 }

(from StorageExplorer/build.gradle)
The result: a legacy build opts into the legacy external storage behavior,
while a normal opts into “the new normal” filtered external storage.
Default Conditions
If your targetSdkVersion is 28 or lower, you will have legacy external storage
behavior by default, as if you have opted out via android:requestLegacyExternalStorage="true".
However, once you set your targetSdkVersion to 29,
you will have filtered external storage by default.
It is best if you add android:requestLegacyExternalStorage yourself and declare,
positively, what scoped storage behavior you want to have for when your app runs on Android 10
devices.
To check whether you have scoped storage or not, you can call
isExternalStorageLegacy() on Environment:

 val msg =
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.Q && Environment.isExternalStorageLegacy())
 "This app has legacy external storage"
 else "This app has Q-normal external storage"

(from StorageExplorer/src/main/java/com/commonsware/android/storage/MainActivity.kt)
Note, though, that this will only return a valid value if you have a
<uses-permission> element for READ_EXTERNAL_STORAGE or
WRITE_EXTERNAL_STORAGE in the manifest. Otherwise, it always returns
false, even if you have opted into legacy storage.
What Will Happen in Android R?
The author of this book is a time traveler, but only in the forward direction
at a rate of one millisecond per millisecond.
(in other words, the author of this book is not really a time traveler)
We have no guaranteed way of knowing what 2020 and Android R will bring… but
we can make some guesses.
Official Warning
In April 2019, Google announced that the then-forthcoming Q Beta 3
would allow apps to opt out of scoped storage.
In that announcement, though, they wrote:

Scoped Storage will be required in next year’s major platform release for all apps, independent of target SDK level, so we recommend you add support to your app well in advance.

Hoped-For Outcome
With luck, Google will come to its senses, and only enable scoped storage on Android R
for apps with a targetSdkVersion of 29 (or perhaps 'R') or higher. This would be in line with
how targetSdkVersion normally works. And, given that the Play Store will require
a targetSdkVersion of 29 in the second half of 2020, this policy will
affect all actively-maintained apps. Yet, it would not break legacy apps that
will not be updated to avoid the Environment methods or other ways of attempting
to access inaccessible areas of external storage.
At the 2019 Android Developer Summit, Google made some statements that suggest
that this indeed is their plan.
Adapting to Scoped Storage
One way or another, it seems likely that apps will be given filtered external
storage eventually. While opting out is a good tactical decision, you need to plan
out your work to discontinue or minimize your use of external storage. This is
particularly true if you want to have files that remain on the device after
your app is uninstalled.
Consuming Content
Perhaps there is content that already exists that you want to be able to read
in. You might even want to modify that content yourself, if appropriate.
ACTION_OPEN_DOCUMENT
The best general-purpose solution is the Storage Access Framework. Specifically,
for existing content, ACTION_OPEN_DOCUMENT is the Android equivalent of the “file open”
dialogs that you might see on other platforms. The biggest difference is that
you are really opening content, not files.
Offering the user the opportunity to pick a piece of content is merely a matter
of a single startActivityForResult() call:

startActivityForResult(
 Intent(Intent.ACTION_OPEN_DOCUMENT).apply {
 addCategory(Intent.CATEGORY_OPENABLE); type = "*/*"
 },
 REQUEST_DOC
)

If there is a particular MIME type associated with your desired content, use
that in place of */*.
In onActivityResult(), if the result is for your request code (RESULT_DOC here)
and the result code is RESULT_OK, then the Intent should have a Uri that
points to the piece of content. You can use that directly with ContentResolver
and methods like openInputStream()/openOutputStream(). And you can use
DocumentFile.fromSingleUri() to create a DocumentFile to help you get at
things like a display name or the content’s length in bytes.
Inbound Actions
You might also consider setting up a suitable activity to support ACTION_VIEW
and/or ACTION_SEND. Then, in onCreate() and onNewIntent(), you can get
the Uri that the user wished your app to view or send. At that point, you
can use ContentResolver, though perhaps not DocumentFile, to work with
the content.
Other Options
If you need access to images, audio files, or video files, the next chapter
will give you some additional options.
There are also a variety of miscellaneous ways to get Uri values from the user,
by way of other apps, such as the clipboard and drag-and-drop.
Creating Content
Perhaps you want to create new content from scratch, rather than working with
something that already exists.
Filesystem… Maybe
You are welcome to still use getExternalFilesDir() and similar methods
on Context. This requires the user to navigate into Android/data/.../files/ —
where ... is your application ID — in order to get access to those files.
That is not particularly user-friendly.
ACTION_CREATE_DOCUMENT
ACTION_CREATE_DOCUMENT works much like ACTION_OPEN_DOCUMENT, except that you
will get a Uri where you can create a new piece of content, rather than it
pointing to an existing piece of content. This offers the user the most flexibility
and is not that difficult to use for most cases.
Media
If you wish to save images, audio files, or video files for the user,
MediaStore and related classes may be relevant options.
Sharing Content
If you want to get your content to another app directly, such as via ACTION_VIEW
or ACTION_SEND, your only options in a world of scoped storage are:

	
FileProvider (or equivalent ContentProvider implementations)

	MediaStore

But I Need a File!!!
Not everything can work with a Uri:

	Some libraries insist on files, possibly for the ability to randomly read
(or perhaps write) to locations in the file, or to be able to start over reading
the file from the beginning

	Some framework classes, like those for SQLite, can only work with files

	The NDK has no direct ability to work with Uri values

	And so on

Unfortunately, with the external storage restrictions placed on external storage,
your options are very limited here.
Option #1: See if the API Supports File-Like Stuff
If the API you are using supports InputStream or FileDescriptor, you can use
those with a Uri pointing to content… probably. Not all content Uri values
necessarily support FileDescriptor. You can get an InputStream or FileDescriptor
on your content via ContentResolver.
Similarly, some NDK code can work with file descriptors.
Option #2: Ask User to Put in App-Specific Location
You can ask the user to place the file in your app-specific directories
on external or removable storage.
If you are using methods like getExternalFilesDir() on Context, you would
ask the users to put the files in locations inside Android/data/.../ (where ... is
your application ID). Note, though, that these directories may not exist initially —
be sure to create the directory first before expecting the user to use it.
As noted above, this will be aggravating for the user. Partly, that is
because the directory structure
is not very user-friendly, particularly given the long list of application IDs on
many devices. It also may make it more difficult for the user
to also use this file with other apps.
Option #3: Copy Stream to Local File
Otherwise, if you get a Uri from something like the Storage Access Framework,
you are left with the unappetizing option of copying that content to some
file that you control (e.g., on internal storage), then using that file.
On the plus side, you control your copy of the content and can manipulate it
however you wish.
However, there are costs:

	The copy may take a while, for larger files

	You use additional storage space for the copy

	If you modify the copy, the only way that the user gets those modifications
is through your app or if you copy the data back out to some Uri-identified
content

	Depending on your use case for file, you might not know when a good time is
to remove your copy (e.g., you use FileProvider to give access to some other
app)

Other Problems To Consider
We will be running into all sorts of problems as a result of scoped storage.
Some we can identify now, while others
will become apparent over the coming months as we start to grapple with the
changes.
Here are some possible problems that you will need to consider with your app.
Advertising Support for Files in the Manifest
With scoped storage, there will be files on the external storage filesystem
that another app can access that your app cannot. The other app might
try using a file: Uri with some implicit Intent, such as ACTION_VIEW.
While the file: scheme is banned on Android 7.0+, that is a soft ban implemented
by StrictMode, and there are ways for apps to get around that. Or, the app
may be rather old, pre-dating the ban.
However, it is very unlikely that your app will be able to work with such a
file: Uri, as you have virtually no access to external storage that might
be accessible to another app.
As such, if you have an <intent-filter> with a <data> element for
android:scheme="file", you may receive Uri values that you cannot use.
Consider moving that <intent-filter> to an <activity-alias>, where you
use a boolean version-dependent resource to conditionally enable that
<activity-alias> on Android 9.0 and older. Then, you will not accept
file: Uri values on Android 10 and newer devices.
The
ConditionalFile sample module
in
the book’s sample project demonstrates
this technique.
We have a boolean resource named supportFileScheme. This is set to true
in res/values/bools.xml and false in res/values-v29/bools.xml. So,
supportFileScheme will be false for Android 10 and higher, true otherwise.
In our manifest, we have one <activity> element, for the typical MainActivity
class. It has two <intent-filter> elements: the standard launcher, and one
advertising support for ACTION_VIEW for text/plain content:

 <activity android:name=".MainActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />

 <category android:name="android.intent.category.DEFAULT" />
 <category android:name="android.intent.category.BROWSABLE" />

 <data android:scheme="https" />
 <data android:scheme="content" />
 <data android:mimeType="text/plain" />
 </intent-filter>
 </activity>

(from ConditionalFile/src/main/AndroidManifest.xml)
Notably, this advertises support for the https and content schemes, both
of which are supported on Android 10 as well as older versions of Android.
On older versions of Android, you could have file in here as well, but we want
to avoid that on Android 10. Unfortunately, neither <data> nor <intent-filter>
have an android:enabled option that we can use.
So, we split the file support out to an <activity-alias>:

 <activity-alias
 android:name=".FileAlias"
 android:enabled="@bool/supportFileScheme"
 android:targetActivity=".MainActivity">
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />

 <category android:name="android.intent.category.DEFAULT" />
 <category android:name="android.intent.category.BROWSABLE" />

 <data android:scheme="file" />
 <data android:mimeType="text/plain" />
 </intent-filter>

 </activity-alias>

(from ConditionalFile/src/main/AndroidManifest.xml)
This alias points to MainActivity, so the effect is that it adds another
<intent-filter> to MainActivity. That <intent-filter> is a clone of the
ACTION_VIEW one from MainActivity, except that the scheme list is now just
file. And, on the <activity-alias> itself, we have
android:enabled="@bool/supportFileScheme", so this alias will only be enabled
on Android 9.0 and older.
The activity itself just shows a Toast with the string representation of the
Intent used to start the activity.
This will give us what we want: ACTION_VIEW support for file only for
Android 9.0 and older, with support for https and content for all Android
versions.
Since the app does not actually use the Uri values supplied to it, you can
test this behavior using simple adb commands. This one will pop up the Toast
on all Android versions, as it uses a Uri with a content scheme:

adb shell am start -t text/plain -d content://respect.mah.authoritah/whatever

This one, though, will not match on Android 10, since it uses the file scheme:

adb shell am start -t text/plain -d file:///storage/emulated/0/whatever.txt

Assuming Valid Uri Values from ACTION_SEND

Unfortunately, the way that ACTION_SEND works does not allow you to filter
incoming requests by scheme. As a result, you may get EXTRA_STREAM
values with a file: Uri that you cannot access.
Ordinarily, you might just allow those errors to bring up some generic “oops”
dialog, snackbar, etc. In this case, you should consider adding a more
specific error message, indicating that the app that was used to send content
to you is old and needs to be updated.
Assuming Valid Uri Values from the Clipboard
Similarly, you can get a Uri from the clipboard or via drag-and-drop, where
you cannot filter by scheme. Add custom error messages here as well, indicating
that the source of the Uri is old and needs to be updated.
Assuming Content is Seekable
Methods like mark() and reset() on InputStream may or may not work on a
stream obtained for content identified by a Uri. Those methods usually work
if the stream is backed directly by a file on the filesystem. They usually will
not work for a stream that requires the ContentProvider to process the
data, such as decrypting an encrypted file.
As a result, a Uri from things like the Storage Access Framework may or may
not work with code that relies on the ability to rewind the stream, such as
some media libraries.
If you in your own code rely on mark() and reset(), try to switch to some
sort of buffering strategy, so your “rewind” operations work on data that you
already read and do not assume that you can rewind the stream itself.
Related Deprecations That Might Affect You
StorageVolume.createAccessIntent() is deprecated. More importantly, it will
fail fast. This was used to request access to one of the Environment
public directories, as an alternative to needing READ_EXTERNAL_STORAGE
and therefore getting access to the entire external storage area. It would appear
that the scoped storage feature not only replaces this but is incompatible
with this. So, if you are using createAccessIntent(), you will need to add
code to take a new approach on Android 10 and higher devices.
Using MediaStore

One of the Google-recommended alternatives to working directly with
external storage is to use MediaStore. MediaStore, unfortunately,
has never had particularly good documentation. And, some aspects of using
MediaStore changed in Android 10.
For general-purpose apps, the Storage Access Framework is a better solution
for storing content. However, if your app has a particular focus on audio,
video, or image media, then MediaStore is well worth consideration.
What Not To Do
Due to the shortage of documentation, proper use of MediaStore has always
been a mess, rife with anti-patterns.
The biggest anti-pattern involves the use of the DATA column. Too many developers
try using query() on a ContentResolver, given a MediaStore Uri, to get
the DATA column. Those developers then treat the result as a filesystem path
to access the media.
However:

	There is no requirement that the DATA column have a value

	There is no requirement that the DATA column have a filesystem path

	There is no requirement that the filesystem path in the DATA column be a file that you can access, even with READ_EXTERNAL_STORAGE

And, on Android 10, the MediaStore specifically will redact the DATA column
from any query results.
To get a Uri that you can use with ContentResolver for things like openInputStream():

	Query for the _ID column

	Use ContentUris.withAppendedId() to assemble a MediaStore Uri from the base
Uri that you used in the query() and that ID value returned by the query()

MediaStore and Permissions
No permissions are required to work with the MediaStore,
in terms of writing your own content. According to the documentation,
READ_EXTERNAL_STORAGE is required, though, for consuming the content added to
the MediaStore by others.
And, the documentation suggests that in the future, if you try to modify another
app’s content, the exception that will be raised will be a subclass of
RecoverableSecurityException. This contains, among other things, a RemoteAction
that can be used to present an option to the user for recovering from the problem.
In this case, presumably it will display some sort of system dialog to have
the user grant rights for your app to modify that content.
How to Consume Media
First, let’s look at how you can get access to media that has been indexed
by the MediaStore.
In particular, we will examine the
ConferenceVideos sample module
in
the book’s sample project. This
app has a list of videos of presentations delivered by the book’s author
at various conferences. The app will see if these videos are already downloaded
and indexed by MediaStore. For those that are not, the user will be able to download
them, with the app handing the videos over to MediaStore. For the downloaded
videos, the user can request to play the video using some existing video player
app on the device.
Querying MediaStore

Consuming media centers around the media’s Uri. You have two main approaches
for getting such a Uri:

	Ask some other app to help the user choose a piece of media, via ACTION_PICK,
ACTION_GET_CONTENT, or ACTION_OPEN_DOCUMENT

	Query the MediaStore yourself to find options and, where relevant, derive
media Uri values for them

In the case of the ConferenceVideos app, we know what the videos are supposed
to be, but we do not know if they have been downloaded or not. So, the second
option is the right choice, as we can query to see which videos of our set are
already known to MediaStore or not.
Getting the Root Uri

Classically, we would use some fixed values for querying MediaStore, typed by
the sort of media we wanted:

	MediaStore.Audio.Media.EXTERNAL_CONTENT_URI

	MediaStore.Image.Media.EXTERNAL_CONTENT_URI

	MediaStore.Video.Media.EXTERNAL_CONTENT_URI

In principle, those should still work.
Another, albeit ill-used option, is getContentUri(). This is a method on classes
like MediaStore.Video.Media. Given the name of some “volume”, it returns a Uri
for querying that volume. The Android 10 documentation steers you in the direction
of getContentUri(), in part because there is a getExternalVolumeNames() method on
MediaStore that returns a list of values that you could supply to getContentUri().
Mediastore.VOLUME_EXTERNAL should give you a representation including both
external and removable storage.
ConferenceVideos is a fairly unsophisticated app, so it just uses MediaStore.VOLUME_EXTERNAL
on Android 10 devices, falling back to MediaStore.Video.Media.EXTERNAL_CONTENT_URI
on older devices:

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.Q) MediaStore.Video.Media.getContentUri(
 MediaStore.VOLUME_EXTERNAL
) else MediaStore.Video.Media.EXTERNAL_CONTENT_URI

(from ConferenceVideos/src/main/java/com/commonsware/android/conferencevideos/VideoRepository.kt)
MediaStore also has some “decorator” methods that can be used to augment a Uri
with some parameters to opt into certain behavior. These methods take a Uri
and return a new Uri based on the one that you supplied, “decorated” with additional
information. For example, setIncludePending() will decorate a Uri to indicate
that you want to see pending and final results in your query results, where a “pending”
result means that the content may not yet be ready (e.g., it is being downloaded).
Deriving a Media Content Uri

Given a root Uri, query() on ContentResolver is unchanged in Android 10.
You provide the root Uri, a “projection” of columns to return, your query, any
arguments to that query, and something to serve as the equivalent of a SQL
ORDER BY clause. It returns a Cursor with the results.
The ConferenceVideos sample module has a VideoRepository that is responsible
for communications with MediaStore and the CommonsWare Web server (where the videos
are available for download). It has a getLocalUri() function that tries to derive
the Uri for a video, given the video’s filename:

 suspend fun getLocalUri(filename: String): Uri? =
 withContext(Dispatchers.IO) {
 val resolver = context.contentResolver

 resolver.query(collection, PROJECTION, QUERY, arrayOf(filename), null)
 ?.use { cursor ->
 if (cursor.count > 0) {
 cursor.moveToFirst()
 return@withContext ContentUris.withAppendedId(
 collection,
 cursor.getLong(0)
)
 }
 }

 null
 }

(from ConferenceVideos/src/main/java/com/commonsware/android/conferencevideos/VideoRepository.kt)
Here, PROJECTION and QUERY are defined as constants:

private val PROJECTION = arrayOf(MediaStore.Video.Media._ID)
private const val QUERY = MediaStore.Video.Media.DISPLAY_NAME + " = ?"

(from ConferenceVideos/src/main/java/com/commonsware/android/conferencevideos/VideoRepository.kt)
If the query returns a Cursor with a row, we move to that row and use
ContentUris.withAppendedId() to assemble the Uri from the collection
root Uri and the _ID value returned from the query.
Using a Media Content Uri

Given the Uri to a piece of media, you have lots of options.
The sample module just wraps it in an ACTION_VIEW Intent when the user
taps on the video (represented in a row in a RecyclerView), to play back
that video.
If you want to consume the content directly in your app, you have lots
of options on ContentResolver, including:

	openInputStream()

	openOutputStream()

	openFileDescriptor()

Android 10 adds a loadThumbnail() method on ContentResolver. This will attempt
to give you a Bitmap representation of the content identified by the Uri.
The exact source of the data is undocumented but probably amounts to:

	Images: the image itself

	Audio: album art, if any

	Video: a frame of the video itself

How to Create Media
It used to be that creating media was a matter of writing the media to some file
on external storage, then getting the MediaStore to index it (e.g., via
MediaScannerConnection). However, now that writing to external storage is less
of an option, we need to switch techniques. The technique that the Android 10 documentation
cites is to use insert() on ContentResolver… though that approach only
works on Android 10, as you will see.
Getting the Root Uri

Once again, you will need a Uri identifying the collection (audio, image, video)
of the content that you want to create, and possibly the storage volume on which
to create it. This is the same as for querying, where you can use getContentUri()
or try one of the legacy constants (e.g., MediaStore.Video.Media.EXTERNAL_CONTENT_URI).
The ConferenceVideos sample uses the same collection value that we used
for querying:

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.Q) MediaStore.Video.Media.getContentUri(
 MediaStore.VOLUME_EXTERNAL
) else MediaStore.Video.Media.EXTERNAL_CONTENT_URI

(from ConferenceVideos/src/main/java/com/commonsware/android/conferencevideos/VideoRepository.kt)
Crafting the Metadata
insert() takes a ContentValues that describes the content that you wish
to add to the media collection identified by the Uri that you supply. At minimum,
your ContentValues needs to provide DISPLAY_NAME (for a human-readable identifier
for this content) and MIME_TYPE (to indicate what sort of content this is).
Android 10 adds a few additional options that you can consider.
IS_PENDING
One is IS_PENDING. As the name suggests, this indicates whether or not the
content is “pending”. “Pending” implies that the content is not yet ready
for use — for example, the MediaStore database entry is created, but we are
still downloading the content. IS_PENDING controls whether other apps, querying
the MediaStore, will see this entry:

	
1 means that the content is pending, and other apps will not see this content
by default (unless they use setIncludePending())

	
0 means that the content is ready for use

Hence, the recipe is to set IS_PENDING to 1 initially, then flip it to 0
via an update() call on a ContentResolver when the content is ready for consumption
by other apps.
Directory Hints
Android 10 also offers RELATIVE_PATH. This addresses a key problem with MediaStore:
controlling where the media goes on the device.
Suppose you are downloading MP3 files representing songs. Typically, those would
go in Music/[artist]/[album]/ as a directory, substituting in suitable values
for <artist> and <album>. However, if the content itself lacks the metadata
(e.g., MP3 tags), MediaStore will not realize that the MP3 should go in this
location.
RELATIVE_PATH allows your code to assemble that relative path and suggest it
to MediaStore. It should be a relative path from a storage root (e.g., the root
of external storage) that identifies a directory which MediaStore should create
(if needed) and use for the content.
This is a hint, and there is no requirement for MediaStore to honor the request.
In particular, if the top-level path segment of the relative path makes no sense
(e.g., Stuff/Goes/Here), MediaStore may elect to ignore the request.
Using the Media Content Uri

insert() returns a Uri that represents where you can write your content.
You can use that with openOutputStream() or openFileDescriptor() to
write your content to the designated location. Afterwards, if you set IS_PENDING
to 1, you can use update() and that Uri to reset it to 0 and allow other
apps to see your content.
The VideoRepository has a downloadQ() function that:

	Assembles a URL to the video

	Uses OkHttp to request that video

	Uses insert() to get the Uri to where the video should be saved, with RELATIVE_PATH
suggesting to put the video in a ConferenceVideos/ directory off of the stock
Movies/ directory

	Writes the video content to that location

	Uses update() to set IS_PENDING to 0

 private suspend fun downloadQ(filename: String): Uri =
 withContext(Dispatchers.IO) {
 val url = URL_BASE + filename
 val response = ok.newCall(Request.Builder().url(url).build()).execute()

 if (response.isSuccessful) {
 val values = ContentValues().apply {
 put(MediaStore.Video.Media.DISPLAY_NAME, filename)
 put(MediaStore.Video.Media.RELATIVE_PATH, "Movies/ConferenceVideos")
 put(MediaStore.Video.Media.MIME_TYPE, "video/mp4")
 put(MediaStore.Video.Media.IS_PENDING, 1)
 }

 val resolver = context.contentResolver
 val uri = resolver.insert(collection, values)

 uri?.let {
 resolver.openOutputStream(uri)?.use { outputStream ->
 val sink = Okio.buffer(Okio.sink(outputStream))

 response.body()?.source()?.let { sink.writeAll(it) }
 sink.close()
 }

 values.clear()
 values.put(MediaStore.Video.Media.IS_PENDING, 0)
 resolver.update(uri, values, null, null)
 } ?: throw RuntimeException("MediaStore failed for some reason")

 uri
 } else {
 throw RuntimeException("OkHttp failed for some reason")
 }
 }

(from ConferenceVideos/src/main/java/com/commonsware/android/conferencevideos/VideoRepository.kt)
Backwards-Compatibility Woe
Unfortunately, this does not work well on prior versions of Android:

	While what you write to the Uri location is saved to disk, it is not obvious
where that location actually is

	The content metadata, such as the filename, does not seem to be saved in MediaStore

So, in the sample, downloadQ() is wrapped by a download() function that only
uses downloadQ() on Android 10 devices:

 suspend fun download(filename: String): Uri =
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.Q) downloadQ(filename)
 else downloadLegacy(filename)

(from ConferenceVideos/src/main/java/com/commonsware/android/conferencevideos/VideoRepository.kt)
download() delegates to downloadLegacy() on older devices, using the classic
approach of writing the content to external storage, then indexing the result:

 private suspend fun downloadLegacy(filename: String): Uri =
 withContext(Dispatchers.IO) {
 val file = File(
 Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_MOVIES),
 filename
)
 val url = URL_BASE + filename
 val response = ok.newCall(Request.Builder().url(url).build()).execute()

 if (response.isSuccessful) {
 val sink = Okio.buffer(Okio.sink(file))

 response.body()?.source()?.let { sink.writeAll(it) }
 sink.close()

 MediaScannerConnection.scanFile(
 context,
 arrayOf(file.absolutePath),
 arrayOf("video/mp4"),
 null
)

 FileProvider.getUriForFile(context, AUTHORITY, file)
 } else {
 throw RuntimeException("OkHttp failed for some reason")
 }
 }

(from ConferenceVideos/src/main/java/com/commonsware/android/conferencevideos/VideoRepository.kt)
However, we no longer have a Uri representing the video this way, and the
indexing operation is asynchronous. So, we settle for FileProvider to give
us access in the short term. Future runs of the app should see the content
in the MediaStore and be able to use a MediaStore-supplied Uri to work
with it.
Also note that we use MediaScannerConnection.scanFile() in this scenario.
That is not needed with downloadQ(), as we are directly putting the
image into the MediaStore.
Other MediaStore Changes
There have been a few other MediaStore changes of note in Android 10.
Removed Fields
A bunch of fields from MediaStore.MediaColumns were removed, including ORIENTATION,
DURATION, and DATE_TAKEN. If your app has been querying on those columns, they
may no longer be available to you.
MediaStore.Downloads
There is a new collection, called MediaStore.Downloads. This appears to map
to the Downloads/ directory on external storage. However, it is largely undocumented.
Location Access Restrictions
One of the bigger privacy issues in Android is the availability of location data.
Users like certain types of apps, such as navigation assistants, knowing where
the user is. Users do not like arbitrary use of location data, though, and various ad networks
and malicious apps have been harvesting location data inappropriately.
So, in Android 10, location access gets locked down even further than before.
Background Location Access
The change that will get the most attention is that there are new limitations
on getting location data in the background. There are two main scenarios for this:

	The app had been in the foreground, but the user switches to another app.
For example, the user might be using a navigation app but then receive a phone call,
at which point the device UI switches to an in-call screen. Ideally, the navigation
app will continue to receive location data, despite being (temporarily) in the
background… but in Android 10, this requires a bit of additional work.

	The app is operating purely in the background (e.g., JobScheduler jobs) and wants
to get the user’s location. This requires an additional permission on Android 10.

You can learn more about LocationManager in the "Accessing Location-Based Services" chapter of
The Busy Coder's Guide to Android Development!

Started from Foreground
Your app might mostly need locations in the foreground, but its UI might be moved
to the background based on user interactions. You might want to keep getting the
location updates while your UI is not in the foreground, so when you do return
to the foreground, you have up-to-date location data.
The recommended pattern to make this work is to start a foreground service
when your app moves to the background, where that service has android:foregroundServiceType="location"
on its <service> manifest element. Then, the service can continue
receiving notification updates, even though the UI is not in the foreground.
The
LocationForeground sample module
in
the book’s sample project
illustrates this process.
The app has an activity that displays the latitude, longitude, and fix time of the
latest GPS fix. It gets those from a LocationRepository that exposes the location
updates via LiveData:

package com.commonsware.android.q.loc.fg

import android.Manifest
import android.content.Context
import android.content.pm.PackageManager
import android.location.Location
import android.location.LocationListener
import android.location.LocationManager
import android.os.Bundle
import androidx.lifecycle.LiveData
import androidx.lifecycle.MutableLiveData

class LocationRepository(private val context: Context) {
 private val _locations = MutableLiveData<Location>()
 val locations: LiveData<Location> = _locations
 private var locationsRequested = false

 init {
 initRequest()
 }

 fun initRequest() {
 if (!locationsRequested) {
 val mgr = context.getSystemService(LocationManager::class.java)

 if (context.checkSelfPermission(Manifest.permission.ACCESS_FINE_LOCATION) ==
 PackageManager.PERMISSION_GRANTED
) {
 locationsRequested = true
 mgr.requestLocationUpdates(
 LocationManager.GPS_PROVIDER,
 0,
 0.0f,
 object : LocationListener {
 override fun onLocationChanged(location: Location) {
 _locations.postValue(location)
 }

 override fun onStatusChanged(p0: String?, p1: Int, p2: Bundle?) {
 // unused
 }

 override fun onProviderEnabled(p0: String?) {
 // unused
 }

 override fun onProviderDisabled(p0: String?) {
 // unused
 }
 })
 }
 }
 }
}

(from LocationForeground/src/main/java/com/commonsware/android/q/loc/fg/LocationRepository.kt)
The activity has a viewmodel that gets the LocationRepository (via Koin-supplied
dependency injection), and the activity gets the data to provide to data binding
from that viewmodel.
This works great when the UI is in the foreground. However, we also want to ensure
that LocationRepository can continue getting location data when the UI moves
to the background.
For that, we have a ForegroundService. Not surprisingly, ForegroundService
is a foreground service. It too gets the LocationRepository and dumps the latitude
and longitude to Logcat:

package com.commonsware.android.q.loc.fg

import android.app.Notification
import android.app.NotificationChannel
import android.app.NotificationManager
import android.app.PendingIntent
import android.content.BroadcastReceiver
import android.content.Context
import android.content.Intent
import android.os.Build
import android.util.Log
import androidx.core.app.NotificationCompat
import androidx.lifecycle.LifecycleService
import androidx.lifecycle.Observer
import org.koin.android.ext.android.inject

private const val CHANNEL_WHATEVER = "channel_whatever"
private const val FOREGROUND_ID = 1338

class ForegroundService : LifecycleService() {
 private val repo: LocationRepository by inject()

 override fun onCreate() {
 super.onCreate()

 val mgr = getSystemService(NotificationManager::class.java)!!

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O &&
 mgr.getNotificationChannel(CHANNEL_WHATEVER) == null
) {
 mgr.createNotificationChannel(
 NotificationChannel(
 CHANNEL_WHATEVER,
 "Whatever",
 NotificationManager.IMPORTANCE_DEFAULT
)
)
 }

 startForeground(FOREGROUND_ID, buildForegroundNotification())

 repo.locations.observe(this, Observer {
 Log.d(
 "LocationForeground",
 "Latitude: ${it.latitude} Longitude: ${it.longitude}"
)
 })
 }

 private fun buildForegroundNotification(): Notification {
 val pi = PendingIntent.getBroadcast(
 this,
 1337,
 Intent(this, StopServiceReceiver::class.java),
 0
)
 val b = NotificationCompat.Builder(this, CHANNEL_WHATEVER)

 b.setOngoing(true)
 .setContentTitle(getString(R.string.app_name))
 .setContentText(getString(R.string.notif_text))
 .setSmallIcon(R.drawable.ic_notification)
 .setContentIntent(pi)

 return b.build()
 }
}

class StopServiceReceiver : BroadcastReceiver() {
 override fun onReceive(context: Context, intent: Intent) {
 context.stopService(Intent(context, ForegroundService::class.java))
 }
}

(from LocationForeground/src/main/java/com/commonsware/android/q/loc/fg/ForegroundService.kt)
Its manifest entry has the new android:foregroundServiceType attribute:

 <service
 android:name=".ForegroundService"
 android:foregroundServiceType="location" />

(from LocationForeground/src/main/AndroidManifest.xml)
This attribute is used to tell Android that the service:

	Will be a foreground service, and

	Will want to continue using some class of API (in this case, location)

Then, to start and stop the service, we leverage ProcessLifecycleOwner from
the Architecture Components. This lets us know when our UI comes to the foreground
or moves to the background overall. In this case, we have only one activity, but
most apps have more than one activity, so ProcessLifecycleOwner will be a better
choice, as it reports the overall foreground/background status, not just for a single activity.
So, our custom Application subclass (KoinApp), in addition to setting up
Koin dependency injection, also registers a DefaultLifecycleObserver to find
out about the UI state changes:

package com.commonsware.android.q.loc.fg

import android.app.Application
import android.content.Intent
import androidx.lifecycle.DefaultLifecycleObserver
import androidx.lifecycle.LifecycleOwner
import androidx.lifecycle.ProcessLifecycleOwner
import org.koin.android.ext.android.startKoin
import org.koin.android.ext.koin.androidContext
import org.koin.androidx.viewmodel.ext.koin.viewModel
import org.koin.dsl.module.module

class KoinApp : Application() {
 private val koinModule = module {
 single { LocationRepository(androidContext()) }
 viewModel { MainMotor(get()) }
 }

 override fun onCreate() {
 super.onCreate()

 startKoin(this, listOf(koinModule))

 ProcessLifecycleOwner.get()
 .lifecycle
 .addObserver(object : DefaultLifecycleObserver {
 override fun onStart(owner: LifecycleOwner) {
 stopService(Intent(this@KoinApp, ForegroundService::class.java))
 }

 override fun onStop(owner: LifecycleOwner) {
 startForegroundService(Intent(this@KoinApp, ForegroundService::class.java))
 }
 })
 }
}

(from LocationForeground/src/main/java/com/commonsware/android/q/loc/fg/KoinApp.kt)
When the UI moves to the background, we start the ForegroundService. When
the UI moves to the foreground, we stop the ForegroundService (even if the
service was not necessarily started, as stopService() does not crash or anything
if you do that).
This “run the service while the UI is in the background” approach works reasonably
well… except that it always starts this service, which may include some times
when the user does not really want it. For the purposes of the book sample,
the notification itself will stop the service if the user clicks on it. A production-grade
app may need greater sophistication here.
However, for the purposes of the Android 10 problem, we are able to continue
receiving location updates, even when our UI is no longer in the foreground.
Requested from Background
Doing work purely in the background is difficult on modern versions of Android,
owing to all the changes related to Doze mode and similar features. Getting
location data purely in the background already was a pain, as some of the preferred
background options — such as WorkManager — do not integrate well with asynchronous
APIs like we have with the location APIs.
In light of that, Android 10’s changes are not a big deal.
There is a new permission, ACCESS_BACKGROUND_LOCATION, that you will need to
request. This is a dangerous permission, so you not only need the <uses-permission>
element for it in the manifest, but you need to request it at runtime. Since you
are already requesting ACCESS_COARSE_LOCATION or ACCESS_FINE_LOCATION,
this additional permission just adds a bit of incremental code.
The user winds up with three basic options in terms of granting rights to your app:

	Unfettered access to location

	“Only while the app is in use”, which translates to “only while the app has UI in the foreground”

	No access at all

The middle option will mean that your app will hold ACCESS_COARSE_LOCATION or ACCESS_FINE_LOCATION
(whichever you requested) but not ACCESS_BACKGROUND_LOCATION. And, if you
do not hold ACCESS_BACKGROUND_LOCATION, you cannot obtain location data from
the background, unless you originally were getting the locations in the foreground,
as we saw in the preceding section.
However, this just means that your background code will need to check for this
new permission and handle it the same as if the user revoked your
ACCESS_COARSE_LOCATION or ACCESS_FINE_LOCATION rights. Once again, this
adds a bit of additional code, and it adds a new scenario (foreground location
access but not background location access), but it should not cause much significant harm
to your app’s functionality.
EXIF Metadata Redaction
JPEG images can have EXIF metadata “tags”. For example, one important one is
orientation, indicating how the device was being held at the time the picture was
taken. This allows image-viewing code to rotate the image as needed to properly
orient it for viewing.
“Geotagged” photos represent another set of EXIF tags. A camera app can elect
to include location information in photos as tags. This enables a lot of interesting
features and services, such as allowing a user to browse a photo gallery via a
map instead of only chronologically.
However, geotagged photos represent semi-intentional leaks of location information.
For example, if a photo was created five minutes ago and has GPS coordinates,
it is reasonable to think that the device is still in the general vicinity. This
is less true of a photo created five months ago… but if there are a lot of photos
in a similar area, there is a decent chance that the user lives in that area and
is taking photos of local events.
As a result, in Android 10, access to this information is much more restricted
than it had been.
At least, in theory it is.
Individual Files
According to the documentation, EXIF data is supposed to be redacted when reading
in images.
However, that does not seem to be working,
at least for:

	Files that you can access on the filesystem

	Content that you can access via the Storage Access Framework

However, it does work, by default, for a Uri from the MediaStore. For
example, consider this function:

fun gimmeTehTags(image: Uri) {
 context.contentResolver.openInputStream(image)?.use { src ->
 val exif = ExifInterface(src)
 val location = exif.latLong
 }
}

We get a valid location for images that have those EXIF tags if the Uri:

	Has the file scheme (e.g., a file on the filesystem that you can access)

	Is from the Storage Access Framework

By default, we get null if the Uri came from the MediaStore.
However, we still can get the location information, even from the MediaStore.
This requires two things, in theory:

	Your app needs to hold the ACCESS_MEDIA_LOCATION permission (which is dangerous
and needs to go through runtime permissions)

	Your app needs to call MediaStore.setRequireOriginal(), supplying the Uri for which
you would like the location — this method then returns a decorated Uri that can be
used with openInputStream()

Then, if you use openInputStream() for the setRequireOriginal()-supplied
Uri, you will get a stream that includes the location EXIF tags.
MediaStore
As part of indexing the images available on external storage, the MediaStore
used to examine the EXIF headers and save location data. That could then be accessed
by querying the MediaStore for MediaStore.Images.Media.LATITUDE and
MediaStore.Images.Media.LONGITUDE values.
However, that is not done on Android 10, and therefore you will be unable
to obtain this data. This is not dependent upon targetSdkVersion — MediaStore
simply does not seem to aggregate this data.
As a result, your only option appears to be to get the Uri for each individual
image and use ExifInterface, as shown above. This is far slower than obtaining
the data directly from MediaStore, so ideally you are not attempting to get this
data in bulk.
Share Targets
Android 10 is changing the “share sheet” that is displayed when an ACTION_SEND
Intent is used. A new system of “share targets” is available, to help the
user not only send content to your app, but send it to some specific context.
To do this,
Android 10 hacks in a change to dynamic shortcuts, reusing those for ACTION_SEND
scenarios.
What Came Before
Android 10, in effect, implements a mash-up of the old “direct share” system
with the old “dynamic shortcuts” system to create the new “share targets”
system.
Direct Share
Many apps that support responding to ACTION_SEND just do that, nothing more.
Android 6.0, though, added a “direct share” API that allows apps to offer not
only the app as a place to share, but something specific within the app:

	A messaging client might offer sharing to a particular contact

	A note-taking app might offer “sharing” to a particular category, filing
the shared content under that category for later retrieval

	A file manager might offer “sharing” to a particular directory, saving
the content as a file in that specified location

	And so on

This involved:

	Creating a subclass of ChooserTargetService

	Registering it in the manifest with an <intent-filter> having
<action android:name="android.service.chooser.ChooserTargetService"/>

	Having your ACTION_SEND activity have a <meta-data> element pointing to
the service

	Implementing onGetChooserTargets() to supply a list of ChooserTarget
options based on the IntentFilter matched for your ACTION_SEND activity

The ChooserTarget objects would contain a title, an icon, and a Bundle
of extras. The Bundle would be merged into the rest of the ACTION_SEND
Intent if the user chose that particular ChooserTarget, where the icon
and title would be shown as an additional option on the “share sheet” UI
that appeared for an ACTION_SEND request
This worked, but it had performance implications. This approach was a “pull”
mechanism, where Android would need to collect the ChooserTarget objects before
the “share sheet” could be fully displayed. For any candidate apps that lacked
running processes, this would involve forking fresh processes for those apps,
so their ChooserTargetService subclasses could do their work. This added
a lot of overhead, particularly for users who installed a bunch of ACTION_SEND-capable
apps that advertised support for a wide range of content (e.g., */* as a MIME
type).
Part of the reason for Android 10’s changes is to switch to a “push” mechanism,
whereby apps can register possible share targets in advance. That way, the data
is available immediately when an ACTION_SEND is requested, and the “share sheet”
can be displayed more rapidly.
Dynamic Shortcuts
Android 7.1 added app shortcuts.
This is a way for an app to advertise additional entry points into the app,
without having multiple launcher icons. Instead, the app can teach Android
additional shortcuts, which launcher apps (or other apps) could then present to the
user. For example, long-pressing on a launcher icon might pop up a list of
these shortcuts for a user to choose from.
Static shortcuts are the easiest ones to set up, as they just require a resource
and a manifest entry. However, they are fixed options. Dynamic shortcuts, by
comparison, allow your app to offer shortcuts based on user data and behavior
(e.g., have a shortcut to compose an email to a particular contact). However,
they are more complex to set up, requiring you to work with a ShortcutManager
system service and define the available shortcuts from your Java or Kotlin code.
Implementing the New Approach
In effect, Android 10 allows dynamic shortcuts to serve as share targets, in lieu
of using a ChooserTargetService.
However, it will be years before Android 10 and higher devices become dominant.
Google is making available an AndroidX library that uses the new Android 10
solution on compatible devices and falls back to ChooserTargetService for
older ones.
The
ShareTargets sample module
in
the book’s sample project demonstrates
how this works.
Add the Dependency
The AndroidX dependency that lets Android 10 share targets work on older
devices is androidx.sharetarget:

 implementation "androidx.sharetarget:sharetarget:$sharetarget_version"

(from ShareTargets/build.gradle)

 sharetarget_version = "1.0.0-beta02"

(from build.gradle)
This library provides a ChooserTargetService implementation called
androidx.sharetarget.ChooserTargetServiceCompat. We get its <service>
manifest element automatically through the manifest merger process. However,
we have to add an android.service.chooser.chooser_target_service <meta-data>
element to the <activity> element that represents our ACTION_SEND
implementation, where the <meta-data> points to this supplied service:

 <activity android:name=".ShareActivity">
 <intent-filter>
 <action android:name="android.intent.action.SEND" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:mimeType="*/*" />
 </intent-filter>
 <meta-data
 android:name="android.service.chooser.chooser_target_service"
 android:value="androidx.sharetarget.ChooserTargetServiceCompat" />
 </activity>

(from ShareTargets/src/main/AndroidManifest.xml)
Declare Share Targets
We then need to have an XML resource (res/xml/) that contains our share targets.
For projects that already use static shortcuts, you can add a <share-target>
element to your existing static shortcuts resource. Otherwise, you will need
to create one.
So, our sample module has a res/xml/share_targets.xml resource to fulfill this requirement:

<?xml version="1.0" encoding="utf-8"?>
<shortcuts xmlns:android="http://schemas.android.com/apk/res/android">
 <share-target android:targetClass="com.commonsware.android.q.sharetargets.ShareActivity">
 <data android:mimeType="*/*" />
 <category android:name="com.commonsware.android.q.sharetargets.CUSTOM_SHARE_TARGET" />
 </share-target>
</shortcuts>

(from ShareTargets/src/main/res/xml/share_targets.xml)
Your <share-target> element will need an android:targetClass attribute,
containing the fully-qualified class name of the ACTION_SEND activity.
You also need:

	A <data> element identifying the MIME type pattern that you wish to receive

	A <category> element with a unique “category” name

In this case, the category is not an <intent-filter> category. Rather, it is simply
an identifier that we will use to connect this <share-target> element with
some corresponding dynamic shortcuts.
You can have as many <share-target> elements as needed, though a typical app
will not need more than one ACTION_SEND activity. An individual <share-target>
element can have as many <data> and <category> elements as needed, and in this
case, more than one <data> element may be needed to match the desired roster
of MIME types.
As with regular static shortcuts, this XML resource needs to be identified by
a android.app.shortcuts <meta-data> element on the LAUNCHER <activity>
element:

 <activity
 android:name=".MainActivity"
 android:theme="@android:style/Theme.Translucent.NoTitleBar">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 <intent-filter>
 <action android:name="${applicationId}.ACTION_WHATEVER" />

 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>

 <meta-data
 android:name="android.app.shortcuts"
 android:resource="@xml/share_targets" />
 </activity>

(from ShareTargets/src/main/AndroidManifest.xml)
(we will discuss that odd second <intent-filter> shortly)
Register Dynamic Shortcuts
We then need to register dynamic shortcuts using ShortcutManager (or the
AndroidX ShortcutManagerCompat). These represent the actual entries that should
show up in the “share sheet” UI. And, in particular, they need to have a category
that matches a category used in a <share-target> element from the shortcuts
XML resource.
The app’s MainActivity will create those dynamic shortcuts in onCreate(),
if they have not already been registered:

package com.commonsware.android.q.sharetargets

import android.content.Intent
import android.os.Bundle
import android.widget.Toast
import androidx.annotation.DrawableRes
import androidx.annotation.StringRes
import androidx.appcompat.app.AppCompatActivity
import androidx.core.content.pm.ShortcutInfoCompat
import androidx.core.content.pm.ShortcutManagerCompat
import androidx.core.graphics.drawable.IconCompat

data class ShareTarget(
 val id: String,
 @StringRes val shortLabelRes: Int,
 @DrawableRes val iconRes: Int
)

private val SHARE_CATEGORIES =
 setOf("com.commonsware.android.q.sharetargets.CUSTOM_SHARE_TARGET")
private val TARGETS = listOf(
 ShareTarget("one", R.string.tag_one, R.drawable.ic_looks_one_black_24dp),
 ShareTarget("two", R.string.tag_two, R.drawable.ic_looks_two_black_24dp),
 ShareTarget("five", R.string.tag_five, R.drawable.ic_looks_5_black_24dp)
)

class MainActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 if (ShortcutManagerCompat.getDynamicShortcuts(this).size == 0) {
 val intent = Intent("$packageName.ACTION_WHATEVER")

 ShortcutManagerCompat.addDynamicShortcuts(this, TARGETS.map { tag ->
 ShortcutInfoCompat.Builder(this, tag.id)
 .setShortLabel(getString(tag.shortLabelRes))
 .setIcon(IconCompat.createWithResource(this, tag.iconRes))
 .setIntent(intent)
 .setLongLived(true)
 .setCategories(SHARE_CATEGORIES)
 .build()
 })

 Toast.makeText(this, "Share targets ready!", Toast.LENGTH_LONG).show()
 } else {
 Toast.makeText(this, "${intent.action} received!", Toast.LENGTH_LONG).show()
 }

 finish()
 }
}

(from ShareTargets/src/main/java/com/commonsware/android/q/sharetargets/MainActivity.kt)
Here, we iterate over a TARGETS list of ShareTarget objects. Those simply
aggregate some metadata that we need for the dynamic shortcuts: an ID, an icon,
and a label. We convert those to ShortcutInfoCompat objects via
ShortcutInfoCompat.Builder. Each of those ShortcutInfoCompat objects also
gets:

	A set of categories (CATEGORIES) that includes the category that we used
in the <share-target> element

	An Intent for a custom action (ACTION_WHATEVER in the namespace of the application),
and that Intent will be used if the user actually uses this dynamic shortcut

The User Experience
From a sharing standpoint, the user experience is about what you would expect…
albeit with a side-effect that may be less than ideal for some apps.
Sharing
If an app requests an ACTION_SEND that matches your desired MIME type(s),
your dynamic shortcuts will appear in the “share sheet”:

[image: Android 10 Share Sheet, Showing Custom Share Targets]

Figure 1: Android 10 “Share Sheet”, Showing Custom Share Targets
It is unclear how Android 10 will decide which of your share targets to show, if
you have a lot of them.
If the user chooses one of those, your ACTION_SEND activity will be started.
Among the extras will be an Intent.EXTRA_SHORTCUT_ID value that is the ID
that you supplied to the ShortcutInfoCompat.Builder for the dynamic shortcut.
You can use this to look up relevant information to determine the context
for the user’s choice of share targets.
Shortcuts
However, your share targets also show up as dynamic shortcuts:

[image: Pixel Launcher, Showing Share Targets as Shortcuts]

Figure 2: Pixel Launcher, Showing Share Targets as Shortcuts
This all but eliminates your app’s ability to use shortcuts for anything else.
It also means that your share targets have to make sense in cases where the
user is not sharing anything, because they clicked a dynamic shortcut.
Apparently, this is working as intended.
If the user taps one of the dynamic shortcuts, whatever Intent you gave to the
ShortcutInfoCompat.Builder will be invoked. This Intent can be for whatever
activity you want, not necessarily the ACTION_SEND activity. In the sample
module, we use ACTION_WHATEVER for the Intent and have a corresponding
<intent-filter> for it on MainActivity, not on ShareActivity.
Pre-10
If you named your shortcut XML resource shortcuts.xml, then on Android 6.0-9.0
devices, your share targets will show up in the “share sheet”, courtesy of
androidx.sharetarget:

[image: Android 9.0 Share Sheet, Showing Two Custom Share Targets]

Figure 3: Android 9.0 “Share Sheet”, Showing Two Custom Share Targets
And, on Android 7.1-9.0 devices, your share targets will also show up as dynamic
shortcuts.
Dark Mode
Android 10 offers a system-level option to enable “dark mode”. In dark mode, light
UI backgrounds get flipped to dark ones. This primarily affects system UI, but
apps can elect to react to this change as well, or otherwise support a dark
theme for their apps.
In this chapter, we will explore Android 10’s dark mode options and see how our
apps might adopt a dark theme.
Turning to the Dark Side
In the early days of Android, dark themes were typical. Then, starting with
Android 4.x and increasing afterwards, Google started encouraging light themes.
Now, Google is back to endorsing dark themes.
Reasons
Partly, this is for the user experience. People using their devices at night
can do so more easily if the UI is darker and therefore offers less glare. This
is why navigation apps often switch into a dark mode at different points (e.g., when
ambient light seems to be low), so drivers do not have this bright light shining
at them constantly. Also, some users may have visual impairments or other conditions
where such glare is a bigger problem than for other people.
Also, with some types of modern displays, black pixels consume less power.
User Actions
Users can switch to dark mode via the Settings app and the “Dark theme” option
in the Display screen:

[image: Dark Theme in Settings]

Figure 4: Dark Theme in Settings
The user can also add a tile to the notification shade to be able to rapidly
toggle between normal and dark modes:

[image: Dark Theme Tile]

Figure 5: Dark Theme Tile
Also, according to the documentation:

On Pixel devices, the Battery Saver mode also enables Dark theme at the same time. Other OEMs may or may not support this behavior.

And, if you use AppCompat with its DayNight support, you could offer an in-app
toggle between light and dark themes, as we will explore
later in the chapter.
The Dark-All-The-Time Solution
The simplest solution for supporting dark mode is simply to always have a dark
theme. This means you have just one theme with one set of colors and artwork,
to minimize the work of graphic designers. The user gets the benefits all the
time, and the dark theme benefits users across Android versions (not just Android 10
users).
However, if you already have a light theme, this will require some amount of work
to revise the design.
The System Override Solution
You could try to cheat a bit and have the system create a dark theme for you
on the fly. For that, add this entry to your theme resource:

<item name="android:forceDarkAllowed">true</item>

Then, on Android 10 and higher devices, the system will examine your UI and swap
colors to try to make the app appear dark. It even has the smarts to determine
whether an ImageView appears to be containing an icon (that might be converted)
or a photo (that should not be converted).
So, in the default mode, you might have:

[image: Sample App, in Normal Mode]

Figure 6: Sample App, in Normal Mode
…while if the user opts into the dark mode, android:forceDarkAllowed="true" will
give the user:

[image: Sample App, in Force-Dark Mode]

Figure 7: Sample App, in Force-Dark Mode
This is quick and easy. However:

	You do not have any control over the color substitutions, which may make
your designers unhappy

	Some things may get converted by accident, requiring you to add
android:forceDarkAllowed="false" to individual widgets to get them to be
left alone

	This only works on Android 10 and higher, so you will have different behavior
by OS version

The DayNight Solution
Google’s preferred solution is for you to use a theme that adapts based upon
whether the device is in dark mode or not. That way, you can have a light
theme “normally” while having a dark theme in dark mode.
In particular, AppCompat supports this via its DayNight theme family, though
for best results on Android 10 you should use 1.1.0-beta01 or newer.
The
TypeInfo sample module
uses a DayNight theme. This sample presents information about a bunch of MIME
types, as will be discussed in an upcoming chapter.
Use a DayNight Theme
Switching to a DayNight theme, in many cases, only requires you to change
the parent theme to Theme.AppCompat.DayNight (or to another theme that extends
from Theme.AppCompat.DayNight):

<resources>

 <!-- Base application theme. -->
 <style name="AppTheme" parent="Theme.AppCompat.DayNight">
 <!-- Customize your theme here. -->
 <item name="colorPrimary">@color/colorPrimary</item>
 <item name="colorPrimaryDark">@color/colorPrimaryDark</item>
 <item name="colorAccent">@color/colorAccent</item>
 </style>

</resources>

(from TypeInfo/src/main/res/values/styles.xml)
In dark mode, Theme.AppCompat.DayNight inherits from Theme.AppCompat, and so
it has a dark base to the theme. Otherwise, Theme.AppCompat.DayNight inherits
from Theme.AppCompat.Light, and so it has a light base to the theme. And, there
are sub-themes, such as Theme.AppCompat.DayNight.DarkActionBar, that might fit
your needs better.
Define -night Resources
Then, you can create alternative versions of colors, drawables, etc. that will
be used in dark mode. These should go in resource sets with the -night qualifier.
For example, you might have one set of colors for normal mode in res/values/:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <color name="colorPrimary">#ffc107</color>
 <color name="colorPrimaryDark">#ffaa00</color>
 <color name="colorAccent">#536dfe</color>
</resources>

(from TypeInfo/src/main/res/values/colors.xml)
…and replacements for some of those colors in res/values-night/:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <color name="colorPrimary">#3F51B5</color>
 <color name="colorPrimaryDark">#303F9F</color>
 <color name="colorAccent">#FFC107</color>
</resources>

(from TypeInfo/src/main/res/values-night/colors.xml)
The combination of the DayNight theme and your custom -night resources will
allow your app to adapt automatically as the user switches between normal
and dark mode:

[image: Sample App, in Normal Mode]

Figure 8: Sample App, in Normal Mode

[image: Sample App, in Dark Mode]

Figure 9: Sample App, in Dark Mode
Setting the Dark Mode Policy
You can teach AppCompat — specifically AppCompatDelegate — how you want
your DayNight theme to behave, such as forcing it to always use dark mode.
Policy Options
There are four main options, identified by constants on AppCompatDelegate:

 	Constant
 	Meaning

 	MODE_NIGHT_NO
 	Use a light theme

 	MODE_NIGHT_YES
 	Use a dark theme

 	MODE_NIGHT_FOLLOW_SYSTEM
 	Use a light or dark theme based on Android 10’s system status

 	MODE_NIGHT_AUTO_BATTERY
 	Use a dark theme when the device battery level is low, otherwise use a light theme

The overall default is MODE_NIGHT_FOLLOW_SYSTEM, even though this only really
works on Android 10. The effect of this mode on older devices is undocumented.
Policy Locations
If you pass one of those constants to AppCompat.setDefaultNightMode(), this will
update all current activities for that new policy, plus that policy will be used
for future activities in your running process.
If you want to affect only a single activity, you can call getDelegate() to
retrieve the AppCompatDelegate instance for your AppCompatActivity, then call
setLocalNightMode() on it.
The TypeInfo sample app uses AppCompat.setDefaultNightMode(), even though
there is only one activity.
Policy Persistence
setLocalNightMode() affects only that one activity instance, while
AppCompat.setDefaultNightMode() affects your entire process. However, neither
is persisted. You will want to establish your policy on each process invocation,
such as in a custom Application subclass.
The TypeInfo sample app, since it contains only one activity, applies the
policy in that activity (MainActivity). MainActivity has a checkable
overflow menu to allow the user to toggle the policy. MainMotor persists
that in SharedPreferences, plus loads the last-saved value on startup.
Policy Policies
If you are bothering with DayNight, presumably there are cases where you
want light themes and cases where you want dark themes. As a result, there are
three main patterns for using these policies:

	You elect to use MODE_NIGHT_FOLLOW_SYSTEM or MODE_NIGHT_AUTO_BATTERY,
putting control over the light/dark decision into the system and AppCompat
implementation

	You elect to allow the user to choose between these modes, perhaps via
a preference screen (or, as in the case of the TypeInfo sample, a menu)

	You elect to toggle modes yourself based on other criteria (ambient light
sensor, particular times of the day, etc.)

The Design Problem
Technically, supporting DayNight is easy.
From a design standpoint, now you need two designs, with two color schemes, two
sets of artwork, etc. Careful creation of those designs can minimize the
differences, to help both the designers and the developers maintain these
things over time. However, the designs are needed, to confirm that both the
light and dark themes are usable (e.g., text is readable in both themes,
despite changing text and background colors).
Dark Mode and Configuration Changes
When the device changes between normal and dark mode, any visible activities
immediately will undergo a configuration change, for the uiMode configuration.
Even manual changes to DayNight (e.g., setDefaultNightMode()) will recreate
your activity, as if it underwent a configuration change.
If your activities already handle configuration changes (e.g., screen rotation),
you should be fine. However:

	If you have activities where you skipped supporting configuration changes, you
will need to fix that soon

	If you have activities where you are handling configuration changes manually,
via android:configChanges in the manifest, consider whether you want to handle
uiMode manually as well

Gesture Navigation
Android 10 offers users yet another option for system navigation, such as
“home” and “back” actions. The particular implementation — edge swipe gestures —
may cause problems for users with some Android apps.
A Tale of Three (or More) Nav Patterns
Way back in the beginning, navigation actions were handled by hardware buttons.
Android 3.0 introduced the notion of a “navigation bar” for handling “home”,
“back”, and “overview” navigation actions, leading to the classic three-button
bar:

[image: Three-Button Android Nav Bar]

Figure 10: Three-Button Android Nav Bar
Android 9.0 added another option for users: a two-button nav, where “home”
and “overview” actions were handled by gestures on a central pill affordance:

[image: Button-and-Pill Android 9.0 Nav Bar]

Figure 11: Button-and-Pill Android 9.0 Nav Bar
Android 10 adds a new nav option that is based on gestures:

 	Action
 	Associated Gesture

 	Home
 	swipe up from bottom screen edge

 	Back
 	swipe inward from the screen edge on left or right

 	Overview
 	swipe up from the bottom screen edge and hold

Users can choose among those three by visiting Settings > System > Gestures >
“System navigation”:

[image: System Navigation Settings in Android 10]

Figure 12: System Navigation Settings in Android 10
The user can choose between gesture-based nav, the Android 9.0 button-and-pill option, or
the classic three-button nav option.
Note, though, that not all users will have access to all of those options. Pixel 4
users, for example, cannot choose the two-button nav option.
On top of this, some device manufacturers have created their own gesture-based
nav options. Device manufacturers will be allowed to continue coming up with
their own schemes for this, meaning that a user might have three or four
navigation options on Android 10 devices.
Impacts on Apps
The system “steals” touch events from apps to handle these navigation gestures.
If your app relies upon touch events near the edges, you may run into some problems.
In particular, the user may get confused when trying to use your app, trying
to apply your gestures and winding up with system responses. While simple taps will
be passed through to your app from these system edge areas, anything else is indeterminate.
For example, suppose that you have a ViewPager that spans the width of the
screen. Based on a subtle and invisible line of demarcation, the same gesture might
either switch pages in your pager or invoke a “back” action (probably navigating
out of this screen).
You may need to consider redesigning your UI to:

	Avoid expecting swipe gestures near screen edges, and

	Provide a visual distinction of where swipe gestures are valid, to help the user
learn where to swipe to control your UI

Technically, there is a way
that you can tell the system to ignore “back” gestures and
pass those along to your app. However, from a practical standpoint, this
has problems:

	The user may not know how to exit this screen and may get frustrated as a result

	This approach may not be honored by manufacturer-specific nav schemes

Avoiding the edges is a safer approach.
The OS informs your app about “window insets”, to indicate areas where the system
will steal your touch events. This library helps you
leverage that information to adjust your UI based upon the particular device’s
window insets, based on device model and whether the user has enabled gesture-based
nav or not.
Installing Apps Using PackageInstaller

In the beginning, to install an APK, you would use an ACTION_VIEW Intent,
with a file Uri pointing to the APK. Pass that to startActivity(), and
Android would take over from there.
This process evolved over the years, such as adding ACTION_INSTALL_PACKAGE in Android 4.0 and adding content Uri support in Android 7.0. A PackageInstaller
class was added in Android 5.0, but it seemed complicated, so a lot of developers
stuck with the earlier Intent-based solutions.
However, ACTION_INSTALL_PACKAGE was deprecated in API Level 29, with a request
that we use PackageInstaller instead. While not specifically deprecated, one
imagines that ACTION_VIEW is also frowned upon for installing apps.
PackageInstaller is designed for more complex scenarios, including dealing
with split APKs, where a single app might require more than one APK to completely
install. As a result, it has a convoluted API, to go along with the typical skimpy
documentation.
So, in this chapter, we will examine how to use PackageInstaller to install
a simple APK, for a functional equivalent to the deprecated ACTION_INSTALL_PACKAGE.
Note that ACTION_UNINSTALL_PACKAGE was also deprecated in Android 10. However,
while PackageInstaller has a pair of uninstall() methods, these cannot be used
by ordinary apps.
Applying PackageInstaller

The
AppInstaller sample module
in
the book’s sample project has a
stub activity with an “open” action bar item. Clicking that will open the
standard ACTION_OPEN_DOCUMENT content picker UI, for you to find an APK to
install. If you select an APK, the app then uses PackageInstaller to install
that APK, with a bit of an assist from you as the user.
Permissions
Android 6.0 debuted the REQUEST_INSTALL_PACKAGES permission, and Android 8.0
started enforcing it for apps using ACTION_INSTALL_PACKAGE. Not surprisingly,
you need it for PackageInstaller as well. This is a normal permission, so
you do not need to request it at runtime — just have the <uses-permission> element
in the manifest:

 <uses-permission android:name="android.permission.REQUEST_INSTALL_PACKAGES" />

(from AppInstaller/src/main/AndroidManifest.xml)
Creating and Using a Session
The AppInstaller app uses the same sort of architecture pattern as seen in
several of the other samples, where we have a ViewModel implementation called
MainMotor that our UI layer uses. In this case, MainActivity calls an install()
function on MainMotor, handing over the Uri that it received from the
ACTION_OPEN_DOCUMENT request.
MainMotor actually is an AndroidViewModel, as we need two things tied to a
Context:

	A PackageInstaller instance, obtained by requesting one from PackageManager

	A ContentResolver instance

 private val installer = app.packageManager.packageInstaller
 private val resolver = app.contentResolver

(from AppInstaller/src/main/java/com/commonsware/q/appinstaller/MainMotor.kt)
Unlike ACTION_INSTALL_PACKAGE, we need to do our own I/O to install APKs using
PackageInstaller. So, install() in MainMotor turns around and calls
an installCoroutine() function, launched from viewModelScope:

 fun install(apkUri: Uri) {
 viewModelScope.launch(Dispatchers.Main) {
 installCoroutine(apkUri)
 }
 }

(from AppInstaller/src/main/java/com/commonsware/q/appinstaller/MainMotor.kt)
installCoroutine(), in turn, is a suspend function that wraps its work
in a withContext(Dispatchers.IO) block, to have our I/O be performed on
a background thread:

 private suspend fun installCoroutine(apkUri: Uri) =
 withContext(Dispatchers.IO) {
 resolver.openInputStream(apkUri)?.use { apkStream ->
 val length =
 DocumentFile.fromSingleUri(getApplication(), apkUri)?.length() ?: -1
 val params =
 PackageInstaller.SessionParams(PackageInstaller.SessionParams.MODE_FULL_INSTALL)
 val sessionId = installer.createSession(params)
 val session = installer.openSession(sessionId)

 session.openWrite(NAME, 0, length).use { sessionStream ->
 apkStream.copyTo(sessionStream)
 session.fsync(sessionStream)
 }

 val intent = Intent(getApplication(), InstallReceiver::class.java)
 val pi = PendingIntent.getBroadcast(
 getApplication(),
 PI_INSTALL,
 intent,
 PendingIntent.FLAG_UPDATE_CURRENT
)

 session.commit(pi.intentSender)
 session.close()
 }
 }

(from AppInstaller/src/main/java/com/commonsware/q/appinstaller/MainMotor.kt)
First, we get an InputStream on the content identified by the Uri and
use DocumentFile to find out the length of that content.
Then, we create and open a PackageInstaller.Session. To create a session,
we call createSession() on PackageManager, providing a PackageInstaller.SessionParams
object as a parameter. Most of the time, you will use MODE_FULL_INSTALL as the
type of session that we want, to install an app from scratch — there is also a
MODE_INHERIT_EXISTING to add new split APKs to an already-installed app. createSession()
does not give us the Session object, though — we get an Int identifier instead,
and we need to call openSession() to get the actual Session.
With ACTION_INSTALL_PACKAGE, we provided a Uri that pointed to the APK to install.
With PackageInstaller, instead, we need to provide the bytes of that APK manually.
And, instead of us just passing an InputStream to PackageInstaller.Session,
we have a more complex API:

	Call openWrite() on the Session to get an OutputStream

	Copy the bytes from our InputStream to that OutputStream

	Call fsync() on the Session to say “we’re done, please ensure everything is written to disk”

The three parameters to openWrite() are:

	Some seemingly arbitrary “name” string

	The offset into the bytes that the Session should start using (typically pass 0)

	The number of bytes that will need to be read in, or -1 if you do not know the length

We then call commit() and close() on the Session to request the actual install
to occur. commit() takes an IntentSender object — typically you get one
of these by calling getIntentSender() on some PendingIntent that you create.
Getting the Results
Roughly speaking, there are three possible outcomes of our request:

	It succeeds

	It fails for some reason (e.g., duplicate ContentProvider authority conflict)

	The user needs to approve the installation

For an ordinary app, that third outcome will always happen, en route to some final
success or failure state.
We find out about all of this via the PendingIntent that we set up. In this case,
that pointed to an InstallReceiver, a manifest-registered BroadcastReceiver
that will be invoked when needed:

package com.commonsware.q.appinstaller

import android.content.BroadcastReceiver
import android.content.Context
import android.content.Intent
import android.content.pm.PackageInstaller
import android.media.AudioManager
import android.media.ToneGenerator
import android.util.Log

private const val TAG = "AppInstaller"

class InstallReceiver : BroadcastReceiver() {
 override fun onReceive(context: Context, intent: Intent) {

 when (val status = intent.getIntExtra(PackageInstaller.EXTRA_STATUS, -1)) {
 PackageInstaller.STATUS_PENDING_USER_ACTION -> {
 val activityIntent =
 intent.getParcelableExtra<Intent>(Intent.EXTRA_INTENT)

 context.startActivity(activityIntent.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK))
 }
 PackageInstaller.STATUS_SUCCESS ->
 ToneGenerator(AudioManager.STREAM_NOTIFICATION, 100)
 .startTone(ToneGenerator.TONE_PROP_ACK)
 else -> {
 val msg = intent.getStringExtra(PackageInstaller.EXTRA_STATUS_MESSAGE)

 Log.e(TAG, "received $status and $msg")
 }
 }
 }
}

(from AppInstaller/src/main/java/com/commonsware/q/appinstaller/InstallReceiver.kt)
We find out which of those scenarios occurs via the PackageInstaller.EXTRA_STATUS
extra on the Intent delivered to the component. This is an Int value that will
correspond to one of a set of STATUS_ constants on PackageInstaller.
When we get the PackageInstaller.STATUS_PENDING_USER_ACTION status, we can
get a pre-populated Intent from the Intent.EXTRA_INTENT extra on the Intent
that we received. We can then use that with startActivity() to bring up system dialogs
for the user to confirm that they want us to be able to install apps and they
want this particular app to be installed. Note, though, that since we are calling
startActivity() from onReceive() of a BroadcastReceiver, we need to add
FLAG_ACTIVITY_NEW_TASK to be able to start the activity.
If we get PackageInstaller.STATUS_SUCCESS, then the APK was successfully installed.
This app simply plays an acknowledgment tone via ToneGenerator, but a more sophisticated
app would update its UI, display a Notification, or something.
Any other status code indicates some type of error condition, such as “this app is
already installed with the same or higher version” (STATUS_FAILURE_CONFLICT) or
“this app is incompatible with the device” (STATUS_FAILURE_INCOMPATIBLE).
A human-readable status message should be in the PackageInstaller.EXTRA_STATUS_MESSAGE
extra. This sample app just logs that information to Logcat, but a more sophisticated
app might have some sort of error state in the UI, such as an error dialog.
System Notification, Maybe
In theory, the system is supposed to display a notification on Android 10 devices
after the app is installed. In practice, that is not working.
If someday it starts working, though, there are two <meta-data> elements that
you can add to tailor the icon for that notification:

	
com.android.packageinstaller.notification.smallIcon, pointing to a drawable
resource representing your desired icon

	
com.android.packageinstaller.notification.color, pointing to a color resource
for your desired tint on that icon (presumably)

The AppInstaller app customizes the icon but leaves the color alone:

 <meta-data
 android:name="com.android.packageinstaller.notification.smallIcon"
 android:resource="@drawable/ic_install_notification" />

(from AppInstaller/src/main/AndroidManifest.xml)
However, in the short term, you can ignore those <meta-data> elements, as they
have no effect.
Other Changes of Note
There are lots of other changes in Android 10, far more than can be presented
in this book. This chapter covers a variety of additional changes that you may
want to pay attention to.
Stuff That Might Break You
The scariest batch of changes in any Android release are the ones that may
break existing app behavior. Things like scoped storage certainly
qualify for that.
Here are a few other smaller changes that may cause problems for reasonably-ordinary
apps.
Background Activity Starts Banned
Starting an activity from the background is banned on Android 10. This change
affects all apps, not just those with a targetSdkVersion of 29 or higher.
Definition of “Background Start”
Your app will be considered to be starting an activity from the background if it
calls startActivity() (or equivalent methods) when it does not have a foreground
activity.
The system can start one of your activities from the background — after all,
that is how you get to the foreground in the first place. And select system-triggered
events that execute a PendingIntent can start an activity from the background,
notably a PendingIntent tied to a Notification.
However, a foreground service is not “foreground enough” to be considered starting
an activity from the foreground.
What Happens
If you try to start an activity from the background… nothing visible happens.
A system app will file a warning message in Logcat:

W/ActivityTaskManager: Background activity start [callingPackage: com.commonsware.android.q.attention; ...]

But, otherwise, that’s it.
In the Q beta releases, a Toast would appear, but this was removed in the final
shipping version.
The Full-Screen Notification Alternative
What Google wants you to do is to switch to a Notification that uses
the “full-screen Intent” feature. A high-importance, high-priority Notification
that uses this feature will get a heads-up presentation, where if the user taps
on the bubble, the PendingIntent associated with the full-screen feature will
be executed. That same PendingIntent is executed if the Notification is raised
while the screen is off, so the user can be taken to your activity immediately
upon getting through the keyguard.
The idea is that this “full-screen” option still allows rapid access to your
activity, while not interfering with the user while the user is using
their device.
The
PayAttention sample module
in
the book’s sample project
serves as a playground for doing both background activity starts and background
full-screen notifications.
The UI consists of two really big buttons, one to start an activity, and the other
to show a notification. When the user clicks one of those buttons,
the MainActivity uses WorkManager to do some work in 10 seconds, then calls
finish() to destroy the activity and ensure that we are in the background:

package com.commonsware.android.q.attention

import android.os.Bundle
import androidx.appcompat.app.AppCompatActivity
import androidx.work.OneTimeWorkRequestBuilder
import androidx.work.WorkManager
import kotlinx.android.synthetic.main.activity_main.*
import java.util.concurrent.TimeUnit

class MainActivity : AppCompatActivity() {
 private val workManager by lazy { WorkManager.getInstance() }

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)

 toolbar.title = getString(R.string.app_name)

 activity.setOnClickListener {
 workManager.enqueue(OneTimeWorkRequestBuilder<StartActivityWorker>()
 .setInitialDelay(10, TimeUnit.SECONDS)
 .build())
 finish()
 }

 notification.setOnClickListener {
 workManager.enqueue(OneTimeWorkRequestBuilder<ShowNotificationWorker>()
 .setInitialDelay(10, TimeUnit.SECONDS)
 .build())
 finish()
 }
 }
}

(from PayAttention/src/main/java/com/commonsware/android/q/attention/MainActivity.kt)
StartActivityWorker just starts an activity, though it needs to use
FLAG_ACTIVITY_NEW_TASK since we are starting the activity using the Application
context:

class StartActivityWorker(
 private val appContext: Context,
 workerParams: WorkerParameters
) : Worker(appContext, workerParams) {
 override fun doWork(): Result {
 appContext.startActivity(
 Intent(
 appContext,
 MainActivity::class.java
).addFlags(Intent.FLAG_ACTIVITY_NEW_TASK)
)

 return Result.success()
 }
}

(from PayAttention/src/main/java/com/commonsware/android/q/attention/Work.kt)
ShowNotificationWorker, by contrast, sets up a Notification that uses
setFullScreenIntent() to make it a full-screen notification:

class ShowNotificationWorker(
 private val appContext: Context,
 workerParams: WorkerParameters
) : Worker(appContext, workerParams) {
 override fun doWork(): Result {
 val pi = PendingIntent.getActivity(
 appContext,
 0,
 Intent(appContext, MainActivity::class.java),
 PendingIntent.FLAG_UPDATE_CURRENT
)

 val builder = NotificationCompat.Builder(appContext, CHANNEL_WHATEVER)
 .setSmallIcon(R.drawable.ic_notification)
 .setContentTitle("Um, hi!")
 .setContentText("remove me")
 .setAutoCancel(true)
 .setPriority(NotificationCompat.PRIORITY_HIGH)
 .setFullScreenIntent(pi, true)

 val mgr = appContext.getSystemService(NotificationManager::class.java)

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O
 && mgr.getNotificationChannel(CHANNEL_WHATEVER) == null
) {
 mgr.createNotificationChannel(
 NotificationChannel(
 CHANNEL_WHATEVER,
 "Whatever",
 NotificationManager.IMPORTANCE_HIGH
)
)
 }

 mgr.notify(NOTIF_ID, builder.build())

 return Result.success()
 }

(from PayAttention/src/main/java/com/commonsware/android/q/attention/Work.kt)
Note that the Notification needs to be PRIORITY_HIGH and the channel
needs to be IMPORTANCE_HIGH for this to work.
The module has two product flavors:

	
legacy has targetSdkVersion set to 28

	
q has targetSdkVersion set to 29

Partly, this is so you can see the behavior of both existing apps and Android 10-ready apps
on Android 10.
Partly, though, it is to point out another requirement of using full-screen
notifications on Android 10. If your app has targetSdkVersion 29, you need to request the
USE_FULL_SCREEN_INTENT permission. This is a normal permission, so all
you need is the <uses-permission> element for it in your manifest. This
module handles that through a manifest in the q source set, so the
<uses-permission> element only gets merged in for q builds:

<?xml version="1.0" encoding="utf-8"?>
<manifest package="com.commonsware.android.q.attention"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <uses-permission android:name="android.permission.USE_FULL_SCREEN_INTENT" />

</manifest>

(from PayAttention/src/q/AndroidManifest.xml)
If you skip this permission, your notification will still be displayed, but
the full-screen feature will not be enabled.
APIs Newly Requiring ACCESS_FINE_LOCATION

A long list of APIs
have been added to those that require your app to hold the ACCESS_FINE_LOCATION
permission. While none of these methods give you GPS coordinates, they do provide
information that can be used to derive the user’s location.
ACCESS_FINE_LOCATION is a dangerous permission, so you will need to both
have the <uses-permission> element for it and request it at runtime.
Alternatively, see if you can find some way to avoid needing to call those methods.
Continued Fight Against “Non-SDK Interfaces”
Starting with Android 9.0, Google began
blocking your ability to access classes and members marked with the @hide pseudo-annotation,
plus private and package-private members. Simply put, if it is not documented
in the Android SDK, you may not be able to refer to it at compile time by
using Java reflection or similar techniques.
Android 10 adds yet more methods that are restricted.
The previous “dark greylist”/“light greylist” distinction has been replaced
by a new system. Restricted methods may have an indication of whether
they are allowed for certain targetSdkVersion values or not. Look for
@UnsupportedAppUsage annotations in the AOSP source code, as those represent
the banned methods. If they have a maxTargetSdk value, that indicates the
highest targetSdkVersion for which those methods are supported — otherwise, they
are banned. If maxTargetSdk is 0, that method is banned for all
targetSdkVersion values.
Developers should examine their code bases for any signs of using
reflection to access hidden members: Class.forName(), getConstructor(),
getField(), and so on. This is particularly important for library authors,
as issues with a library get amplified by the number of library users.
Remember that StrictMode offers callbacks to find out when violations occur,
and treats these violations as part of the VM policy. So, you could
arrange to have StrictMode report these violations to you, where you then log
the stack trace somewhere. For example, you might modify your test suites to
enable StrictMode to collect this information, then write the output somewhere
that your tests can pick up and incorporate into their results.
If you would like to be more proactive about dealing with this, the warning system
for non-SDK usage is integrated with StrictMode. detectNonSdkApiUsage() is
an option for StrictMode.VmPolicy.Builder, so you can tie it into your overall
StrictMode reporting approach (e.g., crash app in debug builds, but in release builds
just use the listener option on Android 9+ to integrate with your crash reporting engine).

SYSTEM_ALERT_WINDOW Restrictions
SYSTEM_ALERT_WINDOW is a special permission that allows an app to draw over other
apps. First made prominent by Facebook’s “chat heads” feature, a dizzying array of
apps now request SYSTEM_ALERT_WINDOW. However, the ability to draw over other apps
raises serious security issues.
At minimum, Android 10 is set to block SYSTEM_ALERT_WINDOW on low-end Android Go
devices, citing performance concerns.
Beyond that, Android Police claims
that there are more significant limitations applied across the board:

	Apps that were installed via the Play Store and received SYSTEM_ALERT_WINDOW
automatically lose it upon a device reboot

	Apps that were “side-loaded” (i.e., installed from somewhere other than the
Play Store) lose the permission 30 seconds after installation

If your app relies upon SYSTEM_ALERT_WINDOW, you will need to investigate
these items further and perhaps come up with some other solution for your problem.
That might involve bubbles, at least starting in 2020.

ContactsContract Field Deprecations
A handful of data elements that you can request from ContactsContract
are “obsolete”. Reading between the lines of
the note in the JavaDocs about this,
it appears that Google is proactively flushing this data.
And, if that is correct, it would appear that this data is not reliable on
any relevant version of Android, not just Android 10.
In particular, they mention that these four values are affected:

	ContactsContract.ContactOptionsColumns.LAST_TIME_CONTACTED

	ContactsContract.ContactOptionsColumns.TIMES_CONTACTED

	ContactsContract.DataUsageStatColumns.LAST_TIME_USED

	ContactsContract.DataUsageStatColumns.TIMES_USED

These have privacy implications beyond merely knowing who the contact is, as they
give insight into the contact’s behavior.
If you use ContactsContract, please
review the note
and determine if you are affected.
Background Clipboard Access Banned
Apps no longer have access to the clipboard, unless:

	They are the default input method editor, or

	They are “the app that currently has focus”

In a typical single-window environment, this would mean that your activity
is in the foreground. In split-screen or multi-window environments, this phrasing
suggests that even if your activity is visible, it may not have access to the
clipboard, if it lacks the focus. In other words, if your activity has been called
with onResume() but not onPause(), you should have access to the clipboard.

android:sharedUserId Deprecated
android:sharedUserId is an attribute that you can have in the manifests of
multiple apps to try to have them share a common Linux-style user account when
installed on Android. This would allow them to read and write each other’s
internal storage directly.
This feature was added largely for the benefit of pre-installed apps. It always
represented a fair amount of risk for ordinary app developers. In particular,
if you changed the android:sharedUserId value — including adding one when
one did not exist — now your own app would be unable to access its own internal storage
from any previously installed version of the app.
Those files were owned by some other Linux-style user account, not the new account
requested by the new android:sharedUserId value.
In Android 10, android:sharedUserId is deprecated, and it is slated for outright
removal in some future release.
If you are using android:sharedUserId, start switching to IPC-based means of
app-to-app communication, rather than having one app modify another app’s files
“behind its back”.

DownloadManager Deprecations
DownloadManager deprecated some things, presuambly as a side effect of scoped storage:

	addCompletedDownload()

	
allowScanningByMediaScanner() on DownloadManager.Request

	
setVisibleInDownloadsUi() on DownloadManager.Request

Items listed in the new MediaStore.Downloads collection will be what appears
in the Downloads UI now. So, if you have content that was not downloaded to the
Downloads/ directory by DownloadManager, and you want it to appear in the Downloads
UI, you need to write it to a Uri supplied by MediaStore.Downloads.
Moar Densities!
There are four new DisplayMetrics screen densities: 140, 180, 200, 220.
Those are the first new low-end densities we have had in years, and it is unclear
what hardware would have such screens. Most
developers will not need to worry about these, as Android will scale mdpi or
hdpi drawables for you. But, if you have other code that cares about these
DENSITY_ constants on DisplayMetrics, you have four more to deal with.
Stuff That Might Interest You
Then, we have some items that will not break your app but represent features
that you might want to opt into, for Android 10 devices.

Preference Deprecation
The framework set of Preference classes are marked as deprecated on Android 10.
This makes some sense. Preference and its subclasses (e.g., EditTextPreference,
ListPreference) are wrappers around widgets. However, those wrappers wrap framework
widgets and therefore may not adapt to AppCompat themes.
Google steers you in the direction of the AndroidX preference library
(androidx.preference:preference and androidx.preference:preference-ktx).
This appears to be their direction, at least for the next few years.
Note, though, that the AndroidX preference library does not have a RingtonePreference,
nor does Google plan to add one.
On the other hand, the AndroidX preference library does offer DropDownPreference
and SeekBarPreference, which were lacking in the native preference system.

ACTION_SEND Previews
Android 10 offers a new content preview
feature when using ACTION_SEND, where the user can see a customized preview
of what it is that they are sharing.
To implement this, you can:

	Add EXTRA_TITLE to the ACTION_SEND Intent, with some text to appear as the
title of the preview

	Add a ClipData to the ACTION_SEND Intent, via setClipData(), that represents
the image to show as part of the preview

On the plus side, this requires no new APIs, so this code will work on older
versions of Android.
However, this feature has issues:

	This does not work with an android.resource Uri for the preview image —
the Uri that you use must be a content Uri (e.g., from FileProvider)

	If you provide both a title and a preview image, you only get the preview image

Settings Panels
We have long had a series of Intent actions defined on the Settings class
to be able to launch into a particular screen of the Settings app, using
startActivity().
Android 10 extends this with “panel” actions. These launch a screen in
the Settings app that is styled as a bottom-sheet dialog:

[image: Internet Connectivity Settings Panel]

Figure 13: Internet Connectivity Settings Panel
There are four such panel actions:

	Settings.Panel.ACTION_INTERNET_CONNECTIVITY

	Settings.Panel.ACTION_NFC

	Settings.Panel.ACTION_VOLUME

	Settings.Panel.ACTION_WIFI

Changes in Device Authentication
If you have been using KeyguardManager and its createConfirmDeviceCredentialIntent()
method to authenticate the user, it has been deprecated on Android 10. Like
most deprecations, this method still works. However, Google is steering you
in a different direction: using setDeviceCredentialAllowed() with BiometricPrompt.
A Quick Device Authentication Recap
Sometimes, we want to confirm that the person holding the device is the authorized
user of that device, before proceeding with something sensitive.
For devices with a minSdkVersion of 21 or higher, the simple solution was
to use createConfirmDeviceCredentialIntent() on KeyguardManager. This
would return an Intent that you could pass to startActivityForResult().
It would bring up the system PIN/password screen to authenticate the
user, letting you know of success or failure via onActivityResult().
However, that approach only offers the PIN/password option. It does not allow
the user to use biometrics, such as a fingerprint, to authenticate. For
that, we have BiometricPrompt on Android 9.0+ (or FingerprintManager
and FingerprintDialog for API Level 23-27). Those allow the user to authenticate
using biometrics… but only via biometrics. That does not work for users
who have not set up a biometric authentication option, or for devices that lack
biometric capability.
Compounding the complexity is Android 10’s deprecation of
createConfirmDeviceCredentialIntent().
setDeviceCredentialAllowed()
The replacement is setDeviceCredentialAllowed() on BiometricPrompt. On Android 10
devices, this brings up the PIN/password screen if either:

	The user does not have a registered fingerprint or other biometric authentication
option, or

	The user elects to skip the biometric check and use the PIN/password instead

Presumably, it will also use the PIN/password screen for devices that lack
any biometric hardware, though this has not been tested.
The
SecureCheq sample module
in
the book’s sample project
demonstrates the use of setDeviceCredentialAllowed().
This sample app is based on a sample that originally appeared in
The Busy Coder’s Guide to Android Development
for showing how to use BiometricPrompt. Here, it is converted to Kotlin and tweaked
to employ setDeviceCredentialAllowed(), along with another new Android 10 method,
setConfirmationRequired().
As with that earlier sample, here use a BiometricPrompt.Builder to create an instance of BiometricPrompt:

 val prompt = BiometricPrompt.Builder(this)
 .setTitle("This is the title")
 .setDescription("This is the description")
 .setSubtitle("This is the subtitle")
 .setConfirmationRequired(true)
 .setDeviceCredentialAllowed(true)
 .build()

(from SecureCheq/src/main/java/com/commonsware/android/q/auth/check/MainActivity.kt)
setConfirmationRequired() is primarily for non-fingerprint sorts of biometrics,
such as face recognition. Those can be fairly automatic: if the user happens
to be looking at the screen at the time of authentication, no actual user input
is required. This may be too easy, and it is why Android allows the user
to disable “passive” authentication. You too can disable passive authentication,
via setConfirmationRequired(true). This indicates that for biometrics like
face recognition, that you want the user both to authenticate and tap an
on-screen button to confirm that they wish to proceed. This is new to Android 10.
Also new to Android 10 is setDeviceCredentialAllowed(). As noted, this will fall back
to PIN/password authentication, if biometrics are unavailable or opted-out by the
user, though there appears to be a bug here.
In the sample code, we call setDeviceCredentialAllowed(true) to request this behavior. If
you do not call setDeviceCredentialAllowed(true) — either by passing false or skipping
the call entirely — you must call setNegativeButton(), to provide details
of what to do if the user elects to skip the authentication process entirely.
We will see an example of that shortly.
Nothing changes with our authenticate() call or the AuthenticationCallback
object. However, there should be a slight behavior change with the onAuthenticationError()
function on the AuthenticationCallback.
onAuthenticationError() can be called with an error code of
BiometricPrompt.BIOMETRIC_ERROR_NO_BIOMETRICS to indicate that the user
has not enrolled any fingerprints or other biometric identifiers. In the case
of setAllowDeviceCredential(true), though, this should not occur. Instead, if the
user has no registered identifiers, the user will be sent to the PIN/password
screen to authenticate that way.
Note that the androidx.biometric library offers a backwards-compatible implementation
of BiometricPrompt that includes an implementation of setDeviceCredentialAllowed().
This does not give prior versions of Android this capability, but it will “gracefully
degrade” on older devices.
Learning More About MIME Types
ContentResolver offers a getTypeInfo() method. Given a MIME type, it returns
a MimeTypeInfo object. This offers:

	A label

	A content description, which might be the same as the label

	An icon

The
TypeInfo sample module
contains a small app that presents a list of 65 MIME types and the associated
label and icon from Android 10’s MimeTypeInfo:

[image: TypeInfo Sample App, Showing Some MIME Types]

Figure 14: TypeInfo Sample App, Showing Some MIME Types
Given a long listOf() MIME types named MIME_TYPES, MainMotor
loads them in the background using a ContentResolver and maps the MimeTypeInfo
data into a RowState for use by the UI:

 private suspend fun mapTypes(context: Context) =
 withContext(Dispatchers.Default) {
 val resolver = context.contentResolver

 MIME_TYPES
 .map { RowState(it, resolver.getTypeInfo(it)) }
 .sortedBy { it.description.toString() }
 }

(from TypeInfo/src/main/java/com/commonsware/android/q/typeinfo/MainMotor.kt)
This is useful for cases where you have an arbitrary Uri and you want to have
more information about it for presentation, whether in a list like TypeInfo
or for single-Uri “attachments”. Given a Uri and DocumentFile.fromSingleUri(),
you can get the MIME type and display name; MimeTypeInfo just gives you more information
about the type.
However, the data returned in a MimeTypeInfo object is very generic in general. Mostly,
they seem to have a category of types, which controls the icon and part of the
label (e.g., “Archive”, “Audio”). In many cases, if the MIME type is not recognized,
the label is simply “File”. For casual use, this may be acceptable, but serious apps
should consider serious solutions (and ones that are not tied to Android 10).
Foreground Service Types
Depending on what your app does, you may start seeing crashes with the following
sort of error message:

Caused by: java.lang.SecurityException: Media projections require a foreground service of type ServiceInfo.FOREGROUND_SERVICE_TYPE_MEDIA_PROJECTION

Android 10 adds an android:foregroundServiceType attribute to the <service>
element in the manifest. We saw this used for a location value in
the chapter on location changes.
While this is not documented on the <service> element itself,
there is a bit of documentation in the R.attr JavaDocs.
Depending on what your app does in its service, you may have a total of three
requirements now:

	Have it be a foreground service, to get past the runtime limitations imposed
by Android 8.0

	Request the FOREGROUND_SERVICE permission

	Have a android:foregroundServiceType attribute that lists the protected operations
that your foreground service intends to perform

Right now, there are six possible values:

 	Constant Value
 	Apparently Required If You…

 	connectedDevice
 	…use Bluetooth, Android Auto, or Android TV APIs

 	dataSync
 	…perform Internet operations

 	location
 	…work with LocationManager or things layered atop of it

 	mediaPlayback
 	…work with audio/video APIs (e.g., MediaPlayer)

 	mediaProjection
 	…capture screenshots or record screencasts with MediaProjection

 	phoneCall
 	…participate in an “ongoing phone call or video conference”

It is unclear what actual code might trigger some of these. For example, it is unclear
if any Internet operations require dataSync or only certain things (e.g.,
DownloadManager).
If your service might perform more than one of these, you can combine these
values with | operators (e.g., android:foregroundServiceType="location|mediaProjection").
Audio Capture
Since Android 5.0, we have had an API for capturing screenshots and recording screencasts.
However, any such screencast was a “silent film”, consisting only of video, not audio.
Android 10 introduces an official solution for capturing audio from other apps, tied to
the same “media projection” system used for screenshots and screencasts.

You can learn more about MediaProjectionManager in the "The Media Projection APIs" chapter of
The Busy Coder's Guide to Android Development!

Capturing Audio
There are three major requirements for your app to be able to capture audio from
other apps:

	You will need to request the RECORD_AUDIO permission. This is a dangerous
permission and therefore will require you to request it both in the manifest and
at runtime via ActivityCompat.requestPermissions().

	If the audio capture will be performed by a service (the typical case), that
service will need to be a foreground service and have
its android:foregroundServiceType <service> attribute contain mediaProjection
(along with any other values that you might need.

	You will need to obtain a MediaProjection object.

You get a MediaProjection through a slightly-annoying process:

	Use startActivityForResult() to start the createScreenCaptureIntent() supplied
by MediaProjectionManager:

val mgr =
 getSystemService(Context.MEDIA_PROJECTION_SERVICE) as MediaProjectionManager

startActivityForResult(mgr.createScreenCaptureIntent(), REQUEST_SCREENCAST)

	Hand the resultCode and data from the request to getMediaProjection()
on the MediaProjectionManager to get the MediaProjection object:

override fun onActivityResult(
 requestCode: Int,
 resultCode: Int,
 data: Intent?
) {
 if (requestCode == REQUEST_SCREENCAST) {
 if (resultCode == RESULT_OK) {
 val projection = mgr.getMediaProjection(resultCode, data!!)

 // TODO something with this
 }
 }
}

Given all of that, in theory, you can:

	Create an AudioPlaybackCaptureConfiguration using that MediaProjection
object:

val playbackConfig = AudioPlaybackCaptureConfiguration.Builder(projection).build()

	Include that in an AudioRecord.Builder using setAutoPlaybackCaptureConfig():

val audioRecord = AudioRecord.Builder()
 .setAudioFormat(TODO())
 .setAudioPlaybackCaptureConfig(playbackConfig)
 .setAudioSource(TODO())
 .setBufferSizeInBytes(TODO())
 .build()

(with TODO() shown as placeholders for the rest of the AudioRecord configuration)

	Use that AudioRecord object the same way that you might use it to record off
of the microphone

However, the documentation for AudioRecord is sketchy in general, and even worse
with respect to audio capture. For example, it is unclear what the value
should be for setAudioSource() and what the configuration should be for
the AudioFormat passed to setAudioFormat().
Note that the result of this will be an audio file (or some other collection of
audio bytes). If you are also trying to capture the screen using MediaProjection,
this approach may give you the audio, but it will not synchronize that audio
with the video, let alone put it in the same file as the video.
Note that not all apps’ audio can be captured, as we will explore in the next section.
Availability of Audio Capture
Only apps that allow audio capture can have their audio captured. In effect,
apps can opt out of audio capture, just as they can use FLAG_SECURE to opt out
of screen capture.
One way to block audio capture is to generate audio that is of a type that is not
designed for capture. Specifically, the only audio that can be captured is
audio flagged as USAGE_MEDIA, USAGE_GAME, or USAGE_UNKNOWN, referring to
constants on AudioAttributes. Apps using AudioTrack for audio playback get
to specify this value; other APIs might set their own value (e.g., MediaPlayer
uses USAGE_MEDIA). So, if you cannot capture the audio from some app, it may
be that the app — intentionally or accidentally — has specified some other
usage type, such as USAGE_VOICE_COMMUNICATIONS.
In addition, an app can have an overall capture policy. The default is:

	To block capture for apps with a targetSdkVersion of 28 or lower

	To allow capture for apps with a targetSdkVersion of 29 or higher

If you wish to control this more directly for your app, you can:

	Configure capture of specific audio by using setAllowedCapturePolicy() on an
AudioAttributes (for use with AudioTrack) or AAudioStreamBuilder
(for use with AAudio)

	Configure capture of all audio from your app dynamically by calling
setAllowedCapturePolicy() on an instance of AudioManager

	Configure capture of all audio from your app statically by setting
android:allowAudioPlaybackCapture on an undocumented element in the manifest
(try <application>)

setAllowedCapturePolicy() has three possible values:

	
ALLOW_CAPTURE_BY_ALL allows the system and third-party apps to capture the
 audio

	
ALLOW_CAPTURE_BY_SYSTEM allows only system apps to capture the audio

	
ALLOW_CAPTURE_BY_NONE blocks all audio capture, even by system apps

Deep Presses
Via methods like onTouchEvent(), you can get MotionEvent objects describing
low-level interactions between the user and input devices, particularly touchscreens.
Android 10 adds a “classification” of touch event: a deep press.
This is described as stemming from “the user intentionally pressing harder on the screen”.
Android Police surmises that this may lead to iOS-like “3D Touch” behavior.
At present, though, it is unclear whether all hardware will support these events or
if they require a special digitizer.
useEmbeddedDex
Your APK contains your code and the code from the libraries that you add to your
app. That compiled code is packaged as “DEX” files representing Dalvik bytecode.
Smaller apps might have a single DEX file, larger apps might have more than
one (“multidex”).
On Android 4.3 and below, the Dalvik runtime would read the DEX content directly
from the APK. APKs are digitally signed, so there is no way for an outside party
to tamper with the code before Dalvik loads and runs it. This is great from a security
standpoint but adds overhead.
On Android 4.4 and higher, the Dalvik and ART runtimes started pre-processing
those DEX files, including the ahead-of-time (AOT) compilation added in Android 5.0.
The output of that work is stored as ordinary files, and so processes with root
privileges could tamper with them. The result is improved app performance
at the cost of weakened security.
Android 10 allows you to set android:useEmbeddedDex to true in your
<application> element. This tells ART to go back to Android 4.3-style approaches,
avoiding the pre-processing and only using the DEX files packaged in the APK.
This allows developers to opt into the tighter security, for cases where that
security is worth the performance penalties (e.g., no ahead-of-time compilation).
hasFragileUserData
XDA-Developers pointed out
that there is an android:hasFragileUserData flag in Android 10. This is lightly
documented — we know the flag exists, but
the documentation fails to indicate where the flag belongs.
According to the article, setting this to true will prompt the user whether to keep your
app’s data when the system uninstalls the app. In principle, this would allow the user
to get back at your data if they later re-install the app. In practice, it remains to be
seen how well this works.
Mystifying Things
A couple of items were introduced in Android 10 but were removed from being
public-facing for the final release. It is possible that these will become
more important in future versions of Android.
Roles
Q Beta 1 introduced roles and RoleManager.
Q Beta 2 removed the documentation and, um, primary role for RoleManager.
Q Beta 3 through the Android 10 release still have RoleManager, but there is no sign of whether it is being used.
Here is what we know about what roles were to be used for, in case they show up
again.
What Is a Role?
A role is a bit like a runtime permission:

	You need to have stuff in the manifest to be eligible for it

	You need to have code to detect if you have the role — and if not, to ask
the user to grant you the role

	The user can grant or revoke roles at any point (e.g., via the Settings app)

	The role helps determine what your app can do

However, a permission is a statement of a desired capability, such as “I want
to be able to read files on external storage”. A role, rather, is a statement
of what job the app will fulfill for the user.
According to the RoleManager JavaDocs, there are eight available roles:

	ROLE_ASSISTANT

	ROLE_BROWSER

	ROLE_CALL_REDIRECTION

	ROLE_CALL_SCREENING

	ROLE_DIALER

	ROLE_EMERGENCY

	ROLE_HOME

	ROLE_SMS

In general, the names of the roles indicate their purpose. For example,
ROLE_BROWSER represents a Web browser, while ROLE_SMS represents a messaging
client.
If your app requests and is granted a role, you get certain capabilities. For
example, an app with ROLE_GALLERY has access to more of the device content
than does an ordinary app, as part of the new scoped storage
system.
There Can Only Be One
One substantial difference between permissions and roles is that any number
of apps can hold a permission, while only one app can hold a role. If an app
requests a role and some other app holds that role, if that second app asks
the user for the role and is granted it, the first app loses the role.
For some roles, other system limitations already imply that only one app
could fill a role. For example, an Android device cannot readily handle more
than one home screen. In other cases, the “there can only be one” rule for
roles may introduce some user headaches, such as when switching between
Web browsers.
Becoming Role-Eligible
As noted above, to become eligible for a role, there are a few things that you
will need in your manifest.
The direct determining factor of whether you are eligible for a role comes
from an <intent-filter>.
On your MAIN/LAUNCHER activity, you need to add two more <category>
elements:

	
<category android:name="android.intent.category.DEFAULT" />, to declare your
wish to be the default app for the role

	A second <category> element tied to the specific role

Unfortunately, for the current set of roles, the categories are undocumented.
Obtaining a Role
Just because you request a permission in the manifest does not mean that
your app holds it — on Android 6.0+, you need to request dangerous
permissions at runtime, using functions like ActivityCompat.requestPermissions().
Similarly, just because you have the right stuff in the manifest to be eligible
for a role does not mean that your app holds that role. Instead, you need to ask
the user for that role, using a RoleManager system service added to Android 10.
There are three key functions on RoleManager:

	
isRoleAvailable() indicates if the version of Android and the device that
you are on knows about a particular role that you want, identified by a ROLE_-prefixed
name defined as constants on RoleManager. Google reserves the right
to change the mix of roles over time, and it is conceivable that device manufacturers
might make their own changes. So, you need to call isRoleAvailable() and
be able to cope if it returns false.

	
isRoleHeld() returns true if your app has been granted the role, false
otherwise. This is reminiscent of calling checkSelfPermission() to see if
you hold a runtime permission.

	
createRequestRoleIntent() does pretty much what the name indicates: it
creates an Intent for you to be able to ask the user to be able to hold a role.
You pass that Intent to startActivityForResult(), and in onActivityResult()
you can find out if you got the role (by looking for an ACTIVITY_OK response
or calling isRoleHeld() again)

Losing a Role
The user is welcome to go into the Settings app and revoke your role.
Similar to losing a runtime permission, if you lose a role, Android will
terminate your process. Hence, just as you should check to see if you hold
a runtime permission on every start of your app, you should check to see if
you hold any desired roles on every start of your app.
However, due to another bug,
RoleManager will incorrectly return true from isRoleHeld() after a user
revokes the role. As a result, there is no great way to determine whether you
really hold the role or you held it previously and now no longer hold it.
Role Powers
Due to the very limited role documentation,
it is unclear how to obtain roles and what apps holding those roles can do
(and what apps without those roles) cannot do.
Bubbles
In 2013, Facebook debuted the “chat heads” UI for their Android app. These
allowed the user to participate in Facebook chats while being (mostly) in
other apps, by having a floating avatar of your chat partner appear over
the UI of whatever app you were in.
Technically, this was somewhat of an abuse of the SYSTEM_ALERT_WINDOW
permission and related system-level windows. Facebook’s “leadership” in this
area led many other developers to apply the same technique. However,
allowing arbitrary apps to interpose arbitrary UI in front of other UI has
security risks, and Google is slowly starting to restrict the use
of SYSTEM_ALERT_WINDOW as a result.
In Q Beta 1, Google announced that they were introducing “bubbles” and indicated
that this would be a long-term replacement for SYSTEM_ALERT_WINDOW.
In Q Beta 3, Google announced that bubbles would be limited to developers, with
an opt-in toggle in the developer options to allow them to be seen. That remains
the status with the shipping version of Android 10: bubbles are available for
developers but not for ordinary users.
As a result, it is quite possible that bubbles never become available for users,
just as Android 9.0’ slices have been largely unused, at least as of May 2019.
Most likely, you should just leave bubbles alone until Android R, then worry about
implementing them at that point.
Copyright Notice and Terms
Copyright © 2008-2019 CommonsWare, LLC. All Rights Reserved.
The CommonsWare name and logo, “Busy Coder's Guide”, and related trade dress are trademarks of CommonsWare, LLC.
All other trademarks referenced in this book are trademarks of their respective firms.
The publisher and author(s) assume no responsibility for errors or omissions or for damages resulting from the use of the information contained herein.
OEBPS/GestureNav-03.png
. @ vo

€ Systemnavigation a o

2outonnavigaton

P —

OEBPS/LiberationSans-Regular.ttf

OEBPS/GestureNav-01.png

OEBPS/GestureNav-02.png

OEBPS/cover.jpg
Elements of

Android
Q

Mark L. Murphy < @

OEBPS/DroidSansMono.otf

OEBPS/ShareTargets-03.png

OEBPS/ShareTargets-02.png
b ®
B share with Five =

' B share with Two -

BB Sshare with One =

© « =

Settings ShareSo.. ShareTar.

OEBPS/bookxref.png

OEBPS/nav.xhtml

 Table of Contents

 		
 Table of Contents

 		
 Preface

 		
 The Death of External Storage

 		
 Using MediaStore

 		
 Location Access Restrictions

 		
 Share Targets

 		
 Dark Mode

 		
 Gesture Navigation

 		
 Installing Apps Using PackageInstaller

 		
 Other Changes of Note

 		
 Copyright Notice and Terms

OEBPS/ShareTargets-01.png
Share

OEBPS/DarkMode-02.png

OEBPS/OtherChanges-04.png
= s
pe netve
T
r
0 one
5 -

CSH document

OEBPS/DarkMode-03.png
639 @

ConferenceVideos

OEBPS/DarkMode-01.png
A dd e

« Display a o

Brpnessiovt

Nt

A —

Adapive bripiness

Walpaper
Dark Theme -

[P ——

OEBPS/OtherChanges-03.png
Internet Connectivity

Arplne made

OEBPS/DarkMode-06.png
=
—
——
=

AVivideo

E @ -~ i~ E [E

— Archive
< . [

OEBPS/DarkMode-04.png
646 @ (A4l

AndroidSummItZ016-MultWindowmpd.
DevFestFL2018-Roommp4
AndroidSummit2018-Slices.mpa

droidconNYC2016-Dragbrop mp4

600 O

OEBPS/DarkMode-05.png
36PP video
36PP2video
T2 archive
ARC audio
ABW document

AVivideo

. Acchive

@2

