

Android’s Architecture Components

by Mark L. Murphy

Android’s Architecture Components
by Mark L. Murphy

Copyright © 2017-2019 CommonsWare, LLC. All Rights Reserved.
Printed in the United States of America.

Printing History:
January 2019: FINAL

The CommonsWare name and logo, “Busy Coder's Guide”, and related trade dress are trademarks of CommonsWare,
LLC.

All other trademarks referenced in this book are trademarks of their respective firms.

The publisher and author(s) assume no responsibility for errors or omissions or for damages resulting from the use of the
information contained herein.

Table of Contents
Headings formatted in bold-italic have changed since the last version.

• Preface
◦ First-Generation Book .. vii
◦ Prerequisites ... viii
◦ Source Code and Its License ... viii
◦ Creative Commons and the Four-to-Free (42F) Guarantee viii
◦ Acknowledgments .. ix

• Room Basics
◦ Wrenching Relations Into Objects ... 1
◦ Room Requirements .. 2
◦ Room Furnishings .. 3
◦ Get a Room .. 8

• Testing Room
◦ Writing Instrumentation Tests .. 11
◦ Writing Unit Tests via Mocks ... 14

• The Dao of Entities
◦ Configuring Entities .. 19
◦ DAOs and Queries ... 29
◦ Dynamic Queries ... 35
◦ Other DAO Operations ... 37
◦ Transactions and Room .. 40
◦ Threads and Room .. 42

• Room and Custom Types
◦ Type Converters ... 45
◦ Embedded Types .. 53
◦ Updating the Trip Sample ... 56

• Room and Relations
◦ The Classic ORM Approach .. 61
◦ A History of Threading Mistakes .. 62
◦ The Room Approach ... 63
◦ Plans for Trips ... 64
◦ Self-Referential Relations for Tree Structures 72
◦ Using @Relation .. 74
◦ @Relation and @Query ... 76
◦ Representing No Relation ... 76

• The Support Database API

i

◦ “Can’t You See That This is a Facade?” ... 79
◦ When Will We Use This? .. 81
◦ Configuring Room’s Database Access ... 81

• Room and Migrations
◦ What’s a Migration? .. 85
◦ When Do We Migrate? ... 86
◦ But First, a Word About Exporting Schemas 86
◦ Writing Migrations ... 89
◦ Employing Migrations .. 94
◦ How Room Applies Migrations .. 96
◦ Testing Migrations .. 96

• Lifecycles and Owners
◦ A Tale of Terminology ... 103
◦ Adding the Lifecycle Components ... 104
◦ Getting a Lifecycle ... 105
◦ Observing a Lifecycle .. 107
◦ Legacy Options .. 108
◦ So, What’s the Point of This? ... 112

• LiveData
◦ Observables Are the New Black .. 115
◦ Yet More Terminology .. 116
◦ Implementing LiveData ... 117
◦ Other LiveData Examples .. 122

• ViewModel
◦ Viewmodels, As Originally Envisioned ... 127
◦ ViewModel Versus… .. 128
◦ Dependencies ... 129
◦ Mommy, Where Does a ViewModel Come From? 129
◦ ViewModel In Action .. 130

• Other Lifecycle Owners
◦ LifecycleService ... 135
◦ ProcessLifecycleOwner ... 136
◦ Wait… Where Are LifecycleProvider and LifecycleReceiver? 140

• LiveData and Data Binding
◦ A Data Binding Recap .. 141
◦ LiveData Updating Data Binding ... 144
◦ Handling Changes to LiveData ... 150
◦ The Saved Instance State Situation ... 152

• WorkManager
◦ Where Should We Use WorkManager? .. 157
◦ Where Should We Not Use WorkManager? 158

ii

◦ WorkManager Dependencies ... 158
◦ Workers: They Do Work ... 159
◦ Performing Simple Work ... 161
◦ Work Inputs ... 162
◦ Constrained Work ... 163
◦ Tagged Work .. 164
◦ Monitoring Work ... 165
◦ Canceling Work ... 168
◦ Delayed Work ... 169
◦ Parallel Work .. 169
◦ Chained Work .. 170
◦ Periodic Work .. 176
◦ Unique Work ... 177
◦ Testing Work ... 177
◦ WorkManager and Side Effects ... 180

• M:N Relations in Room
◦ Implementing a Join Entity ... 185
◦ Implementing DAO Methods ... 189
◦ Where’s That Good Ol’ Object Feel? ... 191

• Polymorphic Room Relations
◦ Polymorphism With Separate Tables ... 193
◦ Polymorphism With a Single Table .. 199
◦ Polymorphism With M:N Relations ... 203

• LiveData Transformations
◦ The Bucket Brigade ... 205
◦ Mapping Data to Data .. 206
◦ Mapping Data to… LiveData? .. 207
◦ Writing a Transformation .. 208
◦ Do We Really Want This? ... 210

• RxJava and Room
◦ Adding RxJava ... 213
◦ Decisions, Decisions .. 214
◦ The One-Time Option: Single ... 215
◦ The One-Time 0-1 Option: Maybe ... 216
◦ The Ongoing Option: Flowable .. 216
◦ @RawQuery and Reactive Responses .. 217

• RxJava and Lifecycles
◦ The Classic Approach .. 219
◦ Bridging RxJava and LiveData ... 220
◦ The Uber Solution: AutoDispose .. 223

• Packing Up a Room

iii

◦ The Problem ... 225
◦ The Classic Solution: SQLiteAssetHelper .. 226
◦ The New Problem .. 227
◦ Merging SQLiteAssetHelper with Room .. 227

• Paging Room Data
◦ The Problem: Too Much Data .. 231
◦ Addressing the UX ... 232
◦ Enter the Paging Library ... 232
◦ Paging and Room ... 234
◦ What About RxJava? .. 243

• LiveData and Bound Services
◦ Old API, New Coat of Paint .. 245
◦ Remote Sensors ... 246

• Immutability
◦ The Benefits of Immutability .. 257
◦ The Costs of Immutability .. 259
◦ Immutability via AutoValue .. 262

• The Repository Pattern
◦ What the Repository Does .. 267
◦ High-Level Repository Strategies ... 270
◦ Let’s Roll the Dice .. 272
◦ Blending Data Sources .. 285

• Introducing Model-View-Intent
◦ GUI Architectures .. 293
◦ Why People Worry About GUI Architectures 294
◦ Why Others Ignore GUI Architectures ... 296
◦ A Rough Comparison of GUI Architectures 298
◦ The Basics of Model-View-Intent ... 302
◦ Additional MVI Resources .. 305

• A Deep Dive Into MVI
◦ What the Sample App Does .. 307
◦ MVI and the Sample App .. 316
◦ The Model .. 316
◦ The View State ... 318
◦ The View .. 320
◦ The Actions .. 325
◦ Publishing Actions ... 328
◦ The Repositories .. 330
◦ The Controller .. 335
◦ About Those Results .. 339
◦ The Reducer in the RosterViewModel ... 341

iv

◦ Examining the Other Fragments .. 346
◦ Summary .. 347

• Backing Up a Room
◦ What Do We Need to Back Up? .. 351
◦ Beware of Open Rooms ... 352
◦ When Do We Back Up the Database? .. 353
◦ A Basic Backup Example ... 355
◦ Backing Up Off-Device .. 362

• Room and Full-Text Searching
◦ What Is FTS? .. 363
◦ The Room 1.x FTS Recipe .. 364
◦ Searching a Book ... 366

• Room and Conflict Resolution
◦ Abort ... 388
◦ Fail .. 390
◦ Ignore ... 390
◦ Replace ... 391
◦ Rollback .. 392
◦ What Should You Use with Room? .. 392

• Configuring SQLite Beyond Room
◦ When To Make Changes ... 395
◦ Example: Turbo Boost Mode ... 396

v

Preface

Thanks!

Thanks for your interest in Android app development, the world’s most popular
operating system! And, thanks for your interest in the Android Architecture
Components, released by Google in 2017 to help address common “big-ticket”
problems in Android app development.

And, most of all, thanks for your interest in this book! I sincerely hope you find it
useful!

(OTOH, if you find it completely useless… um, don’t tell anyone, OK?)

First-Generation Book
Android app development can be divided into two generations:

• First-generation app development uses Java as the programming language
and leverages the Android Support Library and the android.arch edition of
the Architecture Components

• Second-generation app development more often uses Kotlin as the
programming language and leverages AndroidX and the rest of Jetpack
(which includes an AndroidX edition of the Architecture Components)

This book is a first-generation book. It explores the android.arch edition of the
Architecture Components and it uses Java for most of the examples.

Second-generation material can be found in CommonsWare’s “Elements” book
series. Of particular note, some introductory Architecture Components material can

vii

be found in Elements of Android Jetpack.

Prerequisites
This book is targeted at:

• People who have read the core chapters of the companion volume, The Busy
Coder’s Guide to Android Development, or

• Intermediate Android app developers — those with some experience but not
necessarily “experts” in the field

Source Code and Its License
The source code samples shown in this book are available for download from the
book’s GitHub repository. All of the Android projects are licensed under the Apache
2.0 License, in case you have the desire to reuse any of it.

Copying source code directly from the book, in the PDF editions, works best with
Adobe Reader, though it may also work with other PDF viewers. Some PDF viewers,
for reasons that remain unclear, foul up copying the source code to the clipboard
when it is selected.

Creative Commons and the Four-to-Free (42F)
Guarantee
Each CommonsWare book edition will be available for use under the Creative
Commons Attribution-Noncommercial-ShareAlike 4.0 license as of the fourth
anniversary of its publication date, or when 4,000 copies of the edition have been
sold, whichever comes first. That means that, once four years have elapsed (perhaps
sooner!), you can use this prose for non-commercial purposes. That is our Four-to-
Free Guarantee to our readers and the broader community. For the purposes of this
guarantee, new Warescriptions and renewals will be counted as sales of this edition,
starting from the time the edition is published.

This edition of this book will be available under the aforementioned Creative
Commons license on 1 January 2023. Of course, watch the CommonsWare Web site,
as this edition might be relicensed sooner based on sales.

For more details on the Creative Commons Attribution-Noncommercial-ShareAlike

PREFACE

viii

https://commonsware.com/Jetpack
https://commonsware.com/Android
https://commonsware.com/Android
https://github.com/commonsguy/cw-androidarch
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.apache.org/licenses/LICENSE-2.0.html
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

3.0 license, visit the Creative Commons Web site

Note that future editions of this book will become free on later dates, each four years
from the publication of that edition or based on sales of that specific edition.
Releasing one edition under the Creative Commons license does not automatically
release all editions under that license.

Acknowledgments
The author would like to thank the Google team responsible for the Architecture
Components for their work in making this library.

PREFACE

ix

https://creativecommons.org/licenses/by-nc-sa/4.0/

Room

Room Basics

Google describes Room as providing “an abstraction layer over SQLite to allow fluent
database access while harnessing the full power of SQLite.”

In other words, Room aims to make your use of SQLite easier, through a lightweight
annotation-based implementation of an object-relational mapping (ORM) engine.

Wrenching Relations Into Objects
If you have ever worked with a relational database — like SQLite — from an object-
oriented language — like Java — undoubtedly you have encountered the “object-
relational impedance mismatch”. That is a very fancy way of saying “gosh, it’s a pain
getting stuff into and out of the database”.

In object-oriented programming, we are used to objects holding references to other
objects, forming some sort of object graph. However, traditional SQL-style relational
databases work off of tables of primitive data, using foreign keys and join tables to
express relationships. Figuring out how to get our Java classes to map to relational
tables is aggravating, and it usually results in a lot of boilerplate code.

Traditional Android development uses SQLiteDatabase for interacting with SQLite.
That, in turn, uses Cursor objects to represent the results of queries and
ContentValues objects to represent data to be inserted or updated. While Cursor
and ContentValues are objects, they are fairly generic, much in the way that a
HashMap or ArrayList is generic. In particular, neither Cursor nor ContentValues
has any of our business logic. We have to somehow either wrap that around those
objects or convert between those objects and some of ours.

That latter approach is what object-relational mapping engines, or ORMs, take. A

1

https://en.wikipedia.org/wiki/Object-relational_mapping
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch

typical ORM works off of Java code and either generates a suitable database
structure or works with you to identify how the Java classes should map to some
existing table structure (e.g., a legacy one that you are stuck with). The ORM usually
generates some code for you, and supplies a library, which in combination hide
much of the database details from you.

The quintessential Java ORM is Hibernate. However, Hibernate was developed with
server-side Java in mind and is not well-suited for slim platfoms like Android
devices. However, a vast roster of Android ORMs have been created over the years to
try to fill that gap. Some of the more popular ones have been:

• DBFlow
• greenDAO
• OrmLite
• Sugar ORM

Room also helps with the object-relational impedance mismatch. It is not as deep of
an ORM as some of the others, as you will be dealing with SQL a fair bit. However,
Room has one huge advantage: it is from Google, and therefore it will be deemed
“official” in the eyes of many developers and middle managers.

While this book is focused on the Architecture Components — and Room is part of
those — you may wish to explore other ORMs if you are interested in using Java
objects but saving the data in SQLite. Room is likely to become popular, but it is far
from the only option.

Room Requirements
To use Room, you need two dependencies in your module’s build.gradle file:

1. The runtime library version, using the standard implementation directive
2. An annotation processor, using the annotationProcessor directive

implementation "android.arch.persistence.room:runtime:1.1.1"
annotationProcessor "android.arch.persistence.room:compiler:1.1.1"

(from Trips/RoomBasics/app/build.gradle)

Note that Room has a minSdkVersion requirement of API Level 15 or higher. If you
attempt to build with a lower minSdkVersion, you will get a build error. If you try to
override Room’s minSdkVersion using manifest merger elements, while the project

ROOM BASICS

2

http://hibernate.org/
https://android-arsenal.com/tag/69?sort=created
https://github.com/Raizlabs/DBFlow
https://github.com/greenrobot/greenDAO
https://github.com/j256/ormlite-android
http://satyan.github.io/sugar
https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomBasics/app/build.gradle

will build, expect Room to crash horribly.

Room Furnishings
Roughly speaking, your use of Room is divided into three sets of classes:

1. Entities, which are POJOs that model the data you are transferring into and
out of the database

2. The data access object (DAO), that provides the description of the Java API
that you want for working with certain entities

3. The database, which ties together all of the entities and DAOs for a single
SQLite database

If you have used Square’s Retrofit, some of this will seem familiar:

• The DAO is roughly analogous to your Retrofit interface on which you
declare your Web service API

• Your entities are the POJOs that you are expecting Gson (or whatever) to
create based on the Web service response

In this chapter, we will look at the Trips/RoomBasics sample project. This app is the
first of a linked series of apps that we will examine in this book, containing some
code for a travel itinerary manager. Right now, though, we are settling for being able
to see some very rudimentary trips get into and out of a database.

Entities

In many ORM systems, the entity (or that system’s equivalent) is a POJO that you
happen to want to store in the database. It usually represents some part of your
overall domain model, so a payroll system might have entities representing
departments, employees, and paychecks.

With Room, a better description of entities is that they are POJOs representing:

• the data that you want to store into the database, and
• a typical unit of a result set that you are trying to retrieve from the database

That difference may sound academic. It starts to come into play a bit more when we
start thinking about relations.

ROOM BASICS

3

https://github.com/square/retrofit
http://github.com/commonsguy/cw-androidarch/tree/master/Trips/RoomBasics
http://github.com/commonsguy/cw-androidarch/tree/master/Trips/RoomBasics

However, it also more closely matches the way Retrofit maps to Web services. With
Retrofit, we are not describing the contents of the Web service’s database. Rather, we
are describing how we want to work with defined Web service endpoints. Those
endpoints have a particular set of content that we can work with, courtesy of
whoever developed the Web service. We are simply mapping those to methods and
POJOs, both for input and output. Room is somewhere in between a Retrofit-style
“we just take what the Web service gives us” approach and a full ORM-style “we
control everything about the database” approach.

From a coding standpoint, an entity is a Java class marked with the @Entity
annotation. For example, here is a Trip class that serves as a Room entity:

packagepackage com.commonsware.android.room;

importimport android.arch.persistence.room.Entityandroid.arch.persistence.room.Entity;
importimport android.arch.persistence.room.Ignoreandroid.arch.persistence.room.Ignore;
importimport android.arch.persistence.room.PrimaryKeyandroid.arch.persistence.room.PrimaryKey;
importimport android.support.annotation.NonNullandroid.support.annotation.NonNull;
importimport java.util.UUIDjava.util.UUID;

@Entity(tableName = "trips")
classclass TripTrip {

@PrimaryKey
@NonNull
publicpublic finalfinal String id;
publicpublic finalfinal String title;
finalfinal int duration;

@Ignore
Trip(String title, int duration) {

thisthis(UUID.randomUUID().toString(), title, duration);
}

Trip(@NonNull String id, String title, int duration) {
thisthis.id=id;
thisthis.title=title;
thisthis.duration=duration;

}

@Override
publicpublic String toString() {

returnreturn(title);
}

}

(from Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/Trip.java)

ROOM BASICS

4

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/Trip.java

There is no particular superclass required for entities, and the expectation is that
often they will be simple POJOs, as we see here.

Sometimes, your fields will be marked with annotations describing their roles. In
this example, the id field has the @PrimaryKey annotation, telling Room that this is
the unique identifier for this entity. Room will use that to know how to update and
delete Trip objects by their primary key values. Room also requires that any
@PrimaryKey field of an object type — like String – be annotated with @NonNull, as
primary keys in SQLite cannot be null.

Similarly, sometimes your methods will be marked with annotations. In this case,
Trip has two constructors: one that generates the id from a UUID, and one that takes
the id as a constructor parameter. Room needs to know which constructor(s) are
eligible for its use; you mark the other constructors with the @Ignore annotation.

For Room to work with a field, it needs to be public or have JavaBean-style getter
and setter methods, so Room can access them. If the fields are final, as they are on
Trip, Room will try to find a constructor to use to populate the fields, as final fields
will lack setters.

We will explore entities in greater detail in an upcoming chapter.

DAO

“Data access object” (DAO) is a fancy way of saying “the API into the data”. The idea
is that you have a DAO that provides methods for the database operations that you
need: queries, inserts, updates, deletes, whatever.

In Room, the DAO is identified by the @Dao annotation, applied to either an
abstract class or an interface. The actual concrete implementation will be code-
generated for you by the Room annotation processor.

The primary role of the @Dao-annotated abstract class or interface is to have one
or more methods, with their own Room annotations, identifying what you want to
do with the database and your entities. This serves the same role as the methods
annotated @GET or @POST in Retrofit.

The sample app has a TripStore that is our DAO:

packagepackage com.commonsware.android.room;

ROOM BASICS

5

importimport android.arch.persistence.room.Daoandroid.arch.persistence.room.Dao;
importimport android.arch.persistence.room.Deleteandroid.arch.persistence.room.Delete;
importimport android.arch.persistence.room.Insertandroid.arch.persistence.room.Insert;
importimport android.arch.persistence.room.OnConflictStrategyandroid.arch.persistence.room.OnConflictStrategy;
importimport android.arch.persistence.room.Queryandroid.arch.persistence.room.Query;
importimport android.arch.persistence.room.Updateandroid.arch.persistence.room.Update;
importimport java.util.Listjava.util.List;

@Dao
interfaceinterface TripStoreTripStore {

@Query("SELECT * FROM trips ORDER BY title")
List<Trip> selectAll();

@Query("SELECT * FROM trips WHERE id=:id")
Trip findById(String id);

@Insert
void insert(Trip... trips);

@Update
void update(Trip... trips);

@Delete
void delete(Trip... trips);

}

(from Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripStore.java)

Besides the @Dao annotation on the TripStore interface, we have five methods, each
with their own annotations. Your four main annotations for these methods are
@Query, @Insert, @Update, and @Delete, which map to the corresponding database
operations.

Two TripStore methods — selectAll() and findById() — have the @Query
annotation. Principally, @Query will be used for SQL SELECT statements, where you
put the actual SQL in the annotation itself. To a large extent, any valid SQLite query
can be used here. However, instead of using ? as placeholders for arguments, as we
would in traditional SQLite, you use :-prefixed method parameter names. So, in
findById(), we have a String parameter named id, so we can use :id in the SQL
statement wherever we might have used ? to indicate the value to bind in.

The remaining three methods use the @Insert, @Update, and @Delete annotations,
mapped to methods of the same name. Here, the methods take a varargs of Trip,
meaning that we can insert, update, or delete as many Trip objects as we want
(passing in zero Trip objects works, though that would be rather odd).

ROOM BASICS

6

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripStore.java

If you want custom code on your DAO, beyond the code-generated implementations
of your Room-annotated methods, use an abstract class and mark all the Room-
annotated methods as abstract. If, on the other hand, all you need on the DAO are
the Room-annotated methods, you can use an interface and skip all the abstract
keywords, as we did with TripStore.

We will explore the DAO in greater detail in an upcoming chapter.

Database

In addition to entities and DAOs, you will have at least one @Database-annotated
abstract class, extending a RoomDatabase base class. This class knits together the
database file, the entities, and the DAOs.

In the sample project, we have a TripDatabase serving this role:

packagepackage com.commonsware.android.room;

importimport android.arch.persistence.room.Databaseandroid.arch.persistence.room.Database;
importimport android.arch.persistence.room.Roomandroid.arch.persistence.room.Room;
importimport android.arch.persistence.room.RoomDatabaseandroid.arch.persistence.room.RoomDatabase;
importimport android.content.Contextandroid.content.Context;

@Database(entities={Trip.class}, version=1)
abstractabstract classclass TripDatabaseTripDatabase extendsextends RoomDatabase {

abstractabstract TripStore tripStore();

privateprivate staticstatic finalfinal String DB_NAME="trips.db";
privateprivate staticstatic volatilevolatile TripDatabase INSTANCE=nullnull;

synchronizedsynchronized staticstatic TripDatabase get(Context ctxt) {
ifif (INSTANCE==nullnull) {

INSTANCE=create(ctxt, falsefalse);
}

returnreturn(INSTANCE);
}

staticstatic TripDatabase create(Context ctxt, boolean memoryOnly) {
RoomDatabase.Builder<TripDatabase> b;

ifif (memoryOnly) {
b=Room.inMemoryDatabaseBuilder(ctxt.getApplicationContext(),

TripDatabase.class);
}

ROOM BASICS

7

elseelse {
b=Room.databaseBuilder(ctxt.getApplicationContext(), TripDatabase.class,

DB_NAME);
}

returnreturn(b.build());
}

}

(from Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripDatabase.java)

The @Database annotation configures the code generation process, including:

• Identifying all of the entity classes that you care about in the entities
collection

• Identifying the schema version of the database (as you see with
SQLiteOpenHelper in conventional Android SQLite development)

@Database(entities={Trip.class}, version=1)

(from Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripDatabase.java)

Here, we are saying that we have just one entity class (Trip), and that this is schema
version 1.

You also need abstract methods for each DAO class that return an instance of that
class:

abstractabstract TripStore tripStore();

(from Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripDatabase.java)

In this app, we have only one DAO (TripStore), so we have an abstract method to
return an instance of TripStore.

Extending RoomDatabase, having the @Database annotation, and having the
abstract method(s) for your DAOs are the requirements. Anything beyond that is
up to you, and some apps may elect to have nothing more here.

In our case, we have a bit more logic.

Get a Room
In this example, the database is a singleton. TripDatabase has a static getter

ROOM BASICS

8

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripDatabase.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripDatabase.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripDatabase.java

method, cunningly named get(), that creates our singleton. get(), in turn, calls a
create() method that is responsible for creating our TripDatabase:

staticstatic TripDatabase create(Context ctxt, boolean memoryOnly) {
RoomDatabase.Builder<TripDatabase> b;

ifif (memoryOnly) {
b=Room.inMemoryDatabaseBuilder(ctxt.getApplicationContext(),

TripDatabase.class);
}
elseelse {

b=Room.databaseBuilder(ctxt.getApplicationContext(), TripDatabase.class,
DB_NAME);

}

returnreturn(b.build());
}

(from Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripDatabase.java)

To create a TripDatabase, we use a RoomDatabase.Builder, which we get by calling
one of two methods on the Room class:

• databaseBuilder() is what you will normally use
• inMemoryDatabaseBuilder() does what the method name suggests: it

creates an in-memory SQLite database, useful for instrumentation tests
where you do not necessarily need to persist the data for a user

Both of those methods take a Context and the Java Class object for the desired
RoomDatabase subclass. databaseBuilder() also takes the filename of the SQLite
database to use, much as SQLiteOpenHelper does in traditional Android SQLite
development.

While there are some configuration methods that can be called on the
RoomDatabase.Builder, we skip those here, simply calling build() to build the
TripDatabase. The result is that when we call get(), we get a singleton lazy-
initialized TripDatabase.

From there, we can:

• Call tripStore() on the TripDatabase to retrieve the TripStore DAO
• Call methods on the TripStore to query, insert, update, or delete Trip

objects

ROOM BASICS

9

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripDatabase.java

We will see how to do that in the next chapter, where we look at how to write
instrumentation tests for our Room-generated database code.

ROOM BASICS

10

Testing Room

Once you have a RoomDatabase and its associated DAO(s) and entities set up, you
should start testing it.

The good news is that testing Room is not dramatically different than is testing
anything else in Android. Room has a few characteristics that make it a bit easier
than some things to test, as it turns out.

Writing Instrumentation Tests
On the whole, writing instrumentation tests for Room — where the tests run on an
Android device or emulator — is unremarkable. You get an instance of your
RoomDatabase subclass and exercise it from there.

So, for example, here is an instrumentation test case class to exercise the
TripDatabase from the preceding chapter:

packagepackage com.commonsware.android.room;

importimport android.support.test.InstrumentationRegistryandroid.support.test.InstrumentationRegistry;
importimport android.support.test.runner.AndroidJUnit4android.support.test.runner.AndroidJUnit4;
importimport org.junit.Afterorg.junit.After;
importimport org.junit.Beforeorg.junit.Before;
importimport org.junit.Testorg.junit.Test;
importimport org.junit.runner.RunWithorg.junit.runner.RunWith;
importimport java.util.Listjava.util.List;
importimport staticstatic junit.framework.Assert.assertNotNull;
importimport staticstatic junit.framework.Assert.assertTrue;
importimport staticstatic org.junit.Assert.assertEquals;
importimport staticstatic org.junit.Assert.assertNotEquals;

11

@RunWith(AndroidJUnit4.class)
publicpublic classclass TripTestsTripTests {

TripDatabase db;
TripStore store;

@Before
publicpublic void setUp() {

db=TripDatabase.create(InstrumentationRegistry.getTargetContext(), truetrue);
store=db.tripStore();

}

@After
publicpublic void tearDown() {

db.close();
}

@Test
publicpublic void basics() {

assertEquals(0, store.selectAll().size());

finalfinal Trip first=newnew Trip("Foo", 2880);

assertNotNull(first.id);
assertNotEquals(0, first.id.length());
store.insert(first);

assertTrip(store, first);

finalfinal Trip updated=newnew Trip(first.id, "Foo!!!", 1440);

store.update(updated);
assertTrip(store, updated);

store.delete(updated);
assertEquals(0, store.selectAll().size());

}

privateprivate void assertTrip(TripStore store, Trip trip) {
List<Trip> results=store.selectAll();

assertNotNull(results);
assertEquals(1, results.size());
assertTrue(areIdentical(trip, results.get(0)));

Trip result=store.findById(trip.id);

assertNotNull(result);
assertTrue(areIdentical(trip, result));

TESTING ROOM

12

}

privateprivate boolean areIdentical(Trip one, Trip two) {
returnreturn(one.id.equals(two.id) &&

one.title.equals(two.title) &&
one.duration==two.duration);

}
}

(from Trips/RoomBasics/app/src/androidTest/java/com/commonsware/android/room/TripTests.java)

Here, we:

• Create an empty database
• Get the DAO (TripStore)
• Confirm that there are no trips in the database
• Create a Trip object and insert() it into the database, then confirm that the

database was properly inserted
• Create a new Trip object with the same ID as the first, update() the

database using it, then confirm that the database was properly modified
• Delete the Trip object, then confirm that the database has no trips once

again

Using In-Memory Databases

When testing a database, though, one of the challenges is in making those tests
“hermetic”, or self-contained. One test method should not depend upon another test
method, and one test method should not affect the results of another test method
accidentally. This means that we want to start with a known starting point before
each test, and we have to consider how to do that.

One approach — the one taken in the above TripTests class — is to use an in-
memory database. The static create() method on TripDatabase, if you pass true
for the second parameter, creates a TripDatabase backed by memory, not disk.

There are two key advantages for using an in-memory database for instrumentation
testing:

1. It is intrinsically self-contained. Once the TripDatabase is closed, its
memory is released, and if separate tests use separate TripDatabase
instances, one will not affect the other.

2. Reading and writing to and from memory is much faster than is reading and
writing to and from disk, so the tests run much faster.

TESTING ROOM

13

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomBasics/app/src/androidTest/java/com/commonsware/android/room/TripTests.java

On the other hand, this means that the instrumentation tests are useless for
performance testing, as (presumably) your production app will actually store its
database on disk. You could use Gradle command-line switches, custom build types
and buildConfigField, or other means to decide when tests are run whether they
should use memory or disk.

Importing Starter Data

The one downside to having an empty starter database, such as a fresh in-memory
database, is that you have no data. Eventually, you need some data to test.

That could come from test code, such as what TripTests does. In many cases, this is
a necessary part of testing, to confirm that all of your DAO methods work as
expected.

Alternatives include:

• Loading the data from some neutral format (e.g., JSON) via some utility
method

• Packaging one or more starter database as assets in the instrumentation
tests (e.g., src/androidTest/assets/), then using ATTACH DATABASE ... and
INSERT INTO ... SELECT FROM ... SQLite code to copy from the starter
database to the database to be used in testing

Writing Unit Tests via Mocks
Let’s look again at the TripStore DAO:

packagepackage com.commonsware.android.room;

importimport android.arch.persistence.room.Daoandroid.arch.persistence.room.Dao;
importimport android.arch.persistence.room.Deleteandroid.arch.persistence.room.Delete;
importimport android.arch.persistence.room.Insertandroid.arch.persistence.room.Insert;
importimport android.arch.persistence.room.OnConflictStrategyandroid.arch.persistence.room.OnConflictStrategy;
importimport android.arch.persistence.room.Queryandroid.arch.persistence.room.Query;
importimport android.arch.persistence.room.Updateandroid.arch.persistence.room.Update;
importimport java.util.Listjava.util.List;

@Dao
interfaceinterface TripStoreTripStore {

@Query("SELECT * FROM trips ORDER BY title")
List<Trip> selectAll();

TESTING ROOM

14

@Query("SELECT * FROM trips WHERE id=:id")
Trip findById(String id);

@Insert
void insert(Trip... trips);

@Update
void update(Trip... trips);

@Delete
void delete(Trip... trips);

}

(from Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripStore.java)

This is a pure interface. More importantly, other than annotations, its API is purely
domain-specific. Everything revolves around our Trip entity and other business
logic (e.g., String values as identifiers).

Room DAOs are designed to be mocked, using a mocking library like Mockito, so
that you can write unit tests (tests that run on your development machine or CI
server) in addition to — or perhaps instead of — instrumentation tests.

The primary advantage of unit tests is execution speed, as they do not have to be run
on Android devices or emulators. On the other hand, setting up mocks can be
tedious.

The RoomBasics project not only has the instrumentation tests shown earlier in this
chapter, but an equivalent unit test in test/, embodied in a TripUnitTests class:

packagepackage com.commonsware.android.room;

importimport org.junit.Beforeorg.junit.Before;
importimport org.junit.Testorg.junit.Test;
importimport org.mockito.ArgumentMatchersorg.mockito.ArgumentMatchers;
importimport org.mockito.Mockitoorg.mockito.Mockito;
importimport org.mockito.invocation.InvocationOnMockorg.mockito.invocation.InvocationOnMock;
importimport org.mockito.stubbing.Answerorg.mockito.stubbing.Answer;
importimport java.util.ArrayListjava.util.ArrayList;
importimport java.util.Collectionsjava.util.Collections;
importimport java.util.Comparatorjava.util.Comparator;
importimport java.util.HashMapjava.util.HashMap;
importimport java.util.Listjava.util.List;
importimport staticstatic org.junit.Assert.assertEquals;
importimport staticstatic org.junit.Assert.assertNotEquals;

TESTING ROOM

15

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripStore.java

importimport staticstatic org.junit.Assert.assertNotNull;
importimport staticstatic org.junit.Assert.assertTrue;
importimport staticstatic org.mockito.Matchers.any;
importimport staticstatic org.mockito.Mockito.doAnswer;

publicpublic classclass TripUnitTestsTripUnitTests {
privateprivate TripStore store;

@Before
publicpublic void setUp() {

store=Mockito.mock(TripStore.class);

finalfinal HashMap<String, Trip> trips=newnew HashMap<>();

doAnswer(newnew Answer() {
@Override
publicpublic Object answer(InvocationOnMock invocation) throwsthrows Throwable {

ArrayList<Trip> result=newnew ArrayList<>(trips.values());

Collections.sort(result, newnew Comparator<Trip>() {
@Override
publicpublic int compare(Trip left, Trip right) {

returnreturn(left.title.compareTo(right.title));
}

});

returnreturn(result);
}

}).when(store).selectAll();

doAnswer(newnew Answer() {
@Override
publicpublic Object answer(InvocationOnMock invocation) throwsthrows Throwable {

String id=(String)invocation.getArguments()[0];

returnreturn(trips.get(id));
}

}).when(store).findById(any(String.class));

doAnswer(newnew Answer() {
@Override
publicpublic Object answer(InvocationOnMock invocation) throwsthrows Throwable {

forfor (Object rawTrip : invocation.getArguments()) {
Trip trip=(Trip)rawTrip;

trips.put(trip.id, trip);
}

TESTING ROOM

16

returnreturn(nullnull);
}

}).when(store).insert(ArgumentMatchers.any());

doAnswer(newnew Answer() {
@Override
publicpublic Object answer(InvocationOnMock invocation) throwsthrows Throwable {

forfor (Object rawTrip : invocation.getArguments()) {
Trip trip=(Trip)rawTrip;

trips.put(trip.id, trip);
}

returnreturn(nullnull);
}

}).when(store).update(ArgumentMatchers.any());

doAnswer(newnew Answer() {
@Override
publicpublic Object answer(InvocationOnMock invocation) throwsthrows Throwable {

forfor (Object rawTrip : invocation.getArguments()) {
Trip trip=(Trip)rawTrip;

trips.remove(trip.id);
}

returnreturn(nullnull);
}

}).when(store).delete(ArgumentMatchers.any());
}

@Test
publicpublic void basics() {

assertEquals(0, store.selectAll().size());

finalfinal Trip first=newnew Trip("Foo", 2880);

assertNotNull(first.id);
assertNotEquals(0, first.id.length());
store.insert(first);

assertTrip(store, first);

finalfinal Trip updated=newnew Trip(first.id, "Foo!!!", 1440);

store.update(updated);
assertTrip(store, updated);

TESTING ROOM

17

store.delete(updated);
assertEquals(0, store.selectAll().size());

}

privateprivate void assertTrip(TripStore store, Trip trip) {
List<Trip> results=store.selectAll();

assertNotNull(results);
assertEquals(1, results.size());
assertTrue(areIdentical(trip, results.get(0)));

Trip result=store.findById(trip.id);

assertNotNull(result);
assertTrue(areIdentical(trip, result));

}

privateprivate boolean areIdentical(Trip one, Trip two) {
returnreturn(one.id.equals(two.id) &&

one.title.equals(two.title) &&
one.duration==two.duration);

}
}

(from Trips/RoomBasics/app/src/test/java/com/commonsware/android/room/TripUnitTests.java)

The basics() test method, and its supporting utility methods, are the same as in the
instrumentation tests. What differs is where the TripStore comes from. In the
instrumentation tests, we created an in-memory TripDatabase and retrieved a
TripStore from it. In the unit tests, we use Mockito to create a mock TripStore (via
Mockito.mock(TripStore.class)), then teach the mock how to respond to its
methods. In this case, we mock a database with a simple HashMap, with a roster of
the trips, keyed by their ID values. Each of the doAnswer() calls mocks a specific
method on the TripStore, down to the details of having selectAll() return the
trips ordered by title.

Whether this is worth the effort is for you to decide. For many projects,
instrumentation tests will suffice. For larger projects, where the speed difference
between unit tests and instrumentation tests is substantial, it might be worth the
engineering time to create the mocks. While mocking is also useful for scenarios
that are difficult to reproduce, it is unlikely that your DAO will have any of those
scenarios.

TESTING ROOM

18

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomBasics/app/src/test/java/com/commonsware/android/room/TripUnitTests.java

The Dao of Entities

Two chapters ago, we went through the basic steps for setting up Room:

• Create and annotate your entity classes
• Create, annotate, and define operator methods on your DAO(s)
• Create a subclass of RoomDatabase to tie the entities and DAO(s) together
• Create an instance of that RoomDatabase at some likely point in time, while

you are safely on a background thread
• Use the RoomDatabase instance to retrieve your DAO and from there work

with your entities

However, we only scratched the surface of what can be configured on entities and
DAOs. In this chapter — and the subsequent chapters on custom types and relations
— we will explore the rest of the configuration for entities and DAOs.

Many of the code snippets shown in this chapter come from the General/RoomDao
sample project. This contains a library module (stuff) with entity and DAO code
along with instrumentation tests for bits of that code.

Configuring Entities
The only absolute requirements for a Room entity class is that it be annotated with
the @Entity annotation and have a field identified as the primary key, typically by
way of a @PrimaryKey annotation. Anything above and beyond that is optional.

However, there is a fair bit that is “above and beyond that”. Some — though probably
not all — of these features will be of interest in larger apps.

19

http://github.com/commonsguy/cw-androidarch/tree/master/General/RoomDao
http://github.com/commonsguy/cw-androidarch/tree/master/General/RoomDao

Primary Keys

If you have a single field that is the primary key for your entity, using the
@PrimaryKey annotation is simple and helps you clearly identify that primary key at
a later point.

However, you do have some other options.

Auto-Generated Primary Keys

In SQLite, if you have an INTEGER column identified as the PRIMARY KEY, you can
optionally have SQLite assign unique values for that column, by way of the
AUTOINCREMENT keyword.

In Room, if you have an int or Integer field that is your @PrimaryKey, you can
optionally apply AUTOINCREMENT to the corresponding column by adding
autoGenerate=true to the annotation:

@Entity
publicpublic classclass ConstantConstant {

@PrimaryKey(autoGenerate=truetrue)
@NonNull
publicpublic int id;
String title;
double value;

@Override
publicpublic String toString() {

returnreturn(title);
}

}

By default, autoGenerate is false. Setting that property to true gives you
AUTOINCREMENT in the generated CREATE TABLE statement:

CREATECREATE TABLETABLE IF NOTNOT EXISTSEXISTS Constant (id INTEGER PRIMARYPRIMARY KEYKEY AUTOINCREMENT, title
TEXT, value REAL NOTNOT NULLNULL)

However, this starts to get complicated in the app. You do not know your primary
key until you insert the entity into a database. That presents “trickle-down”
complications — for example, you cannot make the primary key field final, as then
you cannot create an instance of an entity that is not yet in the database. While you
can try to work around this (e.g., default the id to 0), then you have to keep

THE DAO OF ENTITIES

20

checking to see whether you have a valid identifier.

Most of the samples in this book will use a UUID instead. While these take up much
more room than a simple int, they can be uniquely generated outside of the
database. For your production apps, you will need to decide if the headaches
surrounding database-generated identifiers are worth their benefits.

Also, notice that the value column has NOT NULL applied to it. Room’s rule is that
primitive fields (int, double, etc.) will be NOT NULL, while their object equivalents
(Integer, Double, etc.) will allow null values.

Composite Primary Keys

In some cases, you may have a composite primary key, made up of two or more
columns in the database. This is particularly true if you are trying to design your
entities around an existing database structure, one that used a composite primary
key for one of its tables (for whatever reason).

If, logically, those are all part of a single object, you could combine them into a
single field, as we will see in the next chapter. However, it may be that they should
be individual fields in your entity, but they happen to combine to create the primary
key. In that case, you can skip the @PrimaryKey annotation and use the primaryKeys
property of the @Entity.

One scenario for this is data versioning, where we are tracking changes to data over
time, the way a version control system tracks changes to source code and other files
over time. There are several ways of implementing data versioning. One approach
has all versions of the same entity in the same table, with a version code attached to
the “natural” primary key to identify a specific version of that content. In that case,
you could have something like:

@Entity(primaryKeys={"id", "versionCode"})
classclass VersionedThingyVersionedThingy {

@NonNull publicpublic finalfinal String id;
publicpublic finalfinal int versionCode;

VersionedThingy(String id, int versionCode) {
thisthis.id=id;
thisthis.versionCode=versionCode;

}
}

THE DAO OF ENTITIES

21

Room will then use the PRIMARY KEY keyword in the CREATE TABLE statement to set
up the composite primary key:

CREATECREATE TABLETABLE IF NOTNOT EXISTSEXISTS VersionedThingy (id TEXT NOTNOT NULLNULL, versionCode INTEGER NOTNOT
NULLNULL, PRIMARYPRIMARY KEYKEY(id, versionCode))

Even though we are using primaryKeys rather than @PrimaryKey, the @NonNull
requirement still holds. We need to add that to any of our primaryKeys fields that
are of object types. Since id is a String, we need @NonNull. However, versionCode is
an int, and an int cannot be null, so we do not need @NonNull (though having it
will not cause a problem). If versionCode were an Integer, we would need
@NonNull, as an Integer field could be null.

Adding Indexes

Your primary key is indexed automatically by SQLite. However, you may wish to set
up other indexes for other columns or collections of columns, to speed up queries.
To do that, use the indices property on @Entity. This property takes a list of @Index
annotations, each of which declares an index.

For example, as part of a Customer entity, you might have an address, which might
contain a postalCode. You might be querying directly on postalCode as part of a
search form, and so having an index on that would be useful. To do that, add the
appropriate @Index to indices:

@Entity(indices={@Index("postalCode")})
classclass CustomerCustomer {

@PrimaryKey
@NonNull
publicpublic finalfinal String id;

publicpublic finalfinal String postalCode;
publicpublic finalfinal String displayName;

Customer(String id, String postalCode, String displayName) {
thisthis.id=id;
thisthis.postalCode=postalCode;
thisthis.displayName=displayName;

}
}

Room will add the requested index:

THE DAO OF ENTITIES

22

CREATECREATE INDEXINDEX index_Customer_postalCode ONON Customer (postalCode)

If you have a composite index, consisting of two or more fields, @Index takes a
comma-delimited list of column names and will generate the composite index.

If the index should also enforce uniqueness — only one entity can have the indexed
value — add unique=true to the @Index. This requires you to assign the column(s)
for the index to the value property, due to the way Java annotations work:

@Entity(indices={@Index(value="postalCode", unique=truetrue)})
classclass CustomerCustomer {

@PrimaryKey
@NonNull
publicpublic finalfinal String id;

publicpublic finalfinal String postalCode;
publicpublic finalfinal String displayName;

Customer(String id, String postalCode, String displayName) {
thisthis.id=id;
thisthis.postalCode=postalCode;
thisthis.displayName=displayName;

}
}

This causes Room to add the UNIQUE keyword to the CREATE INDEX statement:

CREATECREATE UNIQUEUNIQUE INDEXINDEX index_Customer_postalCode ONON Customer (postalCode)

Ignoring Fields

If there are fields in the entity class that should not be persisted, annotate them with
@Ignore:

@Entity(primaryKeys={"id", "versionCode"})
classclass VersionedThingyVersionedThingy {

@NonNull publicpublic finalfinal String id;
publicpublic finalfinal int versionCode;

@Ignore
privateprivate String something;

VersionedThingy(String id, int versionCode) {
thisthis.id=id;
thisthis.versionCode=versionCode;

THE DAO OF ENTITIES

23

}
}

That annotation is required. For example, this does not work:

@Entity(primaryKeys={"id", "versionCode"})
classclass VersionedThingyVersionedThingy {

@NonNull publicpublic finalfinal String id;
publicpublic finalfinal int versionCode;

privateprivate String something;

VersionedThingy(String id, int versionCode) {
thisthis.id=id;
thisthis.versionCode=versionCode;

}
}

You might think that since the field is private and has no setter, that Room would
ignore it automatically. Room, instead, generates a build error, as it cannot tell if you
want to ignore that field or if you simply forgot to add it properly.

With Room, transient fields are ignored automatically by default, so in the
following code snippet, something will be ignored:

@Entity(primaryKeys={"id", "versionCode"})
classclass VersionedThingyVersionedThingy {

@NonNull publicpublic finalfinal String id;
publicpublic finalfinal int versionCode;

publicpublic transienttransient String something;

VersionedThingy(String id, int versionCode) {
thisthis.id=id;
thisthis.versionCode=versionCode;

}
}

As seen earlier in the book, you can also @Ignore constructors. This may be required
to clear up Room build errors, if the code generator cannot determine what
constructor to use:

@Entity(primaryKeys={"id", "versionCode"})
classclass VersionedThingyVersionedThingy {

@NonNull publicpublic finalfinal String id;

THE DAO OF ENTITIES

24

publicpublic finalfinal int versionCode;

@Ignore
privateprivate String something;

@Ignore
VersionedThingy() {

thisthis(UUID.randomUUID().toString(), 1);
}

VersionedThingy(String id, int versionCode) {
thisthis.id=id;
thisthis.versionCode=versionCode;

}
}

NOT NULL Fields

As noted earlier, primitive fields get converted into NOT NULL columns in the table,
while object fields allow null values.

If you want an object field to be NOT NULL, apply the @NonNull annotation:

@Entity(indices={@Index("postalCode")})
classclass CustomerCustomer {

@PrimaryKey
@NonNull
publicpublic finalfinal String id;

@NonNull
publicpublic finalfinal String postalCode;
publicpublic finalfinal String displayName;

Customer(String id, String postalCode, String displayName) {
thisthis.id=id;
thisthis.postalCode=postalCode;
thisthis.displayName=displayName;

}
}

This will make the associated column have NOT NULL applied to it.

Custom Table and Column Names

By default, Room will generate names for your tables and columns based off of the

THE DAO OF ENTITIES

25

entity class names and field names. In general, it does a respectable job of this, and
so you may just leave them alone. However, you may find that you need to control
these names, particularly if you are trying to match an existing database schema
(e.g., you are migrating an existing Android app to use Room instead of using SQLite
directly). And for table names in particular, setting your own name can simplify
some of the SQL that you have to write for @Query-annotated methods.

To control the table name, use the tableName property on the @Entity attribute, and
give it a valid SQLite table name. For example, while in Java we might want to call
the class VersionedThingy, we might prefer the table to just be thingy:

@Entity(tableName="thingy", primaryKeys={"id", "versionCode"})
classclass VersionedThingyVersionedThingy {

@NonNull publicpublic finalfinal String id;
publicpublic finalfinal int versionCode;

@Ignore
privateprivate String something;

@Ignore
VersionedThingy() {

thisthis(UUID.randomUUID().toString(), 1);
}

VersionedThingy(String id, int versionCode) {
thisthis.id=id;
thisthis.versionCode=versionCode;

}
}

To rename a column, add the @ColumnInfo annotation to the field, with a name
property that provides your desired name for the column:

@Entity(tableName="thingy", primaryKeys={"id", "versionCode"})
classclass VersionedThingyVersionedThingy {

@NonNull publicpublic finalfinal String id;

@ColumnInfo(name="version_code")
publicpublic finalfinal int versionCode;

@Ignore
privateprivate String something;

@Ignore
VersionedThingy() {

THE DAO OF ENTITIES

26

thisthis(UUID.randomUUID().toString(), 1);
}

VersionedThingy(String id, int versionCode) {
thisthis.id=id;
thisthis.versionCode=versionCode;

}
}

Here, we changed the versionCode field’s column to version_code, along with
specifying the table name.

However, this fails. The values in the primaryKeys property are the column names,
not the field names. Since we renamed the column, we need to update primaryKeys
to match:

packagepackage com.commonsware.android.room.dao;

importimport android.arch.persistence.room.ColumnInfoandroid.arch.persistence.room.ColumnInfo;
importimport android.arch.persistence.room.Entityandroid.arch.persistence.room.Entity;
importimport android.arch.persistence.room.Ignoreandroid.arch.persistence.room.Ignore;
importimport android.arch.persistence.room.PrimaryKeyandroid.arch.persistence.room.PrimaryKey;
importimport android.support.annotation.NonNullandroid.support.annotation.NonNull;
importimport java.util.UUIDjava.util.UUID;

@Entity(tableName="thingy", primaryKeys={"id", "version_code"})
classclass VersionedThingyVersionedThingy {

@NonNull publicpublic finalfinal String id;

@ColumnInfo(name="version_code")
@NonNull
publicpublic finalfinal int versionCode;

@Ignore
privateprivate String something;

@Ignore
VersionedThingy() {

thisthis(UUID.randomUUID().toString(), 1);
}

VersionedThingy(String id, int versionCode) {
thisthis.id=id;
thisthis.versionCode=versionCode;

}
}

THE DAO OF ENTITIES

27

(from General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/VersionedThingy.java)

Also note that adding @ColumnInfo to a transient field means that this field will be
included when creating the table structure. By default, transient fields are ignored,
but adding @ColumnInfo indicates that you want that default behavior to be
overridden.

Other @ColumnInfo Options

Beyond specifying the column name to use, you can configure other options on a
@ColumnInfo annotation.

Indexing

You can add an index property to indicate that you want to index the column, as an
alternative to listing the column in the indices property of the @Entity annotation.
For example, we could replace:

@Entity(indices={@Index("postalCode")})
classclass CustomerCustomer {

@PrimaryKey
publicpublic finalfinal String id;

publicpublic finalfinal String postalCode;
publicpublic finalfinal String displayName;

Customer(String id, String postalCode, String displayName) {
thisthis.id=id;
thisthis.postalCode=postalCode;
thisthis.displayName=displayName;

}
}

with:

@Entity
classclass CustomerCustomer {

@PrimaryKey
publicpublic finalfinal String id;

@ColumnInfo(index=truetrue)
publicpublic finalfinal String postalCode;
publicpublic finalfinal String displayName;

THE DAO OF ENTITIES

28

https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/VersionedThingy.java

Customer(String id, String postalCode, String displayName) {
thisthis.id=id;
thisthis.postalCode=postalCode;
thisthis.displayName=displayName;

}
}

and have the same result.

Collation

You can specify a collate property to indicate the collation sequence to apply to
this column. Here, “collation sequence” is a fancy way of saying “comparison
function for comparing two strings”.

There are four options:

• BINARY and UNDEFINED, which are equivalent, the default value, and indicate
that case is sensitive

• NOCASE, which indicates that case is not sensitive (more accurately, that the
26 English letters are converted to uppercase)

• RTRIM, which indicates that trailing spaces should be ignored on a case-
sensitive collation

There is no full-UTF equivalent of NOCASE in SQLite.

Type Affinity

Normally, Room will determine the type to use on the column in SQLite based upon
the type of the field (e.g., int or Integer turn into INTEGER columns). If, for some
reason, you wish to try to override this behavior, you can use the typeAffinity
property on @ColumnInfo to specify some other type to use.

DAOs and Queries
One popular thing to do with a database is to get data out of it. For that, we add
@Query methods on our DAO.

Those do not have to be especially complicated, as we saw with the TripStore:

packagepackage com.commonsware.android.room;

THE DAO OF ENTITIES

29

importimport android.arch.persistence.room.Daoandroid.arch.persistence.room.Dao;
importimport android.arch.persistence.room.Deleteandroid.arch.persistence.room.Delete;
importimport android.arch.persistence.room.Insertandroid.arch.persistence.room.Insert;
importimport android.arch.persistence.room.OnConflictStrategyandroid.arch.persistence.room.OnConflictStrategy;
importimport android.arch.persistence.room.Queryandroid.arch.persistence.room.Query;
importimport android.arch.persistence.room.Updateandroid.arch.persistence.room.Update;
importimport java.util.Listjava.util.List;

@Dao
interfaceinterface TripStoreTripStore {

@Query("SELECT * FROM trips ORDER BY title")
List<Trip> selectAll();

@Query("SELECT * FROM trips WHERE id=:id")
Trip findById(String id);

@Insert
void insert(Trip... trips);

@Update
void update(Trip... trips);

@Delete
void delete(Trip... trips);

}

(from Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripStore.java)

However, SQL queries with SQLite can get remarkably complicated. Room tries to
support a lot of the standard SQL syntax, but Room adds its own complexity, in
terms of trying to decipher how to interpret your @Query method’s arguments and
return type.

Adding Parameters

As we saw with findById() on TripStore, you can map method arguments to query
parameters by using : syntax. Put : before the argument name and its value will be
injected into the query:

@Query("SELECT * FROM thingy WHERE id=:id AND version_code=:versionCode")
VersionedThingy findById(String id, int versionCode);

(from General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java)

Bear in mind that the rest of the SQL statement is based on the table, not the entity.

THE DAO OF ENTITIES

30

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripStore.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java

Table names and column names will either be the code-generated names or your
overridden names (via tableName and @ColumnInfo).

WHERE Clause

Principally, your method arguments will be injected into your WHERE clause, such as
in the above examples.

Note that Room has special support for IN in a WHERE clause. So, while this works for
a single postalCode:

@Query("SELECT * FROM Customer WHERE postalCode IN (:postalCodes)")
List<Customer> findByPostalCodes(String postalCodes);

…you can also do:

@Query("SELECT * FROM Customer WHERE postalCode IN (:postalCodes)")
List<Customer> findByPostalCodes(List<String> postalCodes);

…or even:

@Query("SELECT * FROM Customer WHERE postalCode IN (:postalCodes)")
List<Customer> findByPostalCodes(String... postalCodes);

Room will convert the collection argument into a comma-delimited list for use with
the SQL query.

Other Clauses

If SQLite allows ? placeholders, Room should allow method arguments to be used
instead.

So, for example, you can parameterize a LIMIT clause:

@Query("SELECT * FROM Customer WHERE postalCode IN (:postalCodes) LIMIT :max")
List<Customer> findByPostalCodes(int max, String... postalCodes);

(from General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java)

Here, because Java needs the varargs to be the last parameter, we need to have max
first.

THE DAO OF ENTITIES

31

https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java

What You Can Return

We have seen that a @Query can return a single entity (e.g., findById() returning a
single Trip) or a collection of entity (e.g., selectAll() returning a List of Trip
entities).

While those are simple, Room offers a fair bit more flexibility than that. In
particular, not only does Room support reactive return values, but we can return
objects that are not actually entities.

Specific Return Types

In addition to returning single objects or collections of objects, a Room @Query can
return a good old-fashioned Cursor. This is particularly useful if you are migrating
legacy code that uses CursorAdapter or other Cursor-specific classes. Similarly, if
you are looking to expose part of a Room-defined database via a ContentProvider, it
may be more convenient for you to get your results in the form of a Cursor, so that
you can just return that from the provider’s query() method.

Beyond that, a @Query method can return:

• A Flowable or Publisher from RxJava2, a popular framework for reactive
programming

• A LiveData object

NOTE: The upcoming Room 2.1.0 release will support other RxJava types, such as
Single.

We will explore what a LiveData object is later in this book.

Breadth of Results

For small entities, like Trip, usually we will retrieve all columns in the query.
However, the real rule is: the core return object of the @Query method must be
something that Room knows how to fill in from the columns that you request.

For wider tables with many columns, this is important. For example, perhaps for a
RecyclerView, you only need a couple of columns, but for all entities in the table. In
that case, it might be nice to only retrieve those specific columns. You have two ways
to do that:

THE DAO OF ENTITIES

32

1. Have your @Entity support only a subset of columns, allowing the rest to be
null or otherwise tracking the fact that we only retrieved a subset of
columns from the table

2. Return something other than the entity that you have associated with this
table

If you look at your @Dao-annotated interface, you will notice that while methods
might refer to entities, its annotations do not. That is because the DAO is somewhat
independent of the entities. The entities describe the table, but the DAO is not
limited to using those entities. So long as the DAO can fulfill the contract stipulated
by the SQL, the method arguments, and the method return type, Room is perfectly
happy.

So, for example, suppose that Customer not only tracks an id and a postalCode, but
also has many other fields, including a displayName:

packagepackage com.commonsware.android.room.dao;

importimport android.arch.persistence.room.Entityandroid.arch.persistence.room.Entity;
importimport android.arch.persistence.room.Ignoreandroid.arch.persistence.room.Ignore;
importimport android.arch.persistence.room.Indexandroid.arch.persistence.room.Index;
importimport android.arch.persistence.room.PrimaryKeyandroid.arch.persistence.room.PrimaryKey;
importimport android.support.annotation.NonNullandroid.support.annotation.NonNull;
importimport java.util.UUIDjava.util.UUID;

@Entity(indices={@Index(value="postalCode", unique=truetrue)})
classclass CustomerCustomer {

@PrimaryKey
@NonNull
publicpublic finalfinal String id;

publicpublic finalfinal String postalCode;
publicpublic finalfinal String displayName;

@Ignore
Customer(String postalCode, String displayName) {

thisthis(UUID.randomUUID().toString(), postalCode, displayName);
}

Customer(String id, String postalCode, String displayName) {
thisthis.id=id;
thisthis.postalCode=postalCode;
thisthis.displayName=displayName;

}
}

THE DAO OF ENTITIES

33

(from General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/Customer.java)

Perhaps to show a list of customers, we need the displayName (to show in the list)
and the id (to know which specific customer this is). But we do not need the
postalCode or the rest of the fields in the Customer class.

We can still return a Customer:

@Query("SELECT id, displayName FROM Customer WHERE postalCode IN (:postalCodes) LIMIT
:max")
List<Customer> findByPostalCodes(List<String> postalCodes, int max);

The code that Room generates will simply fill in null for the postalCode, since that
was not one of the returned columns. However, then it is not obvious whether a
given instance of Customer is completely filled in from data in the table (and it is
genuinely missing its postalCode) or whether this is a partially-populated Customer
object.

However, we could also define a dedicated CustomerDisplayTuple class:

packagepackage com.commonsware.android.room.dao;

publicpublic classclass CustomerDisplayTupleCustomerDisplayTuple {
publicpublic finalfinal String id;
publicpublic finalfinal String displayName;

publicpublic CustomerDisplayTuple(String id, String displayName) {
thisthis.id=id;
thisthis.displayName=displayName;

}
}

(from General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/CustomerDisplayTuple.java)

Then, we can return a List of CustomerDisplayTuple from our DAO:

@Query("SELECT id, displayName FROM Customer WHERE postalCode IN (:postalCodes) LIMIT :max")
List<CustomerDisplayTuple> loadDisplayTuplesByPostalCodes(int max, String... postalCodes);

(from General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java)

This way, we get our subset of data, and we know by class whether we have the full
Customer or just the subset for display purposes.

Note that @ColumnInfo annotations can be used on any class, not just entities. In
particular, if you use @ColumnInfo on a field in an entity, you will need the same

THE DAO OF ENTITIES

34

https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/Customer.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/CustomerDisplayTuple.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java

@ColumnInfo on any “tuple”-style classes that represent subsets of data that include
that same field.

Aggregate Functions

A @Query can also return an int, for simple aggregate functions:

@Query("SELECT COUNT(*) FROM Customer")
int getCustomerCount();

(from General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java)

If you wish to compute several aggregate functions, create a “tuple”-style class to
hold the values:

packagepackage com.commonsware.android.room.dao;

publicpublic classclass CustomerStatsCustomerStats {
publicpublic finalfinal int count;
publicpublic finalfinal String max;

publicpublic CustomerStats(int count, String max) {
thisthis.count=count;
thisthis.max=max;

}
}

(from General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/CustomerStats.java)

…and use AS to name the aggregate function “columns” to match the tuple:

@Query("SELECT COUNT(*) AS count, MAX(postalCode) AS max FROM Customer")
CustomerStats getCustomerStats();

(from General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java)

Dynamic Queries
Sometimes, you do not know the query at compile time.

One scenario for this is when you want to expose a Room-managed database via a
ContentProvider to third-party apps. You could document that you support a
limited set of options in your provider’s query() method, ones that you can map to
@Query methods on your DAO. Alternatively, you could generate a SQL statement

THE DAO OF ENTITIES

35

https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/CustomerStats.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java

using SQLiteQueryBuilder that supports what your table offers, but then you need
to somehow execute that statement and get a Cursor back.

You have a few options for handling this sort of situation.

query()

RoomDatabase has a query() method that is analogous to rawQuery() on a
SQLiteDatabase. Pass it the SQL statement and an Object array of position
parameters, and RoomDatabase will give you a Cursor back.

The benefit is that this is quick and easy, and it works on all versions of Room. The
downside is that you wind up with a Cursor, which is less convenient than the
model objects that you get back from @Query methods on your @Dao.

@RawQuery

Room 1.1.0 added a new option for this: @RawQuery. Like @Query, this is an
annotation that you can add to a method on your @Dao. And, like @Query, you can
have that method return instances of an @Entity or other POJO.

However, rather than supplying a fixed SQL statement in the annotation, you
provide a SupportSQLiteQuery object as a parameter to the @RawQuery method:

@RawQuery
abstractabstract List<Foo> _findMeSomething(SupportSQLiteQuery query);

A SupportSQLiteQuery comes from the support database API, which is how Room
interacts with your SQLite database. Fortunately, for the purposes of using
@RawQuery, the only thing that you need from that API is SimpleSQLiteQuery. Its
constructor takes the same two parameters as does rawQuery() on a
SQLiteDatabase:

• The SQL statement to execute, and
• An Object array of values to use to replace positional placeholders

@RawQuery
abstractabstract List<Foo> _findMeSomething(SupportSQLiteQuery query);

List<Foo> findMeSomething(String value) {
returnreturn _findMeSomething(newnew SimpleSQLiteQuery("SELECT some, columns FROM your_table

WHERE something=?",

THE DAO OF ENTITIES

36

newnew Object[] {value}));
}

Here, findMeSomething() looks like a regular query method on the @Dao. Instead, it
creates a SimpleSQLiteQuery for a SQL statement and a supplied value, then uses
_findMeSomething() to execute that query and return a List of Foo objects.

In this particular case, findMeSomething() could have been written using a regular
@Query annotation, as the SQL statement is known at compile time… assuming that
your_table is associated with an @Entity. One scenario where @RawQuery comes
into play is when you want to query a table using Room where the table is not
associated with an @Entity. We will see an example of that much later in the book,
when we examine full-text searching with Room.

Other DAO Operations
To get data out of a database, generally it is useful to put data into it. We have seen
basic @Insert, @Update, and @Delete DAO methods on TripStore:

packagepackage com.commonsware.android.room;

importimport android.arch.persistence.room.Daoandroid.arch.persistence.room.Dao;
importimport android.arch.persistence.room.Deleteandroid.arch.persistence.room.Delete;
importimport android.arch.persistence.room.Insertandroid.arch.persistence.room.Insert;
importimport android.arch.persistence.room.OnConflictStrategyandroid.arch.persistence.room.OnConflictStrategy;
importimport android.arch.persistence.room.Queryandroid.arch.persistence.room.Query;
importimport android.arch.persistence.room.Updateandroid.arch.persistence.room.Update;
importimport java.util.Listjava.util.List;

@Dao
interfaceinterface TripStoreTripStore {

@Query("SELECT * FROM trips ORDER BY title")
List<Trip> selectAll();

@Query("SELECT * FROM trips WHERE id=:id")
Trip findById(String id);

@Insert
void insert(Trip... trips);

@Update
void update(Trip... trips);

@Delete

THE DAO OF ENTITIES

37

void delete(Trip... trips);
}

(from Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripStore.java)

Generally speaking, these scenarios are simpler than @Query. The @Insert, @Update,
and @Delete set up simple methods for inserting, updating, or deleting entities
passed to their methods… and that is pretty much it. However, there are a few
additional considerations that we should explore.

Parameters

@Insert, @Update, and @Delete work with entities. TripStore uses varargs, so we can
pass zero, one, or several Trip objects, though passing zero objects would be a waste
of time.

However, in addition to varargs, you can have these methods accept:

• A single entity
• Individual entities as separate parameters (void insert(Trip trip1, Trip
trip2))

• A List of entities

Return Values

Frequently, you just have these methods return void.

However:

• For @Update and @Delete, you can have them return an int, which will be
the number of rows affected by the update or delete operation

• For an @Insert method accepting a single entity, you can have it return a
long which will be the ROWID of the entity (and, if you are using an auto-
increment int as your primary key, this will also be that key)

• For an @Insert method accepting multiple entities, you can have it return an
array of long objects or a List of Long objects, being the corresponding
ROWID values for those inserted entities

Conflict Resolution

@Insert and @Update support an optional onConflict property. This maps to

THE DAO OF ENTITIES

38

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripStore.java

SQLite’s ON CONFLICT clause and indicates what should happen if there is either a
uniqueness violation (e.g., duplicate primary keys) or a NOT NULL violation when the
insert or update should occur.

The value of onConflict is an OnConflictStrategy enum:

Value Meaning

OnConflictStrategy.ABORT
Cancel this statement but preserve prior results

in the transaction and keeps the transaction
alive

OnConflictStrategy.FAIL

Like ABORT, but accepts prior changes by this
specific statement (e.g., if we fail on the 50th
row to be updated, keep the changes to the

preceding 49)

OnConflictStrategy.IGNORE
Like FAIL, but continues processing this

statement (e.g., if we fail on the 50th row out of
100, keep the changes to the other 99)

OnConflictStrategy.REPLACE
For uniqueness violations, deletes other rows

that would cause the violation before executing
this statement

OnConflictStrategy.ROLLBACK Rolls back the current transaction

The default strategy for @Insert and @Update is ABORT.

We wille explore these conflict strategies in greater detail much later in the book.

Other Operations

The primary problem with @Insert, @Update, and @Delete is that they need entities.
In part, that is so the DAO method knows what table to work against.

For anything else, use @Query. @Query not only works with operations that return
result sets, but with any SQL that you wish to execute, even if that SQL does not
return a result set.

THE DAO OF ENTITIES

39

https://sqlite.org/lang_conflict.html
https://sqlite.org/lang_conflict.html

So, for example, you could have:

@Query("DELETE FROM Customer")
void nukeCustomersFromOrbit();

…or:

@Query("DELETE FROM Customer WHERE id IN (:ids)")
int nukeCertainCustomersFromOrbit(String... ids);

(from General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java)

…or INSERT INTO ... SELECT FROM ... syntax, or pretty much any other
combination that cannot be supported directly by @Insert, @Update, and @Delete
annotations.

Consider @Insert, @Update, and @Delete to be “convenience annotations” for entity-
based operations, where @Query is the backbone for your DAO methods.

Transactions and Room
By default, SQLite treats each individual SQL statement as an individual transaction.
To the extent that Room winds up generating multiple SQL statements in response
to our annotations, it is Room’s responsibility to wrap those statements in a suitable
transaction.

However, sometimes, you have business logic that requires a transaction, for
operations that require multiple DAO methods. For example, persisting an invoice
might involve inserting an Invoice and all of its InvoiceLineItem objects, and that
might require more than one DAO method to achieve.

Room offers two ways of setting up app-defined transactions: the @Transaction
annotation and some methods on RoomDatabase.

Using @Transaction

Your DAO can have one or more methods that have the @Transaction annotation.
Whatever a @Transaction-annotated method does is wrapped in a SQLite
transaction. The transaction will be committed if the @Transaction-annotated
method does not throw an exception. If it does, the transaction will be rolled back.

There are two places to apply @Transaction: custom methods on an abstract DAO

THE DAO OF ENTITIES

40

https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java

class, or on @Query methods.

Custom Methods

Here, the idea is that your @Transaction-annotated method would make multiple
DAO calls to other methods (e.g., ones with @Insert or @Query annotations), so that
the work performed in those other methods “succeed or fail as a whole”.

Given our fictitious Invoice example, we might have something like this:

@Dao
publicpublic abstractabstract classclass InvoiceStoreInvoiceStore {

@Insert
publicpublic abstractabstract void _insert(Invoice invoice);

@Insert
publicpublic abstractabstract void insert(List<InvoiceLineItem> lineItems);

@Transaction
publicpublic void insert(Invoice invoice) {

_insert(invoice);
insert(invoice.getLineItems());

}
}

Here, we still use an insert() method to insert an Invoice, but we use that to wrap
two DAO calls to insert the Invoice metadata and insert the InvoiceLineItem
objects.

Note that you will need to use an abstract class, not an interface, as an interface
cannot have arbitrary method implementations in them.

On @Query Methods

It may seem odd to have to specifically request a transaction on a @Query-annotated
method. After all, the default behavior of SQLite is to have each individual SQL
statement be in its own transaction.

However, there are two scenarios called out in the documentation where
@Transaction would be a good idea. One is tied to @Relation, which we will cover
later in the book.

THE DAO OF ENTITIES

41

https://developer.android.com/reference/android/arch/persistence/room/Transaction.html

The other is tied to a little-known issue with Android’s SQLite support: things get
weird when the result set of a query exceeds 1MB. In that case, using the regular
Android SQLiteDatabase API, the Cursor that you get back does not contain the full
result set. Instead, it contains a “window” of results, and if you position the Cursor
after that window, the query is re-executed to load in the next window. This can lead
to inconsistencies, if the database is changed in between those two database
requests to populate the window. Room, by default, will load the entire result set
into your entities, quickly moving through the windows as needed, but there is still
a chance that a database modification occurs while this is going on. Using
@Transaction would help ensure that this is not an issue, by having the entire query
— including traversing the windows — occur inside a transaction.

Using RoomDatabase

Alternatively, RoomDatabase offers the same beginTransaction(),
endTransaction(), and setTransactionSuccessful() methods that you see on
SQLiteDatabase, and so you use the same basic algorithm:

roomDb.beginTransaction();

trytry {
// bunch of DAO operations here
roomDb.setTransactionSuccessful();

}
finallyfinally {

roomDb.endTransaction();
}

The advantage to this approach is that you can put the transaction logic somewhere
other than the DAO, if that would be more convenient or make more sense for your
particular implementation. However, it is a bit more work.

Threads and Room
@Insert, @Update, and @Delete-annotated methods are synchronous, performing
their work on the current thread. Hence, they should only be called from a
background thread.

@Query methods that return entities, int, tuples, etc. directly also are synchronous.
However, @Query methods that return an RxJava type (e.g., Flowable) or a LiveData
are not synchronous. Instead, the real work will be performed on a background

THE DAO OF ENTITIES

42

thread.

As noted earlier, we will explore what this “LiveData” is later in the book. For now,
take it on faith that it is another piece of the Android Architecture Components, one
that offers an alternative to RxJava for reactive programming.

THE DAO OF ENTITIES

43

Room and Custom Types

So far, all of our fields have been basic primitives (int, float, etc.) or String. There
is a good reason for that: those are all that Room understands “out of the box”.
Everything else requires some amount of assistance on our part.

Sometimes, a field in an entity will be related to another entity. Those are relations,
and we will consider those in the next chapter.

However, other times, a field in an entity does not map directly to primitives and
String types, or to another entity. For example:

• What do we do with a Java Date or Calendar object? Do we want to store
that as a milliseconds-since-the-Unix-epoch value as a Java long? Do we
want to store a string representation in a standard format, for easier
readability (at the cost of disk space and other issues)?

• What do we do with a Location object? Here, we have two pieces: a latitude
and a longitude. Do we have two columns that combine into one field? Do
we convert the Location to and from a String representation?

• What do we do with collections of strings, such as lists of tags?
• What do we do with enums?

And so on.

In this chapter, we will explore two approaches for handling these things without
creating another entity class: type converters and embedded types.

Type Converters
Type converters are a pair of methods, annotated with @TypeConverter, that map

45

the type for a single database column to a type for a Java field. So, for example, we
can:

• Map a Date field to a Long, which can go in a SQLite INTEGER column
• Map a Location field to a String, which can go in a SQLite TEXT column
• Map a collection of String values to a single String (e.g., comma-separated

values), which can go in a SQLite TEXT column
• And so forth

However, type converters offer only a 1:1 conversion: a single Java field to and from a
single SQLite column. If you have a single Java field that should map to several
SQLite columns, the @Embedded approach can handle that, as we will see later in this
chapter.

Setting Up a Type Converter

First, define a Java class somewhere. The name, package, superclass, etc. do not
matter.

Next, for each type to be converted, create two public static methods that convert
from one type to the other. So for example, you would have one public static
method that takes a Date and returns a Long (e.g., returning the milliseconds-since-
the-Unix-epoch value), and a counterpart method that takes a Long and returns a
Date. If the converter method is passed null, the proper result is null. Otherwise,
the conversion is whatever you want, so long as the “round trip” works, so that the
output of one converter method, supplied as input to the other converter method,
returns the original value.

Then, each of those methods get the @TypeConverter annotation. The method
names do not matter, so pick a convention that works for you.

Finally, you add a @TypeConverters annotation, listing this and any other type
converter classes, to… something. What the “something” is controls the scope of
where that type converter can be used.

The simple solution is to add @TypeConverters to the RoomDatabase, which means
that anything associated with that database can use those type converters. However,
sometimes, you may have situations where you want different conversions between
the same pair of types, for whatever reason. In that case, you can put the
@TypeConverters annotations on narrower scopes:

ROOM AND CUSTOM TYPES

46

@TypeConverters@TypeConverters Location Affected Areas

Entity class all fields in the entity

Entity field that one field in the entity

DAO class all methods in the DAO

DAO method that one method in the DAO, for all parameters

DAO method parameter that one parameter on that one method

POJO all fields on the POJO

The General/RoomTypes sample project illustrates the use of type converters. As with
the RoomDao project from the preceding chapter, this project contains a single library
module with an associated instrumentation test case. In fact, it is a clone of the
RoomDao project, just with some type converters.

Example: Dates and Times

A typical way of storing a date/time value in a database is to use the number of
milliseconds since the Unix epoch (i.e., the number of milliseconds since midnight, 1
January 1970). Date has a getTime() method that returns this value.

So, the project has a TypeTransmogrifiers class that contains two methods, each
annotated with @TypeConverter, for converting Date to and from a Long:

@TypeConverter
publicpublic staticstatic Long fromDate(Date date) {

ifif (date==nullnull) {
returnreturn(nullnull);

}

returnreturn(date.getTime());
}

@TypeConverter
publicpublic staticstatic Date toDate(Long millisSinceEpoch) {

ifif (millisSinceEpoch==nullnull) {
returnreturn(nullnull);

}

ROOM AND CUSTOM TYPES

47

http://github.com/commonsguy/cw-androidarch/tree/master/General/RoomTypes
http://github.com/commonsguy/cw-androidarch/tree/master/General/RoomTypes

returnreturn(newnew Date(millisSinceEpoch));
}

(from General/RoomTypes/stuff/src/main/java/com/commonsware/android/room/dao/TypeTransmogrifier.java)

StuffDatabase then has the @TypeConverters annotation, listing
TypeTransmogrifier as the one class that has type conversion methods:

packagepackage com.commonsware.android.room.dao;

importimport android.arch.persistence.room.Databaseandroid.arch.persistence.room.Database;
importimport android.arch.persistence.room.Roomandroid.arch.persistence.room.Room;
importimport android.arch.persistence.room.RoomDatabaseandroid.arch.persistence.room.RoomDatabase;
importimport android.arch.persistence.room.TypeConvertersandroid.arch.persistence.room.TypeConverters;
importimport android.content.Contextandroid.content.Context;

@Database(
entities={Customer.class, VersionedThingy.class},
version=1

)
@TypeConverters({TypeTransmogrifier.class})
abstractabstract classclass StuffDatabaseStuffDatabase extendsextends RoomDatabase {

abstractabstract StuffStore stuffStore();

privateprivate staticstatic finalfinal String DB_NAME="stuff.db";
privateprivate staticstatic volatilevolatile StuffDatabase INSTANCE=nullnull;

synchronizedsynchronized staticstatic StuffDatabase get(Context ctxt) {
ifif (INSTANCE==nullnull) {

INSTANCE=create(ctxt, falsefalse);
}

returnreturn(INSTANCE);
}

staticstatic StuffDatabase create(Context ctxt, boolean memoryOnly) {
RoomDatabase.Builder<StuffDatabase> b;

ifif (memoryOnly) {
b=Room.inMemoryDatabaseBuilder(ctxt.getApplicationContext(),

StuffDatabase.class);
}
elseelse {

b=Room.databaseBuilder(ctxt.getApplicationContext(), StuffDatabase.class,
DB_NAME);

}

returnreturn(b.build());

ROOM AND CUSTOM TYPES

48

https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/RoomTypes/stuff/src/main/java/com/commonsware/android/room/dao/TypeTransmogrifier.java

}
}

(from General/RoomTypes/stuff/src/main/java/com/commonsware/android/room/dao/StuffDatabase.java)

Now, classes like Customer can use Date fields, which will be stored in INTEGER
columns in the database.

CREATECREATE TABLETABLE IF NOTNOT EXISTSEXISTS Customer (id TEXT, postalCode TEXT, displayName TEXT,
creationDate INTEGER, PRIMARYPRIMARY KEYKEY(`id`))

Example: Locations

A Location object contains a latitude, longitude, and perhaps other values (e.g.,
altitude). If we only care about the latitude and longitude, we could save those in the
database in a single TEXT column, so long as we can determine a good format to use
for that string. If we use Locale.US formatting for the latitude and longitude, so that
the decimal place is denoted by a ., we could use a two-element comma-separated
values list for the string.

That is what these two type converter methods on TypeTransmogrifiers do:

@TypeConverter
publicpublic staticstatic String fromLocation(Location location) {

ifif (location==nullnull) {
returnreturn(nullnull);

}

returnreturn(String.format(Locale.US, "%f,%f", location.getLatitude(),
location.getLongitude()));

}

@TypeConverter
publicpublic staticstatic Location toLocation(String latlon) {

ifif (latlon==nullnull) {
returnreturn(nullnull);

}

String[] pieces=latlon.split(",");
Location result=newnew Location("");

result.setLatitude(Double.parseDouble(pieces[0]));
result.setLongitude(Double.parseDouble(pieces[1]));

returnreturn(result);

ROOM AND CUSTOM TYPES

49

https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/RoomTypes/stuff/src/main/java/com/commonsware/android/room/dao/StuffDatabase.java

}

(from General/RoomTypes/stuff/src/main/java/com/commonsware/android/room/dao/TypeTransmogrifier.java)

Since TypeTransmogrifiers is registered on the StuffDatabase, a Customer could
have a Location field, which would be mapped to a TEXT column in the database:

CREATECREATE TABLETABLE IF NOTNOT EXISTSEXISTS Customer (id TEXT, postalCode TEXT, displayName TEXT,
creationDate INTEGER, officeLocation TEXT, PRIMARYPRIMARY KEYKEY(`id`))

However, the downside of using this approach is that we cannot readily search based
on location. If your location data is not a searchable field, and it merely needs to be
available when you load your entities from the database, using a type converter like
this is fine. Later in this chapter, we will see another approach (@Embedded) that
allows us to store the latitude and longitude as separate columns while still mapping
them to a single POJO in Java.

Example: Simple Collections

TEXT and BLOB columns are very flexible. So long as you can marshal your data into a
String or byte array, you can save that data in TEXT and BLOB columns. As with the
comma-separated values approach in the preceding section, though, columns used
this way are poor for searching.

So, suppose that you have a Set of String values that you want to store, perhaps
representing tags to associate with an entity. One approach is to have a separate Tag
entity and set up a relation. This is the best approach in many cases. But, perhaps
you do not want to do that for some reason.

You can use a type converter, but you need to decide how to represent your data in a
column. If you are certain that the tags will not contain some specific character (e.g.,
a comma), you can use the delimited-list approach demonstrated with locations in
the preceding section. If you need more flexibility than that, you can always use
JSON encoding, as these type converters do:

@TypeConverter
publicpublic staticstatic String fromStringSet(Set<String> strings) {

ifif (strings==nullnull) {
returnreturn(nullnull);

}

StringWriter result=newnew StringWriter();
JsonWriter json=newnew JsonWriter(result);

ROOM AND CUSTOM TYPES

50

https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/RoomTypes/stuff/src/main/java/com/commonsware/android/room/dao/TypeTransmogrifier.java

trytry {
json.beginArray();

forfor (String s : strings) {
json.value(s);

}

json.endArray();
json.close();

}
catchcatch (IOException e) {

Log.e(TAG, "Exception creating JSON", e);
}

returnreturn(result.toString());
}

@TypeConverter
publicpublic staticstatic Set<String> toStringSet(String strings) {

ifif (strings==nullnull) {
returnreturn(nullnull);

}

StringReader reader=newnew StringReader(strings);
JsonReader json=newnew JsonReader(reader);
HashSet<String> result=newnew HashSet<>();

trytry {
json.beginArray();

whilewhile (json.hasNext()) {
result.add(json.nextString());

}

json.endArray();
}
catchcatch (IOException e) {

Log.e(TAG, "Exception parsing JSON", e);
}

returnreturn(result);
}

(from General/RoomTypes/stuff/src/main/java/com/commonsware/android/room/dao/TypeTransmogrifier.java)

Here, we use the JsonReader and JsonWriter classes that have been part of Android
since API Level 11. Alternatively, you could use a third-party JSON library (e.g.,

ROOM AND CUSTOM TYPES

51

https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/RoomTypes/stuff/src/main/java/com/commonsware/android/room/dao/TypeTransmogrifier.java

Gson).

Note that type converter methods cannot throw checked exceptions, as the Room
code generator does not wrap type converter calls in a try/catch block. Here, the
IOExceptions should never happen, since we are working with strings, not files or
other types of streams. In other cases, though, you may need to wrap the checked
exception in some form of RuntimeException and throw that, to trigger your app’s
unhandled-exception logic, as it is unlikely that you can recover from within a type
converter method.

Given these type conversion methods, we can now use a Set of String values in
Customer:

packagepackage com.commonsware.android.room.dao;

importimport android.arch.persistence.room.Entityandroid.arch.persistence.room.Entity;
importimport android.arch.persistence.room.Ignoreandroid.arch.persistence.room.Ignore;
importimport android.arch.persistence.room.Indexandroid.arch.persistence.room.Index;
importimport android.arch.persistence.room.PrimaryKeyandroid.arch.persistence.room.PrimaryKey;
importimport android.location.Locationandroid.location.Location;
importimport android.support.annotation.NonNullandroid.support.annotation.NonNull;
importimport java.util.Datejava.util.Date;
importimport java.util.HashSetjava.util.HashSet;
importimport java.util.Setjava.util.Set;
importimport java.util.UUIDjava.util.UUID;

@Entity(indices={@Index(value="postalCode", unique=truetrue)})
classclass CustomerCustomer {

@PrimaryKey
@NonNull
publicpublic finalfinal String id;

publicpublic finalfinal String postalCode;
publicpublic finalfinal String displayName;
publicpublic finalfinal Date creationDate;
publicpublic finalfinal Location officeLocation;
publicpublic finalfinal Set<String> tags;

@Ignore
Customer(String postalCode, String displayName, Location officeLocation,

Set<String> tags) {
thisthis(UUID.randomUUID().toString(), postalCode, displayName, newnew Date(),

officeLocation, tags);
}

Customer(String id, String postalCode, String displayName, Date creationDate,

ROOM AND CUSTOM TYPES

52

Location officeLocation, Set<String> tags) {
thisthis.id=id;
thisthis.postalCode=postalCode;
thisthis.displayName=displayName;
thisthis.creationDate=creationDate;
thisthis.officeLocation=officeLocation;
thisthis.tags=tags;

}
}

(from General/RoomTypes/stuff/src/main/java/com/commonsware/android/room/dao/Customer.java)

…where the tags will be stored in a TEXT column:

CREATECREATE TABLETABLE IF NOTNOT EXISTSEXISTS Customer (id TEXT, postalCode TEXT, displayName TEXT,
creationDate INTEGER, officeLocation TEXT, tags TEXT, PRIMARYPRIMARY KEYKEY(`id`))

Embedded Types
With type converters, we are teaching Room how to deal with custom types, but we
are limited to mapping from one field to one column. That field might be complex,
but it still goes into one column in the table.

What happens, though, when we have multiple columns that should combine to
create a single field?

In that case, we can use the @Embedded annotation on some POJO, then use that
POJO as a type in an entity.

Example: Locations

For example, as was noted earlier in this chapter, cramming a location into a single
TEXT field works, but we cannot readily query on the resulting field. If we want to
query for locations near some location in the database, it would be much more
convenient to have the latitude and longitude stored as individual REAL columns.
But, using type converters, we cannot map two columns to one field.

With @Embedded, we can, as we can see in the General/RoomEmbedded sample project.
This is a clone of the RoomTypes project from earlier in this chapter, where we have
changed Customer to have the officeLocation be represented by a LocationColumns
POJO:

packagepackage com.commonsware.android.room.dao;

ROOM AND CUSTOM TYPES

53

https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/RoomTypes/stuff/src/main/java/com/commonsware/android/room/dao/Customer.java
http://github.com/commonsguy/cw-androidarch/tree/master/General/RoomEmbedded
http://github.com/commonsguy/cw-androidarch/tree/master/General/RoomEmbedded

importimport android.arch.persistence.room.Embeddedandroid.arch.persistence.room.Embedded;
importimport android.arch.persistence.room.Entityandroid.arch.persistence.room.Entity;
importimport android.arch.persistence.room.Ignoreandroid.arch.persistence.room.Ignore;
importimport android.arch.persistence.room.Indexandroid.arch.persistence.room.Index;
importimport android.arch.persistence.room.PrimaryKeyandroid.arch.persistence.room.PrimaryKey;
importimport android.location.Locationandroid.location.Location;
importimport android.support.annotation.NonNullandroid.support.annotation.NonNull;
importimport java.util.Datejava.util.Date;
importimport java.util.HashSetjava.util.HashSet;
importimport java.util.Setjava.util.Set;
importimport java.util.UUIDjava.util.UUID;

@Entity(indices={@Index(value="postalCode", unique=truetrue)})
classclass CustomerCustomer {

@PrimaryKey
@NonNull
publicpublic finalfinal String id;

publicpublic finalfinal String postalCode;
publicpublic finalfinal String displayName;
publicpublic finalfinal Date creationDate;

@Embedded
publicpublic finalfinal LocationColumns officeLocation;

publicpublic finalfinal Set<String> tags;

@Ignore
Customer(String postalCode, String displayName, LocationColumns officeLocation,

Set<String> tags) {
thisthis(UUID.randomUUID().toString(), postalCode, displayName, newnew Date(),

officeLocation, tags);
}

Customer(String id, String postalCode, String displayName, Date creationDate,
LocationColumns officeLocation, Set<String> tags) {

thisthis.id=id;
thisthis.postalCode=postalCode;
thisthis.displayName=displayName;
thisthis.creationDate=creationDate;
thisthis.officeLocation=officeLocation;
thisthis.tags=tags;

}
}

(from General/RoomEmbedded/stuff/src/main/java/com/commonsware/android/room/dao/Customer.java)

The @Embedded annotation tells Room to combine the columns from the annotated
type into the table for this entity. In this case, LocationColumns has two fields, for
latitude and longitude:

packagepackage com.commonsware.android.room.dao;

publicpublic classclass LocationColumnsLocationColumns {
publicpublic finalfinal double latitude;
publicpublic finalfinal double longitude;

ROOM AND CUSTOM TYPES

54

https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/RoomEmbedded/stuff/src/main/java/com/commonsware/android/room/dao/Customer.java

publicpublic LocationColumns(double latitude, double longitude) {
thisthis.latitude=latitude;
thisthis.longitude=longitude;

}
}

(from General/RoomEmbedded/stuff/src/main/java/com/commonsware/android/room/dao/LocationColumns.java)

LocationColumns itself is a POJO, not an entity, though you can use @ColumnInfo
annotations if needed to rename the columns associated with the POJO’s fields.

Now, Room will use individual REAL columns for our latitude and longitude:

CREATECREATE TABLETABLE IF NOTNOT EXISTSEXISTS Customer (id TEXT, postalCode TEXT, displayName TEXT,
creationDate INTEGER, tags TEXT, latitude REAL, longitude REAL, PRIMARYPRIMARY KEYKEY(id))

…and we can query on those:

@Query("SELECT * FROM Customer WHERE ABS(latitude-:lat)<.000001 AND ABS(longitude-:lon)<.000001")
List<Customer> findCustomersAt(double lat, double lon);

(from General/RoomEmbedded/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java)

Simple vs. Prefixed

What happens if we need two locations, though? Perhaps we need officeLocation
and affiliateLocation, or something like that.

By default, Room generates column names based on the @Embedded POJO’s field
names, perhaps modified by @ColumnInfo annotations on the POJO. In this case,
though, if we have two LocationColumns fields in the Customer entity, we would
wind up with two latitude and two longitude columns, which neither Room nor
SQLite will support.

To address this, the @Embedded annotation accepts an optional prefix property:

@Embedded(prefix = "office_")
publicpublic finalfinal LocationColumns officeLocation;

The columns for that POJO will have the prefix added:

CREATECREATE TABLETABLE IF NOTNOT EXISTSEXISTS Customer (id TEXT, postalCode TEXT, displayName TEXT,
creationDate INTEGER, tags TEXT, office_latitude REAL, office_longitude REAL, PRIMARYPRIMARY
KEYKEY(id))

ROOM AND CUSTOM TYPES

55

https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/RoomEmbedded/stuff/src/main/java/com/commonsware/android/room/dao/LocationColumns.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/RoomEmbedded/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java

Hence, having two LocationColumns simply means that one or both need to use
distinct prefix values.

However, bear in mind that this changes the column names, so you will also need to
adjust any @Query method that references those names, so that you use the
appropriate prefix.

Updating the Trip Sample
Back in the chapter on Room basics, we saw some rudimentary code to track
upcoming travel. The Trips/RoomConverters sample project extends that code with
four new fields on Trip:

• priority, representing how important the trip is to the user
• startTime, indicating when the trip is to begin
• creationTime, indicating when the Trip was first created… somewhere
• updateTime, indicating when the Trip was last changed… somewhere

Those latter two are largely ignored for the moment, though they will become more
important later in the book.

The latter three are all Date fields, and so we need to have some code to support
getting them into and out of our table. So, this project has a TypeTransmogrifier
class, akin to the ones seen above, but right now only with the Date converters:

packagepackage com.commonsware.android.room;

importimport android.arch.persistence.room.TypeConverterandroid.arch.persistence.room.TypeConverter;
importimport java.util.Datejava.util.Date;

publicpublic classclass TypeTransmogrifierTypeTransmogrifier {
@TypeConverter
publicpublic staticstatic Long fromDate(Date date) {

ifif (date==nullnull) {
returnreturn(nullnull);

}

returnreturn(date.getTime());
}

@TypeConverter
publicpublic staticstatic Date toDate(Long millisSinceEpoch) {

ifif (millisSinceEpoch==nullnull) {

ROOM AND CUSTOM TYPES

56

http://github.com/commonsguy/cw-androidarch/tree/master/Trips/RoomConverters
http://github.com/commonsguy/cw-androidarch/tree/master/Trips/RoomConverters

returnreturn(nullnull);
}

returnreturn(newnew Date(millisSinceEpoch));
}

}

(from Trips/RoomConverters/app/src/main/java/com/commonsware/android/room/TypeTransmogrifier.java)

priority, though, is an enum, as there is a list of valid values:

packagepackage com.commonsware.android.room;

importimport android.arch.persistence.room.TypeConverterandroid.arch.persistence.room.TypeConverter;

enumenum Priority {
LOW(0), MEDIUM(1), HIGH(2), OMG(3);

privateprivate finalfinal int level;

@TypeConverter
publicpublic staticstatic Priority fromLevel(Integer level) {

forfor (Priority p : values()) {
ifif (p.level==level) {

returnreturn(p);
}

}

returnreturn(nullnull);
}

@TypeConverter
publicpublic staticstatic Integer fromPriority(Priority p) {

returnreturn(p.level);
}

Priority(int level) {
thisthis.level=level;

}
}

(from Trips/RoomConverters/app/src/main/java/com/commonsware/android/room/Priority.java)

Here, we implement the @TypeConverter methods right on Priority, as there is
little value in having them elsewhere. Note that the enum assigns explicit numeric
values to the priorities (level). That way, we are in control over the mapping
between Priority values and their representation in the database.

ROOM AND CUSTOM TYPES

57

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomConverters/app/src/main/java/com/commonsware/android/room/TypeTransmogrifier.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomConverters/app/src/main/java/com/commonsware/android/room/Priority.java

Rather than apply these type converters on the TripDatabase (though we could), we
instead apply them on the Trip model:

packagepackage com.commonsware.android.room;

importimport android.arch.persistence.room.Entityandroid.arch.persistence.room.Entity;
importimport android.arch.persistence.room.Ignoreandroid.arch.persistence.room.Ignore;
importimport android.arch.persistence.room.PrimaryKeyandroid.arch.persistence.room.PrimaryKey;
importimport android.arch.persistence.room.TypeConvertersandroid.arch.persistence.room.TypeConverters;
importimport android.support.annotation.NonNullandroid.support.annotation.NonNull;
importimport java.util.Datejava.util.Date;
importimport java.util.UUIDjava.util.UUID;

@Entity(tableName = "trips")
@TypeConverters({TypeTransmogrifier.class})
classclass TripTrip {

@PrimaryKey
@NonNull
publicpublic finalfinal String id;

publicpublic finalfinal String title;
publicpublic finalfinal int duration;

@TypeConverters({Priority.class})
publicpublic finalfinal Priority priority;

publicpublic finalfinal Date startTime;
publicpublic finalfinal Date creationTime;
publicpublic finalfinal Date updateTime;

@Ignore
Trip(String title, int duration, Priority priority, Date startTime) {

thisthis(UUID.randomUUID().toString(), title, duration, priority, startTime,
nullnull, nullnull);

}

Trip(String id, String title, int duration, Priority priority,
Date startTime, Date creationTime, Date updateTime) {

thisthis.id=id;
thisthis.title=title;
thisthis.duration=duration;
thisthis.priority=priority;
thisthis.startTime=startTime;
thisthis.creationTime=creationTime;
thisthis.updateTime=updateTime;

}

ROOM AND CUSTOM TYPES

58

@Override
publicpublic String toString() {

returnreturn(title);
}

}

(from Trips/RoomConverters/app/src/main/java/com/commonsware/android/room/Trip.java)

The Priority type converters are applied specific to the priority field, as this
specific conversion is only needed here. The TypeTransmogrifier is registered on
the Trip class, as there are multiple Date fields.

ROOM AND CUSTOM TYPES

59

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomConverters/app/src/main/java/com/commonsware/android/room/Trip.java

Room and Relations

SQLite is a relational database. At some point, Room should support relations.
Right?

Right?!?

Well, actually, the story is a bit more complicated than that. Yes, Room supports
entities being related to other content in other tables. Room does not support
entities being directly related to other entities, though.

And if that sounds strange, there is “a method to the madness”.

In this chapter, we will explore how you implement relational structures with Room
and why Room has the restrictions that it does.

The Classic ORM Approach
Java ORMs have long supported entities having relations to other entities, though
not every ORM uses the “entity” term.

One Android ORM that does is greenDAO. It allows you to use annotations to
indicate relations, such as:

@Entity
publicpublic classclass ThingyThingy {

@Id privateprivate Long id;

privateprivate long otherThingyId;

@ToOne(joinProperty="otherThingyId")

61

http://greenrobot.org/greendao

privateprivate OtherThingy otherThingy;

// other good stuff here
}

@Entity
publicpublic classclass OtherThingyOtherThingy {

@ID privateprivate Long id;
}

These annotations result in getOtherThingy() and setOtherThingy() methods to
be synthetically added to Thingy (or, more accurately, to a hidden subclass of
Thingy, but for the purposes of this section, we will ignore that). Which
OtherThingy our Thingy relates to is tied to that otherThingyId field, which is
stored as a column in the table. When you call getOtherThingy(), greenDAO will
query the database to load in the OtherThingy instance, assuming that it has not
been cached already.

That is where the threading problem creeps in.

A History of Threading Mistakes
In Android app development, we are constantly having to fight to keep disk I/O off
of the main application thread. Every millisecond that our code executes on the
main application thread is a millisecond that the main application thread is not
updating our UI. Disk I/O — such as queries on complex structures – can easily take
dozens or hundreds of milliseconds, particularly on older or low-end devices. As a
result, we freeze our UI while that disk I/O is occurring, possibly resulting in visual
“jank” for the user. Our objective is to move as much disk I/O as possible off the
main application thread.

The problem is that the nice encapsulation that we get from object-oriented
programming also encapsulates knowledge of whether disk I/O will be done when
we call a particular method.

Classic use of SQLiteDatabase encounters this with the rawQuery()/query() family
of methods. They return a Cursor. You might think — reasonably – that those
methods execute the SQL query that you request. In truth, they do not. All they do
is create a SQLiteCursor instance that holds onto the query and the
SQLiteDatabase. Later, when you call a method that requires the actual query result
(e.g., getCount(), to get the number of returned rows), then the query is executed
against the database. As a result, all the work that you do to call rawQuery() or

ROOM AND RELATIONS

62

query() on a background thread gets wasted if you do not also do something to
force the query to be executed on that same background thread. Otherwise, you may
wind up with the query being executed on the main application thread, with
impacts on the UI.

greenDAO relations can work the same way. If you retrieve your Thingy on a
background thread, then call getOtherThingy() on the main application thread,
depending on what else has all occurred, getOtherThingy() might need to perform
a database query… which you do not want on the main application thread.

The Room Approach
Room behaves a bit like other annotation-based Android ORMs, but when it comes
to relations, Room departs from norms, in an effort to reduce the likelihood of
threading problems.

No Direct Entity References

Unlike the greenDAO example above, with Room, a Thingy cannot have a field for
an OtherThingy that Room is expected to manage. You could have a field for an
OtherThingy marked as @Ignore, but then you are on your own for dealing with that
field.

The implication of an entity referencing another entity directly is that developers
would expect that when Room retrieves the outer entity, that Room either will
automatically retrieve the inner entity or will retrieve it lazily later on. The former
approach avoids threading issues but runs the risk of loading more data than is
necessary. The latter approach runs the risk of trying to do disk I/O on the main
application thread.

Foreign Keys

This does not mean that you cannot have foreign keys. Room fully supports foreign
key relationships, by way of a @ForeignKey annotation. This sets up the foreign keys
in the appropriate tables… but that’s about it. Room does very little else with these
keys.

Cascades on Updates and Deletes

Part of what you can place on a @ForeignKey annotation are onUpdate and onDelete

ROOM AND RELATIONS

63

properties. These indicate what actions should be taken on this entity when the
parent of the foreign key relationship is updated or deleted. There are five
possibilities, denoted by ForeignKey constants:

Constant
Name

If the Parent Is Updated or Deleted…

NO_ACTION …do nothing

CASCADE …update or delete the child

RESTRICT
…fail the parent’s update or delete operation, unless there are no

children

SET_NULL …set the foreign key value to null

SET_DEFAULT …set the foreign key value to the column(s) default value

NO_ACTION is the default, though CASCADE will be a popular choice.

Cascades on… Retrievals?

You cannot have an entity automatically retrieve related objects via a @Query.

You can have an arbitrary POJO automatically retrieve related objects via a @Query,
by means of a @Relation annotation.

This seeming inconsistency will be explored later in this chapter.

Plans for Trips
Let’s explore how @ForeignKey works by adding some more entities to the trip-
tracking code, as seen in the Trips/RoomRelations sample project.

The Domain Model

In the beginning, we had just the Trip entity. However, a trip is made up of lots of
pieces, so in this sample, we add two more: flights and lodgings. Not surprisingly,
these come in the form of Flight and Lodging entity classes. A Trip can have zero
or more related Flight instances and zero or more related Lodging instances.

ROOM AND RELATIONS

64

http://github.com/commonsguy/cw-androidarch/tree/master/Trips/RoomRelations
http://github.com/commonsguy/cw-androidarch/tree/master/Trips/RoomRelations

However, many of the pieces of data that we need to track for these things – title,
duration, start time, etc. — are in common. So, we will pull those things into an
abstract base class named Plan, from which Trip, Flight, and Lodging will all
inherit.

The New Entities

As a result, Plan itself is pretty much what Trip used to be:

packagepackage com.commonsware.android.room;

importimport android.arch.persistence.room.Ignoreandroid.arch.persistence.room.Ignore;
importimport android.arch.persistence.room.PrimaryKeyandroid.arch.persistence.room.PrimaryKey;
importimport android.arch.persistence.room.TypeConvertersandroid.arch.persistence.room.TypeConverters;
importimport android.support.annotation.NonNullandroid.support.annotation.NonNull;
importimport java.util.Datejava.util.Date;
importimport java.util.UUIDjava.util.UUID;

abstractabstract classclass PlanPlan {
@PrimaryKey
@NonNull
publicpublic finalfinal String id;

publicpublic finalfinal String title;
publicpublic finalfinal int duration;

@TypeConverters({Priority.class})
publicpublic finalfinal Priority priority;

publicpublic finalfinal Date startTime;
publicpublic finalfinal Date creationTime;
publicpublic finalfinal Date updateTime;

@Ignore
Plan(String title, int duration, Priority priority, Date startTime) {

thisthis(UUID.randomUUID().toString(), title, duration, priority, startTime,
nullnull, nullnull);

}

Plan(String id, String title, int duration, Priority priority,
Date startTime, Date creationTime, Date updateTime) {

thisthis.id=id;
thisthis.title=title;
thisthis.duration=duration;
thisthis.priority=priority;
thisthis.startTime=startTime;

ROOM AND RELATIONS

65

thisthis.creationTime=creationTime;
thisthis.updateTime=updateTime;

}

@Override
publicpublic String toString() {

returnreturn(title);
}

}

(from Trips/RoomRelations/app/src/main/java/com/commonsware/android/room/Plan.java)

Note that while we have the Priority TypeConverter registered for the Priority
field, we do not have the TypeTransmogrifier registered on the Plan class, the way
we had it for Trip. That is due to a limitation in Room, whereby class-level
@TypeConverters annotations are not inherited, though field-level ones are.

Instead, the TypeTransmogrifier @TypeConverters annotation appears on our rump
Trip class:

packagepackage com.commonsware.android.room;

importimport android.arch.persistence.room.Entityandroid.arch.persistence.room.Entity;
importimport android.arch.persistence.room.Ignoreandroid.arch.persistence.room.Ignore;
importimport android.arch.persistence.room.PrimaryKeyandroid.arch.persistence.room.PrimaryKey;
importimport android.arch.persistence.room.TypeConvertersandroid.arch.persistence.room.TypeConverters;
importimport java.util.Datejava.util.Date;
importimport java.util.UUIDjava.util.UUID;

@Entity(tableName = "trips")
@TypeConverters({TypeTransmogrifier.class})
classclass TripTrip extendsextends Plan {

@Ignore
Trip(String title, int duration, Priority priority, Date startTime) {

supersuper(title, duration, priority, startTime);
}

Trip(String id, String title, int duration,
Priority priority, Date startTime, Date creationTime,
Date updateTime) {

supersuper(id, title, duration, priority, startTime, creationTime, updateTime);
}

}

(from Trips/RoomRelations/app/src/main/java/com/commonsware/android/room/Trip.java)

The relations that we are setting up from Trip to Flight and Lodging are 1:N

ROOM AND RELATIONS

66

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomRelations/app/src/main/java/com/commonsware/android/room/Plan.java
https://issuetracker.google.com/issues/62859504
https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomRelations/app/src/main/java/com/commonsware/android/room/Trip.java

relations. As such, the parent (Trip) does not need any foreign keys. Those are held
by the children of the relation… such as Lodging:

packagepackage com.commonsware.android.room;

importimport android.arch.persistence.room.Entityandroid.arch.persistence.room.Entity;
importimport android.arch.persistence.room.ForeignKeyandroid.arch.persistence.room.ForeignKey;
importimport android.arch.persistence.room.Ignoreandroid.arch.persistence.room.Ignore;
importimport android.arch.persistence.room.Indexandroid.arch.persistence.room.Index;
importimport android.arch.persistence.room.TypeConvertersandroid.arch.persistence.room.TypeConverters;
importimport java.util.Datejava.util.Date;
importimport staticstatic android.arch.persistence.room.ForeignKey.CASCADE;

@Entity(
tableName="lodgings",
foreignKeys=@ForeignKey(

entity=Trip.class,
parentColumns="id",
childColumns="tripId",
onDelete=CASCADE),

indices=@Index("tripId"))
@TypeConverters({TypeTransmogrifier.class})
classclass LodgingLodging extendsextends Plan {

publicpublic finalfinal String address;
publicpublic finalfinal String tripId;

@Ignore
Lodging(String title, int duration, Priority priority, Date startTime,

String address, String tripId) {
supersuper(title, duration, priority, startTime);
thisthis.address=address;
thisthis.tripId=tripId;

}

Lodging(String id, String title, int duration,
Priority priority, Date startTime, Date creationTime,
Date updateTime, String address, String tripId) {

supersuper(id, title, duration, priority, startTime, creationTime, updateTime);
thisthis.address=address;
thisthis.tripId=tripId;

}
}

(from Trips/RoomRelations/app/src/main/java/com/commonsware/android/room/Lodging.java)

Here, Lodging also extends from Plan, adding two fields, one to track the address of
the hotel (or whatever) and the tripId of the Trip that contains this Lodging. That

ROOM AND RELATIONS

67

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomRelations/app/src/main/java/com/commonsware/android/room/Lodging.java

tripId field is then referenced in the @ForeignKey annotation,which:

• Sets up the relation as being with Trip (entity=Trip.class)
• Ties the id column on Trip (parentColumns="id") to the tripId on Lodging

(childColumns="tripId")
• Indicates that if the Trip is deleted, associated Lodging instances should also

be deleted (onDelete=CASCADE)

Lodging also sets up an index on tripId (indices=@Index("tripId")). Querying on
tripId will be fairly common, as we look up the Lodging instances associated with a
given Trip. Hence, typically you will want to set up an index on your foreign keys.
Room will even warn you about this, if you examine the Gradle Console output from
a build.

Flight works similarly:

packagepackage com.commonsware.android.room;

importimport android.arch.persistence.room.Entityandroid.arch.persistence.room.Entity;
importimport android.arch.persistence.room.ForeignKeyandroid.arch.persistence.room.ForeignKey;
importimport android.arch.persistence.room.Ignoreandroid.arch.persistence.room.Ignore;
importimport android.arch.persistence.room.Indexandroid.arch.persistence.room.Index;
importimport android.arch.persistence.room.TypeConvertersandroid.arch.persistence.room.TypeConverters;
importimport java.util.Datejava.util.Date;
importimport staticstatic android.arch.persistence.room.ForeignKey.CASCADE;

@Entity(
tableName="flights",
foreignKeys=@ForeignKey(

entity=Trip.class,
parentColumns="id",
childColumns="tripId",
onDelete=CASCADE),

indices=@Index("tripId"))
@TypeConverters({TypeTransmogrifier.class})
classclass FlightFlight extendsextends Plan {

publicpublic finalfinal String departingAirport;
publicpublic finalfinal String arrivingAirport;
publicpublic finalfinal String airlineCode;
publicpublic finalfinal String flightNumber;
publicpublic finalfinal String seatNumber;
publicpublic finalfinal String tripId;

@Ignore
Flight(String title, int duration, Priority priority, Date startTime,

ROOM AND RELATIONS

68

String departingAirport, String arrivingAirport, String airlineCode,
String flightNumber, String seatNumber, String tripId) {

supersuper(title, duration, priority, startTime);
thisthis.departingAirport=departingAirport;
thisthis.arrivingAirport=arrivingAirport;
thisthis.airlineCode=airlineCode;
thisthis.flightNumber=flightNumber;
thisthis.seatNumber=seatNumber;
thisthis.tripId=tripId;

}

Flight(String id, String title, int duration,
Priority priority, Date startTime, Date creationTime,
Date updateTime, String departingAirport, String arrivingAirport,
String airlineCode, String flightNumber, String seatNumber,
String tripId) {

supersuper(id, title, duration, priority, startTime, creationTime, updateTime);
thisthis.departingAirport=departingAirport;
thisthis.arrivingAirport=arrivingAirport;
thisthis.airlineCode=airlineCode;
thisthis.flightNumber=flightNumber;
thisthis.seatNumber=seatNumber;
thisthis.tripId=tripId;

}
}

(from Trips/RoomRelations/app/src/main/java/com/commonsware/android/room/Flight.java)

The Updated DAO and Database

Since we added new entities, TripDatabase needs to know about them, via the
entities property on the @Database annotation:

packagepackage com.commonsware.android.room;

importimport android.arch.persistence.room.Databaseandroid.arch.persistence.room.Database;
importimport android.arch.persistence.room.Roomandroid.arch.persistence.room.Room;
importimport android.arch.persistence.room.RoomDatabaseandroid.arch.persistence.room.RoomDatabase;
importimport android.content.Contextandroid.content.Context;

@Database(
entities={Trip.class, Lodging.class, Flight.class},
version=2

)
abstractabstract classclass TripDatabaseTripDatabase extendsextends RoomDatabase {

abstractabstract TripStore tripStore();

ROOM AND RELATIONS

69

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomRelations/app/src/main/java/com/commonsware/android/room/Flight.java

privateprivate staticstatic finalfinal String DB_NAME="trips.db";
privateprivate staticstatic volatilevolatile TripDatabase INSTANCE=nullnull;

synchronizedsynchronized staticstatic TripDatabase get(Context ctxt) {
ifif (INSTANCE==nullnull) {

INSTANCE=create(ctxt, falsefalse);
}

returnreturn(INSTANCE);
}

staticstatic TripDatabase create(Context ctxt, boolean memoryOnly) {
RoomDatabase.Builder<TripDatabase> b;

ifif (memoryOnly) {
b=Room.inMemoryDatabaseBuilder(ctxt.getApplicationContext(),

TripDatabase.class);
}
elseelse {

b=Room.databaseBuilder(ctxt.getApplicationContext(), TripDatabase.class,
DB_NAME);

}

returnreturn(b.build());
}

}

(from Trips/RoomRelations/app/src/main/java/com/commonsware/android/room/TripDatabase.java)

Note that now we are on version=2. Ideally, this sort of change would involve
updating an existing database in-place, so as not to disturb any existing data. Room
calls these “migrations”, and they are covered in an upcoming chapter.

TripStore, our DAO, now needs methods for Lodging and Flight as well:

packagepackage com.commonsware.android.room;

importimport android.arch.persistence.room.Daoandroid.arch.persistence.room.Dao;
importimport android.arch.persistence.room.Deleteandroid.arch.persistence.room.Delete;
importimport android.arch.persistence.room.Insertandroid.arch.persistence.room.Insert;
importimport android.arch.persistence.room.OnConflictStrategyandroid.arch.persistence.room.OnConflictStrategy;
importimport android.arch.persistence.room.Queryandroid.arch.persistence.room.Query;
importimport android.arch.persistence.room.Updateandroid.arch.persistence.room.Update;
importimport java.util.Listjava.util.List;

@Dao
interfaceinterface TripStoreTripStore {

ROOM AND RELATIONS

70

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomRelations/app/src/main/java/com/commonsware/android/room/TripDatabase.java

/*
Trip

*/

@Query("SELECT * FROM trips ORDER BY title")
List<Trip> selectAllTrips();

@Query("SELECT * FROM trips WHERE id=:id")
Trip findTripById(String id);

@Insert
void insert(Trip... trips);

@Update
void update(Trip... trips);

@Delete
void delete(Trip... trips);

/*
Lodging

*/

@Query("SELECT * FROM lodgings WHERE tripId=:tripId")
List<Lodging> findLodgingsForTrip(String tripId);

@Insert
void insert(Lodging... lodgings);

@Update
void update(Lodging... lodgings);

@Delete
void delete(Lodging... lodgings);

/*
Flight

*/

@Query("SELECT * FROM flights WHERE tripId=:tripId")
List<Flight> findFlightsForTrip(String tripId);

@Insert
void insert(Flight... flights);

@Update
void update(Flight... flights);

ROOM AND RELATIONS

71

@Delete
void delete(Flight... flights);

}

(from Trips/RoomRelations/app/src/main/java/com/commonsware/android/room/TripStore.java)

The Lodging and Flight @Query methods retrieve only those for a particular Trip,
based on the ID. There is nothing stopping us from having other @Query methods
(e.g., searching across all Lodging, regardless of Trip), but these will suffice for now.

We could elect to have separate DAO classes for each entity, or have nested
@Dao-annotated classes inside the entity for these sorts of methods. In those cases,
TripDatabase would have to be augmented with additional abstract methods to
return instances of those classes, mirroring the existing tripStore() method.

Self-Referential Relations for Tree Structures
With care, you can use Room for self-referential relations: an entity having a foreign
key back to itself. This is most commonly seen in tree structures:

• Categories having sub-categories
• Folders having folders and items
• And so on

The General/RoomTree sample project demonstrates the first of those examples: a
Category entity that has an optional parent Category:

packagepackage com.commonsware.android.room.dao;

importimport android.arch.persistence.room.Entityandroid.arch.persistence.room.Entity;
importimport android.arch.persistence.room.ForeignKeyandroid.arch.persistence.room.ForeignKey;
importimport android.arch.persistence.room.Ignoreandroid.arch.persistence.room.Ignore;
importimport android.arch.persistence.room.Indexandroid.arch.persistence.room.Index;
importimport android.arch.persistence.room.PrimaryKeyandroid.arch.persistence.room.PrimaryKey;
importimport android.support.annotation.NonNullandroid.support.annotation.NonNull;
importimport java.util.UUIDjava.util.UUID;
importimport staticstatic android.arch.persistence.room.ForeignKey.CASCADE;

@Entity(
tableName="categories",
foreignKeys=@ForeignKey(

entity=Category.class,
parentColumns="id",
childColumns="parentId",

ROOM AND RELATIONS

72

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomRelations/app/src/main/java/com/commonsware/android/room/TripStore.java
http://github.com/commonsguy/cw-androidarch/tree/master/General/RoomTree
http://github.com/commonsguy/cw-androidarch/tree/master/General/RoomTree

onDelete=CASCADE),
indices=@Index(value="parentId"))

classclass CategoryCategory {
@PrimaryKey
@NonNull
publicpublic finalfinal String id;
publicpublic finalfinal String title;
publicpublic finalfinal String parentId;

@Ignore
Category(String title) {

thisthis(title, nullnull);
}

@Ignore
publicpublic Category(String title, String parentId) {

thisthis(UUID.randomUUID().toString(), title, parentId);
}

publicpublic Category(@NonNull String id, String title, String parentId) {
thisthis.id=id;
thisthis.title=title;
thisthis.parentId=parentId;

}
}

(from General/RoomTree/stuff/src/main/java/com/commonsware/android/room/dao/Category.java)

Here, Category has a @ForeignKey that points back to Category as the entity, with
a parentId column holding the id of the parent Category. onDelete is set to
CASCADE, so that when a parent Category is deleted, its children are deleted as well.

Now we can have DAO methods that work with the Category tree:

@Query("SELECT * FROM categories")
List<Category> selectAllCategories();

@Query("SELECT * FROM categories WHERE parentId IS NULL")
Category findRootCategory();

@Query("SELECT * FROM categories WHERE parentId=:parentId")
List<Category> findChildCategories(String parentId);

@Insert
void insert(Category... categories);

@Delete

ROOM AND RELATIONS

73

https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/RoomTree/stuff/src/main/java/com/commonsware/android/room/dao/Category.java

void delete(Category... categories);

(from General/RoomTree/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java)

Using @Relation
If you have a POJO class — one that does not directly have the @Entity annotation
— you can use @Relation to automatically retrieve entities related to… something in
the POJO.

For example, in other Android ORMs, one might expect that Category would have
methods, fields, or something to get at the parent Category (where there is one) or
the child Category instances (where there are some). However, that is not supported
by Room and @Entity, but it is supported by separate POJO classes.

To that end, we can set up a CategoryTuple:

packagepackage com.commonsware.android.room.dao;

importimport android.arch.persistence.room.Relationandroid.arch.persistence.room.Relation;
importimport java.util.Listjava.util.List;

publicpublic classclass CategoryTupleCategoryTuple {
publicpublic finalfinal String id;
publicpublic finalfinal String title;
publicpublic finalfinal String parentId;

publicpublic CategoryTuple(String id, String title, String parentId) {
thisthis.id=id;
thisthis.title=title;
thisthis.parentId=parentId;

}

@Relation(parentColumn="id", entityColumn="parentId")
publicpublic List<Category> children;

@Relation(parentColumn="parentId", entityColumn="id")
publicpublic List<Category> parents;

}

(from General/RoomTree/stuff/src/main/java/com/commonsware/android/room/dao/CategoryTuple.java)

Here, we have two @Relation annotations. These go on fields, not methods, and they
indicate fields that Room should fill in when a @Query returns instances of this
POJO. The field type needs to be a List or Set of the related entity, not the POJO.

ROOM AND RELATIONS

74

https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/RoomTree/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/RoomTree/stuff/src/main/java/com/commonsware/android/room/dao/CategoryTuple.java

Hence, children and parents are lists of Category instances, not CategoryTuple.

The two required properties on @Relation are parentColumn and entityColumn.
entityColumn is the name of a column in the entity’s table; parentColumn is the
name of a field in the POJO representing the parent entity. In this case, the entity for
both is Category, as we are working with a self-referential relation. In the generated
code, Room is going to run a query that finds all objects whose entityColumn has
the value pulled from this POJO’s parentColumn field. More specifically:

• For the children field, Room will query the categories table to return all
rows where the parentId column equals the id of this CategoryTuple

• For the parent field, Room will query the categories table to return all rows
where the id column equals the parentId of this CategoryTuple

For a 1:N relation, Room’s restriction on @Relation data types (must be List or Set)
means that both the 1 side and the N side get represented by collection fields… even
though one should only ever have at most one element.

If there are no matching entities (e.g., no parent for the root Category, no children
for a leaf Category), the resulting field is either null or an empty collection.

But now, our DAO methods will not only set up the POJOs but all entities that are
called for by the @Relation fields:

@Transaction
@Query("SELECT * FROM categories WHERE parentId IS NULL")
CategoryTuple findRootCategoryTuple();

@Transaction
@Query("SELECT * FROM categories WHERE parentId=:parentId")
List<CategoryTuple> findChildCategoryTuples(String parentId);

(from General/RoomTree/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java)

However, this involved a lot of copying. CategoryTuple has the same fields as
Category. It would not have to have all of those fields, of course, as a POJO need not
have fields for all columns in the table. But, still, it seems to be a bit wasteful.

Another related approach is to create a “POJO” subclass of the entity… such as this
CategoryShadow:

packagepackage com.commonsware.android.room.dao;

ROOM AND RELATIONS

75

https://issuetracker.google.com/issues/62905145
https://issuetracker.google.com/issues/62905145
https://issuetracker.google.com/issues/62903497
https://issuetracker.google.com/issues/62903497
https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/RoomTree/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java

importimport android.arch.persistence.room.Relationandroid.arch.persistence.room.Relation;
importimport java.util.Listjava.util.List;

publicpublic classclass CategoryShadowCategoryShadow extendsextends Category {
publicpublic CategoryShadow(String id, String title, String parentId) {

supersuper(id, title, parentId);
}

@Relation(parentColumn="id", entityColumn="parentId")
publicpublic List<Category> children;

}

(from General/RoomTree/stuff/src/main/java/com/commonsware/android/room/dao/CategoryShadow.java)

Even though CategoryShadow inherits from Category, and even though Category is
an entity, Room treats CategoryShadow as a POJO, and we can have @Relation fields,
such as the children one shown. If you need most or all of the fields from the entity,
this subclass approach involves less code duplication than does the standalone-
POJO approach.

@Relation and @Query
If you use @Relation, it is a good idea to add the @Transaction annotation to any
related @Query. That ensures that the initial query that populates the POJO, plus the
query (or queries) necessary to resolve the @Relation, are all performed inside a
transaction and therefore will have consistency.

By default, @Transaction logic is not applied to @Query methods returning POJOs
with @Relation, and it is possible that you would wind up with inconsistent results,
if the database was modified while the @Query was being processed. Unfortunately,
this has been deemed as “working as intended”.

This is why the @Query methods on StuffStore that return CategoryTuple or
CategoryShadow also have the @Transaction annotation.

Representing No Relation
While much of this book will use UUID values for primary keys, plenty of other Room
examples will use int, particularly with autoGenerate set to true, to have SQLite
generate the keys.

However, this does not work well if those keys will be used as foreign key values, in

ROOM AND RELATIONS

76

https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/RoomTree/stuff/src/main/java/com/commonsware/android/room/dao/CategoryShadow.java
https://issuetracker.google.com/issues/68083849

cases where there may be no value for the relation.

For example, Category uses String for its id (created from a UUID), and we
represented a root category by means of having null for its parentId value. That
works because String fields can be null.

If, however, we used int, we have no way of representing the no-relation scenario.
You cannot assign null to an int field in Java.

Hence, if you want to support the no-relation scenario, your foreign key field needs
to allow for null values. If you want to use auto-generated SQLite identifiers, use
Integer, not int.

ROOM AND RELATIONS

77

The Support Database API

So far, this book has portrayed Room as being an ORM-style bridge between your
code and SQLite.

Technically, that is not accurate.

Part of what we get with Room is a series of classes and interfaces in the
android.support.persistence.db package. These classes come from a separate
artifact (android.arch.persistence.room:support-db) and represent an
abstraction for SQLite-style database access. This book will refer to this as “the
support database API”.

We also get implementations of that abstraction, in the form of the “framework”
classes (from android.arch.persistence.room:support-db-impl). Those classes
use the Android standard SQLite environment. Room’s artifacts pull in these
support artifacts by default, and when we use RoomDatabase.Builder to set up our
RoomDatabase, we are using those “framework” classes for the database access.

In this chapter, we will explore in greater detail why this support database API exists
and how we can use it, because while most of the time we will be able to use Room-
generated code to work with the database, sometimes we cannot.

“Can’t You See That This is a Facade?”
To many developers, SQLite “is what it is”. Android ships with a SQLite
implementation, and we use it, either directly or via some form of wrapper library.

However, in truth, there are many SQLite implementations. After all, SQLite is a
library, and so there is nothing stopping people from using a separate, independent

79

copy of SQLite from what is in Android. Even in Android itself, what SQLite you get
depends on what device you run on:

• Different API levels integrate different versions of SQLite
• Device manufacturers sometimes replace the stock SQLite version with

another

And so, sometimes, we need a facade: an API that we can code to that supports a
pluggable implementation. The following sections outline some examples.

Requery

Requery is a Room-like object mapping library, one that works both on Android and
on the regular Java JVM. For plain Java (or Kotlin), Requery uses JDBC. For Android,
Requery integrates with the support database API. Beyond that, Requery offers its
own implementation of that API, wrapped around a standalone copy of SQLite. This
ensures that you are using a current version of SQLite, even on older devices.

CWAC-SafeRoom

One of the best-known alternative SQLite implementations for Android is Zetitec’s
SQLCipher for Android, which offers transparent encryption of database contents.
However, Room knows nothing about SQLCipher for Android… which is why the
author of this book wrote CWAC-SafeRoom. The bulk of CWAC-SafeRoom is an
implementation of the support database API that completely replaces the use of the
framework SQLite with SQLCipher for Android.

AssetRoom

Sometimes, you may want to package a database with the app, either as starter data
or as a read-only data source. Jeff Gilfelt’s SQLiteAssetHelper can handle this for
you, but Room does not know about it.

The General/AssetRoom sample app profiled in another chapter contains a partial
implementation of the support database API. Mostly, it is a pass-through to the
stock implementation of that API that uses the framework’s copy of SQLite.
However, it uses a modified version of SQLiteAssetHelper to handle the timely
unpacking of a database stored in assets/.

THE SUPPORT DATABASE API

80

https://developer.android.com/reference/android/database/sqlite/package-summary.html
https://stackoverflow.com/a/4377116/115145
https://stackoverflow.com/a/4377116/115145
https://en.wikipedia.org/wiki/Facade_pattern
https://github.com/requery/requery
https://github.com/requery/sqlite-android
https://github.com/requery/sqlite-android
https://www.zetetic.net/sqlcipher/sqlcipher-for-android/

Other ORMs

Both of those use cases offer other implementations of the support database API.
The idea is that not only can Room use that API, but so could other similar object-
relational mapping (ORM) libraries. If those libraries write to the support database
API and allow pluggable implementations the way that Room does, then solutions
like CWAC-SafeRoom can work for those libraries in the same way that it works for
Room itself.

When Will We Use This?
There are two broad categories of scenarios where the support database API comes
into play.

First is when you want to use a different SQLite implementation, such as wanting to
use SQLCipher for Android. Then, as part of setting up your RoomDatabase, you can
provide it with the details of how to use that SQLite implementation, and Room will
(hopefully) work with it.

However, there are other places in the Room API where the Room abstractions break
down and the support database API peeks through, such as:

• When you need to migrate a database from one schema to another
• When you need to create and manage tables that Room will not use
• When you need to configure your database in ways beyond what Room

supports, such as directly invoking PRAGMA statements

Configuring Room’s Database Access
We used RoomDatabase to set up our database and get access to our DAO(s) for
working with our entities. By default, RoomDatabase will use the “framework”
implementation of the support database APIs. However:

• We can tell it to use something else
• We can get control as part of the database setup, to configure the database

manually, regardless of what support database API implementation we use

THE SUPPORT DATABASE API

81

Get a Factory

With the framework’s Android SQLite API, many developers elect to use
SQLiteOpenHelper as their entry point. This handles creating and upgrading the
database in a decent structured fashion. However, SQLiteOpenHelper is not a
requirement — developers could use static methods on SQLiteDatabase, such as
openOrCreateDatabase(), to work with a SQLiteDatabase without an associated
SQLiteOpenHelper.

The equivalent interface in the support database API is SupportSQLiteOpenHelper,
and it fills the same basic role.

With the support database API, working with a SupportSQLiteOpenHelper is
unavoidable. Whether you use it, or Room uses it, somebody sets up one of these.
SupportSQLiteOpenHelper fills a role similar to that of SQLiteOpenHelper, providing
a single point of control for creating and upgrading a database.

However, you do not create a SupportSQLiteOpenHelper directly yourself. Instead,
you ask a SupportSQLiteOpenHelper.Factory to do that for you. Each
implementation of the support database API should have a class that implements
the SupportSQLiteOpenHelper.Factory interface:

• The default Room implementation is FrameworkSQLiteOpenHelperFactory,
from the android.arch.persistence:db-framework artifact

• CWAC-SafeRoom has SafeHelperFactory
• The AssetRoom sample app has AssetSQLiteOpenHelperFactory
• And so on

How you get an instance of that factory is up to the implementation of the support
database API. In the case of FrameworkSQLiteOpenHelperFactory and
AssetSQLiteOpenHelperFactory, you just create an instance via a no-parameter
constructor. CWAC-SafeRoom offers a one-parameter constructor on
SafeHelperFactory, where you supply the passphrase as the parameter.
SafeHelperFactory also has a static fromUser() method, for you to supply an
Editable with the passphrase, such as from an EditText widget.

Regardless, one way or another, you will need to get an instance of a factory.

You can use the factory directly, bypassing all of Room. More often, though, you will
want to use Room, but have Room use this support database API implementation.

THE SUPPORT DATABASE API

82

For that, call openHelperFactory() on the RoomDatabase.Builder as part of setting
it up:

// EditText passphraseField;
SafeHelperFactory factory=SafeHelperFactory.fromUser(passphraseField.getText());

StuffDatabase db=Room.databaseBuilder(ctxt, StuffDatabase.class, DB_NAME)
.openHelperFactory(factory)
.build();

Here, we are having Room use SafeHelperFactory from CWAC-SafeRoom, so Room
will wind up interacting with SQLCipher for Android.

Add a Callback

Regardless of whether we use openHelperFactory() or not, we can also call
addCallback() on the RoomDatabase.Builder to supply a RoomDatabase.Callback
to use. This callback can get control at two points:

• When the database file is created, via an onCreate() method on the callback
• When the database file is opened, via an onOpen() method on the callback

In each case, you get a SupportSQLiteDatabase object to use for manipulating the
database. Room itself may not be completely ready for use — particularly in the
onCreate() callback — which is why you are not passed your RoomDatabase
subclass. Instead, you have to work with the database using the support database
API directly.

For example, here we add a callback to manually create a table when the database is
created:

RoomDatabase.Builder<BookDatabase> b=
Room.databaseBuilder(ctxt.getApplicationContext(), BookDatabase.class,

DB_NAME);

b.addCallback(newnew Callback() {
@Override
publicpublic void onCreate(@NonNull SupportSQLiteDatabase db) {

supersuper.onCreate(db);

db.execSQL("CREATE VIRTUAL TABLE booksearch USING fts4(sequence, prose)");
}

});

BookDatabase books=b.build();

(from TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookDatabase.java)

THE SUPPORT DATABASE API

83

https://github.com/commonsguy/cw-androidarch/blob/v1.0/TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookDatabase.java

Normally, creating tables is the job of an @Entity and its Room-generated code. In
this case, we are creating an fts4 virtual table, one used for full-text searching.
Room does not know how to create those, so we have to create it ourselves.

We will see more about full-text searching and Room later in the book.

THE SUPPORT DATABASE API

84

Room and Migrations

When you first ship your app, you think that your database schema is beautiful, a
true work of art.

Then, you wake up the next morning and realize that you need to make changes to
that schema.

During initial development — and for silly little book examples — you just go in and
make changes to your entities, and Room will rebuild your database for you.
However, it does so by dropping all of your existing tables, taking all the data with it.
In development, that may not be so bad. In production… well, let’s just say that users
get somewhat irritated when you lose their data.

And that’s where migrations come into play.

What’s a Migration?
With traditional Android SQLite development, we typically use SQLiteOpenHelper.
This utility class manages a SQLiteDatabase for us and addresses two key problems:

1. What happens when our app first runs on a device — or after the user has
cleared our app’s data — and we have no database at all?

2. What happens when we need to modify the database schema from what it
was to some new structure?

SQLiteOpenHelper would do that by calling onCreate() and onUpgrade() callbacks,
where we could implement the logic to create the tables and adjust them as the
schemas change.

85

While onCreate() worked reasonably well, onUpgrade() rapidly grew out of control.
Long-lived apps might have dozens of different schemas, evolving over time.
Because users are not forced to take on app updates, our apps need to be able to
transition from any prior schema to the latest-and-greatest one. This meant that
onUpgrade() would need to identify exactly what bits of code are needed to migrate
the database from the old to the new version, and this could get unwieldy.

Room addresses this somewhat through the Migration class. You create subclasses
of Migration — typically as anonymous inner classes — that handle the conversion
from some older schema to a newer one. You pass a bunch of Migration instances to
Room, representing different pair-wise schema upgrade paths. Room then
determines which one(s) need to be used at any point in time, to update the schema
from whatever it was to whatever it needs to be.

When Do We Migrate?
On our RoomDatabase subclass, we have a @Database annotation. One of the
properties is version. This works like the version code that we would pass into the
SQLiteOpenHelper constructor. It is a monotonically increasing integer, with higher
numbers indicating newer schemas. The version in the code represents the schema
version that this code is expecting.

Once your app ships, any time you change your schema — mostly in the form of
modifying entity classes — you need to increment that version and create a
Migration that knows how to convert from the prior version to this new one.

Note that there is no requirement that you increment the version by 1, though that
is a common convention. If using a date-based format like YYYMMDD (e.g., 20170627)
makes your life easier, you are welcome to do so.

But First, a Word About Exporting Schemas
One of the side-effects of using Room is that you do not write your own schema for
the database. Room generates it, based on your entity definitions. During the
ordinary course of programming, this is perfectly fine and saves you time and effort.

However, when it comes to migrations, now we have a problem. We cannot create
code to migrate from an old to a new schema without knowing what those schemas
are. And while schema information is baked into some code generated by Room’s
annotation processor, that is only for the current version of your entity classes (and,

ROOM AND MIGRATIONS

86

hence, your current schema), not for any historical ones.

Fortunately, Room offers something that helps a bit: exported schemas. You can
teach Room’s annotation processor to not only generate Java code but also generate
a JSON document describing the schema. Moreover, it will do that for each schema
version, saving them to version-specific JSON files. If you hold onto these files — for
example, if you save them in version control – you will have a history of your schema
and can use that information to write your migrations.

However, the real reason for those exported schemas is to help with testing your
migrations. As a result, the JSON format is not designed for developers to read.

To set this up, in the defaultConfig closure of your module’s build.gradle file, you
can add the following javaCompileOptions closure:

javaCompileOptions {
annotationProcessorOptions {

arguments = ["room.schemaLocation": "$projectDir/schemas".toString()]
}

}

(from Trips/RoomMigrations/app/build.gradle)

This teaches Room to save your schemas in a schemas/ directory off of the module
root directory. In principle, you could store them elsewhere by choosing a different
value for the room.schemaLocation argument.

The next time you (re-)build your project, that directory will be created.
Subdirectories with the fully-qualified class names of your RoomDatabase classes will
go inside there, and inside each of those will be a JSON file named after your schema
version (e.g., 1.json):

{
"formatVersion": 1,
"database": {

"version": 1,
"identityHash": "d46bfccddeca286f2948a702a4938d56",
"entities": [

{
"tableName": "trips",
"createSql": "CREATE TABLE IF NOT EXISTS `${TABLE_NAME}` (`id` TEXT NOT NULL, `title` TEXT,

`duration` INTEGER NOT NULL, `priority` INTEGER, `startTime` INTEGER, `creationTime` INTEGER, `updateTime`
INTEGER, PRIMARY KEY(`id`))",

"fields": [
{

"fieldPath": "id",
"columnName": "id",

ROOM AND MIGRATIONS

87

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomMigrations/app/build.gradle

"affinity": "TEXT"
},
{

"fieldPath": "title",
"columnName": "title",
"affinity": "TEXT"

},
{

"fieldPath": "duration",
"columnName": "duration",
"affinity": "INTEGER"

},
{

"fieldPath": "priority",
"columnName": "priority",
"affinity": "INTEGER"

},
{

"fieldPath": "startTime",
"columnName": "startTime",
"affinity": "INTEGER"

},
{

"fieldPath": "creationTime",
"columnName": "creationTime",
"affinity": "INTEGER"

},
{

"fieldPath": "updateTime",
"columnName": "updateTime",
"affinity": "INTEGER"

}
],
"primaryKey": {

"columnNames": [
"id"

],
"autoGenerate": falsefalse

},
"indices": [],
"foreignKeys": []

}
],
"setupQueries": [

"CREATE TABLE IF NOT EXISTS room_master_table (id INTEGER PRIMARY KEY,identity_hash TEXT)",
"INSERT OR REPLACE INTO room_master_table (id,identity_hash) VALUES(42,

\"\"d46bfccddeca286f2948a702a4938d56\"\")"
]

}
}

(from Trips/RoomMigrations/app/schemas/com.commonsware.android.room.TripDatabase/1.json)

The JSON properties that will matter to you will be the createSql ones. There are
ones that create your tables and others that create your indexes.

ROOM AND MIGRATIONS

88

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomMigrations/app/schemas/com.commonsware.android.room.TripDatabase/1.json

Writing Migrations
A Migration itself has only one required method: migrate(). You are given a
SupportSQLiteDatabase, which we saw SupportSQLiteDatabase in the chapter on
the support database API. You can use the SupportSQLiteDatabase to execute
whatever SQL statements you need to change the database schema to what you
need.

The Migration constructor takes two parameters: the old schema version number
and the new schema version number. Hence, the recommended pattern is to use
anonymous inner classes, where you can provide the migrate() method to use for
migrating the schema between that particular pair of schema versions.

To determine what needs to be done, you need to examine that schema JSON and
determine what is different between the old and the new. Someday, we may get
some tools to help with this. For now, you are largely stuck “eyeballing” the SQL. You
can then craft the ALTER TABLE or other statements necessary to change the schema,
much as you might have done in onUpgrade() of a SQLiteOpenHelper.

For example, the Trips/RoomMigrations sample project has a FROM_1_TO_2
migration:

staticstatic finalfinal Migration FROM_1_TO_2=newnew Migration(1,2) {
@Override
publicpublic void migrate(SupportSQLiteDatabase db) {

db.execSQL("CREATE TABLE IF NOT EXISTS `lodgings` (`id` TEXT NOT NULL, `title` TEXT, `duration`
INTEGER NOT NULL, `priority` INTEGER, `startTime` INTEGER, `creationTime` INTEGER, `updateTime` INTEGER,
`address` TEXT, `tripId` TEXT, PRIMARY KEY(`id`), FOREIGN KEY(`tripId`) REFERENCES `trips`(`id`) ON UPDATE
NO ACTION ON DELETE CASCADE)");

db.execSQL("CREATE INDEX `index_lodgings_tripId` ON `lodgings` (`tripId`)");
db.execSQL("CREATE TABLE IF NOT EXISTS `flights` (`id` TEXT NOT NULL, `title` TEXT, `duration`

INTEGER NOT NULL, `priority` INTEGER, `startTime` INTEGER, `creationTime` INTEGER, `updateTime` INTEGER,
`departingAirport` TEXT, `arrivingAirport` TEXT, `airlineCode` TEXT, `flightNumber` TEXT, `seatNumber`
TEXT, `tripId` TEXT, PRIMARY KEY(`id`), FOREIGN KEY(`tripId`) REFERENCES `trips`(`id`) ON UPDATE NO ACTION
ON DELETE CASCADE)");

db.execSQL("CREATE INDEX `index_flights_tripId` ON `flights` (`tripId`)");
}

};

(from Trips/RoomMigrations/app/src/main/java/com/commonsware/android/room/Migrations.java)

Here, we create two tables and two indexes in migrate(). The SQL is mostly copied
from the 2.json file, representing the schema for version 2:

{
"formatVersion": 1,
"database": {

"version": 2,

ROOM AND MIGRATIONS

89

http://github.com/commonsguy/cw-androidarch/tree/master/Trips/RoomMigrations
http://github.com/commonsguy/cw-androidarch/tree/master/Trips/RoomMigrations
https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomMigrations/app/src/main/java/com/commonsware/android/room/Migrations.java

"identityHash": "69efe3a24b62764afa37e5eb0f162fd9",
"entities": [

{
"tableName": "trips",
"createSql": "CREATE TABLE IF NOT EXISTS `${TABLE_NAME}` (`id` TEXT NOT NULL, `title` TEXT,

`duration` INTEGER NOT NULL, `priority` INTEGER, `startTime` INTEGER, `creationTime` INTEGER, `updateTime`
INTEGER, PRIMARY KEY(`id`))",

"fields": [
{

"fieldPath": "id",
"columnName": "id",
"affinity": "TEXT",
"notNull": truetrue

},
{

"fieldPath": "title",
"columnName": "title",
"affinity": "TEXT",
"notNull": falsefalse

},
{

"fieldPath": "duration",
"columnName": "duration",
"affinity": "INTEGER",
"notNull": truetrue

},
{

"fieldPath": "priority",
"columnName": "priority",
"affinity": "INTEGER",
"notNull": falsefalse

},
{

"fieldPath": "startTime",
"columnName": "startTime",
"affinity": "INTEGER",
"notNull": falsefalse

},
{

"fieldPath": "creationTime",
"columnName": "creationTime",
"affinity": "INTEGER",
"notNull": falsefalse

},
{

"fieldPath": "updateTime",
"columnName": "updateTime",
"affinity": "INTEGER",
"notNull": falsefalse

}
],
"primaryKey": {

"columnNames": [
"id"

],
"autoGenerate": falsefalse

},
"indices": [],
"foreignKeys": []

},

ROOM AND MIGRATIONS

90

{
"tableName": "lodgings",
"createSql": "CREATE TABLE IF NOT EXISTS `${TABLE_NAME}` (`id` TEXT NOT NULL, `title` TEXT,

`duration` INTEGER NOT NULL, `priority` INTEGER, `startTime` INTEGER, `creationTime` INTEGER, `updateTime`
INTEGER, `address` TEXT, `tripId` TEXT, PRIMARY KEY(`id`), FOREIGN KEY(`tripId`) REFERENCES `trips`(`id`)
ON UPDATE NO ACTION ON DELETE CASCADE)",

"fields": [
{

"fieldPath": "id",
"columnName": "id",
"affinity": "TEXT",
"notNull": truetrue

},
{

"fieldPath": "title",
"columnName": "title",
"affinity": "TEXT",
"notNull": falsefalse

},
{

"fieldPath": "duration",
"columnName": "duration",
"affinity": "INTEGER",
"notNull": truetrue

},
{

"fieldPath": "priority",
"columnName": "priority",
"affinity": "INTEGER",
"notNull": falsefalse

},
{

"fieldPath": "startTime",
"columnName": "startTime",
"affinity": "INTEGER",
"notNull": falsefalse

},
{

"fieldPath": "creationTime",
"columnName": "creationTime",
"affinity": "INTEGER",
"notNull": falsefalse

},
{

"fieldPath": "updateTime",
"columnName": "updateTime",
"affinity": "INTEGER",
"notNull": falsefalse

},
{

"fieldPath": "address",
"columnName": "address",
"affinity": "TEXT",
"notNull": falsefalse

},
{

"fieldPath": "tripId",
"columnName": "tripId",
"affinity": "TEXT",
"notNull": falsefalse

ROOM AND MIGRATIONS

91

}
],
"primaryKey": {

"columnNames": [
"id"

],
"autoGenerate": falsefalse

},
"indices": [

{
"name": "index_lodgings_tripId",
"unique": falsefalse,
"columnNames": [

"tripId"
],
"createSql": "CREATE INDEX `index_lodgings_tripId` ON `${TABLE_NAME}` (`tripId`)"

}
],
"foreignKeys": [

{
"table": "trips",
"onDelete": "CASCADE",
"onUpdate": "NO ACTION",
"columns": [

"tripId"
],
"referencedColumns": [

"id"
]

}
]

},
{

"tableName": "flights",
"createSql": "CREATE TABLE IF NOT EXISTS `${TABLE_NAME}` (`id` TEXT NOT NULL, `title` TEXT,

`duration` INTEGER NOT NULL, `priority` INTEGER, `startTime` INTEGER, `creationTime` INTEGER, `updateTime`
INTEGER, `departingAirport` TEXT, `arrivingAirport` TEXT, `airlineCode` TEXT, `flightNumber` TEXT,
`seatNumber` TEXT, `tripId` TEXT, PRIMARY KEY(`id`), FOREIGN KEY(`tripId`) REFERENCES `trips`(`id`) ON
UPDATE NO ACTION ON DELETE CASCADE)",

"fields": [
{

"fieldPath": "id",
"columnName": "id",
"affinity": "TEXT",
"notNull": truetrue

},
{

"fieldPath": "title",
"columnName": "title",
"affinity": "TEXT",
"notNull": falsefalse

},
{

"fieldPath": "duration",
"columnName": "duration",
"affinity": "INTEGER",
"notNull": truetrue

},
{

"fieldPath": "priority",

ROOM AND MIGRATIONS

92

"columnName": "priority",
"affinity": "INTEGER",
"notNull": falsefalse

},
{

"fieldPath": "startTime",
"columnName": "startTime",
"affinity": "INTEGER",
"notNull": falsefalse

},
{

"fieldPath": "creationTime",
"columnName": "creationTime",
"affinity": "INTEGER",
"notNull": falsefalse

},
{

"fieldPath": "updateTime",
"columnName": "updateTime",
"affinity": "INTEGER",
"notNull": falsefalse

},
{

"fieldPath": "departingAirport",
"columnName": "departingAirport",
"affinity": "TEXT",
"notNull": falsefalse

},
{

"fieldPath": "arrivingAirport",
"columnName": "arrivingAirport",
"affinity": "TEXT",
"notNull": falsefalse

},
{

"fieldPath": "airlineCode",
"columnName": "airlineCode",
"affinity": "TEXT",
"notNull": falsefalse

},
{

"fieldPath": "flightNumber",
"columnName": "flightNumber",
"affinity": "TEXT",
"notNull": falsefalse

},
{

"fieldPath": "seatNumber",
"columnName": "seatNumber",
"affinity": "TEXT",
"notNull": falsefalse

},
{

"fieldPath": "tripId",
"columnName": "tripId",
"affinity": "TEXT",
"notNull": falsefalse

}
],
"primaryKey": {

ROOM AND MIGRATIONS

93

"columnNames": [
"id"

],
"autoGenerate": falsefalse

},
"indices": [

{
"name": "index_flights_tripId",
"unique": falsefalse,
"columnNames": [

"tripId"
],
"createSql": "CREATE INDEX `index_flights_tripId` ON `${TABLE_NAME}` (`tripId`)"

}
],
"foreignKeys": [

{
"table": "trips",
"onDelete": "CASCADE",
"onUpdate": "NO ACTION",
"columns": [

"tripId"
],
"referencedColumns": [

"id"
]

}
]

}
],
"setupQueries": [

"CREATE TABLE IF NOT EXISTS room_master_table (id INTEGER PRIMARY KEY,identity_hash TEXT)",
"INSERT OR REPLACE INTO room_master_table (id,identity_hash) VALUES(42,

\"\"69efe3a24b62764afa37e5eb0f162fd9\"\")"
]

}
}

(from Trips/RoomMigrations/app/schemas/com.commonsware.android.room.TripDatabase/2.json)

In the JSON, the createSql properties have the table name as a template-style
macro (${TABLE_NAME}), which you will need to replace with the actual table name.
The backticks are supported in SQLite as they are in MySQL, and since they cause
no harm here, usually it is simpler just to leave them in there.

Employing Migrations
Simply creating a Migration as a static field somewhere is necessary but not
sufficient to have Room know about performing the migration. Instead, you need to
use the addMigrations() method on RoomDatabase.Builder to teach Room about
your Migration objects. addMigrations() accepts a varargs, and so you can pass in
one or several Migration objects as needed.

ROOM AND MIGRATIONS

94

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomMigrations/app/schemas/com.commonsware.android.room.TripDatabase/2.json

packagepackage com.commonsware.android.room;

importimport android.arch.persistence.room.Databaseandroid.arch.persistence.room.Database;
importimport android.arch.persistence.room.Roomandroid.arch.persistence.room.Room;
importimport android.arch.persistence.room.RoomDatabaseandroid.arch.persistence.room.RoomDatabase;
importimport android.content.Contextandroid.content.Context;

@Database(
entities={Trip.class, Lodging.class, Flight.class},
version=2

)
abstractabstract classclass TripDatabaseTripDatabase extendsextends RoomDatabase {

abstractabstract TripStore tripStore();

privateprivate staticstatic finalfinal String DB_NAME="trips.db";
privateprivate staticstatic volatilevolatile TripDatabase INSTANCE=nullnull;

synchronizedsynchronized staticstatic TripDatabase get(Context ctxt) {
ifif (INSTANCE==nullnull) {

INSTANCE=create(ctxt, falsefalse);
}

returnreturn(INSTANCE);
}

staticstatic TripDatabase create(Context ctxt, boolean memoryOnly) {
returnreturn(create(ctxt, DB_NAME, memoryOnly));

}

staticstatic TripDatabase create(Context ctxt, String name, boolean memoryOnly) {
RoomDatabase.Builder<TripDatabase> b;

ifif (memoryOnly) {
b=Room.inMemoryDatabaseBuilder(ctxt.getApplicationContext(),

TripDatabase.class);
}
elseelse {

b=Room.databaseBuilder(ctxt.getApplicationContext(), TripDatabase.class,
name);

}

returnreturn(b.addMigrations(Migrations.FROM_1_TO_2).build());
}

}

(from Trips/RoomMigrations/app/src/main/java/com/commonsware/android/room/TripDatabase.java)

Here, we teach the RoomDatabase.Builder about the FROM_1_TO_2 Migration. In this

ROOM AND MIGRATIONS

95

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomMigrations/app/src/main/java/com/commonsware/android/room/TripDatabase.java

sample project, the migrations are implemented in a separate Migrations class,
though you are welcome to have them directly in your RoomDatabase class or
wherever makes sense for you.

How Room Applies Migrations
When you create your RoomDatabase instance via the Migration-enhanced Builder,
Room will use SQLiteOpenHelper semantics to see if the schema version in the
existing database is older than the schema version that you declared in your
@Database annotation. If it is, Room will try to find a suitable Migration to use,
falling back to dropping all of your tables and rebuilding them from scratch, as
happens during ordinary development.

Much of the time, the schema will jump from one version to the next. If you are
using a simple numbering scheme starting at 1, the schema will then move to 2, then
3, then 4, and so on, for a given device. Hence, your primary Migration objects will
be ones that implement these incremental migrations.

However, it may be that for some device you need to skip a schema version, such as
moving from version 1 to version 3. Room is smart enough to find a chain of
Migration objects to use, and so if you have Migration objects for each incremental
schema change, Room can handle any combination of changes. For example, to go
from 1 to 3, Room might first use your (1,2) migration, then the (2,3) migration.

Sometimes, though, this can lead to unnecessary work. Suppose in schema version 2,
you created a bunch of new tables and stuff… then reverted those changes in schema
version 3. By using the incremental migrations, Room will create those tables and
then turn around and drop them right away.

However, all else being equal, Room will try to use the shortest possible chain.
Hence, you can create additional Migration objects where appropriate to streamline
particular upgrades. You could create a (1,3) migration that bypasses the obsolete
schema version 2, for example. This is optional but may prove useful from time to
time.

Testing Migrations
It would be nice if your migrations worked. Users, in particular, appreciate working
code… or, perhaps more correctly, get rather angry with non-working code.

ROOM AND MIGRATIONS

96

Hence, you might want to test the migrations.

This gets a bit tricky, though. The code-generated Room classes are expecting the
latest-and-greatest schema version, so you cannot use your DAO for testing older
schemas. Besides, RoomDatabase.Builder wants to set up your database with that
latest-and-greatest schema automatically.

Fortunately, Room ships with some testing code to help you test your schemas in
isolation… though you bypass most of Room to do that.

Adding the Artifact

This testing code is in a separate android.arch.persistence.room:testing artifact,
one that you can add via androidTestCompile to put in your instrumentation tests
but leave out of your production code:

dependencies {
implementation "com.android.support:recyclerview-v7:28.0.0"
implementation 'com.android.support:support-fragment:28.0.0'
androidTestImplementation 'com.android.support:support-compat:28.0.0'
androidTestImplementation 'com.android.support:support-core-utils:28.0.0'
implementation "android.arch.persistence.room:runtime:1.1.1"
annotationProcessor "android.arch.persistence.room:compiler:1.1.1"
androidTestImplementation "com.android.support:support-annotations:28.0.0"
androidTestImplementation 'com.android.support.test:rules:1.0.2'
androidTestImplementation "android.arch.persistence.room:testing:1.1.1"

}

(from Trips/RoomMigrations/app/build.gradle)

Adding the Schemas

Remember those exported schemas? While we used them for helping us write the
migrations, their primary use is for this testing support code.

By default, those schemas are stored outside of anything that goes into your app.
After all, you do not need those JSON files cluttering up your production builds.
However, this also means that those schemas are not available to your test code, by
default.

However, we can fix that, by adding those schemas to the assets/ used in the
androidTest source set, by having this closure in your android closure of your
module’s build.gradle file:

ROOM AND MIGRATIONS

97

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomMigrations/app/build.gradle

sourceSets {
androidTest.assets.srcDirs += files("$projectDir/schemas".toString())

}

(from Trips/RoomMigrations/app/build.gradle)

Here, "$projectDir/schemas".toString() is the same value that we used for the
room.schemaLocation annotation processor argument. This snippet tells Gradle to
include the contents of that schemas/ directory as part of our assets/.

The result is that our instrumentation test APK will have those directories named
after our RoomDatabase classes (e.g.,
com.commonsware.android.room.TripDatabase/) in the root of assets/. If you have
code that uses assets/, make sure that you are taking steps to ignore these extra
directories.

Creating and Using a MigrationTestHelper

The testing support comes in the form of a MigrationTestHelper that you can
employ in your instrumentation tests.

Adding the Rule

MigrationTestHelper is a JUnit4 rule, which you add to your test case class via the
@Rule annotation:

@Rule
publicpublic MigrationTestHelper helper;

(from Trips/RoomMigrations/app/src/androidTest/java/com/commonsware/android/room/MigrationTests.java)

Setting Up the Helper

You then need to create an instance of the MigrationTestHelper, such as in a
@Before-annotated method:

@Before
publicpublic void setUp() {

helper=newnew MigrationTestHelper(InstrumentationRegistry.getInstrumentation(),
TripDatabase.class.getCanonicalName());

}

(from Trips/RoomMigrations/app/src/androidTest/java/com/commonsware/android/room/MigrationTests.java)

MigrationTestHelper takes two parameters, both of which are a bit unusual.

ROOM AND MIGRATIONS

98

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomMigrations/app/build.gradle
https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomMigrations/app/src/androidTest/java/com/commonsware/android/room/MigrationTests.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomMigrations/app/src/androidTest/java/com/commonsware/android/room/MigrationTests.java

First, it takes an Instrumentation object. We use those in our test code, but it is rare
that we pass them as a parameter. You get your Instrumentation usually by calling
getInstrumentation() on the InstrumentationRegistry.

Then, it takes what appears to be the fully-qualified class name of the RoomDatabase
whose migrations we wish to test. Technically speaking, this is actually the relative
path, inside of assets/, where the schema JSON files are for this particular
RoomDatabase. Given the above configuration, each database’s schemas are put into a
directory named after the fully-qualified class name of the RoomDatabase, which is
why this works. However, if you change the configuration to put the schemas
somewhere else in assets/, you would need to modify this parameter to match.

Creating a Database for a Schema Version

There are two main methods on MigrationTestHelper that we will use in testing.
One is createDatabase(). This creates the database, as a specific database file, for a
specific schema version… including any of our historical ones found in those schema
JSON files. Here, we ask the helper to create a database named DB_NAME for schema
version 1:

SupportSQLiteDatabase db=helper.createDatabase(DB_NAME, 1);

(from Trips/RoomMigrations/app/src/androidTest/java/com/commonsware/android/room/MigrationTests.java)

As part of testing a migration, you will need to add some sample data to the
database, using whatever schema you asked to be used, so that you can confirm that
the migration worked as expected and did not wreck the existing data. This code will
not be very Room-ish, but more like classic SQLite Android programming:

SupportSQLiteDatabase db=helper.createDatabase(DB_NAME, 1);

db.execSQL("INSERT INTO trips (id, title, duration) VALUES (1, NULL, 0)");

finalfinal Cursor firstResults=db.query("SELECT COUNT(*) FROM trips");

assertEquals(1, firstResults.getCount());
firstResults.moveToFirst();
assertEquals(1, firstResults.getInt(0));

firstResults.close();
db.close();

(from Trips/RoomMigrations/app/src/androidTest/java/com/commonsware/android/room/MigrationTests.java)

ROOM AND MIGRATIONS

99

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomMigrations/app/src/androidTest/java/com/commonsware/android/room/MigrationTests.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomMigrations/app/src/androidTest/java/com/commonsware/android/room/MigrationTests.java

Testing a Migration

The other method of note on MigrationTestHelper is
runMigrationsAndValidate(). After you have set up a database in its starting
conditions via createDatabase() and CRUD operations,
runMigrationsAndValidate() will migrate that database from its original schema
version to the one that you specify:

db=helper.runMigrationsAndValidate(DB_NAME, 2, truetrue,
Migrations.FROM_1_TO_2);

(from Trips/RoomMigrations/app/src/androidTest/java/com/commonsware/android/room/MigrationTests.java)

You need to supply the same database name (DB_NAME), a higher schema version (2),
and the specific Migration that you want to use (Migration.FROM_1_TO_2).

Not only does this method perform the migration, but it validates the resulting
schema against what the entities have set up for that schema version, based on the
schema JSON files. If there is something wrong — your migration forgot a newly-
added column, for example — your test will fail with an assertion violation. The
true parameter shown above determines whether this schema validation will be
checked for un-dropped tables. true means that if you have unnecessary tables in
the database, the test fails; false means that unnecessary tables are fine and will be
ignored.

ROOM AND MIGRATIONS

100

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomMigrations/app/src/androidTest/java/com/commonsware/android/room/MigrationTests.java

Lifecycle Components and
ViewModels

Lifecycles and Owners

Programmers, in any environment, often encounter one or more topics that inspire
the five stages of grief. It might be related to threads, to security, to UI
implementation (e.g., how to deal with resizeable windows).

Android developers experience this sort of grief on all those topics.

Another one that triggers this sort of grief is the concept of lifecycles. On the
surface, the concept seems unremarkable: objects are in use for a time and then
become discarded, and along the way we receive callbacks regarding their state.
However, dealing with the ramifications of those lifecycles — such as handling
configuration changes, like screen rotation — vex even seasoned Android
developers.

Part of the Architecture Components is a series of classes designed to help you deal
with lifecycles in a more consistent fashion.

A Tale of Terminology
The Architecture Components have very specific definitions for certain terms, and
these definitions affect the classes that we wind up using.

Lifecycle

A lifecycle is a series of states that an object can be in. Hence, a trivial lifecycle
simply has “alive” and “dead” or similar states.

The eponymous Lifecycle class, however, models a specific lifecycle, that of
activities and fragments.

103

https://en.wikipedia.org/wiki/K%C3%BCbler-Ross_model

Lifecycle Owner

A lifecycle owner is simply something that goes through a lifecycle. If the lifecycle is
the state, the lifecycle owner is what has the trigger events for navigating through
the state machine.

A LifecycleOwner is a Java interface, with a getLifecycle() method, that returns
the Lifecycle for a given owner. As we will see, various classes already implement
LifecycleOwner, and adding it to something else is not especially difficult.

Lifecycle Observers

A lifecycle observer is something that is notified about the change in state of some
lifecycle. It finds out about those trigger events and the movement of the lifecycle
from state to state.

There are two ways to do this, via annotations and via DefaultLifecycleObserver,
as we will explore later in this chapter.

Adding the Lifecycle Components
You will need a runtime dependency and an annotation processor, akin to how
Room is set up:

dependencies {
implementation "com.android.support:recyclerview-v7:28.0.0"
implementation "com.android.support:support-fragment:28.0.0"
implementation "android.arch.lifecycle:runtime:1.1.1"
implementation "android.arch.lifecycle:common-java8:1.1.1"
implementation "android.arch.core:runtime:1.1.1"

}

android {
compileSdkVersion 28

defaultConfig {
minSdkVersion 21
targetSdkVersion 28

}

compileOptions {
sourceCompatibility JavaVersion.VERSION_1_8

LIFECYCLES AND OWNERS

104

targetCompatibility JavaVersion.VERSION_1_8
}

}

(from General/Lifecycle/app/build.gradle)

However, making sense of the artifact versions — particularly when transitive
dependencies come into play — will be difficult.

If your project directly or indirectly depends upon support-compat version 26.1.0
or higher, support-compat has a dependency on android.arch.lifecycle:runtime,
for some version of that artifact. What version that is will depend on the version of
support-compat:

Support Library Version android.arch.lifecycle:runtimeandroid.arch.lifecycle:runtime Version

28.0.0 1.1.1

27.1.1 1.1.1

27.0.2 1.0.3

26.1.0 1.0.0

In addition, we have a dependency on android.arch.lifecycle:common-java8,
which provides better Java 8 support for the lifecycle system.

How these versions will work out in the future is anyone’s guess right now.

Getting a Lifecycle
Everything dealing with Lifecycle comes down to a LifecycleOwner. You have
several possibilities of where to get one of those.

…From a FragmentActivity or a Support Fragment

If you are using version 26.1.0 or higher of the Support Library artifacts, then
FragmentActivity and the android.support.v4.app.Fragment class both
implement LifecycleOwner.

If you are using an older version of the Support Library artifacts… you really should

LIFECYCLES AND OWNERS

105

https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/Lifecycle/app/build.gradle

upgrade to at least 26.1.0 to use the Architecture Components.

…From an AppCompatActivity

Perhaps you are using the appcompat-v7 artifact. In that case, you are inheriting
from AppCompatActivity instead of FragmentActivity or Activity.

However, since AppCompatActivity inherits from FragmentActivity, if you are using
26.1.0 or higher of appcompat-v7, your AppCompatActivity subclasses will also
implement LifecycleOwner.

…From an Activity or Fragment

Perhaps you are using the classic Activity and Fragment classes, or from classes
that extend those (e.g., WearableActivity). Those will never directly implement
LifecycleOwner, as framework classes cannot depend upon libraries.

The simplest solution is to switch to inheriting from FragmentActivity and the
corresponding backport of Fragment.

Otherwise, this means that we need to handle this in a more complex fashion,
outlined later in the chapter.

…From Anything Else

In principle, you could have other objects that are themselves tied into the activity
and fragment lifecycle. After all, the backport of fragments in the Support Library
are just that sort of “other objects”. It so happens that Google takes care of managing
that backport. However, you might find other objects that, for whatever reason, are
similar in concept to the fragments backport and therefore should be suppliers of
lifecycle events.

In that case, you can implement LifecycleOwner on those classes. However, you will
also need to call handleLifecycleEvent() method on the LifecycleRegistry at
appropriate points.

This will be illustrated with support for ordinary activities, shown later in the
chapter.

LIFECYCLES AND OWNERS

106

Observing a Lifecycle
Most likely, if you are interested in the Architecture Components, you are up to
speed with Java 8 and are interested in using it in your project. In that case, you can
go the preferred route and use DefaultLifecycleObserver as your observer
implementation. This takes advantage of Java 8’s ability to define methods on
interfaces, so that you only need to override the particular lifecycle events that
concern you.

So, for example, here is an observer that passes all events to a
RecyclerView.Adapter named EventLogAdapter:

staticstatic classclass LObserverLObserver implementsimplements DefaultLifecycleObserver {
privateprivate finalfinal EventLogAdapter adapter;

LObserver(EventLogAdapter adapter) {
thisthis.adapter=adapter;

}

@Override
publicpublic void onCreate(@NonNull LifecycleOwner owner) {

adapter.add("ON_CREATE");
}

@Override
publicpublic void onStart(@NonNull LifecycleOwner owner) {

adapter.add("ON_START");
}

@Override
publicpublic void onResume(@NonNull LifecycleOwner owner) {

adapter.add("ON_RESUME");
}

@Override
publicpublic void onPause(@NonNull LifecycleOwner owner) {

adapter.add("ON_PAUSE");
}

@Override
publicpublic void onStop(@NonNull LifecycleOwner owner) {

adapter.add("ON_STOP");
}

@Override

LIFECYCLES AND OWNERS

107

publicpublic void onDestroy(@NonNull LifecycleOwner owner) {
adapter.add("ON_DESTROY");

}
}

(from General/Lifecycle/app/src/main/java/com/commonsware/android/lifecycle/MainActivity.java)

In our case, we happen to pay attention to all of the events; that is not required.

Then, you can register the observer, and it will start being called for the various
events:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

setTitle(getString(R.string.title, hashCode()));

RecyclerView rv=findViewById(R.id.transcript);

adapter=newnew EventLogAdapter(getLastCustomNonConfigurationInstance());
rv.setAdapter(adapter);

getLifecycle().addObserver(newnew LObserver(adapter));
}

(from General/Lifecycle/app/src/main/java/com/commonsware/android/lifecycle/MainActivity.java)

All of this code is from the General/Lifecycle sample project, which shows you the
events in a RecyclerView as they come in. The MainActivity handles configuration
changes via onRetainCustomNonConfigurationInstance(), so you can see the
lifecycle events across a configuration change. Through an overflow menu item, you
can kick off another instance of MainActivity, then press BACK to see the flow of
lifecycle events as the original instance comes and goes from the foreground.

Legacy Options
The Java 8 and FragmentActivity approach is the simplest way to work with
lifecycles. However, sometimes, those are not an option, and for that, you will need
workarounds.

LIFECYCLES AND OWNERS

108

https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/Lifecycle/app/src/main/java/com/commonsware/android/lifecycle/MainActivity.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/Lifecycle/app/src/main/java/com/commonsware/android/lifecycle/MainActivity.java
http://github.com/commonsguy/cw-androidarch/tree/master/General/Lifecycle
http://github.com/commonsguy/cw-androidarch/tree/master/General/Lifecycle

Ordinary Activities and Fragments, and Other Objects

Sometimes, you have to use activities and fragments not rooted in the Support
Library backport. For example, WearableActivity for Android Wear does not extend
FragmentActivity. By default, you cannot use such activities with the lifecycle
system. And, sometimes, you might have some other object need to be the source of
lifecycle events, independent of activities and fragments.

For these scenarios:

• Have your class implement the LifecycleOwner interface
• Use LifecycleRegistry to track the registered observers
• Return that registry from getLifecycle(), the one method on
LifecycleOwner that you need to implement

• From all of the lifecycle methods, call handleLifecycleEvent() on the
registry, indicating what lifecycle event has just occurred

For example, here is a SimpleLifecycleActivity that handles the standard activity
lifecycle events, forwarding them to the LifecycleRegistry:

packagepackage com.commonsware.android.lifecycle;

importimport android.app.Activityandroid.app.Activity;
importimport android.arch.lifecycle.Lifecycleandroid.arch.lifecycle.Lifecycle;
importimport android.arch.lifecycle.LifecycleOwnerandroid.arch.lifecycle.LifecycleOwner;
importimport android.arch.lifecycle.LifecycleRegistryandroid.arch.lifecycle.LifecycleRegistry;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.annotation.Nullableandroid.support.annotation.Nullable;

publicpublic classclass SimpleLifecycleActivitySimpleLifecycleActivity extendsextends Activity
implementsimplements LifecycleOwner {
privateprivate LifecycleRegistry registry=newnew LifecycleRegistry(thisthis);

@Override
publicpublic Lifecycle getLifecycle() {

returnreturn(registry);
}

@Override
protectedprotected void onCreate(@Nullable Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

registry.handleLifecycleEvent(Lifecycle.Event.ON_CREATE);
}

LIFECYCLES AND OWNERS

109

@Override
protectedprotected void onStart() {

supersuper.onStart();

registry.handleLifecycleEvent(Lifecycle.Event.ON_START);
}

@Override
protectedprotected void onResume() {

supersuper.onResume();

registry.handleLifecycleEvent(Lifecycle.Event.ON_RESUME);
}

@Override
protectedprotected void onPause() {

supersuper.onPause();

registry.handleLifecycleEvent(Lifecycle.Event.ON_PAUSE);
}

@Override
protectedprotected void onStop() {

supersuper.onStop();

registry.handleLifecycleEvent(Lifecycle.Event.ON_STOP);
}

@Override
protectedprotected void onDestroy() {

supersuper.onDestroy();

registry.handleLifecycleEvent(Lifecycle.Event.ON_DESTROY);
}

}

(from General/LifecycleLegacy/app/src/main/java/com/commonsware/android/lifecycle/SimpleLifecycleActivity.java)

Pre-Java 8

Perhaps Java 8 is not an option for you, for whatever reason.
DefaultLifecycleObserver will not work for you. Instead, you will need to:

• Remove the android.arch.lifecycle:common-java8 dependency, as it will
not be compatible with your app

LIFECYCLES AND OWNERS

110

https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/LifecycleLegacy/app/src/main/java/com/commonsware/android/lifecycle/SimpleLifecycleActivity.java

• Add an annotationProcessor dependency on
android.arch.lifecycle:compiler

• Have your observer implement LifecycleObserver instead of
DefaultLifecycleObserver

• Implement one or more methods, annotated with @OnLifecycleEvent, to
receive the lifecycle events of interest to you

So, for example, here is an observer that passes all events to a
RecyclerView.Adapter named EventLogAdapter:

staticstatic classclass LObserverLObserver implementsimplements LifecycleObserver {
privateprivate finalfinal EventLogAdapter adapter;

LObserver(EventLogAdapter adapter) {
thisthis.adapter=adapter;

}

@OnLifecycleEvent(Lifecycle.Event.ON_CREATE)
void created() {

adapter.add("ON_CREATE");
}

@OnLifecycleEvent(Lifecycle.Event.ON_START)
void started() {

adapter.add("ON_START");
}

@OnLifecycleEvent(Lifecycle.Event.ON_RESUME)
void resumed() {

adapter.add("ON_RESUME");
}

@OnLifecycleEvent(Lifecycle.Event.ON_PAUSE)
void paused() {

adapter.add("ON_PAUSE");
}

@OnLifecycleEvent(Lifecycle.Event.ON_STOP)
void stopped() {

adapter.add("ON_STOP");
}

@OnLifecycleEvent(Lifecycle.Event.ON_DESTROY)
void destroyed() {

adapter.add("ON_DESTROY");
}

LIFECYCLES AND OWNERS

111

}

(from General/LifecycleLegacy/app/src/main/java/com/commonsware/android/lifecycle/MainActivity.java)

Note:

• There is also a Lifecycle.Event.ON_ANY event that you can request; this
triggers your method to be called for any lifecycle event… though you have
no way of knowing what event it was

• A single method can only have one @OnLifecycleEvent annotation, and that
annotation accepts only a single Lifecycle.Event value (not a list)

As noted, you also need the annotation processor, so those @OnLifecycleEvent
annotations can be interpreted and applied:

dependencies {
implementation 'com.android.support:recyclerview-v7:28.0.0'
implementation 'android.arch.lifecycle:runtime:1.1.1'
annotationProcessor 'android.arch.lifecycle:compiler:1.1.0'

}

(from General/LifecycleLegacy/app/build.gradle)

So, What’s the Point of This?
On the surface, this all seems fairly silly. One could just as easily override the
lifecycle methods on MainActivity and log directly to the RecyclerView, bypassing
all this Lifecycle and LifecycleObserver stuff.

The reason why Lifecycle and LifecycleObserver exist is to provide a
standardized way of having other classes find out about lifecycle changes. Overriding
the lifecycle methods on an activity or fragment tell that activity or fragment about
the changes, but that’s it.

So, for example, LiveData — the subject of the next chapter — is a
LifecycleObserver, so it knows about lifecycle events and can activate/deactivate
accordingly. Other libraries may implement LifecycleObserver so they can be
plugged into your activities and fragments and find out about lifecycle events,
without you having to manually dispatch those events to them.

In ordinary apps, though, most developers will not be creating their own
LifecycleObserver classes, though anyone can, as the sample app demonstrates.

LIFECYCLES AND OWNERS

112

https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/LifecycleLegacy/app/src/main/java/com/commonsware/android/lifecycle/MainActivity.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/LifecycleLegacy/app/build.gradle

The focus for most app developers using the Architecture Components will be on
LiveData and, later, ViewModel.

LIFECYCLES AND OWNERS

113

LiveData

Lifecycle, LifecycleOwner, and related classes mostly exist to provide the
foundation for LiveData. LiveData is the next generation of various Android
asynchronous solutions, such as AsyncTask and the Loader framework. LiveData, in
particular, is modeled somewhat after RxJava, a popular reactive programming
library.

All of this is to set up ways for you to be able to observe changes to data without
having to worry as much about activity and fragment lifecycles… though, as it turns
out, you cannot escape them entirely.

Observables Are the New Black
The observer pattern in software design has been around for decades. Yet, it has
caught fire in the past few years, repackaged as “reactive programming”. Reactive
programming visualizes an app as a set of streams of data changes, whether from the
user (e.g., UI widget interactions), from a server (e.g., updates to data from a sync
operation), or from something else (e.g., GPS fixes). Developers set up observers to
respond (“react”) to these data changes and apply updates to the UI.

The centerpiece for reactive programming in Android is RxJava, typically combined
with RxAndroid. RxJava provides the basic framework for observing streams of data
changes, with RxAndroid primarily providing ways to route results of observations to
the main application thread. This book is not going to go into details of how you use
RxJava/RxAndroid in general — for that, see The Busy Coder’s Guide to Android
Development or other books.

One problem with RxJava, though, is that “it is difficult to get your head wrapped
around it”. Reactive programming works great in platforms that implemented

115

https://commonsware.com/Android
https://commonsware.com/Android

reactive programming from the outset. Reactive programming is more difficult to
bolt onto an existing platform, both from a technical standpoint and from a
documentation standpoint. RxJava is the sort of technology that is easy to illustrate
in “hello, world”-level examples but gets difficult to explain for more practical
scenarios. In part, that is because RxJava is extremely flexible, and with great
flexibility comes great need for great documentation… which RxJava historically
lacked.

LiveData is designed to be a much lighter-weight approach to reactive
programming, designed to do one thing (deliver asynchronous data changes
regardless of lifecycle events) and do it reasonably well.

Yet More Terminology
First, let’s review some new and exciting terms that we need to understand in order
to use LiveData.

LiveDataLiveData

LiveData itself is a source of data, both for a point in time and (via an observer) for
changes to that data over time. Something will create and hand you a LiveData
object, where the work to get that data and update it over time is handled by some
background thread coming from the LiveData supplier.

ObserverObserver

In principle, you can call getValue() on a LiveData to get the current value for
whatever stream of data the LiveData is tracking. In practice, this will not be
especially common.

Instead, you will register an Observer with the LiveData, usually via an observe()
method. Your Observer will be called with onChanged() when:

• You start observing and there is already data in the LiveData, and
• When the LiveData finds out about a change in the data

Your onChanged() method is given the data (a Location, a SensorEvent, a Room
entity, whatever) on the main application thread, with an eye towards you using it to
update the UI by one means or another.

LIVEDATA

116

Active State

If a LiveData was instantiated in a forest, and nobody was there to observe data
changes, does the LiveData really exist?

The answer is: yes, but it hopefully is not consuming any resources.

A LiveData implementation will be called with onActive() when it receives its first
active observer. Here, “active” means that, if the observer is tied to a
LifecycleOwner, the lifecycle is in the started or resumed state. Conversely, the
LiveData will be called with onInactive() once it no longer has any active
observers, either because all observers have been unregistered or none of them are
active, as their lifecycles are all stopped or destroyed.

The idea is that a LiveData would only start consuming significant system resources
— such as requesting GPS fixes — when there are active observers, releasing those
resources when there are no more active observers. This works in many cases,
though there are some that will require more finesse. For example, given that the
GPS radio takes some time before it starts generating GPS fixes, a LiveData for GPS
might want to wait some amount of time after losing its last active observer before
releasing the GPS radio, in case a new observer pops up quickly, to avoid delays in
getting those GPS fixes.

Implementing LiveDataLiveData

With that as background, let’s see LiveData in action. The Sensor/LiveList sample
project implements LiveData for sensor readings coming from a SensorManager. We
can use this to track the accelerometer, ambient light, and so on.

However, the technique shown here can be used for lots of different system-level
data sources, such as:

• Other system services (e.g., LocationManager, ClipboardManager)
• System broadcasts, for cases where you want to dynamically register for the

broadcast via registerReceiver()
• Local broadcasts, using LocalBroadcastManager
• Content changes in providers, via a ContentObserver

LIVEDATA

117

http://github.com/commonsguy/cw-androidarch/tree/master/Sensor/LiveList
http://github.com/commonsguy/cw-androidarch/tree/master/Sensor/LiveList

Dependencies

To use Lifecycle and LifecycleOwner, you needed two dependencies: the lifecycle
runtime library and its compiler annotation processor.

LiveData has its own dependency: android.arch.lifecycle:livedata:

dependencies {
implementation 'com.android.support:recyclerview-v7:28.0.0'
implementation 'com.android.support:support-fragment:28.0.0'
implementation 'android.arch.lifecycle:livedata:1.1.1'

}

(from Sensor/LiveList/app/build.gradle)

Of note:

• You do not need the android.arch.lifecycle:runtime dependency, as the
android.arch.lifecycle:livedata dependency will pull that in for you

• You do not need the lifecycle annotation processor to use LiveData

State Transitions

We have a SensorLiveData class that extends the LiveData base class, offering to
support a custom Event static nested class:

packagepackage com.commonsware.android.livedata;

importimport android.arch.lifecycle.LiveDataandroid.arch.lifecycle.LiveData;
importimport android.content.Contextandroid.content.Context;
importimport android.hardware.Sensorandroid.hardware.Sensor;
importimport android.hardware.SensorEventandroid.hardware.SensorEvent;
importimport android.hardware.SensorEventListenerandroid.hardware.SensorEventListener;
importimport android.hardware.SensorManagerandroid.hardware.SensorManager;
importimport java.util.Datejava.util.Date;

classclass SensorLiveDataSensorLiveData extendsextends LiveData<SensorLiveData.Event> {
finalfinal privateprivate SensorManager sensorManager;
privateprivate finalfinal Sensor sensor;
privateprivate finalfinal int delay;

SensorLiveData(Context ctxt, int sensorType, int delay) {
sensorManager=

(SensorManager)ctxt.getApplicationContext()
.getSystemService(Context.SENSOR_SERVICE);

LIVEDATA

118

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Sensor/LiveList/app/build.gradle

thisthis.sensor=sensorManager.getDefaultSensor(sensorType);
thisthis.delay=delay;

ifif (thisthis.sensor==nullnull) {
throwthrow newnew IllegalStateException("Cannot obtain the requested sensor");

}
}

@Override
protectedprotected void onActive() {

supersuper.onActive();

sensorManager.registerListener(listener, sensor, delay);
}

@Override
protectedprotected void onInactive() {

sensorManager.unregisterListener(listener);

supersuper.onInactive();
}

finalfinal privateprivate SensorEventListener listener=newnew SensorEventListener() {
@Override
publicpublic void onSensorChanged(SensorEvent event) {

setValue(newnew Event(event));
}

@Override
publicpublic void onAccuracyChanged(Sensor sensor, int accuracy) {

// unused
}

};

staticstatic classclass EventEvent {
finalfinal Date date=newnew Date();
finalfinal float[] values;

Event(SensorEvent event) {
values=newnew float[event.values.length];

System.arraycopy(event.values, 0, values, 0, event.values.length);
}

}
}

(from Sensor/LiveList/app/src/main/java/com/commonsware/android/livedata/SensorLiveData.java)

LIVEDATA

119

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Sensor/LiveList/app/src/main/java/com/commonsware/android/livedata/SensorLiveData.java

In the constructor, we hold onto configuration details, such as the particular sensor
to monitor and how frequently we should ask for updates. We also obtain an
instance of the SensorManager system service and try to find the actual requested
Sensor, throwing a runtime exception if there is no matching sensor on this device.

However, we do not register for sensor events in the constructor. Until we have 1+
active observers, we do not need those events, and monitoring sensor events drains
the battery. So, we postpone registering for events until onActive(), unregistering in
the corresponding onInactive() callback.

Updating the Observers

The SensorEventListener that we use, in its onSensorChanged() method, creates a
new instance of our Event, grabbing data from the SensorEvent. We use our own
Event class for two reasons:

1. SensorEvent objects get recycled, and so it is not safe to hold onto one of
those after the end of onSensorChanged(), so we copy the sensor results
float values into our own object

2. While a SensorEvent has a timestamp, it is a pain to use, and this is a casual
book sample, so we just track our own Date for simplicity

That Event is passed to setValue() on the LiveData, which in turn will pass the
result to observers. Note that setValue() needs to be called on the main application
thread — we will see how to handle events originating on background threads later
in this chapter.

Retaining the LiveData

So, we have a LiveData for sensor readings. We can have an activity that displays
those readings, by having it create a SensorLiveData instance and registering to
observe those events. But now we run into a problem… what do we do with the
SensorLiveData object after that?

One possibility is that we just hold onto it in a field, mostly to ensure that nothing
gets garbage-collected that would interrupt the sensor readings. If we undergo a
configuration change, we just create a new SensorLiveData objects and a fresh
observer. While this is not completely ridiculous for this particular scenario, it is bad
for cases where setting up the LiveData is expensive.

The most likely solution would be to hold it in a viewmodel — we will see that in an

LIVEDATA

120

upcoming chapter.

In this sample app, we take a third approach, using
onRetainCustomNonConfigurationInstance() inside the activity that is going to use
the sensor readings. Since the UI is going to be a RecyclerView of readings, we also
need to hold onto past readings, so we do not lose them when we undergo the
configuration change.

So, we have a State static nested class that holds onto the SensorLiveData and
outstanding readings:

privateprivate staticstatic classclass StateState {
finalfinal ArrayList<SensorLiveData.Event> events=newnew ArrayList<>();
SensorLiveData sensorLiveData;

}

(from Sensor/LiveList/app/src/main/java/com/commonsware/android/livedata/MainActivity.java)

In onCreate(), we set up that State if we do not already have one, storing it in a
state field. This includes setting up the SensorLiveData, in this case for the
ambient light sensor:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

RecyclerView rv=findViewById(R.id.transcript);

state=(State)getLastCustomNonConfigurationInstance();

ifif (state==nullnull) {
state=newnew State();
state.sensorLiveData=

newnew SensorLiveData(thisthis, Sensor.TYPE_LIGHT,
SensorManager.SENSOR_DELAY_UI);

}

adapter=newnew EventLogAdapter();
rv.setAdapter(adapter);

state.sensorLiveData.observe(thisthis, event -> adapter.add(event));
}

(from Sensor/LiveList/app/src/main/java/com/commonsware/android/livedata/MainActivity.java)

LIVEDATA

121

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Sensor/LiveList/app/src/main/java/com/commonsware/android/livedata/MainActivity.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/Sensor/LiveList/app/src/main/java/com/commonsware/android/livedata/MainActivity.java

We also register our Observer, which will be called with onChanged() with a new
Event as sensor readings come in. Our EventLogAdapter knows how to add() that to
the list of historical readings and update the RecyclerView.

However, the LiveData will automatically deliver the last-received reading to our
observer when we attach a fresh observer after a configuration change. That could
result in onChanged() being given the same Event object as before, one that we
already put into the ArrayList. So, the EventLogAdapter add() method checks that
first, before actually adding it:

void add(SensorLiveData.Event what) {
ifif (!state.events.contains(what)) {

state.events.add(what);
notifyItemInserted(getItemCount()-1);

}
}

(from Sensor/LiveList/app/src/main/java/com/commonsware/android/livedata/MainActivity.java)

And we override onRetainNonConfigurationInstance() to return the State
instance, so onCreate() can retrieve it after a configuration change:

@Override
publicpublic Object onRetainCustomNonConfigurationInstance() {

returnreturn(state);
}

(from Sensor/LiveList/app/src/main/java/com/commonsware/android/livedata/MainActivity.java)

Other LiveData Examples
Let’s take a look at a few more examples of using LiveData, to explore other facets of
how this can be used.

Event Bus

LocalBroadcastManager implements an in-process event bus, where events are
delivered to you on the main application thread, and where “events” are Intent
objects.

You can accomplish the same thing, with greater flexibility, by means of a LiveData
object, as can be seen in the General/LiveBus sample project.

LIVEDATA

122

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Sensor/LiveList/app/src/main/java/com/commonsware/android/livedata/MainActivity.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/Sensor/LiveList/app/src/main/java/com/commonsware/android/livedata/MainActivity.java
http://github.com/commonsguy/cw-androidarch/tree/master/General/LiveBus
http://github.com/commonsguy/cw-androidarch/tree/master/General/LiveBus

This sample app is derived from one shown in The Busy Coder’s Guide to Android
Development, where we have AlarmManager triggering a service. In principle, that
service should do some work, which we are skipping here because we are lazy.
However, the fake work is something that the user might care about, and so we want
to let the UI layer know about the event if we happen to be in the foreground.
Otherwise, we want to raise a Notification. In The Busy Coder’s Guide to Android
Development, implementations of this sample are available for a few event buses,
including LocalBroadcastManager and greenrobot’s EventBus.

Here, though, we will use a MutableLiveData singleton:

staticstatic finalfinal MutableLiveData<Intent> BUS=newnew MutableLiveData<>();

(from General/LiveBus/app/src/main/java/com/commonsware/android/livedata/bus/ScheduledService.java)

MutableLiveData is a subclass of LiveData, with one key feature: it offers a
postValue() method that works like setValue() but can be called from a
background thread. Here, our events are in the form of Intent objects, the way they
would be for LocalBroadcastManager. However, you could create your own custom
event objects if you prefer, and typically that would be a better idea. In this case, the
sample is demonstrating a quick-and-dirty change from LocalBroadcastManager, so
we are keeping the event objects the same to reduce the number of code changes.

The service, as part of its work, asks the BUS whether there are any active observers,
by means of hasActiveObservers(). If hasActiveObservers() returns true, we use
postValue() to post the event onto our BUS. Otherwise, we raise a Notification, as
our UI is not in the foreground.

Our EventLogFragment registers an observer lambda on the BUS, adding the events
to its ArrayAdapter:

ScheduledService.BUS.observe(thisthis, intent -> adapter.add(intent));

(from General/LiveBus/app/src/main/java/com/commonsware/android/livedata/bus/EventLogFragment.java)

Unlike LocalBroadcastManager, this approach performs no Intent filtering, and we
can have as many MutableLiveData objects as needed. So, you can create custom
buses for different event channels, instead of using action strings as you might with
LocalBroadcastManager.

LIVEDATA

123

https://commonsware.com/Android
https://commonsware.com/Android
https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/LiveBus/app/src/main/java/com/commonsware/android/livedata/bus/ScheduledService.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/LiveBus/app/src/main/java/com/commonsware/android/livedata/bus/EventLogFragment.java

Room

Having DAO methods in Room return a LiveData is simply a matter of setting them
up that way:

@Query("SELECT * FROM Customer WHERE postalCode IN (:postalCodes) LIMIT :max")
LiveData<List<Customer>> findByPostalCodes(int max, String... postalCodes);

(from General/LiveRoom/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java)

Now, findByPostalCodes() will return a LiveData. Moreover, it will do so
immediately when called, with the actual query being performed on a Room-
supplied background thread. You can arrange to register an observer to find out
when the results are ready. And, by using the same LiveData instance after a
configuration change, you can get the last-loaded results without having to perform
another round of disk I/O.

However, Room has an additional feature: if you make changes to the database
through your DAO, Room will deliver fresh results to any registered observer of your
LiveData. So, for example:

• You register an observer on a LiveData, returned by a Room @Query, that
represents a list of your entities

• Shortly thereafter, you get the list of entities as they exist in the database at
present, for you to fill into your RecyclerView (or whatever)

• Later on, as part of processing a request from the user, you invoke an
@Insert method on your DAO to add a new entity to the database

• Your registered observer gets the updated list of entities as they exist in the
database, for you to fill into your RecyclerView (or whatever)

• And so on

In effect, Room attempts to give you ContentObserver capabilities, for your own
database, tied directly into the LiveData system.

Note, though, that these changes are tied in large part to your use of the DAO. For
example, if you want to insert 100 entities, you could:

• Call a single @Insert method that takes a List of those entities, in which
case you will get a single update from the LiveData

• Call a one-entity @Insert method 100 times, in which case you will get 100
updates from the LiveData

LIVEDATA

124

https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/LiveRoom/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java

Doing things in batch form generally will be more efficient, both from a disk I/O
standpoint and a LiveData-updating standpoint. On the other hand, this means that
a LiveData update might represent several changes, and that may require additional
smarts to handle properly in terms of updating the UI (e.g., use DiffUtil to
efficiently update a RecyclerView).

We will see using LiveData with Room in the next chapter.

LIVEDATA

125

ViewModelViewModel

Many Android apps are trivial. The smaller the app, the less likely it is that you need
much in the way of a true GUI architecture. Slapping together whatever you want
wherever you want it most likely will suffice. Your average soundboard, flashlight,
front-facing-camera “mirror”, and similar apps just do what they do, and their
developers do not need to worry about the alphabet soup of MVC, MVP, MVVM,
MVI, and so on.

If you are reading this book, you may have an app in mind that is not so trivial.

The more complex the app, the more likely it is that you are going to want to think
more seriously about the GUI architecture. The Architecture Components
contribution to this is the ViewModel, which we will explore in this chapter.

Second-generation coverage of ViewModel can be found in the
"Integrating ViewModel" chapter of Elements of Android Jetpack!

Viewmodels, As Originally Envisioned
Microsoft devised the model-view-viewmodel (MVVM) GUI architecture in 2005,
and it has remained generally murky ever since. This is not terribly surprising, as
many of the “alphabet soup” GUI architectures have malleable definitions which
developers can twist and tweak to match what it is that they want to write.

Roughly speaking, in this GUI architecture, the “viewmodel” represents a collection
of data and other state, necessary to render a view, derived from the underlying
models. The viewmodel would be responsible for things like data formatting (e.g.,

127

https://commonsware.com/Jetpack

converting the model’s long Unix epoch time into something that the user will be
able to read).

Ideally, the viewmodel knows nothing much about the view, but rather just exposes
data and operations that the view needs.

The Architecture Components ships with a ViewModel class. This class does almost
nothing on its own. Consider ViewModel to be a place to hold the data necessary to
represent your views. For example, a ViewModel might hold a list of objects, obtained
from Room, that are used to populate a RecyclerView.

ViewModelViewModel Versus…
The objective of ViewModel, in particular, is to be able to survive past configuration
changes.

Of course, we have been dealing with configuration changes for years, before the
Architecture Components were a glimmer in any Google engineer’s eye.

So, when would we use a ViewModel, and when would we use other techniques?

…Saved Instance State

Saved instance state — what you put into the Bundle supplied to
onSaveInstanceState() – survives process termination. A ViewModel does not. So
while both can help deal with configuration changes, only saved instance state can
help with the process termination scenario:

• User is in your app, in an activity
• User navigates to something else (e.g., presses HOME, switches to another

task via the overview screen)
• A few minutes later, Android terminates your process to free up system RAM
• A few minutes after that — but within 30 minutes of the user navigating

away – the user returns to your task
• Android recreates the activity atop your task’s back stack as part of forking a

fresh process for you, and Android hands you your saved instance state
Bundle back

However, the saved instance state Bundle has size limits (should be well under 1MB)
and type limits (only objects that can go into a Parcel).

VIEWMODEL

128

As a result:

• Use the ViewModel for holding onto data in your process necessary to be able
to rapidly repopulate the UI after a configuration change

• Use the saved instance state Bundle to hold identifiers and other data that
will help you rebuild the UI after process termination, even if you wind up
having to re-read from disk or the network as part of that work

…Retained Objects

In the end, the ViewModelProviders system supplied by the Architecture
Components is a wrapper around retained fragments. As a result, there is nothing
that you can do with a ViewModel that you could not do using retained objects,
whether those are retained fragments or using
onRetainCustomNonConfigurationInstance().

Dependencies
In theory, you get ViewModel from the android.arch.lifecycle:viewmodel artifact.

In practice, you will want the android.arch.lifecycle:extensions artifact instead.
This not only pulls in android.arch.lifecycle:viewmodel for you, but it provides
the classes necessary to obtain a ViewModel associated with your activities and
fragments.

Mommy, Where Does a ViewModelViewModel Come From?
You might think that you create a ViewModel via whatever constructor you set up for
it.

Instead, the Architecture Components expect you to get a ViewModel instance by
using ViewModelProvider. A ViewModelProvider instance is tied to either:

• A FragmentActivity (or a subclass, like AppCompatActivity), or
• A Fragment, from the fragments backport

If you do not have one of those, you cannot use ViewModelProvider.

If you do have one of those, call the static of() method on the
ViewModelProviders class (note the plural) to get a ViewModelProvider (note the

VIEWMODEL

129

singular) tied to your FragmentActivity or Fragment. This ViewModelProvider is
tied to the logical instance of this activity or fragment, regardless of configuration
changes. So, if the activity is destroyed and recreated as part of a configuration
change, you will get the same ViewModelProvider instance in the new activity as you
had in the old one.

Then, to get a ViewModel, call get() on the ViewModelProvider, passing in the Java
class object for your subclass of ViewModel (e.g., MyViewModel.class). If there
already is an instance of this ViewModel tied to this ViewModelProvider, you get that
instance. Otherwise, a fresh instance will be created for you, from the zero-
argument constructor. If using the zero-argument constructor is not what you want,
you can:

• Create an implementation of the ViewModelProvider.Factory interface,
implementing the create() method to create an instance of your ViewModel
by whatever constructor you want

• Associate an instance of your ViewModelProvider.Factory with the
ViewModelProvider by supplying it as a second parameter to the of()
method on ViewModelProviders

So, in the typical case, you wind up with code like this:

TripRosterViewModel vm=
ViewModelProviders.of(thisthis).get(TripRosterViewModel.class);

(from Trips/ViewModels/app/src/main/java/com/commonsware/android/room/TripsFragment.java)

Here, this inherits from the Fragment backport, and we are retrieving a
TripRosterViewModel to use in that fragment.

We will see this code snippet again in the next section.

ViewModelViewModel In Action
So, let’s take a look at the Trips/ViewModels sample project. This adds a ViewModel
to our app showing a roster of upcoming trips. More specifically, we will use
ViewModelProvider, the way Google envisioned it.

Earlier editions of this sample used Android’s native Activity and Fragment classes.
Those do not work with ViewModelProviders. So, in this sample, MainActivity has
been revised to extend from FragmentActivity and RecyclerViewFragment has been

VIEWMODEL

130

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/ViewModels/app/src/main/java/com/commonsware/android/room/TripsFragment.java
http://github.com/commonsguy/cw-androidarch/tree/master/Trips/ViewModels
http://github.com/commonsguy/cw-androidarch/tree/master/Trips/ViewModels

revised to extend from the Support Library edition of Fragment.

Defining a ViewModel

The idea is that a ViewModel should hold the data necessary to render the UI. In our
case, that is simply a roster of Trip objects, pulled in from Room.

For ViewModelProvider to work, the class must be public, even though your IDE
might suggest otherwise. So, our TripRosterViewModel is public:

packagepackage com.commonsware.android.room;

importimport android.app.Applicationandroid.app.Application;
importimport android.arch.lifecycle.AndroidViewModelandroid.arch.lifecycle.AndroidViewModel;
importimport android.arch.lifecycle.LiveDataandroid.arch.lifecycle.LiveData;
importimport java.util.Listjava.util.List;

publicpublic classclass TripRosterViewModelTripRosterViewModel extendsextends AndroidViewModel {
finalfinal LiveData<List<Trip>> allTrips;

publicpublic TripRosterViewModel(Application app) {
supersuper(app);

allTrips=TripDatabase.get(app).tripStore().selectAllTrips();
}

}

(from Trips/ViewModels/app/src/main/java/com/commonsware/android/room/TripRosterViewModel.java)

Note that TripRosterViewModel extends from AndroidViewModel. AndroidViewModel
itself extends ViewModel. The only difference between the two is the constructor:
ViewModel has a zero-argument constructor, while AndroidViewModel has a one-
argument constructor, supplying the Application instance. In our case, we need the
Application instance to get() our TripDatabase (as Room needs a Context for
this).

TripRosterViewModel, in its constructor, sets up an allTrips field that is a LiveData
of our roster of Trip objects. Since this is LiveData, the actual work will not be done
until we ask it to, by registering an observer to use the results.

Getting a ViewModel

Our TripsFragment needs access to the TripRosterViewModel, in order to be able to
get to the allTrips data and request the roster of Trip objects.

VIEWMODEL

131

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/ViewModels/app/src/main/java/com/commonsware/android/room/TripRosterViewModel.java

However, now we have a decision to make: is the TripRosterViewModel tied to the
fragment or to the activity?

Since a fragment can get to its hosting activity via getActivity(), a fragment can
choose either scope:

• Pass this into of() to get the ViewModelProvider tied to the fragment, or
• Pass getActivity() into of() to get the ViewModelProvider tied to the

activity

Either is perfectly legitimate. Frequently, it will boil down to who needs the data.
Data that is only needed by a single fragment should be owned by a ViewModel tied
to that fragment. Data needed by multiple fragments, or by a fragment and the
activity, or just by the activity, should be owned by a ViewModel tied to the activity. A
fragment can also elect to do both, using two ViewModel instances, one for its own
data and one that it gets via the activity.

In this case, the only UI is the TripsFragment, so we can say that the
TripRosterViewModel is owned by the fragment and retrieve it as part of our
onViewCreated() work:

TripRosterViewModel vm=
ViewModelProviders.of(thisthis).get(TripRosterViewModel.class);

(from Trips/ViewModels/app/src/main/java/com/commonsware/android/room/TripsFragment.java)

The first time we run through these lines, we will get a fresh TripRosterViewModel
instance. If we undergo a configuration change, when this fragment is recreated, the
new fragment instance will get the same TripRosterViewModel as before.

Using the ViewModel

Given our TripRosterViewModel, our TripsFragment can now get at the roster of
Trip objects, by registering an Observer (via a lambda expression):

vm.allTrips.observe(thisthis, trips -> {
setAdapter(newnew TripsAdapter(trips, getActivity().getLayoutInflater()));

ifif (trips==nullnull || trips.size()==0) {
finalfinal TripStore store=TripDatabase.get(getActivity()).tripStore();

newnew Thread() {
@Override
publicpublic void run() {

store.insert(newnew Trip("Vacation!", 10080, Priority.MEDIUM, newnew Date()),

VIEWMODEL

132

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/ViewModels/app/src/main/java/com/commonsware/android/room/TripsFragment.java

newnew Trip("Business Trip", 4320, Priority.OMG, newnew Date()));
}

}.start();
}

});

(from Trips/ViewModels/app/src/main/java/com/commonsware/android/room/TripsFragment.java)

A typical app would just have the setAdapter() call, to pass the Trip roster over to
the TripsAdapter, to show the roster in the RecyclerView. In this case, we want to
lazy-create some trips, as otherwise we will have no data. So, if we have no trips, we
insert some in a background thread.

However, there are two issues with that approach. One is the possible race
condition, where the user rotates the screen while the background thread is going
on, and so we fork a second thread. Since this code is not the sort of thing you would
do in a production app, what we have here will suffice for now.

But, if you run the app, you will see that our data shows up in the RecyclerView,
even after a fresh run of the app, when we did not have any data. Yet, our Thread is
not doing anything to refresh the UI. So, the second issue is: how is this working?

The answer is that Room is monitoring our DAO for changes and is automatically
updating the LiveData to reflect those changes, as was mentioned in the chapter on
LiveData.

Getting Rid of the ViewModel

Ideally, you should not have to do anything to explicitly “get rid of” a ViewModel. If
you are using LiveData, it is lifecycle-aware, and so it should clean up itself when
the activity or fragment is destroyed. If you have anything else in the ViewModel that
needs cleanup when the activity or fragment is destroyed, either:

• Use lifecycle-aware objects for that (e.g., LiveData), or
• Override onCleared() and clean up the objects at that point

When the ViewModel will no longer be used, the ViewModel will be called with
onCleared(). This is an opportunity for you to release anything that needs to be
released and will not just go away as part of normal garbage collection or lifecycle
cleanup. So, for example, if you are holding an RxJava Disposable in a ViewModel,
onCleared() is a good place to dispose() of it.

VIEWMODEL

133

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/ViewModels/app/src/main/java/com/commonsware/android/room/TripsFragment.java

Other Lifecycle Owners

Activities and fragments are not the only things with lifecycles. The Architecture
Components also support other forms of lifecycle owner:

• Services, and
• What the documentation will refer to as “the process”

LifecycleService
If you have a class that extends Service, you can replace it with LifecycleService
and get a service that is a LifecycleOwner. Four of the six lifecycle events are
honored:

This Lifecycle Event… Is Triggered When…

ON_CREATE the service is created

ON_START when the service is first started or bound to

ON_RESUME unused

ON_PAUSE unused

ON_STOP when the service is destroyed

ON_DESTROY also when the service is destroyed

Of note, LifecycleService does not attempt to model binding/unbinding as a
lifecycle (e.g., calling ON_STOP when the service is unbound and has no more active

135

bindings).

However, most services do not directly inherit from Service. Instead, they extend
IntentService or JobService or any one of dozens of other specialized service
implementations. Few, if any, of those will extend LifecycleService, as most of
them come from the core framework, which cannot depend on libraries like the
Architecture Components.

ProcessLifecycleOwner
With a name like ProcessLifecycleOwner, you might think that this modeled the
lifecycle of a process. Then, you quickly realize that this makes little sense, as the
only “lifecycle” that a process goes through is creation and termination, and we
cannot get control in the latter event.

Instead, ProcessLifecycleOwner might better be named
ForegroundLifecycleOwner. ProcessLifecycleOwner models the lifecycle of all
activities combined:

• ON_CREATE is triggered when the process starts up
• ON_START and ON_RESUME are triggered when an activity goes through those

lifecycle events, and no other activity had been started recently
• ON_PAUSE and ON_STOP are triggered, after a delay, when an activity goes

through those lifecycle events, if another activity is not started and resumed
by this time

• ON_DESTROY is never triggered

The delay period is 700ms (as of 1.1.1), so as long as another activity is started and
resumed after a prior activity was paused and stopped within 700ms, the process has
not undergone a lifecycle change, even though those individual activities did.

So, imagine a single-activity app:

• ON_CREATE happens right away
• ON_START and ON_RESUME happen shortly thereafter, assuming that the

process is starting because an activity is being displayed
• The user rotates the screen, causing the activity to be destroyed and

recreated
• ON_PAUSE and ON_STOP do not occur, because a new activity was started and

resumed before the ProcessLifecycleOwner delay period elapsed

OTHER LIFECYCLE OWNERS

136

• ON_START and ON_RESUME do not occur, because we did not move through the
paused and stopped lifecycle states, even though the new activity instance
did

• The user presses HOME, BACK, or otherwise leaves this activity for another
task

• ON_PAUSE and ON_STOP happen after the delay period, since no activity from
this process went through ON_START and ON_RESUME during that time

Note that this comes at a cost: the extensions artifact automatically adds a
<provider> element to your manifest, one that initializes the
ProcessLifecycleOwner… even if your app does not use ProcessLifecycleOwner.
This is simply so ProcessLifecycleOwner code can be invoked as soon as your
process is started.

The General/ProcessLifecycle sample project has a LifecycleApplication that
registers itself as an observer of the singleton instance of ProcessLifecycleOwner
and dumps all the events to Logcat:

packagepackage com.commonsware.android.recyclerview.videolist;

importimport android.app.Applicationandroid.app.Application;
importimport android.arch.lifecycle.DefaultLifecycleObserverandroid.arch.lifecycle.DefaultLifecycleObserver;
importimport android.arch.lifecycle.Lifecycleandroid.arch.lifecycle.Lifecycle;
importimport android.arch.lifecycle.LifecycleOwnerandroid.arch.lifecycle.LifecycleOwner;
importimport android.arch.lifecycle.OnLifecycleEventandroid.arch.lifecycle.OnLifecycleEvent;
importimport android.arch.lifecycle.ProcessLifecycleOwnerandroid.arch.lifecycle.ProcessLifecycleOwner;
importimport android.support.annotation.NonNullandroid.support.annotation.NonNull;
importimport android.util.Logandroid.util.Log;

publicpublic classclass LifecycleApplicationLifecycleApplication extendsextends Application
implementsimplements DefaultLifecycleObserver {
@Override
publicpublic void onCreate() {

supersuper.onCreate();

ProcessLifecycleOwner.get().getLifecycle().addObserver(thisthis);
}

@Override
publicpublic void onCreate(@NonNull LifecycleOwner owner) {

Log.d(getClass().getSimpleName(), "ON_CREATE");
}

@Override
publicpublic void onStart(@NonNull LifecycleOwner owner) {

OTHER LIFECYCLE OWNERS

137

http://github.com/commonsguy/cw-androidarch/tree/master/General/ProcessLifecycle
http://github.com/commonsguy/cw-androidarch/tree/master/General/ProcessLifecycle

Log.d(getClass().getSimpleName(), "ON_START");
}

@Override
publicpublic void onResume(@NonNull LifecycleOwner owner) {

Log.d(getClass().getSimpleName(), "ON_RESUME");
}

@Override
publicpublic void onPause(@NonNull LifecycleOwner owner) {

Log.d(getClass().getSimpleName(), "ON_PAUSE");
}

@Override
publicpublic void onStop(@NonNull LifecycleOwner owner) {

Log.d(getClass().getSimpleName(), "ON_STOP");
}

@Override
publicpublic void onDestroy(@NonNull LifecycleOwner owner) {

Log.d(getClass().getSimpleName(), "ON_DESTROY");
}

}

(from General/ProcessLifecycle/app/src/main/java/com/commonsware/android/recyclerview/videolist/LifecycleApplication.java)

That LifecycleApplication is then registered in the manifest via android:name on
<application>:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest package="com.commonsware.android.recyclerview.videolist"

xmlns:android="http://schemas.android.com/apk/res/android"
android:versionCode="1"
android:versionName="1.0">>

<supports-screens<supports-screens
android:anyDensity="true"
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false" />/>

<uses-permission<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />/>

<application<application
android:allowBackup="false"
android:name=".LifecycleApplication"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/Theme.Apptheme">>
<activity<activity android:name=".MainActivity">>

<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN" />/>

OTHER LIFECYCLE OWNERS

138

https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/ProcessLifecycle/app/src/main/java/com/commonsware/android/recyclerview/videolist/LifecycleApplication.java

<category<category android:name="android.intent.category.LAUNCHER" />/>
</intent-filter></intent-filter>

</activity></activity>
<activity<activity

android:name=".VideoPlayerActivity"
android:configChanges="screenSize|smallestScreenSize|screenLayout|orientation"
android:launchMode="singleTask"
android:supportsPictureInPicture="true"
android:theme="@style/Theme.Apptheme.NoActionBar" />/>

<receiver<receiver android:name=".RemoteActionReceiver" />/>

</application></application>

</manifest></manifest>

(from General/ProcessLifecycle/app/src/main/AndroidManifest.xml)

The app itself is a clone of one from The Busy Coder’s Guide to Android Development.
It consists of two activities. One shows a list of all videos indexed by the MediaStore.
The other plays back a selected video using a VideoView. And, on Android 8.0+
devices, the video player activity will have a FAB that switches that activity into
picture-in-picture mode.

(NOTE: to run this sample, your test device will need 1+ videos)

If you run it, you will see the ON_CREATE, ON_START, and ON_RESUME events logged in
rapid succession. And, if you do not press that enticing FAB, and just use the video
player in normal mode, ON_PAUSE and ON_STOP get invoked at normal times, such as
when the user navigates to some other task (e.g., presses HOME).

The FAB, though, changes things, as it moves the video player to a floating picture-
in-picture (PiP) window.

If you tap the FAB, and do not touch anything else for a bit, you will see ON_PAUSE,
then ON_RESUME, get logged. This is because:

• The PiP window never has the foreground from an input standpoint, and so
its activity is paused, but not stopped (as it is still visible)

• The underlying activity is started and resumed, though with a few seconds’
delay, for inexplicable reasons

Similarly, if you tap the PiP window, to bring up the controls, you will see ON_PAUSE
logged, as the list-of-videos activity is paused (it no longer has the foreground input)
but the PiP window is not resumed (the input is handled by the system UI, not the
activity). After a few moments of inactivity, that PiP window will return to its regular

OTHER LIFECYCLE OWNERS

139

https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/ProcessLifecycle/app/src/main/AndroidManifest.xml
https://commonsware.com/Android

state, and ON_RESUME will be logged.

Playing around with the PiP further (e.g., closing it via the X in the corner) allows
you to see how PiP mode ties into activity lifecycles.

Wait… Where Are LifecycleProvider and
LifecycleReceiver?
A ContentProvider has no real “lifecycle”. It is called with onCreate() when the
process starts up… and that’s about it. Similarly, a BroadcastReceiver is called with
onReceive()… and that’s about it.

As a result, the Architecture Components do not have lifecycle-aware editions of
those components.

OTHER LIFECYCLE OWNERS

140

LiveData and Data Binding

Android’s data binding framework offers a way for you to push data into your
widgets with less code, by “binding” sources of data to those widgets via special XML
attributes in layout resources. The data binding framework was created before the
Architecture Components existed, and so originally the data binding framework had
no support for LiveData. Now, though, it does, and so you can have your UI update
itself automatically from LiveData sources, if you choose.

In this chapter, we will explore how to set this up.

A Data Binding Recap
Extensive coverage of data binding can be found in The Busy Coder’s Guide to
Android Development. However, here is a brief reminder of what data binding is and
how it works.

Note that data binding is not automatically used in an Android project. You need to
enable it via dataBinding { enabled true } in the android closure of your
module’s build.gradle file.

New Layout Resource Structure

Classic Android layout resources are purely a view hierarchy. Typically, the root XML
element then is the outermost container class (e.g., a ConstraintLayout).

A layout resource that will participate in data binding will instead have a root
<layout> element. That will have two child elements:

• A <data> element with metadata for the data binding

141

https://commonsware.com/Android
https://commonsware.com/Android

• The outermost container class — what would have been the root element
before

Those need to appear in that order, with <data> as the first child.

A <data> element can have a variety of child elements to configure the data binding,
but the most important ones are <variable> elements. These declare what objects
are being bound to this layout, and they provide both the name and the Java/Kotlin
type of the object:

<layout><layout>

<data><data>

<variable<variable
name="viewModel"
type="com.commonsware.android.livedata.SensorViewModel" />/>

</data></data>

<!-- view hierarchy goes here -->
</layout></layout>

Binding Expressions

The XML attributes of the views can then reference those variables in binding
expressions. Rather than having a simple value (e.g., android:text="Hello,
world!"), a binding expression contains references to variables (plus public fields
and methods on those variables) and other view attributes, with a simple expression
syntax. The data binding framework identifies these expressions via @{} syntax
(android:text="@{viewModel.sensorReading}").

Adapters

Sometimes, the data types available to binding expressions do not quite match the
data type needed by the XML attribute. For example, android:text maps to
setText() on TextView, and that needs either an int resource ID or a CharSequence
(e.g., String) value. If you have something else — such as a SensorLiveData.Event
object — you will need to provide a “binding adapter” to help bridge the gap.

These adapters come in the form of static methods annotated with
@BindingAdapter:

LIVEDATA AND DATA BINDING

142

@BindingAdapter("android:text")
publicpublic staticstatic void setLightReading(TextView tv, SensorLiveData.Event event) {

ifif (event==nullnull) {
tv.setText(nullnull);

}
elseelse {

tv.setText(String.format("%f", event.values[0]));
}

}

The annotation argument is the name of the XML attribute to which this adapter
applies. So, in this case, if we try binding a SensorLiveEvent.Data object into a
TextView via its android:text attribute, this method will be called. It is up to us
then to do something useful to fulfill that binding — in this case, we call setText()
on the TextView with a suitable value, based on the event.

Binding from Code

Somewhere, though, we need to supply the values for those variables. That comes
from using a different way to set up this layout. Rather than using setContentView()
or a LayoutInflater directly, we use a code-generated class, created by the tools
associated with the data binding framework. This class not only takes care of
inflating the layout for us, but it gives us setter methods to supply the variables.

The name of this code-generated class is based on the name of the layout resource:

• The filename, without the extension, is coverted into CamelCase
• Binding is appended

So, main.xml turns into MainBinding, activity_main.xml turns into
ActivityMainBinding, and so on.

The binding class has a static method named inflate() that takes a
LayoutInflater and returns an instance of the binding class (like a factory method
would), inflating the underlying layout along the way:

MainBinding binding=MainBinding.inflate(getLayoutInflater());

It has a getRoot() method that returns the root View of your view hierarchy, for use
with setContentView(), onCreateViewHolder(), etc. And it has methods for each
one of your variables, where the method name is derived from the variable name:

LIVEDATA AND DATA BINDING

143

• The variable name is converted to CamelCase
• set is appended to the front

So, a viewModel variable results in a setViewModel() method. Calling this on the
binding triggers the evaluation of the binding expressions and populates the
attributes of the affected widgets.

Observable Data Sources

If the variables implement the Observable interface, then once you have attached
the variables’ objects to the binding, changes to the variables’ values automatically
re-evaluate the binding expressions. You do not need to do anything else.

For simple primitives, there are a series of Observable implementations, such as
ObservableBoolean and ObservableInt. For String and arbitrary other objects,
there is a generic ObservableField that you can use.

We will see an example of this shortly, as this is where LiveData starts becoming
important.

LiveData Updating Data Binding
Simply put: we want to be able to have LiveData update our data binding
expressions. So, if we get new data from Room, or new data from a Sensor, or
anything else that gives us a LiveData, we would like to have those changes be
reflected in the UI, with as little effort as possible.

There are a few ways of going about this, outlined in the following sections. Each
profiles a variation on the same sample app, which itself is a variation on the
Sensor/LiveList sample from a previous chapter. In this case, the UI is a TextView
showing the latest ambient light sensor reading. And, since we have covered
ViewModel, we will use that for holding onto our SensorLiveData that is the source
of those sensor readings. What varies between the three samples shown in this
chapter is how those readings wind up affecting our UI via data binding.

Each of the three variations has the same “cast of characters”:

• We have an activity named MainActivity
• It has a main.xml layout in which we use data binding
• It has the SensorLiveData from the Sensor/LiveList sample, except that we

LIVEDATA AND DATA BINDING

144

no longer track the date of events, since we are not displaying that in the UI
• It has a SensorViewModel that holds that SensorLiveData

Updating Observables

The Sensor/SimpleBinding sample project uses an ObservableField to get the
sensor readings into the layout. And, we have our own code to pipe events from the
SensorLiveData into that ObservableField.

The SensorViewModel holds onto both the ObservableField and the
SensorLiveData:

packagepackage com.commonsware.android.livedata;

importimport android.app.Applicationandroid.app.Application;
importimport android.arch.lifecycle.AndroidViewModelandroid.arch.lifecycle.AndroidViewModel;
importimport android.databinding.ObservableFieldandroid.databinding.ObservableField;
importimport android.hardware.Sensorandroid.hardware.Sensor;
importimport android.hardware.SensorManagerandroid.hardware.SensorManager;
importimport android.support.annotation.NonNullandroid.support.annotation.NonNull;

publicpublic classclass SensorViewModelSensorViewModel extendsextends AndroidViewModel {
publicpublic finalfinal SensorLiveData sensorLiveData;
publicpublic finalfinal ObservableField<String> sensorReading=newnew ObservableField<>();

publicpublic SensorViewModel(@NonNull Application app) {
supersuper(app);

sensorLiveData=newnew SensorLiveData(app, Sensor.TYPE_LIGHT,
SensorManager.SENSOR_DELAY_UI);

}
}

(from Sensor/SimpleBinding/app/src/main/java/com/commonsware/android/livedata/SensorViewModel.java)

We initialize the SensorLiveData in the constructor, using the Application supplied
as an outcome of extending AndroidViewModel.

The main layout contains two TextView widgets: a label and our reading, wrapped in
a ConstraintLayout:

<?xml version="1.0" encoding="utf-8"?>
<layout><layout>

<data><data>

LIVEDATA AND DATA BINDING

145

http://github.com/commonsguy/cw-androidarch/tree/master/Sensor/SimpleBinding
http://github.com/commonsguy/cw-androidarch/tree/master/Sensor/SimpleBinding
https://github.com/commonsguy/cw-androidarch/blob/v1.0/Sensor/SimpleBinding/app/src/main/java/com/commonsware/android/livedata/SensorViewModel.java

<variable<variable
name="viewModel"
type="com.commonsware.android.livedata.SensorViewModel" />/>

</data></data>

<android.support.constraint.ConstraintLayout<android.support.constraint.ConstraintLayout
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<TextView<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginBottom="8dp"
android:layout_marginEnd="8dp"
android:layout_marginStart="8dp"
android:layout_marginTop="8dp"
android:text="@string/label_light"
android:textAppearance="@android:style/TextAppearance.Material.Large"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent"
app:layout_constraintVertical_bias="0.25" />/>

<TextView<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginBottom="8dp"
android:layout_marginEnd="8dp"
android:layout_marginStart="8dp"
android:layout_marginTop="8dp"
android:text="@{viewModel.sensorReading}"
android:textAppearance="@android:style/TextAppearance.Material.Large"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent"
app:layout_constraintVertical_bias="0.75" />/>

</android.support.constraint.ConstraintLayout></android.support.constraint.ConstraintLayout>
</layout></layout>

(from Sensor/SimpleBinding/app/src/main/res/layout/main.xml)

We have one data binding variable, named viewModel, which is our
SensorViewModel instance. And, we have one binding expression, populating

LIVEDATA AND DATA BINDING

146

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Sensor/SimpleBinding/app/src/main/res/layout/main.xml

android:text of the second TextView with the sensorReading ObservableField.

MainActivity then glues the other two together:

packagepackage com.commonsware.android.livedata;

importimport android.arch.lifecycle.ViewModelProvidersandroid.arch.lifecycle.ViewModelProviders;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.app.FragmentActivityandroid.support.v4.app.FragmentActivity;
importimport com.commonsware.android.livedata.databinding.MainBindingcom.commonsware.android.livedata.databinding.MainBinding;

publicpublic classclass MainActivityMainActivity extendsextends FragmentActivity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

MainBinding binding=MainBinding.inflate(getLayoutInflater());
SensorViewModel vm=ViewModelProviders.of(thisthis).get(SensorViewModel.class);

binding.setViewModel(vm);
setContentView(binding.getRoot());

vm.sensorLiveData.observe(thisthis, event ->
vm.sensorReading.set(String.format("%f", event.values[0])));

}
}

(from Sensor/SimpleBinding/app/src/main/java/com/commonsware/android/livedata/MainActivity.java)

Here, we:

• inflate() the MainBinding
• Obtain our SensorViewModel from the ViewModelProviders
• Attach the SensorViewModel to the MainBinding by calling the generated
setViewModel() method

• Supply the root view of the main layout to setContentView()
• Observe the changes to the SensorLiveData, format each sensor reading into

a String representation, and set() that value on the ObservableField

The result is that as the SensorLiveData reports new readings, they get piped into
the ObservableField, which triggers an update to the TextView.

Binding to LiveData

However, if the point of Observable is to provide updates to data to the data binding

LIVEDATA AND DATA BINDING

147

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Sensor/SimpleBinding/app/src/main/java/com/commonsware/android/livedata/MainActivity.java

framework, and if the point of LiveData is to provide updates to data to observers…
shouldn’t there be a way to make a LiveData be Observable?

In short: no.

However, that is not needed, because as of 2018, the data binding framework can
work with LiveData directly. If your binding expressions reference LiveData objects,
the data binding framework knows to observe those objects and use any updates to
re-evaluate the binding expressions.

The only requirement is that we now have to provide a LifecycleOwner to our
binding. There is a setLifecycleOwner() for this. That LifecycleOwner is used for
observing the LiveData, and it should be a LifecycleOwner of relevance to the views
being managed by the data binding framework. So, for an activity’s layout, you
would use the activity as the LifecycleOwner.

The Sensor/LiveBinding sample project uses this approach.

SensorViewModel no longer has the ObservableField:

packagepackage com.commonsware.android.livedata;

importimport android.app.Applicationandroid.app.Application;
importimport android.arch.lifecycle.AndroidViewModelandroid.arch.lifecycle.AndroidViewModel;
importimport android.hardware.Sensorandroid.hardware.Sensor;
importimport android.hardware.SensorManagerandroid.hardware.SensorManager;
importimport android.support.annotation.NonNullandroid.support.annotation.NonNull;

publicpublic classclass SensorViewModelSensorViewModel extendsextends AndroidViewModel {
publicpublic finalfinal SensorLiveData sensorLiveData;

publicpublic SensorViewModel(
@NonNull Application app) {
supersuper(app);

sensorLiveData=newnew SensorLiveData(app, Sensor.TYPE_LIGHT,
SensorManager.SENSOR_DELAY_UI);

}
}

(from Sensor/LiveBinding/app/src/main/java/com/commonsware/android/livedata/SensorViewModel.java)

The binding expression now refers to sensorLiveData directly:

<TextView<TextView

LIVEDATA AND DATA BINDING

148

http://github.com/commonsguy/cw-androidarch/tree/master/Sensor/LiveBinding
http://github.com/commonsguy/cw-androidarch/tree/master/Sensor/LiveBinding
https://github.com/commonsguy/cw-androidarch/blob/v1.0/Sensor/LiveBinding/app/src/main/java/com/commonsware/android/livedata/SensorViewModel.java

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginBottom="8dp"
android:layout_marginEnd="8dp"
android:layout_marginStart="8dp"
android:layout_marginTop="8dp"
android:text="@{viewModel.sensorLiveData}"
android:textAppearance="@android:style/TextAppearance.Material.Large"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent"
app:layout_constraintVertical_bias="0.75" />/>

(from Sensor/LiveBinding/app/src/main/res/layout/main.xml)

onCreate() of MainActivity no longer needs to observe() the SensorLiveData
itself, as the data binding framework will handle that. It does, however, need to call
setLifecycleOwner():

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

MainBinding binding=MainBinding.inflate(getLayoutInflater());
SensorViewModel vm=ViewModelProviders.of(thisthis).get(SensorViewModel.class);

binding.setViewModel(vm);
binding.setLifecycleOwner(thisthis);
setContentView(binding.getRoot());

}

(from Sensor/LiveBinding/app/src/main/java/com/commonsware/android/livedata/MainActivity.java)

In some cases, that is all that you will need. In this case, though, there are a couple
of additional changes from the previous sample that are needed to make it work.

Our binding expression is attempting to populate the text of a TextView with the
objects emitted by a SensorLiveData. Those are SensorLiveData.Event objects. The
data binding framework needs the SensorLiveData and the SensorLiveData.Event
classes to be public, as otherwise the generated MainBinding code cannot compile,
since that code resides in a different package than does SensorLiveData itself.

Also, the data binding framework has no idea how to take a SensorLiveData.Event
and use it to populate the text of a TextView. That requires a BindingAdapter:

LIVEDATA AND DATA BINDING

149

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Sensor/LiveBinding/app/src/main/res/layout/main.xml
https://github.com/commonsguy/cw-androidarch/blob/v1.0/Sensor/LiveBinding/app/src/main/java/com/commonsware/android/livedata/MainActivity.java

@BindingAdapter("android:text")
publicpublic staticstatic void setLightReading(TextView tv, SensorLiveData.Event event) {

ifif (event==nullnull) {
tv.setText(nullnull);

}
elseelse {

tv.setText(String.format("%f", event.values[0]));
}

}

(from Sensor/LiveBinding/app/src/main/java/com/commonsware/android/livedata/MainActivity.java)

Simply having this annotated static method in the project is sufficient; the data
binding framework can find it on its own and know to apply it as needed.

That required BindingAdapter means that this project is a bit more complex than
the previous one. However, it is cleaner, in that we are no longer needing to manage
observing the LiveData ourselves. There are fewer places where we can screw up,
particularly since a BindingAdapter is a static method and therefore should not be
touching any state beyond whatever parameters are passed in.

Handling Changes to LiveData
The approach in the preceding section works great, so long as your LiveData itself is
unchanging. It might be emitting new results to the data binding observer, but the
LiveData object is the same for the entire use of that layout and activity.

But what happens when you need to use a different LiveData object?

For example, perhaps you are showing search results for data stored in Room. So,
you query your DAO and get a LiveData with those search results and show them
via data binding. But the search results UI has its own search field, for making a new
search. When the user searches, you want to re-query the DAO and show the new
results in the same fragment or activity. But now you have a new LiveData, and you
need to get that applied to the data binding.

One simple answer would be to put the LiveData directly in a data binding
<variable>. This works, so long as you have a custom LiveData subclass, as data
binding <variable> declarations do not support generics. However, you need to be
in position to call your variable setter on the binding object each time you get a new
LiveData. That may or may not be practical, depending on your architecture and
where the LiveData is coming from.

LIVEDATA AND DATA BINDING

150

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Sensor/LiveBinding/app/src/main/java/com/commonsware/android/livedata/MainActivity.java

What would be nice is if we could have data binding use a single LiveData object, as
in our earlier examples, but have that LiveData object emit objects that come from
other LiveData sources. This is a common technique in RxJava when you have the
same sort of situation: some subscribers to an Observable happen to need a stable
Observable for simpler subscription management, but you get new Observable
objects from some API (e.g., new Retrofit calls). So, you use a Subject, such as a
BehaviorSubject as the stable Observable, and you have the on-the-fly Observables
feed their output into the Subject as input.

The equivalent approach with LiveData is MediatorLiveData. MediatorLiveData is
designed to take output from another LiveData as input, emitting those same
objects. Those LiveData inputs can come and go, and observers can just observe the
MediatorLiveData.

The Sensor/LiveMediator sample project uses this approach.

The activity, layout, and SensorLiveData are the same as in the previous example.
What differs is the SensorViewModel, and what sort of object is used for the
sensorLiveData field. Previously, that was the SensorLiveData itself. Now, it is a
MediatorLiveData:

packagepackage com.commonsware.android.livedata;

importimport android.app.Applicationandroid.app.Application;
importimport android.arch.lifecycle.AndroidViewModelandroid.arch.lifecycle.AndroidViewModel;
importimport android.arch.lifecycle.MediatorLiveDataandroid.arch.lifecycle.MediatorLiveData;
importimport android.hardware.Sensorandroid.hardware.Sensor;
importimport android.hardware.SensorManagerandroid.hardware.SensorManager;
importimport android.support.annotation.NonNullandroid.support.annotation.NonNull;

publicpublic classclass SensorViewModelSensorViewModel extendsextends AndroidViewModel {
publicpublic finalfinal MediatorLiveData<SensorLiveData.Event> sensorLiveData=

newnew MediatorLiveData<>();

publicpublic SensorViewModel(
@NonNull Application app) {
supersuper(app);

SensorLiveData opLiveData=
newnew SensorLiveData(app, Sensor.TYPE_LIGHT, SensorManager.SENSOR_DELAY_UI);

sensorLiveData.addSource(opLiveData, sensorLiveData::setValue);
}

}

(from Sensor/LiveMediator/app/src/main/java/com/commonsware/android/livedata/SensorViewModel.java)

When we create the SensorViewModel, we still create an instance of SensorLiveData.
But then we add it as a source to the MediatorLiveData via addSource().

LIVEDATA AND DATA BINDING

151

http://github.com/commonsguy/cw-androidarch/tree/master/Sensor/LiveMediator
http://github.com/commonsguy/cw-androidarch/tree/master/Sensor/LiveMediator
https://github.com/commonsguy/cw-androidarch/blob/v1.0/Sensor/LiveMediator/app/src/main/java/com/commonsware/android/livedata/SensorViewModel.java

addSource() takes two parameters:

• The LiveData to be added as a source, and
• A lambda, method reference, or other Observer to say what should happen

when events are emitted by that source

In this case, we use a method reference to feed the output from the SensorLiveData
directly into the MediatorLiveData. In other circumstances, you might have a
lambda that performs some sort of data conversion.

The behavior of the app overall does not change, because the events emitted by the
SensorLiveData flow through the MediatorLiveData to our UI via data binding and
the binding expression.

In this case, this adds no value, and we would be better served by using the previous
example. However, suppose that our UI allowed the user to choose a different sensor.
Now, we could tell our SensorViewModel to connect to a different SensorLiveData
tied to the newly-selected sensor. We would want to disconnect the old
SensorLiveData, which would require a call to removeSource() on the
MediatorLiveaData.

We will see this technique used again in an upcoming chapter. There, we schedule
multiple WorkManager pieces of work, and we want to keep track of the status of each
of them, but using a single LiveData for our UI, instead of individual LiveData
objects per piece of work.

The Saved Instance State Situation
Using LiveData and ViewModel exacerbates a problem with how the data binding
framework interacts with the saved instance state Bundle.

In addition to data that you might put in that Bundle, the built-in
onSavedInstanceState() logic saves obvious user-mutable state of widgets in the UI
to the Bundle. So, for example, if the user types something into an EditText, or
toggles the state of a Switch, that information goes in the Bundle. If you have
matching widgets in the new configuration, the state is applied to those widgets
automatically.

Except if you are using the data binding framework, in which case, things get
complicated.

LIVEDATA AND DATA BINDING

152

The General/DataBindingState sample project illustrates the problem and the
workaround.

This app has a trivial UI, consisting mostly of an EditText. It uses the data binding
framework, so the main.xml layout resource has a <layout> element and so forth:

<?xml version="1.0" encoding="utf-8"?>
<layout<layout xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto">>

<data><data>

<variable<variable
name="model"
type="com.commonsware.databindingstate.Model" />/>

</data></data>

<android.support.constraint.ConstraintLayout<android.support.constraint.ConstraintLayout xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context="com.commonsware.databindingstate.MainActivity">>

<EditText<EditText android:id="@+id/title"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:inputType="text"
android:text="@{model.title}"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent" />/>

</android.support.constraint.ConstraintLayout></android.support.constraint.ConstraintLayout>
</layout></layout>

(from General/DataBindingState/app/src/main/res/layout/main.xml)

Of note, the android:text attribute of the EditText has a binding expression,
pulling the title from a Model object. Model is as trivial of a model as you can
imagine:

packagepackage com.commonsware.databindingstate;

publicpublic classclass ModelModel {
publicpublic String getTitle() {

returnreturn("Title");
}

}

(from General/DataBindingState/app/src/main/java/com/commonsware/databindingstate/Model.java)

However, we do not actually wind up using that Model. In fact, we never bind
anything to the layout.

LIVEDATA AND DATA BINDING

153

http://github.com/commonsguy/cw-androidarch/tree/master/General/DataBindingState
http://github.com/commonsguy/cw-androidarch/tree/master/General/DataBindingState
https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/DataBindingState/app/src/main/res/layout/main.xml
https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/DataBindingState/app/src/main/java/com/commonsware/databindingstate/Model.java

One might reasonably expect that this would result in the same flow as if we did not
use data binding at all:

• The UI shows our layout
• The user types something into the EditText
• The user rotates the screen, and the saved instance state Bundle populates

the newly-created replacement EditText for the new configuration

Instead, if you try it, you will find that what you type in gets lost on a configuration
change.

However, you will notice that there is an action bar overflow menu, with an “Apply
Workaround” checkable item in it. If you check that, what you type into the
EditText is properly retained across the configuration change.

The difference is a call to executePendingBindings() in onCreateView() of the
FormFragment that is showing our limited UI:

@Nullable
@Override
publicpublic View onCreateView(LayoutInflater inflater,

@Nullable ViewGroup container,
@Nullable Bundle savedInstanceState) {

ifif (savedInstanceState!=nullnull) {
savedWorkaround=savedInstanceState.getBoolean(STATE_WORKAROUND);

ifif (workaround!=nullnull) {
workaround.setChecked(savedWorkaround);

}
}

MainBinding binding=MainBinding.inflate(inflater, container, falsefalse);

ifif (savedWorkaround) {
binding.executePendingBindings();

}

returnreturn(binding.getRoot());
}

(from General/DataBindingState/app/src/main/java/com/commonsware/databindingstate/FormFragment.java)

Our layout is main.xml, so our binding class is MainBinding. We call the static
inflate() method on it to inflate our layout, and use getRoot() to return the View
from onCreateView().

LIVEDATA AND DATA BINDING

154

https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/DataBindingState/app/src/main/java/com/commonsware/databindingstate/FormFragment.java

If, however, our checkable MenuItem is checked (or, rather, was checked in the
previous configuration), we call executePendingBindings(). Otherwise, we do not.
That makes the difference.

(the author would like to thank Stack Overflow user Cheticamp for pointing out the
workaround)

This sample is very artificial. Using data binding without binding any data would
seem atypical. However, it does illustrate a general problem with data binding that
using reactive UIs — LiveData, ViewModel, etc. — exacerbate. Simply put, when do
we bind, to get the correct results?

Let’s examine two common cases: the user is editing an existing model object, or the
user is creating a new model object.

Existing Model

We inflate our layout using our binding object, plus we observe a LiveData to get
the model object when it is ready. Once it is ready, we call the appropriate setter on
the binding to populate the widgets.

Right?

Unfortunately, not always.

That is what we do at the outset, the first time our activity or fragment is displayed
to edit this particular model. However, if we undergo a configuration change, we
have a problem: we do not want to lose changes that the user made already. If the
user started typing something into an EditText, then rotated the screen (e.g., to
switch to the landscape keyboard for easier typing), we do not want to lose the
changes already made in that EditText.

Ordinarily, the saved instance state Bundle would handle that… but if we turn
around and call our binding setter in the new activity or fragment, we will replace
what the user typed in with whatever is in the model object.

There are two main solutions here:

1. Use two-way binding, so the UI immediately updates the model object as the
user makes changes to it. If the ViewModel holds onto that model object and
can give it back to us after the configuration change, we can safely call the

LIVEDATA AND DATA BINDING

155

https://stackoverflow.com/a/46695391/115145
https://stackoverflow.com/a/46695391/115145

setter method on the binding object, as our model has the appropriate data.
2. Only bind the model object on the initial creation of the activity or

fragment, not on configuration changes. Instead, let the normal saved
instance state logic handle the form contents. This requires you to call
executePendingBindings() shortly after inflating the layout via the binding
class, so that the saved instance state is applied properly.

New Model

In the new-model scenario, you have the additional question of: is there anything to
bind, anyway?

If you are using two-way data binding, then you need to bind something to collect
the input from the user. Similarly, if you are using a newly created model object to
supply starter data to the form, you will need to create such a model object and bind
it. In these cases, the new-model scenario is largely the same as the existing-model
scenario, with the primary difference being where the model comes from.

If you have no need for a model at the outset, though, you could skip binding
anything, much as the sample app skipped binding anything. Then, so long as you
call executePendingBindings() shortly after inflating the layout via the binding
class, you should be in fine shape.

LIVEDATA AND DATA BINDING

156

WorkManager

Hardly a year goes by anymore without some new solution for doing background
work becoming available for Android developers. In some cases, the new solution is
designed to make things easier. In some cases, the new solution is designed to work
around platform-imposed limitations (a.k.a., “The War on Background Processing”).

The solution introduced in 2018 was WorkManager, and preliminary indications are
that it will be Google’s “go-to” solution for many background work scenarios.

WorkManager is considered to be part of the Architecture Components, despite
having only loose connections to the rest of the Components. WorkManager does
offer ways to monitor work via LiveData, for cases where the work happens to be
going on while your UI is still visible.

In this chapter, we will explore WorkManager, its role, and how to employ it.

NOTE: At the time of this writing, WorkManager is in a beta state.

Where Should We Use WorkManagerWorkManager?
WorkManager is designed for “deferrable” work — work that you need to have done
but does not have to happen right away. This includes the possibility that the work
will be done sometime after your current process has terminated.

In this respect, WorkManager behaves akin to JobScheduler, which is the main
engine behind WorkManager for API Level 23+ devices.

157

Where Should We Not Use WorkManagerWorkManager?
WorkManager is designed for discrete, “transactional” tasks, not ongoing work. So, for
example, WorkManager is not designed to play music continuously in the
background. A foreground service is the solution to use for that, with background
threads as needed (e.g., for disk I/O to read in the playlist details).

WorkManager is designed for work that will happen sometime, but not at some
specific time. If you need to get control at a specific time — such as to alert the user
about an upcoming calendar event — use setExactAndAllowWhileIdle() on
AlarmManager.

WorkManager is designed for work that will happen eventually, but perhaps not
immediately. If you have background work that has to be done in real time in
response to user input (e.g., download the video that they just purchased), use a
foreground service.

WorkManager is designed for work that might happen completely asynchronously
with respect to your current process. Hence, it is not useful for cases where the work
that you are doing only affects the current process, particularly its UI. So, for
example, downloading avatar icons to display in your app may not make sense once
the UI is gone, as you may never need those icons. For that, use a thread pool,
reactive solutions (e.g., RxJava), or libraries that in turn use those sorts of things.

WorkManagerWorkManager Dependencies
The main artifact that you will use for adding WorkManager to your project is
android.arch.work:work-runtime. This contains WorkManager and its related
classes.

There are three additional artifacts that you can elect to use:

• work-runtime-ktx provides a Kotlin-specific WorkManager API
• work-testing is available for testing your code that uses WorkManager
• work-firebase is if your minSdkVersion is below 23 and you wish to use

Firebase JobDispatcher as the engine for WorkManager, as opposed
AlarmManager, on older devices

WORKMANAGER

158

Workers: They Do Work
The work that you want to have done in the background needs to be wrapped in a
Worker subclass. This is an abstract class with one abstract method: doWork(). In
that method, you put your work to be done in the background.

Note that:

• doWork() is called after the WorkManager engine has obtained a wakelock, so
you do not need to acquire one yourself to ensure that the work can get done
without the device falling asleep

• doWork() is called on a background thread, so you do not need to fork one
yourself

• doWork() needs to return a ListenableWorker.Result object indicating if
the work succeeded or failed, so doWork() should not be starting other
background threads (directly or through libraries)

• doWork() cannot run forever — at best, it might run for 10 minutes before
JobScheduler terminates it, and it is possible that it will have less time than
that

As noted above, doWork() returns a ListenableWorker.Result object. There are
static factory methods on ListenableWorker.Result that you use to create
instances. Those factory methods represent three main result scenarios:

• success(), which is what you are hoping for
• retry(), which indicates that for one reason or another you could not do the

work but would like WorkManager to retry the work in a little while
• failure(), which indicates that the work could not be done and a later retry

is likely to fail as well, so you are giving up

Beyond the return value and the aforementioned limitations on what you can do in
doWork(), the actual business logic is up to you.

For example, in the Work/Download sample project, there is a DownloadWorker class
that downloads a file using OkHttp and Okio:

packagepackage com.commonsware.android.work.download;

importimport android.content.Contextandroid.content.Context;
importimport android.support.annotation.NonNullandroid.support.annotation.NonNull;
importimport android.util.Logandroid.util.Log;

WORKMANAGER

159

http://github.com/commonsguy/cw-androidarch/tree/master/Work/Download
http://github.com/commonsguy/cw-androidarch/tree/master/Work/Download

importimport java.io.Filejava.io.File;
importimport java.io.IOExceptionjava.io.IOException;
importimport androidx.work.ListenableWorkerandroidx.work.ListenableWorker;
importimport androidx.work.Workerandroidx.work.Worker;
importimport androidx.work.WorkerParametersandroidx.work.WorkerParameters;
importimport okhttp3.OkHttpClientokhttp3.OkHttpClient;
importimport okhttp3.Requestokhttp3.Request;
importimport okhttp3.Responseokhttp3.Response;
importimport okio.BufferedSinkokio.BufferedSink;
importimport okio.Okiookio.Okio;

publicpublic classclass DownloadWorkerDownloadWorker extendsextends Worker {
publicpublic staticstatic finalfinal String KEY_URL="url";
publicpublic staticstatic finalfinal String KEY_FILENAME="filename";

publicpublic DownloadWorker(@NonNull Context context,
@NonNull WorkerParameters workerParams) {

supersuper(context, workerParams);
}

@NonNull
@Override
publicpublic Result doWork() {

OkHttpClient client=newnew OkHttpClient();
Request request=newnew Request.Builder()

.url(getInputData().getString(KEY_URL))

.build();

trytry (Response response=client.newCall(request).execute()) {
File dir=getApplicationContext().getCacheDir();
File downloadedFile=

newnew File(dir, getInputData().getString(KEY_FILENAME));
BufferedSink sink=Okio.buffer(Okio.sink(downloadedFile));

sink.writeAll(response.body().source());
sink.close();

}
catchcatch (IOException e) {

Log.e(getClass().getSimpleName(), "Exception downloading file", e);

returnreturn ListenableWorker.Result.failure();
}

returnreturn ListenableWorker.Result.success();
}

}

(from Work/Download/app/src/main/java/com/commonsware/android/work/download/DownloadWorker.java)

WORKMANAGER

160

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Work/Download/app/src/main/java/com/commonsware/android/work/download/DownloadWorker.java

Worker — from which DownloadWorker inherits — has a two-parameter constructor,
taking a Context and a WorkerParameters object. In many cases, you can just chain
to the superclass constructor, as DownloadWorker does.

Pretty much everything inside of doWork() is just application code that does the
download and returns success() if the download succeeded or failure() if there
was some exception during the download.

This doWork() method is using two methods that we get from Worker:

• getApplicationContext(), which works like the similarly-named method on
Context, returning you the Application singleton, in case you need a
Context

• getInputData(), which we will examine more closely later in the chapter

Performing Simple Work
Having a Worker is part of the puzzle. We still need to tell WorkManager to actually
use that class to do our work.

If we want to perform the work once — perhaps in response to user input — we can
create a OneTimeWorkRequest object to describe that work, then enqueue() it with
WorkManager:

OneTimeWorkRequest downloadWork=
newnew OneTimeWorkRequest.Builder(DownloadWorker.class)

.build();

WorkManager.getInstance().enqueue(downloadWork);

We create a OneTimeWorkRequest via its associated Builder, which takes the Java
Class object for our Worker subclass its constructor. We build() the Builder and
pass the OneTimeWorkRequest to enqueue() on the WorkManager singleton, which we
get by calling getInstance() on WorkManager.

After this code executes, at some point in time, an instance of DownloadWorker will
be created and doWork() will be called. Exactly when that will be is indeterminate.
In this particular case, probably it will be called fairly quickly, with doWork() being
executed on a thread in a WorkManager-managed thread pool. However, it is entirely
possible that the user leaves our app and our process is terminated before this work
can begin. If so, JobScheduler, Firebase JobDispatcher, or AlarmManager will arrange

WORKMANAGER

161

to get that work done later.

Work Inputs
However, doWork() would crash if we scheduled it this way. That comes back to
those getInputData() calls from our doWork() method.

Often, our work needs data describing that work. In the case of DownloadWorker, we
need to know:

• the HTTPS URL to download from
• the name of the file to download to (where the file will be placed in
getCacheDir())

WorkManager has a solution for this, via the Data class (perhaps named after the
android character in Star Trek properties) (or perhaps not).

Data is a key-value store, one that very closely resembles PersistableBundle. The
values are simple primitives plus arrays of simple primitives. We can package
information into a Data, attach it to the work request, and then get that information
from inside of doWork().

Reading the Data is a matter of calling getInputData() inside of doWork(), then
calling getter methods based on type (e.g., getString()). Those getter methods take
the key under which the data is stored as a parameter. Getters for primitive types
(e.g., getInt(), getBoolean()) also have a second parameter to use for the default
response, if there is nothing associated with that key in the Data.

Putting Data into a request is a matter of creating a Data instance using a
Data.Builder, which contains the corresponding setter methods (e.g.,
putString()):

OneTimeWorkRequest downloadWork=
newnew OneTimeWorkRequest.Builder(DownloadWorker.class)

.setInputData(newnew Data.Builder()
.putString(DownloadWorker.KEY_URL,

"https://commonsware.com/Android/Android-1_0-CC.pdf")
.putString(DownloadWorker.KEY_FILENAME, "oldbook.pdf")
.build())

.build();

WorkManager.getInstance().enqueue(downloadWork);

WORKMANAGER

162

https://en.wikipedia.org/wiki/Data_(Star_Trek)
https://en.wikipedia.org/wiki/Data_(Star_Trek)

Here, we fill in the two values that the DownloadWorker is expecting, using
setInputData() to attach the Data to our OneTimeWorkRequest.

Note that there is a 10KB limit on the size of the Data. Data is there mostly to
provide identifiers, such as the URL and filename that we are using here. Use the
Data for unique information, stuff that the Worker subclass cannot obtain from
other sources (e.g., your database, your SharedPreferences).

Constrained Work
Frequently, the work that we want to do has some requirements. For example, in the
case of DownloadWorker, it helps to have an Internet connection, as otherwise we
may not be able to download the content.

WorkManager exposes a similar set of constraints as you see with JobScheduler. You
can constrain your work based on:

• Whether the device has an Internet connection, or perhaps a particular type
of Internet connection (e.g., an unmetered connection)

• Whether the device has a decent amount of battery life remaining, or
perhaps is on a charger

• Whether the device has a decent amount of storage space available
• Whether the device is idle (so your work is less likely to interfere with the

user)

To configure these, we:

• Create a Constraints.Builder,
• Call setter methods on that Builder to specify our constraints,
• build() the Builder, and
• Call setConstraints() on the request Builder to attach the constraints

Constraints constraints=newnew Constraints.Builder()
.setRequiredNetworkType(NetworkType.CONNECTED)
.setRequiresBatteryNotLow(truetrue)
.build();

OneTimeWorkRequest downloadWork=
newnew OneTimeWorkRequest.Builder(DownloadWorker.class)

.setConstraints(constraints)

.setInputData(newnew Data.Builder()
.putString(DownloadWorker.KEY_URL,

"https://commonsware.com/Android/Android-1_0-CC.pdf")

WORKMANAGER

163

.putString(DownloadWorker.KEY_FILENAME, "oldbook.pdf")

.build())
.build();

WorkManager.getInstance().enqueue(downloadWork);

Here, we say that we need a network connection (of any type) and that the battery
should not be low.

Tagged Work
We can also associate one or more tags with our work requests. We can later get
information about our outstanding work based on tags, or cancel work based on
tags.

Tags are meant to be used as categories, to identify like pieces of work that we might
want to operate on in unison:

• All downloads
• All work associated with some particular database table
• All work associated with some account
• And so on

To add tags, just call addTag() one or more times on the request Builder:

publicpublic void doTheDownload() {
Constraints constraints=newnew Constraints.Builder()

.setRequiredNetworkType(NetworkType.CONNECTED)

.setRequiresBatteryNotLow(truetrue)

.build();
OneTimeWorkRequest downloadWork=

newnew OneTimeWorkRequest.Builder(DownloadWorker.class)
.setConstraints(constraints)
.setInputData(newnew Data.Builder()

.putString(DownloadWorker.KEY_URL,
"https://commonsware.com/Android/Android-1_0-CC.pdf")

.putString(DownloadWorker.KEY_FILENAME, "oldbook.pdf")

.build())
.addTag("download")
.build();

WorkManager.getInstance().enqueue(downloadWork);

(from Work/Download/app/src/main/java/com/commonsware/android/work/download/DownloadViewModel.java)

WORKMANAGER

164

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Work/Download/app/src/main/java/com/commonsware/android/work/download/DownloadViewModel.java

Here, we use addTag() to tag this work as download.

Monitoring Work
WorkManager does not provide a built-in means for you to monitor progress inside of
an individual piece of work. It does, however, provide you with an API for
monitoring the gross state changes of a piece of work: is it enqueued, is it running, is
it completed, etc.

Getting the Status Updates

To find out about the general state changes in the life of a piece of work, you can use
getWorkInfoByIdLiveData(), available on WorkManager. Each request has an ID,
generated by the WorkManager system, which you get by calling getId() on the
request:

finalfinal LiveData<WorkInfo> liveOpStatus=
WorkManager.getInstance().getWorkInfoByIdLiveData(downloadWork.getId());

(from Work/Download/app/src/main/java/com/commonsware/android/work/download/DownloadViewModel.java)

The LiveData that we get back will emit WorkInfo updates for the work identified by
this ID. A WorkInfo, in turn, holds a State enum, that indicates what phase of the
WorkManager process this piece of work is in:

• ENQUEUED
• BLOCKED (for use with chained work)
• RUNNING
• SUCCEEDED
• FAILED
• CANCELED (for use with canceling work)

You can then arrange to observe the LiveData or otherwise make use of its updates.

Consuming the Status Updates… In Code

The code shown in this chapter so far that created the OneTimeWorkRequest and
enqueued the work is in a DownloadViewModel:

packagepackage com.commonsware.android.work.download;

importimport android.arch.lifecycle.LiveDataandroid.arch.lifecycle.LiveData;

WORKMANAGER

165

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Work/Download/app/src/main/java/com/commonsware/android/work/download/DownloadViewModel.java

importimport android.arch.lifecycle.MediatorLiveDataandroid.arch.lifecycle.MediatorLiveData;
importimport android.arch.lifecycle.ViewModelandroid.arch.lifecycle.ViewModel;
importimport androidx.work.Constraintsandroidx.work.Constraints;
importimport androidx.work.Dataandroidx.work.Data;
importimport androidx.work.NetworkTypeandroidx.work.NetworkType;
importimport androidx.work.OneTimeWorkRequestandroidx.work.OneTimeWorkRequest;
importimport androidx.work.WorkInfoandroidx.work.WorkInfo;
importimport androidx.work.WorkManagerandroidx.work.WorkManager;

publicpublic classclass DownloadViewModelDownloadViewModel extendsextends ViewModel {
publicpublic finalfinal MediatorLiveData<WorkInfo> liveWorkStatus=newnew MediatorLiveData<>();

publicpublic void doTheDownload() {
Constraints constraints=newnew Constraints.Builder()

.setRequiredNetworkType(NetworkType.CONNECTED)

.setRequiresBatteryNotLow(truetrue)

.build();
OneTimeWorkRequest downloadWork=

newnew OneTimeWorkRequest.Builder(DownloadWorker.class)
.setConstraints(constraints)
.setInputData(newnew Data.Builder()

.putString(DownloadWorker.KEY_URL,
"https://commonsware.com/Android/Android-1_0-CC.pdf")

.putString(DownloadWorker.KEY_FILENAME, "oldbook.pdf")

.build())
.addTag("download")
.build();

WorkManager.getInstance().enqueue(downloadWork);

finalfinal LiveData<WorkInfo> liveOpStatus=
WorkManager.getInstance().getWorkInfoByIdLiveData(downloadWork.getId());

liveWorkStatus.addSource(liveOpStatus, workStatus -> {
liveWorkStatus.setValue(workStatus);

ifif (workStatus.getState().isFinished()) {
liveWorkStatus.removeSource(liveOpStatus);

}
});

}
}

(from Work/Download/app/src/main/java/com/commonsware/android/work/download/DownloadViewModel.java)

The doTheDownload() method will be called when the user clicks a button in the UI
of MainActivity. That triggers our creation of the work request.

DownloadViewModel takes the MediatorLiveData approach described in the chapter
on LiveData and data binding. Consumers of the DownloadViewModel, such as our
MainActivity, have access to a liveWorkStatus field that represents the outbound
stream of work status updates. For each doTheDownload() call, we chain the
LiveData for this individual download onto the MediatorLiveData, removing it as a
source once the State reaches a terminal condition (isFinished(), which will be
true for a State of SUCCEEDED, FAILED, or CANCELED).

WORKMANAGER

166

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Work/Download/app/src/main/java/com/commonsware/android/work/download/DownloadViewModel.java

The result is that our MainActivity can observe liveWorkStatus, without having to
worry about individual LiveData objects from individual download requests.

MainActivity observes liveWorkStatus and uses it to display a Toast when the
download is finished:

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

finalfinal DownloadViewModel vm=ViewModelProviders.of(thisthis).get(DownloadViewModel.class);

binding=ActivityMainBinding.inflate(getLayoutInflater());
binding.setViewModel(vm);
binding.setLifecycleOwner(thisthis);

setContentView(binding.getRoot());

vm.liveWorkStatus.observe(thisthis, workStatus -> {
ifif (workStatus!=nullnull && workStatus.getState().isFinished()) {

Toast.makeText(thisthis, R.string.msg_done, Toast.LENGTH_LONG).show();
}

});
}

(from Work/Download/app/src/main/java/com/commonsware/android/work/download/MainActivity.java)

Consuming the Status Updates… In Data Binding

MainActivity — and its activity_main layout resource — use data binding.
Partially, this is to get control to DownloadViewModel when the user clicks a button.
But we also want to disable the button while the download is going on, to reduce the
likelihood of accidentally triggering multiple downloads.

To that end, we bind the DownloadViewModel into the binding, as was shown in the
chapter on LiveData and data binding. The layout then has binding expressions
both for android:onClick and android:enabled on its Button:

<?xml version="1.0" encoding="utf-8"?>
<layout><layout>

<data><data>

<variable<variable
name="viewModel"
type="com.commonsware.android.work.download.DownloadViewModel" />/>

</data></data>

<android.support.constraint.ConstraintLayout<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"

WORKMANAGER

167

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Work/Download/app/src/main/java/com/commonsware/android/work/download/MainActivity.java

android:layout_height="match_parent"
tools:context=".MainActivity">>

<Button<Button
android:id="@+id/download"
android:layout_width="0dp"
android:layout_height="0dp"
android:text="@string/btn_title"
android:onClick="@{() -> viewModel.doTheDownload()}"
android:enabled="@{viewModel.liveWorkStatus }"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent" />/>

</android.support.constraint.ConstraintLayout></android.support.constraint.ConstraintLayout>
</layout></layout>

(from Work/Download/app/src/main/res/layout/activity_main.xml)

android:onClick just calls doTheDownload on the DownloadViewModel.
android:enabled takes advantage of the LiveData support in data binding, with the
extra assistance of a BindingAdapter:

@BindingAdapter("android:enabled")
publicpublic staticstatic void setEnabled(View v, WorkInfo info) {

ifif (info==nullnull) {
v.setEnabled(truetrue);

}
elseelse {

v.setEnabled(info.getState().isFinished());
}

}

(from Work/Download/app/src/main/java/com/commonsware/android/work/download/MainActivity.java)

Here, we map the State from a WorkInfo to the boolean value to use for the
android:enabled attribute. Basically, if the WorkInfo is null or is finished, the
button is enabled, otherwise it is disabled. So, as the LiveData emits new WorkInfo
objects, data binding takes each, calls this setEnabled() method, and uses that to
update the enabled state of the Button.

Canceling Work
Frequently, the work that we enqueue into the WorkManager is “fire and forget”,
where either the work succeeds or fails on its own. Occasionally, though, we may
need to try to cancel a piece of enqueued work. For example, we might offer a cancel
button in the UI to allow the user to abandon some enqueued request (e.g., do not
download the thing that the user just requested to download).

WORKMANAGER

168

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Work/Download/app/src/main/res/layout/activity_main.xml
https://github.com/commonsguy/cw-androidarch/blob/v1.0/Work/Download/app/src/main/java/com/commonsware/android/work/download/MainActivity.java

For that, you can call cancelWorkById() or cancelAllWorkByTag() on WorkManager.
The former takes the work’s ID (from getId() on the WorkRequest), while the latter
takes a tag. Since IDs are unique, cancelWorkById() will only try to cancel that once
piece of work, while cancelAllWorkByTag() will try to cancel all enqueued work
associated with that tag. So, for example, if you associate the download tag with your
download work requests, cancelAllWorkByTag("download") will try to cancel all of
those requests.

Note, though, that cancellation is “best effort”. In particular, if the work has already
begun, it might not be canceled. In some cases, this is fine. In other cases, you might
want to both cancel the work in WorkManager and take steps to ensure that any
affected running work finds out about the cancellation. For example, you might have
some state field somewhere that the work can monitor to see if it should continue
doing whatever it is doing.

Delayed Work
Typically, we are happy to have our work begin right away, if the conditions allow it.
Occasionally, we may want to intentionally delay that work for a bit.

For this, you can call setInitialDelay() on the OneTimeWorkRequest.Builder as
part of configuring the work. There are two flavors of setInitialDelay():

• one takes a long value and a TimeUnit, where the TimeUnit indicates what
unit of measure the long is in (e.g., TimeUnit.SECONDS)

• one takes a Duration, which is part of Java 8 and only available on API Level
26 and higher

In either case, the work will be delayed by at least that amount of time. However,
depending on circumstances (constraints, Doze mode, etc.), the work might happen
substantially later than the delay period. Do not assume that your work will start
immediately after your delay period.

Parallel Work
Suppose you have N pieces of work to be done in (approximate) parallel. As it turns
out, enqueue() on WorkManager takes either a varargs of WorkRequest or a List of
WorkRequest objects. If you pass in more than one WorkRequest, all will be
enqueued, and all will run when possible, based upon their constraints and the
number of threads in the WorkManager thread pool.

WORKMANAGER

169

WorkManager has a default thread pool, and in many cases it will be sufficient for
your needs. If you wish to control that thread pool, call the static initialize() on
WorkManager once, such as from onCreate() of a custom Application. initialize()
takes a Context and a Configuration. You get a Configuration through the builder
pattern:

• Create an instance of Configuration.Builder
• Call setExecutor() on that Builder with an Executor that will serve as the

thread pool for the WorkManager
• Call build() on the Builder to get the Configuration

Chained Work
Where WorkManager shines in comparison to previous deferrable-task solutions is in
its support for chained work. Chained work is where you set up work requests that
in turn depend upon other work requests. Later work requests in the chain are only
performed if the previous ones succeeded. And, work requests can supply data to the
next request in the chain, akin to command-line pipelines or basic workflow
systems.

Why?

On the one hand, chained work may not seem necessary. In principle, what you do
as a series of work requests could be done in one large work request.

The big benefit of splitting the work into separate requests comes with the
application of constraints. For example, the sample app that we will examine
demonstrates chained work by downloading a ZIP file, then unZIPping it.
Downloading a ZIP file requires an Internet connection, but unZIPping it does not.
By providing separate constraints for each work request, you can require a network
connection for the download, yet not require it for the unZIP task, thereby allowing
that work to proceed even if Internet connectivity is lost.

Also, smaller Worker classes can be made more reusable. One can imagine a library
of common Worker classes. Rather than having to write your own CompositeWorker
that used several Worker classes, you can simply set up a chain using existing APIs.

Chained work also helps to address the delivery of status updates as a larger task is
being processed. AsyncTask offers publishProgress() and onProgressUpdate() to
inform users of the task about ongoing progress. WorkManager lacks that sort of

WORKMANAGER

170

facility. However, each WorkRequest in the chain has its own WorkStatus that can be
monitored via LiveData. This way, you can at least get coarse-grained information
about how the chain overall is proceeding.

How Do We Chain Work?

To enqueue a WorkRequest, we used enqueue() on the WorkManager instance. In
truth, that is a convenience method. This:

WorkManager.getInstance().enqueue(request);

is really this:

WorkManager.getInstance().beginWith(request).enqueue();

beginWith() returns a WorkContinuation. This is an object that knows a
WorkRequest to process and knows how to be chained.

To have a follow-on WorkRequest in a simple two-element chain, call then() on the
WorkContinuation before the terminal enqueue() call:

WorkManager.getInstance().beginWith(request).then(otherRequest).enqueue();

Now, request will be processed, and if it succeeds, then (and only then) will
otherRequest be processed.

How Do We Pass Data Along the Chain?

We provide input to a WorkRequest via its Builder and setInputData(). However,
this is input that is created outside the processing of any individual request; it is
input that is defined when the chain is defined.

In addition, a Worker can provide output data to factory methods like success() on
ListenableWorker.Result. Those factory methods take the same sort of Data object
that setInputData() does. The output data can be used in two places:

• If this request has another request chained after it, that later request receives
the earlier request’s output data as input.

• The output data is available from the WorkInfo once the work is finished, so
consumers of the LiveData status stream can also see the output data.

WORKMANAGER

171

OK, Where’s the Code?

The Work/UnZIP sample project is a variation on the previous example, this time
where we have two requests in a chain.

DownloadWorker is largely the same as before, with two differences:

1. Rather than receiving a filename as input, it decides what the filename will
be, as that will merely serve as a temporary file

2. It passes the path to that file to the next request in the chain via
setOutputData()

packagepackage com.commonsware.android.work.download;

importimport android.content.Contextandroid.content.Context;
importimport android.support.annotation.NonNullandroid.support.annotation.NonNull;
importimport android.util.Logandroid.util.Log;
importimport com.commonsware.cwac.security.ZipUtilscom.commonsware.cwac.security.ZipUtils;
importimport java.io.Filejava.io.File;
importimport java.io.IOExceptionjava.io.IOException;
importimport androidx.work.Dataandroidx.work.Data;
importimport androidx.work.ListenableWorkerandroidx.work.ListenableWorker;
importimport androidx.work.Workerandroidx.work.Worker;
importimport androidx.work.WorkerParametersandroidx.work.WorkerParameters;
importimport okhttp3.OkHttpClientokhttp3.OkHttpClient;
importimport okhttp3.Requestokhttp3.Request;
importimport okhttp3.Responseokhttp3.Response;
importimport okio.BufferedSinkokio.BufferedSink;
importimport okio.Okiookio.Okio;

publicpublic classclass DownloadWorkerDownloadWorker extendsextends Worker {
publicpublic staticstatic finalfinal String KEY_URL="url";
publicpublic staticstatic finalfinal String KEY_RESULTDIR="resultDir";

publicpublic DownloadWorker(@NonNull Context context,
@NonNull WorkerParameters workerParams) {

supersuper(context, workerParams);
}

@NonNull
@Override
publicpublic Result doWork() {

OkHttpClient client=newnew OkHttpClient();
Request request=newnew Request.Builder()

.url(getInputData().getString(KEY_URL))

.build();

WORKMANAGER

172

http://github.com/commonsguy/cw-androidarch/tree/master/Work/UnZIP
http://github.com/commonsguy/cw-androidarch/tree/master/Work/UnZIP

File dir=getApplicationContext().getCacheDir();
File downloadedFile=newnew File(dir, "temp.zip");

ifif (downloadedFile.exists()) {
downloadedFile.delete();

}

trytry (Response response=client.newCall(request).execute()) {
BufferedSink sink=Okio.buffer(Okio.sink(downloadedFile));

sink.writeAll(response.body().source());
sink.close();

}
catchcatch (IOException e) {

Log.e(getClass().getSimpleName(), "Exception downloading file", e);

returnreturn ListenableWorker.Result.failure();
}

returnreturn ListenableWorker.Result.success(newnew Data.Builder()
.putString(UnZIPWorker.KEY_ZIPFILE, downloadedFile.getAbsolutePath())
.build());

}
}

(from Work/UnZIP/app/src/main/java/com/commonsware/android/work/download/DownloadWorker.java)

We now also have an UnZIPWorker. This expects two pieces of input: the file to unZIP
and the directory to unZIP it into. It uses the CWAC-Security library’s
ZipUtils.unzip() method, as that safely handles possibly-malicious ZIP files (e.g.,
zip bombs):

packagepackage com.commonsware.android.work.download;

importimport android.content.Contextandroid.content.Context;
importimport android.support.annotation.NonNullandroid.support.annotation.NonNull;
importimport android.util.Logandroid.util.Log;
importimport com.commonsware.cwac.security.ZipUtilscom.commonsware.cwac.security.ZipUtils;
importimport java.io.Filejava.io.File;
importimport androidx.work.ListenableWorkerandroidx.work.ListenableWorker;
importimport androidx.work.Workerandroidx.work.Worker;
importimport androidx.work.WorkerParametersandroidx.work.WorkerParameters;

publicpublic classclass UnZIPWorkerUnZIPWorker extendsextends Worker {
publicpublic staticstatic finalfinal String KEY_ZIPFILE="zipFile";
publicpublic staticstatic finalfinal String KEY_RESULTDIR="resultDir";

publicpublic UnZIPWorker(@NonNull Context context,
@NonNull WorkerParameters workerParams) {

supersuper(context, workerParams);

WORKMANAGER

173

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Work/UnZIP/app/src/main/java/com/commonsware/android/work/download/DownloadWorker.java

}

@NonNull
@Override
publicpublic Result doWork() {

File downloadedFile=newnew File(getInputData().getString(KEY_ZIPFILE));
File dir=getApplicationContext().getCacheDir();
String resultDirData=getInputData().getString(KEY_RESULTDIR);
File resultDir=newnew File(dir, resultDirData==nullnull ? "results" : resultDirData);

trytry {
ZipUtils.unzip(downloadedFile, resultDir, 2048, 1024*1024*16);
downloadedFile.delete();

}
catchcatch (Exception e) {

Log.e(getClass().getSimpleName(), "Exception unZIPing file", e);

returnreturn ListenableWorker.Result.failure();
}

returnreturn ListenableWorker.Result.success();
}

}

(from Work/UnZIP/app/src/main/java/com/commonsware/android/work/download/UnZIPWorker.java)

DownloadViewModel now sets up a request chain using both worker classes:

packagepackage com.commonsware.android.work.download;

importimport android.arch.lifecycle.LiveDataandroid.arch.lifecycle.LiveData;
importimport android.arch.lifecycle.MediatorLiveDataandroid.arch.lifecycle.MediatorLiveData;
importimport android.arch.lifecycle.ViewModelandroid.arch.lifecycle.ViewModel;
importimport androidx.work.Constraintsandroidx.work.Constraints;
importimport androidx.work.Dataandroidx.work.Data;
importimport androidx.work.NetworkTypeandroidx.work.NetworkType;
importimport androidx.work.OneTimeWorkRequestandroidx.work.OneTimeWorkRequest;
importimport androidx.work.WorkInfoandroidx.work.WorkInfo;
importimport androidx.work.WorkManagerandroidx.work.WorkManager;

publicpublic classclass DownloadViewModelDownloadViewModel extendsextends ViewModel {
publicpublic finalfinal MediatorLiveData<WorkInfo> liveWorkStatus=newnew MediatorLiveData<>();

publicpublic void doTheDownload() {
OneTimeWorkRequest downloadWork=

newnew OneTimeWorkRequest.Builder(DownloadWorker.class)
.setConstraints(newnew Constraints.Builder()

.setRequiredNetworkType(NetworkType.CONNECTED)

.setRequiresBatteryNotLow(truetrue)

.build())
.setInputData(newnew Data.Builder()

.putString(DownloadWorker.KEY_URL,
"https://commonsware.com/Android/source_1_0.zip")

.build())
.addTag("download")
.build();

OneTimeWorkRequest unZIPWork=
newnew OneTimeWorkRequest.Builder(UnZIPWorker.class)

.setConstraints(newnew Constraints.Builder()

WORKMANAGER

174

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Work/UnZIP/app/src/main/java/com/commonsware/android/work/download/UnZIPWorker.java

.setRequiresStorageNotLow(truetrue)

.setRequiresBatteryNotLow(truetrue)

.build())
.setInputData(newnew Data.Builder()

.putString(DownloadWorker.KEY_RESULTDIR, "unzipped")

.build())
.addTag("unZIP")
.build();

WorkManager.getInstance()
.beginWith(downloadWork)
.then(unZIPWork)
.enqueue();

finalfinal LiveData<WorkInfo> liveOpStatus=
WorkManager.getInstance().getWorkInfoByIdLiveData(unZIPWork.getId());

liveWorkStatus.addSource(liveOpStatus, workStatus -> {
liveWorkStatus.setValue(workStatus);

ifif (workStatus.getState().isFinished()) {
liveWorkStatus.removeSource(liveOpStatus);

}
});

}
}

(from Work/UnZIP/app/src/main/java/com/commonsware/android/work/download/DownloadViewModel.java)

Of note:

• downloadWork is defined the same as before, except that we skip supplying
the filename, and the URL now points to a ZIP file instead of a PDF

• unZIPWork does not require an Internet connection, but it does require that
we have a reasonable amount of storage available

• unZIPWork gets the name of a directory to create in getCacheDir() to hold
the unZIPped results

• We use beginWith() and then() to set up the chain, using enqueue() to
enqueue the results

• We monitor the unZIPWork status for the purposes of re-enabling the button
and showing the Toast

In principle, we should be monitoring both requests’ status updates. If the first
request fails for some reason (e.g., HTTP 404 error), the second request will never
run. We could do that by calling getWorkInfosLiveData() on the
WorkContinuation, which returns a LiveData of a list of WorkInfo objects, one for
each request in the chain. That significantly increases the complexity of the sample
(e.g., what do we do for data binding in this case?), and so we cheat for the sake of
brevity.

WORKMANAGER

175

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Work/UnZIP/app/src/main/java/com/commonsware/android/work/download/DownloadViewModel.java

How Complex Can This Get?

It can get as complicated as you like:

• You can keep chaining work together by successive then() calls:

WorkManager.getIntstance().beginWith(lets).then(go).then(crazy).enqueue();

• You can have parallel requests as part of a chain, by passing multiple
WorkRequest objects to beginWith() or then()

• You can chain a WorkContinuation onto another WorkContinuation
• You can create InputMerger implementations to help coordinate out the

output data from previous steps in the chain are merged together to form
the input data for successive steps in the chain

• And so on

However, while WorkManager is useful for deferrable tasks, it is not a full workflow
system:

• There is limited ability to cancel work, as noted previously
• There is no ability to change enqueued work, except by trying to cancel it

and then enqueuing its replacement
• There are no specifications for how long any individual request or an entire

chain can take, in terms of time
• There are no specifications for how results are handled when it takes

multiple process invocations to complete a chain (e.g., a long chain
extending past the 10-minute JobScheduler limit)

• And so on

As a result, at least for the time being, be careful when trying to create complex
WorkRequest chains.

Periodic Work
So far, all of the work has been for single tasks, using OneTimeWorkRequest. The
other WorkRequest implementation is PeriodicWorkRequest, and as the name
suggests, it is for work that should repeat with a given interval.

The interval is provided via the PeriodicWorkRequest.Builder constructor, either as
a Duration or as a long and TimeUnit pair. There is a minimum allowed period,

WORKMANAGER

176

defined as PeriodicWorkRequest.MIN_PERIODIC_INTERVAL_MILLIS, presently
defined as 15 minutes.

However, bear in mind that WorkManager is implemented using JobScheduler on
newer Android devices. On those devices, Doze mode and app standby will affect
your periodic or delayed work. Hence, consider the supplied interval to be a
suggestion, more than a requirement.

Unique Work
Sometimes, we want to avoid accidentally enqueuing the same work more than
once.

For example, suppose that the app has a Worker that pulls data from a server.
Normally, that is triggered by a push message (e.g., Firebase Cloud Messaging).
However, you also have it set up that user actions can trigger that work to be done,
such as via a manual refresh option (e.g., pull-to-refresh). What you want to avoid is
trying to do two of this bit of work simultaneously, as that might confuse things on
either the device side or the server side.

To handle this, instead of enqueue() on WorkManager, you can use
beginUniqueWork(). This takes a “name” that identifies this logical unit of work. If
you previously used beginUniqueWork(), and you later call beginUniqueWork() with
the same name, and the earlier work is still ongoing, you can specify what should
happen (e.g., ignore the new work request).

Note that this does not support periodic work: you can only coordinate
OneTimeWorkRequest, not PeriodicWorkRequest.

Testing Work
The work-testing artifact offers a WorkManagerTestInitHelper utility class to help
with instrumented testing.

First, it has initializeTestWorkManager(). This configures WorkManager to use a
SynchronousExecutor. This amounts to a mock Executor, one that runs supplied
Runnable objects immediately on the current thread. By using
SynchronousExecutor, your enqueue() calls for WorkManager will happen
immediately and synchronously, rather than asynchronously.

WORKMANAGER

177

Also, WorkManagerTestInitHelper has a getTestDriver() method, which returns a
TestDriver. This offers a setAllConstraintsMet() method, which takes a work
request ID and tells WorkManager that all of the constraints for that work request are
met. This makes your tests more deterministic, since constraints are normally there
to test the environment, and that might change from run to run of your tests.
However, it is very important to call setAllConstraintsMet() after you enqueue()
the work:

WorkManager.getInstance().enqueue(work);
WorkManagerTestInitHelper.getTestDriver().setAllConstraintsMet(work.getId());

Note: calling setAllConstraintsMet() before calling enqueue() results in a crash.

The Work/Download sample app contains a DownloadWorkerTest class that shows the
use of WorkManagerTestInitHelper and TestDriver:

packagepackage com.commonsware.android.work.download;

importimport android.support.test.InstrumentationRegistryandroid.support.test.InstrumentationRegistry;
importimport android.support.test.runner.AndroidJUnit4android.support.test.runner.AndroidJUnit4;
importimport org.junit.Beforeorg.junit.Before;
importimport org.junit.Testorg.junit.Test;
importimport org.junit.runner.RunWithorg.junit.runner.RunWith;
importimport java.io.Filejava.io.File;
importimport androidx.work.Constraintsandroidx.work.Constraints;
importimport androidx.work.Dataandroidx.work.Data;
importimport androidx.work.NetworkTypeandroidx.work.NetworkType;
importimport androidx.work.OneTimeWorkRequestandroidx.work.OneTimeWorkRequest;
importimport androidx.work.WorkManagerandroidx.work.WorkManager;
importimport androidx.work.WorkRequestandroidx.work.WorkRequest;
importimport androidx.work.testing.WorkManagerTestInitHelperandroidx.work.testing.WorkManagerTestInitHelper;
importimport staticstatic org.junit.Assert.assertFalse;
importimport staticstatic org.junit.Assert.assertTrue;

@RunWith(AndroidJUnit4.class)
publicpublic classclass DownloadWorkerTestDownloadWorkerTest {

privateprivate File expected;

@Before
publicpublic void setUp() {

WorkManagerTestInitHelper
.initializeTestWorkManager(InstrumentationRegistry.getTargetContext());

expected=
newnew File(InstrumentationRegistry.getTargetContext().getCacheDir(),

"oldbook.pdf");

ifif (expected.exists()) {
expected.delete();

}
}

@Test

WORKMANAGER

178

publicpublic void download() {
assertFalse(expected.exists());

WorkManager.getInstance().enqueue(buildWorkRequest(nullnull));

assertTrue(expected.exists());
}

@Test
publicpublic void downloadWithConstraints() {

Constraints constraints=newnew Constraints.Builder()
.setRequiredNetworkType(NetworkType.CONNECTED)
.setRequiresBatteryNotLow(truetrue)
.build();

WorkRequest work=buildWorkRequest(constraints);

assertFalse(expected.exists());

WorkManager.getInstance().enqueue(work);
WorkManagerTestInitHelper.getTestDriver().setAllConstraintsMet(work.getId());

assertTrue(expected.exists());
}

privateprivate WorkRequest buildWorkRequest(Constraints constraints) {
OneTimeWorkRequest.Builder builder=

newnew OneTimeWorkRequest.Builder(DownloadWorker.class)
.setInputData(newnew Data.Builder()

.putString(DownloadWorker.KEY_URL,
"https://commonsware.com/Android/Android-1_0-CC.pdf")

.putString(DownloadWorker.KEY_FILENAME, "oldbook.pdf")

.build())
.addTag("download");

ifif (constraints!=nullnull) {
builder.setConstraints(constraints);

}

returnreturn builder.build();
}

}

(from Work/Download/app/src/androidTest/java/com/commonsware/android/work/download/DownloadWorkerTest.java)

This class tests DownloadWorker both with and without constraints, validating that
the output file exists after the work has been done. Since we are using the
synchronous test configuration of WorkManager, we can test this work without
having to resort to CountDownLatch or similar tricks for testing multithreaded code.

Independent of work-testing, note that Worker has some dependencies on Context,
and it may be difficult to mock that Context since you are not the one providing it.
It may be necessary to consider your Worker as something to be tested with
instrumented tests. If you wish to have deferred tasks be unit tested outside of
Android, consider isolating that logic in another class that your Worker then

WORKMANAGER

179

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Work/Download/app/src/androidTest/java/com/commonsware/android/work/download/DownloadWorkerTest.java

happens to use.

WorkManagerWorkManager and Side Effects
WorkManager has a fairly clean and easy API and hides a lot of the complexity of
scheduling background work that is not time-sensitive.

However, it has side effects.

To be able to restart your scheduled work after a reboot, WorkManager registers an
ACTION_BOOT_COMPLETED receiver named
androidx.work.impl.background.systemalarm.RescheduleReceiver. To be a good
citizen, WorkManager only enables that receiver when you have relevant work and
disables it otherwise. That way, your app does not unnecessarily slow down the boot
process if there is no reason for your app to get control at boot time.

However, enabling and disabling a component, such as a receiver, triggers an
ACTION_PACKAGE_CHANGED broadcast. Few apps directly have any code that watches
for this broadcast, let alone would be harmed by having that broadcast be sent more
times that might otherwise be necessary.

App widgets, though, are affected by ACTION_PACKAGE_CHANGED. Specifically,
ACTION_PACKAGE_CHANGED triggers an onUpdate() call to your AppWidgetProvider.

That too may not be a problem for most app widgets. Ideally, your
AppWidgetProvider makes no assumptions about when, or how frequently, it gets
called with onUpdate(). However, there is one area where this is a problem: with an
AppWidgetProvider scheduling work in onUpdate(). The flow then becomes:

• A “regular” onUpdate() call comes in
• Your AppWidgetProvider schedules some work with WorkManager
• WorkManager enables RescheduleReceiver
• That triggers ACTION_PACKAGE_CHANGED, which triggers an onUpdate() call
• Your AppWidgetProvider schedules some work with WorkManager again
• WorkManager eventually gets through those two pieces of work
• WorkManager disables RescheduleReceiver, since it is no longer needed
• That triggers ACTION_PACKAGE_CHANGED, which triggers an onUpdate() call
• Your AppWidgetProvider schedules some work with WorkManager
• WorkManager enables RescheduleReceiver
• And we’re in an infinite loop

WORKMANAGER

180

The recommendation from Google is to avoid unconditionally scheduling work with
WorkManager from onUpdate(). Instead, only do it if you know that the work is
needed and that it is safe to do so, meaning that you will not get into the infinite
loop.

That advice may be difficult for some to implement.

This, and any other possible side-effects of WorkManager, are not documented. So,
you need to be a bit careful about your use of WorkManager:

• If your app responds to ACTION_PACKAGE_CHANGED broadcasts, directly or
indirectly, it may not be safe to schedule work there, lest you wind up in the
infinite loop scenario described above.

• If your app responds to ACTION_BATTERY_OK, ACTION_BATTERY_LOW,
ACTION_POWER_CONNECTED, ACTION_POWER_DISCONNECTED,
ACTION_DEVICE_STORAGE_LOW, ACTION_DEVICE_STORAGE_OK,
CONNECTIVITY_CHANGE, ACTION_TIME_SET, or ACTION_TIMEZONE_CHANGED, bear
in mind that WorkManager has receivers for those broadcasts in your app.
These are all disabled at the outset, but presumably WorkManager has code to
enable them based on certain conditions, such as certain constraints that
you set in your work requests. Be careful about scheduling work with
WorkManager on those broadcasts as well.

• If your app responds to ACTION_BOOT_COMPLETED broadcasts, bear in mind
that WorkManager also depends on this broadcast. Your respective receivers
might be invoked in any order. It may not be safe to schedule work here, as
WorkManager might assume that its own ACTION_BOOT_COMPLETED receiver has
completed its work by the time you try scheduling new work. While I would
not expect an infinite loop scenario, this is the sort of edge case that requires
a lot of testing to ensure everything will work as expected.

• WorkManager has a ContentProvider that it bakes into your app as well.
While scheduling your own work from onCreate() of a ContentProvider
would be rather odd, it’s possible that somebody might want to do that. Be
careful, as WorkManager may not be fully ready for operation at that point.
Note that, last time I tested it, all ContentProvider instances are created
before onCreate() of Application, so probably it is safe to schedule work
there.

There may be other edge and corner cases beyond these. So, while WorkManager is
nice, make sure that you thoroughly test your use of it.

WORKMANAGER

181

https://issuetracker.google.com/issues/115575872#comment4

Intermediate Topics

M:N Relations in Room

For 1:1 relations, one entity has a foreign key back to the other entity.

For 1:N relations, one entity has a foreign key back to the other entity. In other
words, 1:1 is simply 1:N for a specific small value of N.

In SQL, implementing M:N relations requires a join table of some form, where the
join table has foreign keys back to the entities being related. Room, using SQL at its
core, does not change this. And since Room does not model relations, but only
foreign keys, to create an M:N relation, you have to create a “join entity” that winds
up creating the associated join table.

In this chapter, we will take a look at how that is accomplished. Along the way, we
will also look at other Room tidbits, such as how to use static classes as entities.

Implementing a Join Entity
The General/RoomMN sample project demonstrates an M:N relation. From earlier
chapters, we have a Customer entity and a Category entity. Previously, those were
unrelated. Now, let’s implement an M:N relation between them, so a Customer can
be a member of zero or more categories, and a Category can have zero or more
customers.

Note that we are retaining the tree structure for Category used previously. For the
purposes of this chapter, we are ignoring that, considering a customer to belong to a
category only via a direct relationship. So for example, if customer Foo belongs to
category Child, which has a parent category Parent, Foo is not a member of Parent.
The tree structure simply organizes categories, without impacting customers.

185

http://github.com/commonsguy/cw-androidarch/tree/master/General/RoomMN
http://github.com/commonsguy/cw-androidarch/tree/master/General/RoomMN

Static Entity Classes

Much of the time, your entity classes will be standard, top-level Java classes.
Sometimes, though, you might have some utility class that you would rather have as
a static class, nested inside something else. For example, in the case of a join entity,
perhaps you might want to tuck it inside of one of the entities being joined, just to
reduce the clutter of your namespace.

Fortunately, this works, albeit with a wrinkle.

In the sample project, the Customer class — which itself is an entity — has a static
class named CategoryJoin that will serve as the join entity:

packagepackage com.commonsware.android.room.dao;

importimport android.arch.persistence.room.Embeddedandroid.arch.persistence.room.Embedded;
importimport android.arch.persistence.room.Entityandroid.arch.persistence.room.Entity;
importimport android.arch.persistence.room.ForeignKeyandroid.arch.persistence.room.ForeignKey;
importimport android.arch.persistence.room.Ignoreandroid.arch.persistence.room.Ignore;
importimport android.arch.persistence.room.Indexandroid.arch.persistence.room.Index;
importimport android.arch.persistence.room.PrimaryKeyandroid.arch.persistence.room.PrimaryKey;
importimport android.support.annotation.NonNullandroid.support.annotation.NonNull;
importimport java.util.Datejava.util.Date;
importimport java.util.Setjava.util.Set;
importimport java.util.UUIDjava.util.UUID;
importimport staticstatic android.arch.persistence.room.ForeignKey.CASCADE;

@Entity(indices={@Index(value="postalCode", unique=truetrue)})
classclass CustomerCustomer {

@PrimaryKey
@NonNull
publicpublic finalfinal String id;

publicpublic finalfinal String postalCode;
publicpublic finalfinal String displayName;
publicpublic finalfinal Date creationDate;

@Embedded
publicpublic finalfinal LocationColumns officeLocation;

publicpublic finalfinal Set<String> tags;

@Ignore
Customer(String postalCode, String displayName, LocationColumns officeLocation,

Set<String> tags) {
thisthis(UUID.randomUUID().toString(), postalCode, displayName, newnew Date(),

officeLocation, tags);
}

Customer(String id, String postalCode, String displayName, Date creationDate,
LocationColumns officeLocation, Set<String> tags) {

thisthis.id=id;
thisthis.postalCode=postalCode;
thisthis.displayName=displayName;

M:N RELATIONS IN ROOM

186

thisthis.creationDate=creationDate;
thisthis.officeLocation=officeLocation;
thisthis.tags=tags;

}

@Entity(
tableName="customer_category_join",
primaryKeys={"categoryId", "customerId"},
foreignKeys={

@ForeignKey(
entity=Category.class,
parentColumns="id",
childColumns="categoryId",
onDelete=CASCADE),

@ForeignKey(
entity=Customer.class,
parentColumns="id",
childColumns="customerId",
onDelete=CASCADE)},

indices={
@Index(value="categoryId"),
@Index(value="customerId")

}
)
publicpublic staticstatic classclass CategoryJoinCategoryJoin {

@NonNull publicpublic finalfinal String categoryId;
@NonNull publicpublic finalfinal String customerId;

publicpublic CategoryJoin(String categoryId, String customerId) {
thisthis.categoryId=categoryId;
thisthis.customerId=customerId;

}
}

}

(from General/RoomMN/stuff/src/main/java/com/commonsware/android/room/dao/Customer.java)

Room is perfectly content to work with this class, so long as you also register it with
your RoomDatabase via its @Database annotation:

@Database(
entities={Customer.class, Category.class, Customer.CategoryJoin.class},
version=1

)

(from General/RoomMN/stuff/src/main/java/com/commonsware/android/room/dao/StuffDatabase.java)

However, note that this is a static class. Room will not be able to work with a
non-static nested class, as only instances of the outer class can create instances of
the nested class.

Also, note that the default table name is based on the plain class name. In this case,
the default table name is CategoryJoin. The outer class name (Customer) is not
added into the table name. Normally, this will not be a problem, and you might be

M:N RELATIONS IN ROOM

187

https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/RoomMN/stuff/src/main/java/com/commonsware/android/room/dao/Customer.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/RoomMN/stuff/src/main/java/com/commonsware/android/room/dao/StuffDatabase.java

renaming the table anyway. However, where you can get tripped up is if you decided
to have two (or more) classes with the same name, such as having CategoryJoin
inside both Customer and some other entity. Then, you would wind up with two
entity classes both trying to define the same table name by default, and Room will
not like that very much.

Foreign Keys and Indices

Let’s take a closer look at the @Entity annotation on Customer.CategoryJoin:

@Entity(
tableName="customer_category_join",
primaryKeys={"categoryId", "customerId"},
foreignKeys={

@ForeignKey(
entity=Category.class,
parentColumns="id",
childColumns="categoryId",
onDelete=CASCADE),

@ForeignKey(
entity=Customer.class,
parentColumns="id",
childColumns="customerId",
onDelete=CASCADE)},

indices={
@Index(value="categoryId"),
@Index(value="customerId")

}
)

(from General/RoomMN/stuff/src/main/java/com/commonsware/android/room/dao/Customer.java)

Here, we declare four properties.

tableName renames the table to something that is more unique to this situation,
incorporating both “customer” and “category” in the name. That way, if we do wind
up with CategoryJoin elsewhere, we can avoid table name collisions.

primaryKeys is used, instead of @PrimaryKey, because we need a composite key. The
uniqueness is determined by the combination of the IDs of the Customer and
Category, held in customerId and categoryId columns, respectively.

A join entity will need foreign keys back to both entities that it is joining. So, here,
we have two @ForeignKey annotations for the foreignKeys property, connecting to

M:N RELATIONS IN ROOM

188

https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/RoomMN/stuff/src/main/java/com/commonsware/android/room/dao/Customer.java

both Customer and Category by their respective IDs. We also use onDelete=CASCADE,
so if the parent entity (Customer or Category) is deleted, we also delete all join
entities associated with that parent.

And, since Room does not automatically add indices for foreign key columns, we
add them ourselves, so we can rapidly find all of the join entity instances for a given
Customer or Category.

Implementing DAO Methods
In addition to setting up the join entity, we need to leverage it in our DAO.
Otherwise, the join entity is pointless.

Adding and Removing Relations

In many ORMs, where relations are directly implemented on model objects, you
connect objects by direct manipulation. In our case, a Customer might have
addCategory() and removeCategory() methods, and Category might have
addCustomer() and removeCustomer().

Since Room models foreign keys, not relations, that’s not how we connect a
Customer and a Category. Instead, we do it much the same way as you would with
plain SQL: @Insert and @Delete Customer.CategoryJoin instances representing a
particular customer-category connection.

And, to that end, we have suitable DAO methods for this:

@Insert
void insert(Customer.CategoryJoin... joins);

@Delete
void delete(Customer.CategoryJoin... joins);

(from General/RoomMN/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java)

And, to connect a specific Customer instance to a specific Category instance, we set
up the Customer.CategoryJoin instance and insert() it:

tags.add("sculpture");
tags.add("bronze");
tags.add("slow-pay");

finalfinal LocationColumns loc=newnew LocationColumns(40.7047282, -74.0148544);

M:N RELATIONS IN ROOM

189

https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/RoomMN/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java

finalfinal Customer firstCustomer=newnew Customer("10001", "Fearless Girl", loc, tags);

tags.remove("slow-pay");
tags.add("large");

finalfinal Customer secondCustomer=newnew Customer("10002", "Charging Bull", loc, tags);

store.insert(firstCustomer, secondCustomer);

finalfinal Category root=newnew Category("Root!");
finalfinal Category child=newnew Category("Child!", root.id);

store.insert(root, child);

finalfinal Customer.CategoryJoin join=
newnew Customer.CategoryJoin(root.id, secondCustomer.id);

store.insert(join);

(from General/RoomMN/stuff/src/androidTest/java/com/commonsware/android/room/dao/DaoTests.java)

Fetching Via the Join

If an ORM offers addCategory() and removeCustomer() methods, presumably that
ORM also offers getCategories() on Customer and getCustomers() on Category, to
identify the members of a relation with a specific entity.

Again, Room does not work that way.

Instead, we crack open our SQL syntax reference and craft an INNER JOIN ourselves,
to use in a @Query method:

@Query("SELECT categories.* FROM categories\n"+
"INNER JOIN customer_category_join ON categories.id=customer_category_join.categoryId\n"+
"WHERE customer_category_join.customerId=:customerId")

List<Category> categoriesForCustomer(String customerId);

@Query("SELECT Customer.* FROM Customer\n"+
"INNER JOIN customer_category_join ON Customer.id=customer_category_join.customerId\n"+
"WHERE customer_category_join.categoryId=:categoryId")

List<Customer> customersForCategory(String categoryId);

(from General/RoomMN/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java)

Here we have methods that return the members of a specific relation, so we can find
the categories for a Customer or the customers for a Category. And the DAO
methods return sensible data types. But, it is our job to set up the SQL.

So, in the case of categoriesForCustomer(), our SQL:

M:N RELATIONS IN ROOM

190

https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/RoomMN/stuff/src/androidTest/java/com/commonsware/android/room/dao/DaoTests.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/RoomMN/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java

• Retrieves all columns from the categories table…
• …where we JOIN with customer_category_join based on the IDs…
• …and find all those where the join entity points to a specific customer ID

Where’s That Good Ol’ Object Feel?
By this point, some of you may be wanting to dismiss Room outright, as being too
thin of a wrapper around the SQL. Certainly, Room has, um, room for improvement.

However, a lot of the pain may come from what you are thinking that entities
represent. Many developers, particularly those using ORMs in other environments,
will think of entities as being model objects.

That’s not the best approach with Room.

Instead, consider entities to be more akin to data transfer objects (DTOs). They are a
means of getting data from point (SQLite) to point (your application code), and not
much more.

For example, pretend that the SQLite database was on a server somewhere, and you
wrapped it in a Web service which you accessed from your Android app via Retrofit
or some similar library. Developers are used to thinking of the POJOs that you might
get back from a REST call to be DTOs, objects that model the Web service response,
not necessarily modeling any business logic within the app.

Room is much the same. The entities are DTOs from the relational data store to
your app, but may or may not line up with how you would want to represent that
data in memory as “real” model objects. So, just as you sometimes convert the
Retrofit response object graph into something more useful, you sometimes convert
the Room response POJOs into something more useful.

Consider the DAO and the entities to be a low-level API, much as you might
consider Retrofit or other REST access layers. If you need a richer object
representation of your data, wrap the DAO and entities in some sort of repository
object, one that knows more about your app’s needs and can perform the
conversions as needed. That repository can also handle details like transactions, to
keep your business logic clean from any details about how the data storage is
accomplished. The ultimate goal would be to replace one repository implementation
(e.g., using Room) with another (e.g., using Realm or Couchbase Mobile or some
non-SQL solution), without having to change anything related to the business logic

M:N RELATIONS IN ROOM

191

itself.

M:N RELATIONS IN ROOM

192

Polymorphic Room Relations

Java and Kotlin programmers are used to polymorphism, where you can treat objects
as being of the same type, when in truth their concrete types differ. This could be
based on a common interface or a common base class (abstract or otherwise).

Those involved in putting data into SQL databases are used to the fact that
polymorphism and a relational database do not work together naturally. This is just
“one of those things” that developers have to deal with, as part of “object-relational
impedance mismatch”.

There are a few strategies for dealing with polymorphic relations in relational
databases. This chapter outlines them, with an eye towards how they can be
implemented with Room.

Polymorphism With Separate Tables
One approach has each concrete type be stored in its own table. So, for example if
we have a Comment class and a Link class, and they both implement a common Note
interface, we wind up with dedicated tables for Comment and Link. This keeps the
database structure simple, as we still have a 1:1 relationship between concrete class
and table. However, it means that any persistence code that deals with Note objects
needs to handle the fact that a Note is stored differently for different Note
implementations.

The Trips/RoomPoly sample project employs this strategy. This is another riff on the
trip-tracking sample app shown elsewhere in this book.

As depicted in the preceding paragraph, we have a common Note interface:

193

http://github.com/commonsguy/cw-androidarch/tree/master/Trips/RoomPoly
http://github.com/commonsguy/cw-androidarch/tree/master/Trips/RoomPoly

packagepackage com.commonsware.android.room;

publicpublic interfaceinterface NoteNote {
String tripId();

}

(from Trips/RoomPoly/app/src/main/java/com/commonsware/android/room/Note.java)

We also have Comment and Link classes that implement that interface and have
slightly different contents:

packagepackage com.commonsware.android.room;

importimport android.arch.persistence.room.Entityandroid.arch.persistence.room.Entity;
importimport android.arch.persistence.room.ForeignKeyandroid.arch.persistence.room.ForeignKey;
importimport android.arch.persistence.room.Ignoreandroid.arch.persistence.room.Ignore;
importimport android.arch.persistence.room.Indexandroid.arch.persistence.room.Index;
importimport android.arch.persistence.room.PrimaryKeyandroid.arch.persistence.room.PrimaryKey;
importimport android.support.annotation.NonNullandroid.support.annotation.NonNull;
importimport java.util.UUIDjava.util.UUID;
importimport staticstatic android.arch.persistence.room.ForeignKey.CASCADE;

@Entity(
tableName="comments",
foreignKeys=@ForeignKey(

entity=Trip.class,
parentColumns="id",
childColumns="tripId",
onDelete=CASCADE),

indices=@Index("tripId"))
publicpublic classclass CommentComment implementsimplements Note {

@PrimaryKey
@NonNull
publicpublic finalfinal String id;

publicpublic finalfinal String text;

@NonNull publicpublic finalfinal String tripId;

publicpublic Comment(@NonNull String id, String text, @NonNull String tripId) {
thisthis.id=id;
thisthis.text=text;
thisthis.tripId=tripId;

}

@Ignore
publicpublic Comment(String text, @NonNull Trip trip) {

thisthis(UUID.randomUUID().toString(), text, trip.id);

POLYMORPHIC ROOM RELATIONS

194

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomPoly/app/src/main/java/com/commonsware/android/room/Note.java

}

@Override
publicpublic String tripId() {

returnreturn tripId;
}

}

(from Trips/RoomPoly/app/src/main/java/com/commonsware/android/room/Comment.java)

packagepackage com.commonsware.android.room;

importimport android.arch.persistence.room.Entityandroid.arch.persistence.room.Entity;
importimport android.arch.persistence.room.ForeignKeyandroid.arch.persistence.room.ForeignKey;
importimport android.arch.persistence.room.Ignoreandroid.arch.persistence.room.Ignore;
importimport android.arch.persistence.room.Indexandroid.arch.persistence.room.Index;
importimport android.arch.persistence.room.PrimaryKeyandroid.arch.persistence.room.PrimaryKey;
importimport android.support.annotation.NonNullandroid.support.annotation.NonNull;
importimport java.util.UUIDjava.util.UUID;
importimport staticstatic android.arch.persistence.room.ForeignKey.CASCADE;

@Entity(
tableName="links",
foreignKeys=@ForeignKey(

entity=Trip.class,
parentColumns="id",
childColumns="tripId",
onDelete=CASCADE),

indices=@Index("tripId"))
publicpublic classclass LinkLink implementsimplements Note {

@PrimaryKey
@NonNull
publicpublic finalfinal String id;

publicpublic finalfinal String title;

@NonNull publicpublic finalfinal String url;
@NonNull publicpublic finalfinal String tripId;

publicpublic Link(@NonNull String id, String title, @NonNull String url, @NonNull
String tripId) {
thisthis.id=id;
thisthis.title=title;
thisthis.url=url;
thisthis.tripId=tripId;

}

@Ignore

POLYMORPHIC ROOM RELATIONS

195

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomPoly/app/src/main/java/com/commonsware/android/room/Comment.java

publicpublic Link(String title, @NonNull String url, @NonNull Trip trip) {
thisthis(UUID.randomUUID().toString(), title, url, trip.id);

}

@Override
publicpublic String tripId() {

returnreturn tripId;
}

}

(from Trips/RoomPoly/app/src/main/java/com/commonsware/android/room/Link.java)

So, from a database schema standpoint, we have a 1:N relation between Trip and
Comment, and we have a separate 1:N relation between Trip and Link. However, some
of the rest of our Java code might want to think of that as a unified 1:N relation
between Trip and Note, not worrying about the differences between Comment and
Link. After all, we implemented that interface for some good reason (though in this
sample, the reason is “to have a common interface to use for illustration purposes”).

The project still has a TripStore DAO, with a concrete implementation code-
generated by Room. In this project, though, TripStore is an abstract class, not an
interface, the way most versions of the “trips” sample are set up.

We can have the same sort of basic CRUD methods for Comment and Link as we
would with any other 1:N Room relation:

/*
Comment

*/

@Query("SELECT * FROM comments WHERE tripId=:tripId")
abstractabstract List<Comment> findCommentsForTrip(String tripId);

@Insert
abstractabstract void insert(Comment... comments);

@Update
abstractabstract void update(Comment... comments);

@Delete
abstractabstract void delete(Comment... comments);

/*
Link

*/

@Query("SELECT * FROM links WHERE tripId=:tripId")
abstractabstract List<Link> findLinksForTrip(String tripId);

@Override
@Query("SELECT * FROM links WHERE tripId=:tripId")

POLYMORPHIC ROOM RELATIONS

196

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomPoly/app/src/main/java/com/commonsware/android/room/Link.java

publicpublic abstractabstract DataSource.Factory<Integer, Link> pagedStuffForTrip(String tripId);

@Insert
abstractabstract void insert(Link... comments);

@Update
abstractabstract void update(Link... comments);

@Delete
abstractabstract void delete(Link... comments);

(from Trips/RoomPoly/app/src/main/java/com/commonsware/android/room/TripStore.java)

But… what if we want to work with Note, ignoring the differences between Comment
and Link?

For that, we need to write some custom DAO methods, using @Transaction to
ensure that they are transactional:

@Transaction
List<Note> findNotesForTrip(String tripId) {

ArrayList<Note> result=newnew ArrayList<>();

result.addAll(findCommentsForTrip(tripId));
result.addAll(findLinksForTrip(tripId));

returnreturn result;
}

@Transaction
void insert(Note... notes) {

forfor (Note note : notes) {
ifif (note instanceofinstanceof Comment) {

insert((Comment)note);
}
elseelse if (note instanceofinstanceof Link) {

insert((Link)note);
}
elseelse {

throwthrow newnew IllegalArgumentException("Um, wut dis? "+note.getClass().getCanonicalName());
}

}
}

@Transaction
void update(Note... notes) {

forfor (Note note : notes) {
ifif (note instanceofinstanceof Comment) {

update((Comment)note);
}
elseelse if (note instanceofinstanceof Link) {

update((Link)note);
}
elseelse {

throwthrow newnew IllegalArgumentException("Um, wut dis? "+note.getClass().getCanonicalName());
}

}

POLYMORPHIC ROOM RELATIONS

197

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomPoly/app/src/main/java/com/commonsware/android/room/TripStore.java

}

@Transaction
void delete(Note... notes) {

forfor (Note note : notes) {
ifif (note instanceofinstanceof Comment) {

delete((Comment)note);
}
elseelse if (note instanceofinstanceof Link) {

delete((Link)note);
}
elseelse {

throwthrow newnew IllegalArgumentException("Um, wut dis? "+note.getClass().getCanonicalName());
}

}
}

(from Trips/RoomPoly/app/src/main/java/com/commonsware/android/room/TripStore.java)

Retrieval — in the form of findNotesForTrip() — simply calls
findCommentsForTrip() and findLinksForTrip() and concatenates their results.

Mutation — insert(), update(), and delete() — check each Note to see what type
it is and casts to perform the “real” insert(), update(), or delete() for the concrete
type.

So, this approach optimizes for the per-concrete-type behaviors, with wrappers to
try to homogenize access when dealing with the Note abstraction.

Can I Join a UNIONUNION?

You might think that we could create findNotesForTrip() using the UNION support
in SQLite. This basically allows you to concatenate two queries and combine their
results.

The theory would be that you could do something like this:

@Query("SELECT * FROM links WHERE tripId=:tripId UNION ALL SELECT * FROM comments
WHERE tripId=:tripId")
List<Note> findNotesForTrip(String tripId);

However, this will not work.

In this specific case, links and comments do not have the same columns, as our
entities have different fields. This runs afoul of UNION regulations, as at minimum,
both halves of the UNION have to return the same number of columns.

POLYMORPHIC ROOM RELATIONS

198

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomPoly/app/src/main/java/com/commonsware/android/room/TripStore.java

Beyond that, Room has no way to know which rows are links and which rows are
comments, as there is nothing to distinguish them in the result set.

Finally, Room cannot create instances of Note, as that is an interface, and we want
Link and Comment objects anyway. That would require Room to not only know which
rows are links and which are comments, but that rows that are links should be
turned into Link objects and that rows that are comments should be turned into
Comment objects.

From a practical standpoint, both entities would need to have the same properties
and resulting schema. The result set (embodied in a Cursor) has only one set of
column names, based on the first query in the UNION. Room would need to be able to
determine how to populate entities from the second query using the first query’s
column names. In all likelihood, that would require the names to be the same in
both queries and in both entities.

Due to these limitations, it is unlikely that Room will get this capability, though it is
not impossible.

Polymorphism With a Single Table
We could go the other route: have a single table for all Note objects, regardless of
whether they are a Comment or a Link. For small objects with few properties, with a
lot of overlap between the properties of the concrete types, this is manageable. It
becomes unwieldy for many concrete types with many disparate properties. It also
puts limits on your SQL, as the only practical NOT NULL columns are ones for which
you can supply values for every possible concrete type. You also need some way of
determining what concrete type to use for any given table row, and often that
requires yet another column.

But, it is an option, if having multiple tables makes you concerned.

The Trips/RoomPolySingle sample project employs this strategy. It has the same
structure for Comment, Link, and Note, but this time Note is the @Entity:

packagepackage com.commonsware.android.room;

importimport android.arch.persistence.room.Entityandroid.arch.persistence.room.Entity;
importimport android.arch.persistence.room.ForeignKeyandroid.arch.persistence.room.ForeignKey;
importimport android.arch.persistence.room.Indexandroid.arch.persistence.room.Index;
importimport android.arch.persistence.room.PrimaryKeyandroid.arch.persistence.room.PrimaryKey;

POLYMORPHIC ROOM RELATIONS

199

http://github.com/commonsguy/cw-androidarch/tree/master/Trips/RoomPolySingle
http://github.com/commonsguy/cw-androidarch/tree/master/Trips/RoomPolySingle

importimport android.support.annotation.NonNullandroid.support.annotation.NonNull;
importimport staticstatic android.arch.persistence.room.ForeignKey.CASCADE;

@Entity(
tableName="notes",
foreignKeys=@ForeignKey(

entity=Trip.class,
parentColumns="id",
childColumns="tripId",
onDelete=CASCADE),

indices=@Index("tripId"))
publicpublic classclass NoteNote {

publicpublic enumenum Type {
COMMENT(0),
LINK(1);

privateprivate finalfinal int value;

Type(int value) {
thisthis.value=value;

}

publicpublic int value() {
returnreturn value;

}
}

@PrimaryKey
@NonNull
publicpublic finalfinal String id;

publicpublic finalfinal String title;
publicpublic finalfinal String url;
@NonNull publicpublic finalfinal String tripId;
publicpublic finalfinal Type type;

publicpublic Note(@NonNull String id, String title, @NonNull String url,
@NonNull String tripId, Type type) {

thisthis.id=id;
thisthis.title=title;
thisthis.url=url;
thisthis.tripId=tripId;
thisthis.type=type;

}
}

(from Trips/RoomPolySingle/app/src/main/java/com/commonsware/android/room/Note.java)

POLYMORPHIC ROOM RELATIONS

200

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomPolySingle/app/src/main/java/com/commonsware/android/room/Note.java

In addition to the fields from Link and Comment, we also have a type field, housing
an enum that indicates whether this Note is a LINK or COMMENT. This requires
@TypeConverter methods, in this case added to the existing TypeTransmogrifier
class:

@TypeConverter
publicpublic staticstatic Integer fromType(Note.Type type) {

returnreturn type.value();
}

@TypeConverter
publicpublic staticstatic Note.Type toType(Integer value) {

returnreturn value==0 ? Note.Type.COMMENT : Note.Type.LINK;
}

(from Trips/RoomPolySingle/app/src/main/java/com/commonsware/android/room/TypeTransmogrifier.java)

Comment is a subclass of Note, using the title field to hold the comment text:

packagepackage com.commonsware.android.room;

importimport android.arch.persistence.room.Ignoreandroid.arch.persistence.room.Ignore;
importimport android.support.annotation.NonNullandroid.support.annotation.NonNull;
importimport java.util.UUIDjava.util.UUID;

publicpublic classclass CommentComment extendsextends Note {
publicpublic Comment(@NonNull String id, String title, String url,

@NonNull String tripId, Type type) {
supersuper(id, title, url, tripId, Type.COMMENT);

}

@Ignore
publicpublic Comment(String text, @NonNull Trip trip) {

thisthis(UUID.randomUUID().toString(), text, nullnull, trip.id, Type.COMMENT);
}

}

(from Trips/RoomPolySingle/app/src/main/java/com/commonsware/android/room/Comment.java)

Link is another subclass of Note:

packagepackage com.commonsware.android.room;

importimport android.arch.persistence.room.Ignoreandroid.arch.persistence.room.Ignore;
importimport android.support.annotation.NonNullandroid.support.annotation.NonNull;
importimport java.util.UUIDjava.util.UUID;

POLYMORPHIC ROOM RELATIONS

201

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomPolySingle/app/src/main/java/com/commonsware/android/room/TypeTransmogrifier.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomPolySingle/app/src/main/java/com/commonsware/android/room/Comment.java

publicpublic classclass LinkLink extendsextends Note {
publicpublic Link(@NonNull String id, String title, String url,

@NonNull String tripId, Type type) {
supersuper(id, title, url, tripId, Type.LINK);

}

@Ignore
publicpublic Link(String text, String url, @NonNull Trip trip) {

thisthis(UUID.randomUUID().toString(), text, url, trip.id, Type.LINK);
}

}

(from Trips/RoomPolySingle/app/src/main/java/com/commonsware/android/room/Link.java)

This simplifies our @Dao class (TripStore). In effect, Room ignores the difference
between Link and Comment, dealing only with the base Note class, since that is the
@Entity. So for inserts, updates, and deletes, we can pass a Link or Comment to
methods that take a Note, and it all works fine.

/*
Note

*/

@Query("SELECT * FROM notes WHERE tripId=:tripId")
abstractabstract List<Note> findNotesForTrip(String tripId);

@Insert
abstractabstract void insert(Note... comments);

@Update
abstractabstract void update(Note... comments);

@Delete
abstractabstract void delete(Note... comments);

(from Trips/RoomPolySingle/app/src/main/java/com/commonsware/android/room/TripStore.java)

Retrieval becomes a bit more interesting, though. findNotesForTrip(), shown
above, nicely returns all links and comments… but as Note objects, not as Link and
Comment objects. If we want those, we need to have dedicated retrieval methods by
type:

/*
Comment

*/

@Query("SELECT * FROM notes WHERE tripId=:tripId AND type=0")

POLYMORPHIC ROOM RELATIONS

202

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomPolySingle/app/src/main/java/com/commonsware/android/room/Link.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomPolySingle/app/src/main/java/com/commonsware/android/room/TripStore.java

abstractabstract List<Comment> findCommentsForTrip(String tripId);

/*
Link

*/

@Query("SELECT * FROM notes WHERE tripId=:tripId AND type=1")
abstractabstract List<Link> findLinksForTrip(String tripId);

(from Trips/RoomPolySingle/app/src/main/java/com/commonsware/android/room/TripStore.java)

And, as a result, we do not have a single method to retrieve both links and
comments as Link and Comment objects. We would need another @Transaction
wrapper method as before.

Polymorphism With M:N Relations
The sort of discriminator column used above (the type field) also comes into play
for M:N relations.

Suppose that links and comments could be associated with multiple trips. Somehow,
given a trip, we need to know the links and comments. As we saw elsewhere, we can
do this via a join entity mapping to a join table, with each entity instance
representing one pairing of link/comment to a trip.

And, as with 1:N relations, we have two choices:

1. Put all of links and comments in a single table, as we did in the second
example above. In that case, our type discriminator goes on that table and in
its entity. The join table would only need the ID of the note.

2. Have links and comments in separate tables, as we did in the first example.
In that case, our link IDs and comment IDs need to be of the same data type
(e.g., strings), and we would need a type discriminator in the join table, to be
able to distinguish whether a given join entity instance is connecting a trip
to a link or to a comment.

POLYMORPHIC ROOM RELATIONS

203

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RoomPolySingle/app/src/main/java/com/commonsware/android/room/TripStore.java

LiveData Transformations

Sometimes, the data that you want is not the data that you get:

• You want to capitalize those names before showing them in a list
• You want to restrict the results to some subset of what you are receiving
• You do not need the data, but rather some calculation made upon batches of

the data, grouped by some key
• And so on

The LiveData system has some limited support for “transformations”, which help
you adapt an existing LiveData into one that changes the data to better suit your
needs. You can also create your own transformations, if desired. In this chapter, we
will explore all of this.

The Bucket Brigade
LiveData is designed to be a simplified form of a reactive framework like RxJava.

Anyone who has looked at RxJava code knows that it has a tendency towards long
chains of calls, to configure a stream of data, and sometimes to modify that stream
along the way.

For example, you will find code like:

Observable<String> observable=Observable
.create(newnew WordSource(getActivity()))
.subscribeOn(Schedulers.io())
.map(s -> (s.toUpperCase()))
.observeOn(AndroidSchedulers.mainThread())
.doOnComplete(() -> {

205

Toast.makeText(getActivity(), R.string.done, Toast.LENGTH_SHORT)
.show();

});

Here, we:

• Request a roster of words (create(new WordSource(getActivity())))
• Ask to retrieve that roster on a background thread, as it involves disk I/O

(subscribeOn(Schedulers.io()))
• Convert the words to uppercase (map(s -> (s.toUpperCase())))
• Ask to get the results on the main application thread, so we can update our

UI with these words (observeOn(AndroidSchedulers.mainThread()))
• Show a Toast when we are done processing the words (doOnComplete() ...)

In particular, map() is a transformation “operator”, in Rx terms. map() takes an object
from our stream of data (in this case, a word) and transforms it into something else,
which flows downstream to the subsequent chained calls. In this case, map()
transforms a String into a String, where the “transformation” is converting the
input String to uppercase to use as the output String.

RxJava has a dozens of such operators. In contrast, LiveData has two, and we will
implement a third ourselves to see how that is accomplished.

Mapping Data to Data
Both RxJava and LiveData offer a map() transformation. As seen in the preceding
section, a map() converts an item of data from the stream (e.g., a String) to some
other item of data to flow downstream (e.g., an uppercase String).

However, whereas map() is a method on RxJava’s Observable and related classes,
with LiveData, the transformations are held in a separate Transformations class.

For example, suppose we have a DAO method like:

@Query("SELECT * FROM Customer")
LiveData<List<Customer>> allCustomers();

Here, we are expecting a stream of results, where each item is the result of the query:
a list of customers. Room will deliver the current customers to us quickly, then will
deliver updated lists of customers as the Customer table changes, so long as we are
observing the LiveData.

LIVEDATA TRANSFORMATIONS

206

Suppose, though, we do not need the Customer objects, but instead need their IDs.
The simplest and most performant solution would be to have a different DAO
method:

@Query("SELECT id FROM Customer")
LiveData<List<String>> allCustomerIds();

However, that does not use Transformations, and so it is boring. Plus, not every
possible transformation is simply cutting a POJO down to a single field from that
POJO.

The Transformations equivalent would be something like this:

LiveData<List<String>> liveCustomerIds=
Transformations.map(store.allCustomers(),

newnew Function<List<Customer>, List<String>>() {
@Override
publicpublic List<String> apply(List<Customer> customers) {

ArrayList<String> result=newnew ArrayList<>();

forfor (Customer customer : customers) {
result.add(customer.id);

}

returnreturn(result);
}

});

map() takes two parameters: a LiveData of the stream to manipulate, and a Function
that converts items from that stream from one data type to another.

Here is where Room’s insistence on a single-object response becomes a pain. If this
were a stream of Customer objects, our Function could just get the id from the
Customer and return it. But we do not have a stream of Customer objects — we have
a stream of a list of Customer objects. That means we need to return a list of
customer IDs, requiring allocating a new ArrayList and iterating over each
Customer to add its id to that list.

Mapping Data to… LiveData?
So now we have a list of Customer IDs. Suppose that we now want to retrieve the
categories associated with all of the Customer entities. That requires another
database request via our DAO:

LIVEDATA TRANSFORMATIONS

207

@Query("SELECT categories.* FROM categories\n"+
"INNER JOIN customer_category_join ON

categories.id=customer_category_join.categoryId\n"+
"WHERE customer_category_join.customerId IN (:customerIds)")

LiveData<List<Category>> categoriesForCustomers(List<String> customerIds);

And if we are on the main application thread — as is typical when working with
LiveData results — we need the DAO to return another LiveData.

In principle, you could use map() for this. However, for this scenario, there is
switchMap(). This says that the objects being created via the mapping are
themselves LiveData. This helps the LiveData system keep everything in sync,
particularly across lifecycle events.

So, given the liveCustomerIds from the preceding section, we can get the categories
via:

finalfinal LiveData<List<Category>> liveCategories=
Transformations.switchMap(liveCustomerIds,

newnew Function<List<String>, LiveData<List<Category>>>() {
@Override
publicpublic LiveData<List<Category>> apply(List<String> customerIds) {

returnreturn(store.categoriesForCustomers(customerIds));
}

});

And, if we arrange to observe() that liveCategories object, we will be called with
onChanged() when the list of Category objects is available, after the initial database
I/O to get the customers, then the secondary database I/O to get the categories for
those customers.

Writing a Transformation
Another RxJava transformation operator is filter(). This takes a stream of objects
and a function that tests each object and returns true for the ones to be sent
downstream. The ones that test out to false are dropped. Hence, the stream
becomes filtered by whatever rule is encoded in that function.

Transformations does not have a filter() method, but we can write one, to see
what a transformation method looks like.

Earlier in the book, we had the Sensor/LiveList sample, where we had a LiveData

LIVEDATA TRANSFORMATIONS

208

reporting sensor events, specifically the light level. The Sensor/LiveFilter sample
project is a clone of that project, one that introduces a filter, to only report those
readings that fall between 20 and 40 lux.

To that end, we have a LiveTransmogrifiers class that serves as a home for our
transformation methods:

packagepackage com.commonsware.android.livedata;

importimport android.arch.lifecycle.LiveDataandroid.arch.lifecycle.LiveData;
importimport android.arch.lifecycle.MediatorLiveDataandroid.arch.lifecycle.MediatorLiveData;
importimport android.support.annotation.MainThreadandroid.support.annotation.MainThread;
importimport android.support.annotation.NonNullandroid.support.annotation.NonNull;

classclass LiveTransmogrifiersLiveTransmogrifiers {
interfaceinterface ConfirmerConfirmer<T> {

boolean test(T thingy);
}

@MainThread
staticstatic <X> LiveData<X> filter(@NonNull LiveData<X> source,

@NonNull finalfinal Confirmer<X> confirmer) {
finalfinal MediatorLiveData<X> result=newnew MediatorLiveData<>();

result.addSource(source, x -> {
ifif (confirmer.test(x)) {

result.setValue(x);
}

});

returnreturn(result);
}

}

(from Sensor/LiveFilter/app/src/main/java/com/commonsware/android/livedata/LiveTransmogrifiers.java)

The RxJava filter() operator uses a Predicate as the function for testing an object
to determine if it should be passed or not. Unfortunately, Predicate is part of the
Java 8 classes added in Android 7.0, and so it is unavailable for older devices. So, we
have a Confirmer interface that fills that role. The test() method on a Confirmer
needs to return true for objects that should pass the filter, false otherwise.

The filter() method on LiveTransmogrifiers takes a LiveData of some type and a
Confirmer of that type. It then uses a MediatorLiveData, which is a LiveData object
that can chain onto an existing LiveData and expose the onChanged() method for

LIVEDATA TRANSFORMATIONS

209

http://github.com/commonsguy/cw-androidarch/tree/master/Sensor/LiveFilter
http://github.com/commonsguy/cw-androidarch/tree/master/Sensor/LiveFilter
https://github.com/commonsguy/cw-androidarch/blob/v1.0/Sensor/LiveFilter/app/src/main/java/com/commonsware/android/livedata/LiveTransmogrifiers.java

outside parties to use. In this case, our lambda uses the Confirmer to see if the new
object passes the test(), and if it does, we call setValue() on the
MediatorLiveData to have that object flow along to anything that observes that
MediatorLiveData. filter() then returns that MediatorLiveData. The net effect is
as if filter() wraps the original LiveData in another LiveData that applies our
filtering rule.

We can now use filter() to limit the readings that we get from the sensor:

finalfinal LiveData<SensorLiveData.Event> filtered=
LiveTransmogrifiers.filter(state.sensorLiveData,

event -> (event.values[0]>20 && event.values[0]<40));

filtered.observe(thisthis, event -> adapter.add(event));

(from Sensor/LiveFilter/app/src/main/java/com/commonsware/android/livedata/MainActivity.java)

We pass our original SensorLiveData to filter(), along with a Confirmer (in the
form of a lambda expression) that sees if the light level is between 20 and 40. Then,
we observe the results of the filter() call and only add those objects — not every
reading from the SensorLiveData — to the EventLogAdapter.

The net result, if you compare and contrast the output of this sample with the
original, is that while the original reports everything, this new sample only reports a
subset of the data.

Do We Really Want This?
LiveData was not set up to have a vast library of transformations, the way that
RxJava has its vast library of operators. map() and switchMap() are almost
afterthoughts. And while Google may not add many more transformations to the
Transformations class, undoubtedly somebody will create a library with
implementations of filter() and a handful of other RxJava-style operators.

However, those libraries will be limited, because LiveData itself is not as rich a
framework as is RxJava. There is no notion in LiveData of propagating errors, or
indicating that a stream is completed. Some RxJava operators will be difficult or
impossible to implement as a result.

And this is by design.

LiveData is designed to be simple and lifecycle aware. That’s it. If your needs

LIVEDATA TRANSFORMATIONS

210

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Sensor/LiveFilter/app/src/main/java/com/commonsware/android/livedata/MainActivity.java

transcend what LiveData can handle well, consider migrating to RxJava. Conversely,
if LiveData handles everything that you need, you can skip RxJava’s complexity.

LIVEDATA TRANSFORMATIONS

211

RxJava and Room

In a previous chapter, we saw how a Room DAO could return a LiveData object as a
wrapper around the “real” data to be retrieved from the database. Then, the @Query
method would no longer be a blocking call, but instead would return the LiveData
immediately, with the actual query results being delivered to any observers of the
LiveData.

Not surprisingly, you can do the same thing with RxJava types. Simply wrap the
return type from the @Query method in a suitable RxJava type. You get the same
results as you do with LiveData: the @Query method returns the RxJava object
immediately, and you get the actual query results via RxJava’s subscriber system.

However, RxJava is a much richer library, and it is commensurately more complex. In
this chapter, we will explore what RxJava types can be returned by a @Query, how
those work with respect to data changes, and how the underlying data type affects
all of that.

Adding RxJava
RxJava has its own dependencies. In an Android app, typically you will use
io.reactivex.rxjava2:rxjava and io.reactivex.rxjava2:rxandroid, where the
latter provides utility classes like AndroidSchedulers.

However, Room itself does not have a transitive dependency upon RxJava.
Otherwise, everybody using Room would need to pull in RxJava, and that would add
unnecessary bloat.

So, in addition to the regular dependencies for RxJava and the regular dependencies
for Room (e.g., android.arch.persistence.room:runtime), you also need the

213

android.arch.persistence.room:rxjava2 dependency. This contains the glue code
necessary to tie Room to RxJava:

implementation "android.arch.persistence.room:runtime:1.1.1"
implementation "android.arch.persistence.room:rxjava2:1.1.1"
annotationProcessor "android.arch.persistence.room:compiler:1.1.1"

(from Trips/RxRoom/app/build.gradle)

If you forget this dependency, but you have the regular RxJava and Room
dependencies, you will not notice a problem right away. You will be able to use
RxJava types in your DAO, because Android Studio knows about RxJava through
your existing dependencies. However, when you go to build and run the project,
your build will fail with:

Error:(41, 24) error: To use RxJava2 features, you must add `rxjava2` artifact from
Room as a dependency. android.arch.persistence.room:rxjava2:<version>

Decisions, Decisions
To determine what Rx type is appropriate for your case, you need to make two
decisions:

1. Do you just want the data once, or do you want to be notified about updates
over time?

2. How many objects might you get in your result set from your query? 0? 1? N?

One-Time or Ongoing?

In some cases, you are just performing a query to get some data out of the database,
and that’s it.

However, Room offers a powerful feature whereby it will re-execute your query and
deliver you fresh results, if somewhere else Room sees that you manipulated the
contents of the table(s) that your query uses. The result is a bit like a
ContentProvider and ContentObserver, in that you get fresh results delivered
“automatically”. However, to make this work, you will need to use particular Rx types
that support ongoing events, not just one-time events.

RXJAVA AND ROOM

214

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RxRoom/app/build.gradle

Zero, One, or N?

Sometimes, you are fairly certain how many rows will be returned by your query, and
therefore how many entities or other POJOs will be returned by a DAO method. For
example, if you are querying by primary key or some other unique column, you
know that you will only ever get back 0 or 1 objects, as there cannot be more than
one with the unique value. Similarly, if you are using simple aggregate functions
(e.g., SELECT COUNT(*) FROM table WHERE criteria...), you know that you will
get exactly one row back.

In other cases, you may have no idea how many rows you will get. Querying for all
rows in a table might return 0, 1, or N rows, depending on the state of the table at
the time. In these cases, you may want to have reactive types that return a List of
objects, rather than just an individual object.

The One-Time Option: Single
In RxJava, a Single is a reactive type that is designed to deliver a single result, and
that’s it. You either get that result or you get an error, such as when the data source
cannot actually deliver you the result (e.g., IOException on a network call).

Single is a good type to use in a Room DAO when you are looking to just get the
current query results, without keeping an open subscription for ongoing changes.

Item Singles

For cases where you are fairly certain that you will get a single row in your query
results, you could use a Single for the desired entity or POJO type:

@Query("SELECT * FROM trips WHERE id=:id")
Single<Trip> singleTripById(String id);

However, in this case, if your query returns no rows, you will get an
EmptyResultSetException from Room. When you subscribe() to the Single, you
should provide both a listener for a POJO and an error listener, in case your query
returns no rows.

List Singles

Another option is to have your DAO method return a Single for a List of entities or

RXJAVA AND ROOM

215

other POJOs:

@Query("SELECT * FROM trips ORDER BY title")
Single<List<Trip>> singleAllTrips();

This works for any number of rows, including the zero-row case (you just get an
empty list).

The One-Time 0-1 Option: Maybe
Maybe is an RxJava type for cases where you may get a result, or you may not, or you
may get an error.

For the case where you might get a row or you might not, and you would prefer not
to have to look for a special exception to identify the zero-rows case, Maybe is a fine
choice:

@Query("SELECT * FROM trips WHERE id=:id")
Maybe<Trip> maybeTripById(String id);

The Ongoing Option: Flowable
While we tend to focus on RxJava, bear in mind that RxJava 2 is itself based upon a
broader Reactive Streams initiative, which has its own library. Effectively, Reactive
Streams offers a common API for some high-level constructs, to help make it easier
to have multiple disparate reactive libraries be able to inter-operate.

One key class from Reactive Streams is Publisher, which is the source of events that
get “published”. The primary implementation of Publisher in RxJava 2 is Flowable.
In principle, you could use either type with Room, though you may be more
comfortable with Flowable, so you are sticking with native RxJava types.

Flowable is reminiscent of Observable, in that it represents a stream of ongoing
events. If you use Flowable as the return type of your DAO method, not only will
you get the initial query results, but so long as you are subscribed to that Flowable
you will receive updated query results if Room thinks that the data may have
changed.

Note that what Room thinks might have changed may not actually have changed. It
is entirely possible that you will get the exact same data multiple times. Room is

RXJAVA AND ROOM

216

http://www.reactive-streams.org/

looking for SQL operations that modify the contents of a table; if your query does
not happen to reference any of those modifications, the re-executed query will
return the same data as you received in the previous results.

Item Flowables

If you have long-term interest in a single row, you could use a Flowable for a single
entity or other POJO:

@Query("SELECT * FROM trips WHERE id=:id")
Flowable<Trip> flowTripById(String id);

However, if your query returns no rows, the Flowable does not deliver anything to
you. This may be OK in your situation, or it may not. If you need a positive
indication that no rows matched your query, a Flowable for an individual object is
not a good choice.

List Flowables

You could also have a Flowable for a List of entities or other POJOs:

@Query("SELECT * FROM trips ORDER BY title")
Flowable<List<Trip>> flowAllTrips();

In this case, you will always get a result, which may be an empty List if no rows
matched your query.

Plus, since this is a Flowable, so long as you have an active subscriber, you will get
updates delivered to you if Room thinks that the table(s) in your query may have
been modified.

@RawQuery and Reactive Responses
Earlier, we saw that you can use @RawQuery to execute queries where either:

• You do not know the SQL statement at compile time, as it needs to be
assembled from pieces at runtime, or

• The table being queried is not associated with a Room @Entity

If you attempt to return a reactive result from the @RawQuery method (e.g., a
Flowable, a LiveData), and the core object of the result is not an @Entity, you will

RXJAVA AND ROOM

217

crash at build time, with:

Observable query return type (LiveData, Flowable, DataSource, DataSourceFactory etc)
can only be used with SELECT queries that directly or indirectly (via @Relation, for
example) access at least one table. For @RawQuery, you should specify the list of
tables to be observed via the observedEntities field.

Room wants to be able to deliver updates to your reactive object when the
underlying table’s content changes, and it can only do that if it knows the table.

For cases where there is a clear @Entity (or perhaps more than one) whose changes
should trigger an updated result to be delivered to you reactively, add the
observedEntities property to the @RawQuery annotation, with the .class
reference(s) of the entities that should be observed. If anything associated with
those entities changes, Room will re-deliver a fresh result to you.

For cases where the table being queried is not associated with a Room @Entity,
either:

• Do not return a reactive type, or
• Lie to Room and supply some arbitrary entity in observedEntities, just to

make the error go away

Hopefully, this requirement will be relaxed, as not every situation calls for this sort
of automatic-update delivery. For example, in the chapter on full-text searching in
Room, we will see an example of using @RawQuery with a reactive response type and
having to provide a “fake” value for observedEntities, just to eliminate the error.

RXJAVA AND ROOM

218

https://issuetracker.google.com/issues/78806349

RxJava and Lifecycles

RxJava is cool, albeit confusing. But beyond that, it is a pure Java library. RxJava
knows nothing about Android-specific concepts, as it is designed to be used on all
sorts of Java projects.

Android developers using RxJava invariably also add RxAndroid, which gives us
access to a Scheduler that knows about the Android main application thread.
However, RxAndroid does not have anything that deals with activity or fragment
lifecycles, leaving that up to you. With Android lifecycles, we want to create things
as activities and fragments start up and clean up those things as the activities and
fragments go away. In the case of RxJava, if we subscribe to some Observable, it
would be nice to get rid of that subscription at an appropriate point.

In this chapter, we will explore a few options — including one from the Architecture
Components — for dealing with lifecycles with RxJava.

The Classic Approach
The default way of handling this is the approach used in the chapter on RxJava and
Room:

• Hold onto the Disposable that you get back from subscribing to an
observable

• Clean up that Disposable in a suitable lifecycle method, such as
onDestroy(), via a call to dispose()

If you have several subscriptions to track, CompositeDisposable lets you track all of
them in one spot. CompositeDisposable has add() and addAll() methods to add
subscriptions to it. And, as the name suggests, CompositeDisposable implements

219

the composite pattern, and so CompositeDisposable itself is a Disposable. Calling
dispose() on the CompositeDisposable triggers calls to dispose() on all of the
Disposable objects you added to the composite.

This works, but it does require you to remember to clean these things up, and it is
easy to forget.

Bridging RxJava and LiveData
Of course, the Architecture Components have Lifecycle, LifecycleOwner, and
related classes for performing operations when certain lifecycle events occur.
LiveData — the Architecture Components’ counterpart to RxJava — is intrinsically
lifecycle-aware.

So, another option would be to have some sort of adapter that converts RxJava into
LiveData. We could then observe the LiveData, knowing that our Observer would
be cleaned up automatically as part of normal lifecycle management.

Fortunately, the Architecture Components has LiveDataReactiveStreams, for
converting LiveData to and from RxJava structures, as is illustrated in the Trips/
RxLifecycle sample project.

LiveDataReactiveStreams is in yet another artifact,
android.arch.lifecycle:reactivestreams. So, you need to request that artifact
with the others that you are using:

dependencies {
implementation "com.android.support:recyclerview-v7:28.0.0"
implementation "com.android.support:support-core-utils:28.0.0"
implementation "com.android.support:support-fragment:28.0.0"
implementation 'io.reactivex.rxjava2:rxjava:2.2.2'
implementation 'io.reactivex.rxjava2:rxandroid:2.1.0'
implementation 'android.arch.lifecycle:runtime:1.1.1'
implementation 'android.arch.lifecycle:livedata:1.1.1'
implementation 'android.arch.lifecycle:reactivestreams:1.1.1'
implementation "android.arch.persistence.room:runtime:1.1.1"
implementation "android.arch.persistence.room:rxjava2:1.1.1"
annotationProcessor "android.arch.persistence.room:compiler:1.1.1"
androidTestImplementation "com.android.support:support-annotations:28.0.0"
androidTestImplementation 'com.android.support.test:rules:1.0.2'
androidTestImplementation 'android.arch.core:core-testing:1.1.1'
androidTestImplementation "com.android.support:support-core-utils:28.0.0"
androidTestImplementation "com.android.support:support-compat:28.0.0"

RXJAVA AND LIFECYCLES

220

http://github.com/commonsguy/cw-androidarch/tree/master/Trips/RxLifecycle
http://github.com/commonsguy/cw-androidarch/tree/master/Trips/RxLifecycle
http://github.com/commonsguy/cw-androidarch/tree/master/Trips/RxLifecycle
http://github.com/commonsguy/cw-androidarch/tree/master/Trips/RxLifecycle

androidTestImplementation 'android.arch.lifecycle:runtime:1.1.1'
androidTestImplementation 'android.arch.lifecycle:common:1.1.1'

}

(from Trips/RxLifecycle/app/build.gradle)

From RxJava to LiveData

To bridge from RxJava to LiveData, LiveDataReactiveStreams offers a
fromPublisher() method. Here, “publisher” refers to Publisher from the Reactive
Streams initiative. Most RxJava Observable types do not implement the Publisher
interface, but Flowable does. And most RxJava Observable types can be converted to
a Flowable via the toFlowable() method.

As a result, the recipe for using LiveDataReactiveStreams is:

• Create your RxJava Observable as normal
• Call toFlowable() on it to convert it into a Flowable
• Pass that Flowable to fromPublisher() to get a LiveData
• Observe that LiveData and consume the results, such as with a method

reference

@Override
publicpublic void onViewCreated(View view, Bundle savedInstanceState) {

supersuper.onViewCreated(view, savedInstanceState);

setLayoutManager(newnew LinearLayoutManager(getActivity()));
getRecyclerView()

.addItemDecoration(newnew DividerItemDecoration(getActivity(),
LinearLayoutManager.VERTICAL));

TripStore store=TripDatabase.get(getActivity()).tripStore();

Flowable<List<Trip>> trips=store.maybeAllTrips()
.subscribeOn(Schedulers.single())
.observeOn(AndroidSchedulers.mainThread())
.toFlowable();

LiveDataReactiveStreams.fromPublisher(trips)
.observe(thisthis, thisthis::setAdapter);

}

(from Trips/RxLifecycle/app/src/main/java/com/commonsware/android/room/TripsFragment.java)

Here, we do this work inside of TripsFragment, which is a LifecycleOwner courtesy

RXJAVA AND LIFECYCLES

221

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RxLifecycle/app/build.gradle
http://www.reactive-streams.org/
http://www.reactive-streams.org/
https://github.com/commonsguy/cw-androidarch/blob/v1.0/Trips/RxLifecycle/app/src/main/java/com/commonsware/android/room/TripsFragment.java

of the support-fragment implementation of Fragment. We do not have to worry
about cleaning up the LiveData ourselves; the lifecycle system will handle this for
us.

However, this comes with a significant side effect: on a configuration change, you
may be handed data twice:

• Once from standard LiveData behavior, which automatically delivers the
last-emitted object when there is a new observer, and

• Possibly once from your RxJava source, as LiveDataReactiveStreams re-
subscribes to that source as part of that configuration change

For example, suppose that you have a method that returns a Single like this:

Single<Set<String>> loadStringSet() {
returnreturn Single.create(emitter -> {

SharedPreferences prefs=PreferenceManager.getDefaultSharedPreferences(ctxt);

emitter.onSuccess(prefs.getStringSet(PREF_STUFF, Collections.emptySet()));
});

}

Here, we are loading a Set of String objects from SharedPreferences. Since on the
first load of data from SharedPreferences, SharedPreferences performs disk I/O, it
is safest (in terms of avoiding jank) to always access SharedPreferences on a
background thread.

If we use LiveDataReactiveStreams.fromPublisher() to wrap that Single in a
LiveData object, the first observer of the LiveData will trigger the Single to load its
data. When a configuration change occurs, the LiveData wrapper around the Single
unsubscribes from the Single, then re-subscribes when the new activity/fragment
instance starts observing the LiveData again. For a cold observable like this one, this
causes our lambda expression to be re-evaluated. Both that newly-generated result
and the previously-cached result from the LiveData will be delivered to our activity’s
(or fragment’s) observer. The observer needs to be aware of this and take appropriate
steps: it needs to replace any existing data, not add to it.

From LiveData to RxJava

If, for some reason, you need to convert a LiveData to something in the RxJava
space, toPublisher() on LiveDataReactiveStreams can adapt a LiveData to a
Publisher. On its own, Publisher only offers a subscribe() method. However,

RXJAVA AND LIFECYCLES

222

Observable.fromPublisher() can adapt a Publisher into an Observable, and from
there you can set up RxJava chains as needed.

The Uber Solution: AutoDispose
The downside of LiveDataReactiveStreams, to some, is that you wind up with a
LiveData object. Some developers will prefer to stick with RxJava throughout, but
still would like some measure of automatic lifecycle-based subscription cleanup.

For that, Uber offers AutoDispose.

It allows you to add lifecycle-based subscription cleanup with a single line added to
your RxJava chain, akin to:

observable
// subscribeOn(), observeOn(), map(), and so on go here
.to(AutoDispose.with(scope).forObservable())
.subscribe(/* good stuff here */);

Here, scope will be an object that provides lifecycle details to AutoDispose, so that it
knows when to stop forwarding events on to your Consumer or other subscriber.
There are two Android-specific classes for this:

• AndroidLifecycleScopeProvider, which uses Lifecycle and
LifecycleOwner

• ViewScopeProvider, which (somehow) uses View

If you are comfortable with consuming events in your UI using LiveData,
LiveDataReactiveStreams is likely to be the simpler choice. If, however, you are
interested in avoiding the conversion to LiveData, AutoDispose is worth
considering.

RXJAVA AND LIFECYCLES

223

https://github.com/uber/AutoDispose

Packing Up a Room

A popular question over the years has been: how do I ship a pre-populated database
with my app?

Android has never offered an “out of the box” solution for this, though there are
third-party solutions that we can use. Room changes the problem space slightly,
breaking the original solutions and requiring a fresh option. In this chapter, we will
review that new solution and how you can use it to ship a database, packaged in
your app, and used by Room.

The Problem
Roughly speaking, data for a SQLite database can come from one of three places:

• It can come from user input, through the UI of your app
• It can come from external sources, such as data that you synchronize with a

Web service
• It can come with the app itself, when the app was installed

Most apps get by with the first two data sources. However, from time to time, there
are situations where shipping a database with an app can prove useful.

Sometimes, that database represents starter data, that the user (or a server) will
augment or modify over time. For example, you might be writing an app for
documenting household goods and other items, to help a homeowner or renter with
future insurance claims in case of a fire, natural disaster, etc. The app allows the user
to take photos of items, provide notes about them (make, model, etc.), and
categorize them. While the user can manage the list of categories, you might want to
ship some pre-defined categories with the app, so that the user is not forced into

225

deciding on categories before the app can be used.

Sometimes, the packaged database is a read-only data repository. Frequently, this is
for apps that want to offer offline access to a dataset that otherwise might be pulled
from a Web service. Sometimes, the data simply is not meant to change frequently.
For example, the APK edition of The Busy Coder’s Guide to Android Development
ships with a packaged database containing the prose of the book, indexed by
SQLite’s FTS3 engine for use with full-text searching. The database contents are
updated when the app is updated, reflecting a new version of the book.

For tiny datasets, you can get away with populating the database yourself when you
first create it, using ordinary Java code. This is inefficient for larger databases,
though, as it forces us to execute a bunch of SQLite transactions on the user’s
device. It would be more efficient to ship an actual SQLite database file. And, since
the developers of SQLite have done an admirable job of backwards and forwards
compatibility with their database file structure, this works fairly well. You use other
tools, such as DB Browser for SQLite, to create the database with your data. Then,
you… do… something… to put that database in the APK and use it at runtime.

The Classic Solution: SQLiteAssetHelper
The recommended “something” for traditional SQLite work in Android has been Jeff
Gilfelt’s SQLiteAssetHelper. Basic use of SQLiteAssetHelper is fairly simple:

• Create an assets/databases/ directory in your main sourceset of your app
module

• Put your pre-populated database in that directory, with the same filename
that you want to use at runtime

• Rather than using SQLiteOpenHelper, subclass SQLiteAssetHelper instead,
supplying that filename:

publicpublic classclass YourDatabaseYourDatabase extendsextends SQLiteAssetHelper {
privateprivate staticstatic finalfinal String DB_NAME="whatever.db";
privateprivate staticstatic finalfinal int SCHEMA_VERSION=1;

publicpublic YourDatabase(Context context) {
supersuper(context, DB_NAME, nullnull, SCHEMA_VERSION);

}
}

The rest of your code can use your SQLiteAssetHelper subclass just as it would

PACKING UP A ROOM

226

https://commonsware.com/Android
http://sqlitebrowser.org/
https://github.com/jgilfelt/android-sqlite-asset-helper
https://github.com/jgilfelt/android-sqlite-asset-helper
https://github.com/jgilfelt/android-sqlite-asset-helper

SQLiteOpenHelper, such as calling getReadableDatabase() or
getWritableDatabase(). The first time one of those methods is called,
SQLiteAssetHelper will notice that there is no database and will copy the database
from assets into the proper location.

NOTE: Jeff Gilfelt is no longer maintaining SQLiteAssetHelper. Right now, it still
works fine for this role. With luck, new actively-supported solutions will become
available.

The New Problem
Room, however, does not use SQLiteOpenHelper… at least, not directly. There is no
obvious place that you can use to put SQLiteAssetHelper.

There are two potential hooks that we saw in the chapter on the support database
API.

One is with addCallback() on RoomDatabase.Builder. This allows you to register a
RoomDatabase.Callback instance with the RoomDatabase. That callback will be
called with onCreate() when the database is created for the first time. If you wanted
to execute some SQL statements to populate the database, you could use this
approach. However, Room stores its own metadata in the database in a private table.
We have no great way of putting that metadata inside our pre-populated database,
and by the time onCreate() is called, it is too late for us to try to swap in that pre-
populated database.

The other hook is with openHelperFactory() on RoomDatabase.Builder. This is the
entry point to replacing the standard SQLite access code with our own code. As it
turns out, a slightly-modified version of SQLiteAssetHelper can be used in this
fashion.

Merging SQLiteAssetHelper with Room
The General/AssetRoom sample project demonstrates that latter approach, in the
form of AssetSQLiteOpenHelper and AssetSQLiteOpenHelperFactory classes.

PACKING UP A ROOM

227

http://github.com/commonsguy/cw-androidarch/tree/master/General/AssetRoom
http://github.com/commonsguy/cw-androidarch/tree/master/General/AssetRoom

As with the original SQLiteAssetHelper, you need to put your pre-populated
database in assets/databases/, under whatever name you want to use for that
database:

Figure 1: AssetRoom Project, Showing assets/databases/constants.db

Then, when creating your RoomDatabase subclass:

• Use that same database name, and
• Use openHelperFactory(new AssetSQLiteOpenHelperFactory()) when

creating the instance of your RoomDatabase via RoomDatabase.Builder

packagepackage com.commonsware.android.room;

importimport android.arch.persistence.db.framework.AssetSQLiteOpenHelperFactoryandroid.arch.persistence.db.framework.AssetSQLiteOpenHelperFactory;
importimport android.arch.persistence.room.Daoandroid.arch.persistence.room.Dao;
importimport android.arch.persistence.room.Databaseandroid.arch.persistence.room.Database;
importimport android.arch.persistence.room.Insertandroid.arch.persistence.room.Insert;
importimport android.arch.persistence.room.Queryandroid.arch.persistence.room.Query;
importimport android.arch.persistence.room.Roomandroid.arch.persistence.room.Room;
importimport android.arch.persistence.room.RoomDatabaseandroid.arch.persistence.room.RoomDatabase;
importimport android.content.Contextandroid.content.Context;
importimport java.util.Listjava.util.List;

@Database(entities={Constant.class}, version=1)
abstractabstract classclass ConstantsDatabaseConstantsDatabase extendsextends RoomDatabase {

publicpublic abstractabstract Constant.Store constantsStore();

staticstatic finalfinal String DB_NAME="constants.db";
privateprivate staticstatic volatilevolatile ConstantsDatabase INSTANCE=nullnull;

synchronizedsynchronized staticstatic ConstantsDatabase get(Context ctxt) {
ifif (INSTANCE==nullnull) {

INSTANCE=create(ctxt);
}

returnreturn(INSTANCE);
}

PACKING UP A ROOM

228

staticstatic ConstantsDatabase create(Context ctxt) {
RoomDatabase.Builder<ConstantsDatabase> b=

Room.databaseBuilder(ctxt.getApplicationContext(), ConstantsDatabase.class,
DB_NAME);

returnreturn(b.openHelperFactory(newnew AssetSQLiteOpenHelperFactory()).build());
}

}

(from General/AssetRoom/app/src/main/java/com/commonsware/android/room/ConstantsDatabase.java)

Compared with some of the other Room samples, you will notice that
ConstantsDatabase lacks any option to create an in-memory database. There is a
good reason for that: SQLiteAssetHelper cannot support that, as we have no way of
copying the database file into some place where SQLite itself will use it in memory.

This makes testing slightly more aggravating, as you will want to make sure that you
delete your database file in an @After method, as otherwise future runs of your tests
will encounter the existing database file:

packagepackage com.commonsware.android.room;

importimport android.support.test.InstrumentationRegistryandroid.support.test.InstrumentationRegistry;
importimport android.support.test.runner.AndroidJUnit4android.support.test.runner.AndroidJUnit4;
importimport org.junit.Afterorg.junit.After;
importimport org.junit.Beforeorg.junit.Before;
importimport org.junit.Testorg.junit.Test;
importimport org.junit.runner.RunWithorg.junit.runner.RunWith;
importimport staticstatic org.junit.Assert.assertEquals;
importimport staticstatic org.junit.Assert.assertTrue;

@RunWith(AndroidJUnit4.class)
publicpublic classclass AssetTestsAssetTests {

privateprivate ConstantsDatabase db;
privateprivate Constant.Store store;

@Before
publicpublic void setUp() {

db=ConstantsDatabase.get(InstrumentationRegistry.getTargetContext());
store=db.constantsStore();

}

@After
publicpublic void tearDown() {

db.close();
assertTrue(InstrumentationRegistry

.getTargetContext()

.getDatabasePath(ConstantsDatabase.DB_NAME)

PACKING UP A ROOM

229

https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/AssetRoom/app/src/main/java/com/commonsware/android/room/ConstantsDatabase.java

.delete());
}

@Test
publicpublic void assets() {

assertEquals(13, store.all().size());
store.insert(newnew Constant("Pi", 3.1415926));
assertEquals(14, store.all().size());

}
}

(from General/AssetRoom/app/src/androidTest/java/com/commonsware/android/room/AssetTests.java)

However, otherwise, using the pre-populated database is no different than using a
regular Room database. Whether the data can be modified is up to you, particularly
with your @Dao class — if you do not write any DAO methods that modify the data,
you should be safe. Note, though, that Room has its own metadata table, which
might be modified by Room as it sees fit.

PACKING UP A ROOM

230

https://github.com/commonsguy/cw-androidarch/blob/v1.0/General/AssetRoom/app/src/androidTest/java/com/commonsware/android/room/AssetTests.java

Paging Room Data

September 2017 brought a new addition to the Architecture Components: the Paging
library. This library contains a series of classes designed to help you offer a
browsable UI across a large data set, particularly where that data set comes from a
Room-managed database.

In this chapter, we will explore the role of this library, some of the key classes, and
the basic setup for use with Room and RecyclerView.

The Problem: Too Much Data
One of the little-known issues with Android’s SQLite API is how the Cursor works.
We tend to just use that Cursor and ignore exactly how it is getting its data. The
behavior of our database Cursor is normal for smaller data sets but possibly
problematic for really large ones.

Cursor is an interface. The real Java class that we get back from SQLite is a
SQLiteCursor. The Cursor API, and SQLiteCursor in particular, was developed well
before Android 1.0 was released, and therefore has a fair share of “features” that
seemed like good ideas at the time but did not hold up well as the years progressed.
The one that everybody encounters is the fact that when you get a Cursor back from
methods like query() or rawQuery() on a SQLiteDatabase, the query has not
actually been done yet. Instead, it is lazy-executed when you ask the Cursor for
something where the data is needed, such as getCount(). This is a pain, as we want
to do the database I/O on a background thread, so we have to specifically do
something while on that background thread (e.g., call getCount()) to ensure that
the query really does get executed when we expect it to.

Another quirk with Cursor is that when the query is executed, it really populates a

231

CursorWindow. For small queries, this will represent the entire result set. For larger
queries, it is a portion of that result set. As we move through the Cursor,
SQLiteCursor will load more relevant rows into the CursorWindow, around the new
position. This exacerbates the threading problem, as we might wind up doing disk I/
O at any point while working with the Cursor, if the window’s contents need to be
adjusted.

Ideally, your queries are small, within the CursorWindow limits. And for apps where
the data comes from the user, usually you can keep your queries small. Users are
only going to enter in so much data on a small screen. Even if the user records some
form of multimedia — such as taking a picture with the camera – large queries can
be avoided by not storing the media in the database itself, but rather storing it in
plain files referenced by the database.

However, in cases where the data comes from some server, sticking with small
queries can get tricky.

Addressing the UX
Beyond the threading issues, there is another challenge with showing large result
sets in a single UI (e.g., in a RecyclerView): it is a pain for users to navigate. Nobody
is going to want to scroll through 10,000 rows in a vertically-scrolling list — their
finger will develop a blister first.

If you anticipate having a large amount of data, your primary concern is to get the
UX right. Focus on searching, filtering, and other means for the user to easily scope
the required data to some subset of relevance. Do not have the primary UX be a
“scroll through the world” sort of experience, even if that is an available option for
users who are gluttons for punishment or have steel-tipped fingers (or, perhaps, a
stylus).

However, even with user-supplied constraints, you still might wind up with more
data than can fit in a CursorWindow. And we have no direct control over that
CursorWindow behavior, as it is hidden behind a few layers of abstraction.

Enter the Paging Library
The Paging library exists to provide greater developer control over exactly what gets
loaded from a backing data store and when, handling things like:

PAGING ROOM DATA

232

• Performing smaller queries, to stay inside a CursorWindow’s bounds, so we
can control the threads used for data loads

• Supporting multiple traversal options through a data set: not only classic
position-based systems, but ones where you might be navigating a tree and
need to retrieve related child objects as part of traversal

• Offering reactive approaches, based on LiveData, so we can ensure that our
UI remains responsive.

There are a number of classes involved in the Paging library, but for basic scenarios,
there are a few of significance: including PagedList and PagedListAdapter.

PagedList

PagedList, on the surface, is a List, not that dissimilar from an ArrayList.
However, it is designed to handle very large collections using a time-honored
technique: lying.

A PagedList may know how much data there can be — to be able to respond to
methods like size() — but it does not actually hold all of that data. Instead, it holds
onto a small amount of data and by default will return null for requests to get items
from the List that have not been loaded.

A loadAround() method tells the PagedList a position of importance.
Asynchronously, PagedList will work to load that data and be able to return
non-null values for positions “around” the requested one. This may cause the
PagedList to jettison previously-loaded data, to minimize the memory footprint
that the PagedList takes up.

The idea is that PagedList should work the way that the UI does: showing a small
amount of information at a time, but allowing for (theoretically) arbitrary navigation
through a much larger set of information.

PagedListAdapter

A PagedListAdapter is a RecyclerView.Adapter that uses a PagedList as its source
of items to render. It handles the details of calling loadAround() for you. All you
need to do is handle standard RecyclerView.Adapter methods like
onCreateViewHolder() and onBindViewHolder().

PAGING ROOM DATA

233

DataSource.Factory

A DataSource, surprisingly enough, is a source of data. It is a wrapper around some
data provider — a database, a Web service, etc. — and knows how to retrieve pages
of data from it.

A DataSource.Factory follows a time-honored Java tradition, where we have factory
classes to create instances of other things. In this case, a DataSource.Factory knows
how to create certain types of DataSource. In particular, when working with Room,
you can request that a @Query method return a DataSource.Factory as its data type,
instead of a List of entities or a LiveData or other things.

LivePagedListProvider

LivePagedListProvider is a utility class that can create a LiveData object that
delivers PagedList objects to observers, given a DataSource.Factory. So, if you have
a Room @Query method that returns a DataSource.Factory, you can create a
LivePagedListProvider to convert that into a LiveData for use with your UI layer.
Room, DataSource.Factory, and PagedList will handle loading data
asynchronously as you navigate through the list. If you attach the PagedList to a
RecyclerView via PagedListAdapter, you get seamless data paging, with
controllable memory consumption, with very little work on your part.

Paging and Room
The CityPop/RoomPaging sample project will illustrate the use of the Paging library
in conjunction with Room.

As with the PackRoom sample shown earlier in the book, RoomPaging packages a
database with the app. Specifically, it is list of 2015 city populations, culled from a
United Nations data set. Not all cities are represented there, for unknown reasons,
but there are over 1,000, and so it offers a chance to see how the Paging classes work
in action.

The Dependency

To use those classes, we need another dependency, one for the Paging library. Paging
is on its own separate release cycle from Room or the lifecycle classes.

So, we request the android.arch.paging:runtime library in our Gradle script, along

PAGING ROOM DATA

234

http://github.com/commonsguy/cw-androidarch/tree/master/CityPop/RoomPaging
http://github.com/commonsguy/cw-androidarch/tree/master/CityPop/RoomPaging
http://data.un.org/Data.aspx?d=POP&f=tableCode%3a240
http://data.un.org/Data.aspx?d=POP&f=tableCode%3a240

with other necessary dependencies:

dependencies {
implementation "android.arch.persistence.room:runtime:1.1.1"
annotationProcessor "android.arch.persistence.room:compiler:1.1.1"
implementation "android.arch.paging:runtime:1.0.1"
implementation "android.arch.lifecycle:extensions:1.1.1"
implementation "com.android.support:support-annotations:28.0.0"
implementation "com.android.support:recyclerview-v7:28.0.0"
implementation 'com.android.support:support-fragment:28.0.0'
androidTestImplementation 'com.android.support.test:rules:1.0.2'
androidTestImplementation "com.android.support:support-annotations:28.0.0"

}

(from CityPop/RoomPaging/app/build.gradle)

The Entity, DAO, and Database

Our Room entity is a City. It has four fields:

• a unique ID in the form of a UUID (id)
• the name of the city (city)
• the name of the country or area in which the city is located (country)
• the population of the city (population)

In addition to sporting a suitable constructor for Room’s use and a toString() that
returns the city name, City also implements equals() and hashCode(), using the
id as the discriminator.

packagepackage com.commonsware.android.citypop;

importimport android.arch.paging.DataSourceandroid.arch.paging.DataSource;
importimport android.arch.persistence.room.Daoandroid.arch.persistence.room.Dao;
importimport android.arch.persistence.room.Entityandroid.arch.persistence.room.Entity;
importimport android.arch.persistence.room.PrimaryKeyandroid.arch.persistence.room.PrimaryKey;
importimport android.arch.persistence.room.Queryandroid.arch.persistence.room.Query;
importimport android.support.annotation.NonNullandroid.support.annotation.NonNull;
importimport java.util.Listjava.util.List;

@Entity(tableName = "cities")
classclass CityCity {

@PrimaryKey
@NonNull
finalfinal String id;
finalfinal String country;

PAGING ROOM DATA

235

https://github.com/commonsguy/cw-androidarch/blob/v1.0/CityPop/RoomPaging/app/build.gradle

finalfinal String city;
finalfinal int population;

City(@NonNull String id, String country, String city, int population) {
thisthis.id=id;
thisthis.country=country;
thisthis.city=city;
thisthis.population=population;

}

@Override
publicpublic String toString() {

returnreturn(city);
}

@Override
publicpublic boolean equals(Object obj) {

ifif (obj instanceofinstanceof City) {
City other=(City)obj;

returnreturn(id.equals(other.id));
}

returnreturn(falsefalse);
}

@Override
publicpublic int hashCode() {

returnreturn(id.hashCode());
}

@Dao
interfaceinterface StoreStore {

@Query("SELECT * FROM cities ORDER BY population DESC")
List<City> allByPopulation();

@Query("SELECT * FROM cities ORDER BY population DESC")
DataSource.Factory<Integer, City> pagedByPopulation();

}
}

(from CityPop/RoomPaging/app/src/main/java/com/commonsware/android/citypop/City.java)

City also has a nested Store interface that is our DAO, with two @Query methods.
One (allByPopulation()) is a traditional synchronous “give me a list of all the
cities” query. The other is pagedByPopulation(), and it returns a
DataSource.Factory. DataSource.Factory takes two data types:

PAGING ROOM DATA

236

https://github.com/commonsguy/cw-androidarch/blob/v1.0/CityPop/RoomPaging/app/src/main/java/com/commonsware/android/citypop/City.java

• The page identifier type
• The type of entity (or other POJO) that you want the underlying Room

query to use

A “page identifier” is pretty much what it says: it identifies a page in a response. For
a Room query, pages are numbered, and so you will use Integer as the page
identifier type. The Paging library also supports “keyed” pages, where a page might
be identified by something other than a simple number, but Room does not offer
that at present.

Our RoomDatabase is CityDatabase, and it is set up akin to the one from PackRoom,
using AssetSQLiteOpenHelperFactory to use a packaged un.db database as our
initial data:

packagepackage com.commonsware.android.citypop;

importimport android.arch.persistence.db.framework.AssetSQLiteOpenHelperFactoryandroid.arch.persistence.db.framework.AssetSQLiteOpenHelperFactory;
importimport android.arch.persistence.room.Databaseandroid.arch.persistence.room.Database;
importimport android.arch.persistence.room.Roomandroid.arch.persistence.room.Room;
importimport android.arch.persistence.room.RoomDatabaseandroid.arch.persistence.room.RoomDatabase;
importimport android.content.Contextandroid.content.Context;

@Database(entities={City.class}, version=1)
abstractabstract classclass CityDatabaseCityDatabase extendsextends RoomDatabase {

publicpublic abstractabstract City.Store cityStore();

staticstatic finalfinal String DB_NAME="un.db";
privateprivate staticstatic volatilevolatile CityDatabase INSTANCE=nullnull;

synchronizedsynchronized staticstatic CityDatabase get(Context ctxt) {
ifif (INSTANCE==nullnull) {

INSTANCE=create(ctxt);
}

returnreturn(INSTANCE);
}

staticstatic CityDatabase create(Context ctxt) {
RoomDatabase.Builder<CityDatabase> b=

Room.databaseBuilder(ctxt.getApplicationContext(), CityDatabase.class,
DB_NAME);

returnreturn(b.openHelperFactory(newnew AssetSQLiteOpenHelperFactory()).build());
}

}

PAGING ROOM DATA

237

(from CityPop/RoomPaging/app/src/main/java/com/commonsware/android/citypop/CityDatabase.java)

The ViewModel

This sample uses ViewModelProviders, and for that, we need a ViewModel that can
get the LiveData from the LivePagedListProvider, so our UI can observe that data.

So, we have a CitiesViewModel serving that role:

packagepackage com.commonsware.android.citypop;

importimport android.app.Applicationandroid.app.Application;
importimport android.arch.lifecycle.AndroidViewModelandroid.arch.lifecycle.AndroidViewModel;
importimport android.arch.lifecycle.LiveDataandroid.arch.lifecycle.LiveData;
importimport android.arch.paging.DataSourceandroid.arch.paging.DataSource;
importimport android.arch.paging.LivePagedListBuilderandroid.arch.paging.LivePagedListBuilder;
importimport android.arch.paging.PagedListandroid.arch.paging.PagedList;

publicpublic classclass CitiesViewModelCitiesViewModel extendsextends AndroidViewModel {
finalfinal LiveData<PagedList<City>> pagedCities;

publicpublic CitiesViewModel(Application app) {
supersuper(app);

DataSource.Factory<Integer, City> factory=
CityDatabase.get(app).cityStore().pagedByPopulation();

LivePagedListBuilder<Integer, City> pagedListBuilder=
newnew LivePagedListBuilder<>(factory, 50);

pagedCities=pagedListBuilder.build();
}

}

(from CityPop/RoomPaging/app/src/main/java/com/commonsware/android/citypop/CitiesViewModel.java)

We first get our DataSource.Factory by asking the CityDatabase singleton for the
cityStore(), and then ask it to get the cities pagedByPopulation().

We then create a LivePagedListBuilder, supplying its constructor with the
DataSource.Factory and how big of a page that we want (in this case, 50).
Specifying the page size helps us manage how much heap space gets used by the
PagedList. The number of rows you request should exceed the maximum number
that you might display at once, but it should be small enough to not consume tons
of heap space. For the purposes of this sample, 50 is plenty, though since our rows
are fairly small, we could go higher if needed.

PAGING ROOM DATA

238

https://github.com/commonsguy/cw-androidarch/blob/v1.0/CityPop/RoomPaging/app/src/main/java/com/commonsware/android/citypop/CityDatabase.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/CityPop/RoomPaging/app/src/main/java/com/commonsware/android/citypop/CitiesViewModel.java

Finally, we can get a LiveData object by calling build() on the
LivePagedListBuilder.

The PagedListAdapter

Our LivePagedListProvider will provide us with a PagedList of our City data, by
way of the CitiesViewModel. To consume that, we can use a PagedListAdapter to
show our cities in a RecyclerView. Ours is called CityAdapter and is a nested class
inside of a CitiesFragment:

privateprivate staticstatic classclass CityAdapterCityAdapter extendsextends PagedListAdapter<City, RowHolder> {
privateprivate finalfinal LayoutInflater inflater;

CityAdapter(LayoutInflater inflater) {
supersuper(CITIES_DIFF);
thisthis.inflater=inflater;

}

@Override
publicpublic RowHolder onCreateViewHolder(ViewGroup parent, int viewType) {

returnreturn(newnew RowHolder(inflater.inflate(R.layout.row, parent, falsefalse)));
}

@Override
publicpublic void onBindViewHolder(RowHolder holder, int position) {

City city=getItem(position);

ifif (city==nullnull) {
holder.clear();

}
elseelse {

holder.bind(city);
}

}
}

(from CityPop/RoomPaging/app/src/main/java/com/commonsware/android/citypop/CitiesFragment.java)

To a large extent, you use PagedListAdapter as you would any other subclass of
RecyclerView.Adapter, including needing to implement onCreateViewHolder()
and onBindViewHolder(). PagedListAdapter manages the PagedList for us, and
that in turn provides us with some methods that we will need along with
opportunities to configure how the adapter works.

PagedListAdapter takes two data types: the type of data in the PagedList (here,

PAGING ROOM DATA

239

https://github.com/commonsguy/cw-androidarch/blob/v1.0/CityPop/RoomPaging/app/src/main/java/com/commonsware/android/citypop/CitiesFragment.java

City) and a standard RecyclerView.ViewHolder as you would use with any other
RecyclerView.Adapter (here, RowHolder).

PagedListAdapter needs you to pass a DiffUtil.ItemCallback object to the
PagedListAdapter constructor. DiffUtil.ItemCallback is part of the RecyclerView
family of classes. It can work with a RecyclerView to reflect changes made to the
data behind the RecyclerView, ideally with the minimum amount of actual work
required by the RecyclerView itself. For more details on DiffUtil.ItemCallback
and its role, see The Busy Coder’s Guide to Android Development.

Specifically, we need to supply a DiffUtil.ItemCallback for our model data type,
City in this case. To that end, we have a static instance of DiffUtil.ItemCallback
named CITIES_DIFF:

staticstatic finalfinal DiffUtil.ItemCallback<City> CITIES_DIFF=newnew DiffUtil.ItemCallback<City>() {
@Override
publicpublic boolean areItemsTheSame(@NonNull City oldItem,

@NonNull City newItem) {
returnreturn(oldItem.equals(newItem));

}

@Override
publicpublic boolean areContentsTheSame(@NonNull City oldItem,

@NonNull City newItem) {
returnreturn(areItemsTheSame(oldItem, newItem));

}
};

(from CityPop/RoomPaging/app/src/main/java/com/commonsware/android/citypop/CitiesFragment.java)

areItemsTheSame() takes advantage of that equals() method that we implemented
on City, to determine if two City objects are the same by their id values. The data
in the database is fairly unique — any two rows should have different content — so
areContentsTheSame() simply delegates to areItemsTheSame().

PagedListAdapter offers a getItem() method. Given a position, it will give us the
model object (City) for that position… if that model object is loaded. If not, it will
return null. So, the onBindViewHolder() method of our CitiesAdapter uses
getItem(), and either binds the City to the RowHolder or asks the RowHolder to
clear() its contents.

RowHolder, in turn, does typical ViewHolder things: retrieving widgets out of the
inflated layout and adjusting their contents as needed:

privateprivate staticstatic classclass RowHolderRowHolder extendsextends RecyclerView.ViewHolder {
privateprivate finalfinal TextView cityLabel;

PAGING ROOM DATA

240

https://commonsware.com/Android
https://github.com/commonsguy/cw-androidarch/blob/v1.0/CityPop/RoomPaging/app/src/main/java/com/commonsware/android/citypop/CitiesFragment.java

privateprivate finalfinal TextView country;
privateprivate finalfinal TextView population;

RowHolder(View itemView) {
supersuper(itemView);

cityLabel=itemView.findViewById(R.id.city);
country=itemView.findViewById(R.id.country);
population=itemView.findViewById(R.id.population);

}

void bind(City city) {
cityLabel.setText(city.city);
country.setText(city.country);
population.setText(NumberFormat.getInstance().format(city.population));

}

void clear() {
cityLabel.setText(nullnull);
country.setText(nullnull);
population.setText(nullnull);

}
}

(from CityPop/RoomPaging/app/src/main/java/com/commonsware/android/citypop/CitiesFragment.java)

In a production app, we might put placeholder information in the rows for a null
City, rather than clear the widgets.

The CitiesFragment

CitiesFragment inherits from a RecyclerViewFragment seen earlier in the book.
That, plus our use of LiveData and view models, means the only method on
CitiesFragment itself is onViewCreated():

@Override
publicpublic void onViewCreated(View view, Bundle savedInstanceState) {

supersuper.onViewCreated(view, savedInstanceState);

setLayoutManager(newnew LinearLayoutManager(getActivity()));
getRecyclerView()

.addItemDecoration(newnew DividerItemDecoration(getActivity(),
LinearLayoutManager.VERTICAL));

CitiesViewModel vm=ViewModelProviders.of(thisthis).get(CitiesViewModel.class);
finalfinal CityAdapter adapter=newnew CityAdapter(getActivity().getLayoutInflater());

vm.pagedCities.observe(thisthis, adapter::submitList);

PAGING ROOM DATA

241

https://github.com/commonsguy/cw-androidarch/blob/v1.0/CityPop/RoomPaging/app/src/main/java/com/commonsware/android/citypop/CitiesFragment.java

setAdapter(adapter);
}

(from CityPop/RoomPaging/app/src/main/java/com/commonsware/android/citypop/CitiesFragment.java)

In addition to basic setup of the RecyclerView, we:

• Obtain or create our CitiesViewModel by way of ViewModelProviders
• Create our CitiesAdapter
• Arrange to observe the LiveData and hand the resulting PagedList objects

over to the CitiesAdapter, via its inherited setList() method
• Attach the CitiesAdapter to the RecyclerView

The Results

The UI is fairly straightforward: a scrolling list of rows that contains the city name,
country or area the city resides in, and its 2015 population:

Figure 2: Room Paging Demo

If you scroll through the list of countries, even with a fairly aggressive fling
operation, the list scrolls smoothly. On a well-equipped Android device there are no
blank rows, as Room is able to load the 50-at-a-time pages fairly quickly and make

PAGING ROOM DATA

242

https://github.com/commonsguy/cw-androidarch/blob/v1.0/CityPop/RoomPaging/app/src/main/java/com/commonsware/android/citypop/CitiesFragment.java

them available to the PagingListAdapter, so we do not see any gaps.

Obviously, not all sources of data will be that quick to load, and not all Android
devices are powerful. You will need to run your own experiments with your own data
and test devices to determine what the best thing to do is when PagingListAdapter
lacks a model object for a particular position that has scrolled into view.

What About RxJava?
In that sample, CitiesViewModel holds a LiveData of our PagedList, obtained from
a LivePagedListBuilder.

If you prefer to use RxJava throughout your app — rather than perhaps a mix of
LiveData and RxJava — you can use RxPagedListBuilder. This is in the
android.arch.paging:rxjava2 artifact, which is newer than the rest of Paging and
therefore may not necessarily have the same artifact versions.

You create an instance of RxPagedListBuilder using the same parameters as you
would for a LivePagedListBuilder, such as the DataSource.Factory and the page
size. You can then call:

• buildObservable() to return an Observable for your PagedList, or
• buildFlowable(), to return a Flowable for your PagedList

Optionally, before the build...() method call, you can call setFetchScheduler() to
provide the Scheduler to use for the data loading (e.g., Schedulers.single()) and/
or setNotifyScheduler() to provide the Scheduler for delivering the results (e.g.,
AndroidSchedulers.mainThread()). The default notify scheduler is the main
application thread, while the defualt fetch scheduler is one from a thread pool
shared by many of the Architecture Components.

PAGING ROOM DATA

243

LiveData and Bound Services

Services have been an oft-overused bit of the Android SDK. Still, a foreground
service is a key part of many apps, providing ongoing functionality to the user even
though the app’s UI is gone. For example, most audio player apps (music,
audiobooks, etc.) rely on foreground services to play that audio.

One way to communicate with a service is to bind to it, using bindService(). This is
a very flexible option, as you can define your own API that the service exposes and
clients consume. However, binding to services can be tricky, particularly when
configuration changes come into the picture.

And any time that configuration changes become a problem, ViewModel and
LiveData should be a place to turn to come up with a solution.

So, in this chapter, we will explore how you can wrap your bound service in a
Architecture Components-based API.

Old API, New Coat of Paint
Binding to a service sounds easy: call bindService() on a Context, supplying a
ServiceConnection object. That ServiceConnection object is called with
onServiceConnected() once the binding is ready, and you are passed an IBinder
object that you can use to get at the API exposed by the service. Later, you can call
unbindService(), passing in the same ServiceConnection, to drop the connection
to the service.

However, there are three problems:

1. It is unsafe to use different Context objects for binding and unbinding

245

2. The ServiceConnection object is state — we need to hold onto that to be
able to unbind

3. If the service has no other reason to be around (e.g., something called
startService() on it), unbinding from the service immediately destroys it…
even if you might bind again milliseconds later

This makes it tricky to bind from an activity, as configuration changes run right into
all three of those problems.

The classic solution involved using the Application singleton for binding and a
retained fragment for holding onto the ServiceConnection across configuation
changes. While the Application singleton is still a good idea, nowadays we can
replace the retained fragment with a ViewModel.

Another wrinkle comes with getting data from the service. We can pull such data by
calling methods on its API. Or, the service could push data… somehow. For example,
we could supply a callback object via the API, which the service can use to provide
data updates. However, once again, this callback is part of our state, so we need to
think about how we can manage it with our ViewModel. In addition, we have
threading to consider, particularly if our service is in a separate process from our UI.
This is a place where LiveData can shine.

Remote Sensors
The Sensor/LiveService sample project is another variation on some of the
SensorManager samples shown elsewhere in the book. This one uses data binding to
show the current ambient light reading in a simple UI. And in this case, the
SensorManager is being used by a service, to which the activity is binding by way of a
LiveData and ViewModel set up for that work.

The AIDL

The service (LightSensorService) is going to run in a separate process from the rest
of the app. That is not required for services, but for the purposes of this example, it
shows a slightly more complex scenario than having the service be in the same
process.

Since we are going to use a remote bound service, we need to use AIDL to define the
API between the service and its client. The project has two such AIDL files.

LIVEDATA AND BOUND SERVICES

246

http://github.com/commonsguy/cw-androidarch/tree/master/Sensor/LiveService
http://github.com/commonsguy/cw-androidarch/tree/master/Sensor/LiveService

One is ILightReporter, which is the AIDL interface that the service will expose as
its API:

packagepackage com.commonsware.android.livedata;

importimport com.commonsware.android.livedata.ILightCallbackcom.commonsware.android.livedata.ILightCallback;

interfaceinterface ILightReporterILightReporter {
void registerCallback(ILightCallback cb);
void unregisterCallback(ILightCallback cb);

}

(from Sensor/LiveService/app/src/main/aidl/com/commonsware/android/livedata/ILightReporter.aidl)

This offers two methods, for registering and unregistering a callback to find out
about new light readings. That callback is defined by the other AIDL interface,
ILightCallback:

packagepackage com.commonsware.android.livedata;

interfaceinterface ILightCallbackILightCallback {
void onLightEvent(float value);

}

(from Sensor/LiveService/app/src/main/aidl/com/commonsware/android/livedata/ILightCallback.aidl)

Our client will implement this callback and it will receive light sensor readings (as a
single float of the light level in lux) from the service.

Callbacks are not your only option for receiving asynchronous data updates from a
service — you could use a Messenger, ResultReceiver, PendingIntent, etc. Most
can follow the same basic pattern shown in this example for a LiveData wrapper.

The Service and the Process

LightSensorService is registered in the manifest with the android:process
attribute, to have that service run in a separate private process from the rest of the
app:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest package="com.commonsware.android.livedata"

xmlns:android="http://schemas.android.com/apk/res/android"
android:versionCode="1"
android:versionName="1.0">>

LIVEDATA AND BOUND SERVICES

247

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Sensor/LiveService/app/src/main/aidl/com/commonsware/android/livedata/ILightReporter.aidl
https://github.com/commonsguy/cw-androidarch/blob/v1.0/Sensor/LiveService/app/src/main/aidl/com/commonsware/android/livedata/ILightCallback.aidl

<application<application
android:allowBackup="false"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/Theme.Apptheme">>
<activity<activity

android:name=".MainActivity"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN" />/>

<category<category android:name="android.intent.category.LAUNCHER" />/>
</intent-filter></intent-filter>

</activity></activity>

<service<service
android:name=".LightSensorService"
android:exported="false"
android:process=":light" />/>

</application></application>

</manifest></manifest>

(from Sensor/LiveService/app/src/main/AndroidManifest.xml)

LightSensorService wraps a SensorManager and has a Reporter implementation of
the ILightReporter interface to serve as its binder:

packagepackage com.commonsware.android.livedata;

importimport android.app.Serviceandroid.app.Service;
importimport android.content.Intentandroid.content.Intent;
importimport android.hardware.Sensorandroid.hardware.Sensor;
importimport android.hardware.SensorEventandroid.hardware.SensorEvent;
importimport android.hardware.SensorEventListenerandroid.hardware.SensorEventListener;
importimport android.hardware.SensorManagerandroid.hardware.SensorManager;
importimport android.os.IBinderandroid.os.IBinder;
importimport android.os.RemoteCallbackListandroid.os.RemoteCallbackList;
importimport android.os.RemoteExceptionandroid.os.RemoteException;

publicpublic classclass LightSensorServiceLightSensorService extendsextends Service {
privateprivate SensorManager sensorManager;
privateprivate Reporter reporter=newnew Reporter();

@Override
publicpublic void onCreate() {

supersuper.onCreate();

sensorManager=(SensorManager)getSystemService(SENSOR_SERVICE);
}

@Override
publicpublic IBinder onBind(Intent intent) {

LIVEDATA AND BOUND SERVICES

248

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Sensor/LiveService/app/src/main/AndroidManifest.xml

returnreturn reporter;
}

privateprivate classclass ReporterReporter extendsextends ILightReporter.Stub {
privateprivate RemoteCallbackList<ILightCallback> callbacks=newnew RemoteCallbackList<>();

@Override
publicpublic void registerCallback(ILightCallback cb) {

callbacks.register(cb);

ifif (callbacks.getRegisteredCallbackCount()==1) {
sensorManager.registerListener(listener,

sensorManager.getDefaultSensor(Sensor.TYPE_LIGHT),
SensorManager.SENSOR_DELAY_UI);

}
}

@Override
publicpublic void unregisterCallback(ILightCallback cb) {

callbacks.unregister(cb);

ifif (callbacks.getRegisteredCallbackCount()==0) {
sensorManager.unregisterListener(listener);

}
}

finalfinal privateprivate SensorEventListener listener=newnew SensorEventListener() {
@Override
publicpublic void onSensorChanged(SensorEvent event) {

callbacks.beginBroadcast();

forfor (int i=0;i<callbacks.getRegisteredCallbackCount();i++) {
ILightCallback cb=callbacks.getBroadcastItem(i);

trytry {
cb.onLightEvent(event.values[0]);

}
catchcatch (RemoteException e) {

// we tried!
}

}

callbacks.finishBroadcast();
}

@Override
publicpublic void onAccuracyChanged(Sensor sensor, int accuracy) {

// unused
}

};
}

}

(from Sensor/LiveService/app/src/main/java/com/commonsware/android/livedata/LightSensorService.java)

Reporter uses RemoteCallbackList to keep track of the callback objects supplied by
clients. RemoteCallbackList helps keep track of clients that crash, removing their
registered callbacks from the list.

LIVEDATA AND BOUND SERVICES

249

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Sensor/LiveService/app/src/main/java/com/commonsware/android/livedata/LightSensorService.java

Once we have a registered callback, we begin requesting TYPE_LIGHT sensor readings
from the SensorManager, routing those to a SensorEventListener. That listener
iterates over the callbacks managed by that RemoteCallbackList and calls
onLightEvent() on each. If we get a RemoteException when calling the callback, we
just move on — RemoteCallbackList should detect that the client is no longer
around and remove its callback from the list. Ideally, we would create a custom
subclass of RemoteCallbackList and override onCallbackDied() to find out about it,
so we can unregister our SensorEventListener if we have no more callbacks — this
is left as an exercise for the reader.

The net result of this work is that our clients that register callbacks find out about
light sensor events via those callbacks.

The LiveData and the ViewModel

We only need to receive light sensor readings in the activity when the activity is
visible. Otherwise, such readings are just a waste of time, battery, etc. This is an
ideal case for a lifecycle-aware component, and LiveData fits that bill nicely. So, we
have a ServiceLiveData that wraps up the binding and callback work with the
service and emits a stream of Float objects for the light sensor readings:

packagepackage com.commonsware.android.livedata;

importimport android.arch.lifecycle.LiveDataandroid.arch.lifecycle.LiveData;
importimport android.content.ComponentNameandroid.content.ComponentName;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.content.ServiceConnectionandroid.content.ServiceConnection;
importimport android.os.IBinderandroid.os.IBinder;
importimport android.os.RemoteExceptionandroid.os.RemoteException;
importimport android.util.Logandroid.util.Log;

publicpublic classclass ServiceLiveDataServiceLiveData extendsextends LiveData<Float>
implementsimplements ServiceConnection {
privateprivate finalfinal Context app;
privateprivate ILightReporter reporter;

ServiceLiveData(Context ctxt) {
app=ctxt.getApplicationContext();

}

@Override
protectedprotected void onActive() {

supersuper.onActive();

app.bindService(newnew Intent(app, LightSensorService.class), thisthis, Context.BIND_AUTO_CREATE);
}

@Override
protectedprotected void onInactive() {

LIVEDATA AND BOUND SERVICES

250

goAway();
app.unbindService(thisthis);

supersuper.onInactive();
}

@Override
publicpublic void onServiceConnected(ComponentName name, IBinder service) {

reporter=ILightReporter.Stub.asInterface(service);

trytry {
reporter.registerCallback(cb);

}
catchcatch (RemoteException e) {

Log.e(getClass().getSimpleName(), "Exception registering callback", e);
}

}

@Override
publicpublic void onServiceDisconnected(ComponentName name) {

reporter=nullnull;
}

privateprivate void goAway() {
trytry {

reporter.unregisterCallback(cb);
}
catchcatch (RemoteException e) {

Log.e(getClass().getSimpleName(), "Exception unregistering callback", e);
}
finallyfinally {

reporter=nullnull;
}

}

privateprivate finalfinal ILightCallback cb=newnew ILightCallback.Stub() {
@Override
publicpublic void onLightEvent(float value) {

postValue(value);
}

};
}

(from Sensor/LiveService/app/src/main/java/com/commonsware/android/livedata/ServiceLiveData.java)

We get the Application singleton in the constructor, then use that in onActive()
and onInactive() to bind and unbind from the service. In the case of this app,
binding will start the service, and unbinding will destroy it, as there is no other
reason for the service to be around. In other scenarios — such as the audio player —
the lifetime of the service will be managed by startService() and stopService()
(or stopSelf()), and binding/unbinding merely is for the communications channel
between the client and the service.

Once we are bound, in onServiceConnected(), we register our callback. Since we
have to use AIDL here for cross-process service communication, the callback is a

LIVEDATA AND BOUND SERVICES

251

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Sensor/LiveService/app/src/main/java/com/commonsware/android/livedata/ServiceLiveData.java

subclass of ILightCallback.Stub. When it is called with onLightEvent(), it uses
postData() to update the LiveData — postData() works from a background thread,
and we are not in control over what thread is used for onLightEvent().

Our ServiceViewModel simply exposes a ServiceLiveData named sensorLiveData:

packagepackage com.commonsware.android.livedata;

importimport android.app.Applicationandroid.app.Application;
importimport android.arch.lifecycle.AndroidViewModelandroid.arch.lifecycle.AndroidViewModel;
importimport android.hardware.Sensorandroid.hardware.Sensor;
importimport android.hardware.SensorManagerandroid.hardware.SensorManager;
importimport android.support.annotation.NonNullandroid.support.annotation.NonNull;

publicpublic classclass ServiceViewModelServiceViewModel extendsextends AndroidViewModel {
publicpublic finalfinal ServiceLiveData sensorLiveData;

publicpublic ServiceViewModel(@NonNull Application app) {
supersuper(app);

sensorLiveData=newnew ServiceLiveData(app);
}

}

(from Sensor/LiveService/app/src/main/java/com/commonsware/android/livedata/ServiceViewModel.java)

The Activity and the Layout

MainActivity uses ServiceViewModel in onCreate():

packagepackage com.commonsware.android.livedata;

importimport android.arch.lifecycle.ViewModelProvidersandroid.arch.lifecycle.ViewModelProviders;
importimport android.databinding.BindingAdapterandroid.databinding.BindingAdapter;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.app.FragmentActivityandroid.support.v4.app.FragmentActivity;
importimport android.widget.TextViewandroid.widget.TextView;
importimport com.commonsware.android.livedata.databinding.MainBindingcom.commonsware.android.livedata.databinding.MainBinding;

publicpublic classclass MainActivityMainActivity extendsextends FragmentActivity {
@BindingAdapter("android:text")
publicpublic staticstatic void setLightReading(TextView tv, Float value) {

ifif (value==nullnull) {
tv.setText(nullnull);

}
elseelse {

tv.setText(String.format("%f", value));
}

}

LIVEDATA AND BOUND SERVICES

252

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Sensor/LiveService/app/src/main/java/com/commonsware/android/livedata/ServiceViewModel.java

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

MainBinding binding=MainBinding.inflate(getLayoutInflater());
ServiceViewModel vm=ViewModelProviders.of(thisthis).get(ServiceViewModel.class);

binding.setViewModel(vm);
binding.setLifecycleOwner(thisthis);
setContentView(binding.getRoot());

}
}

(from Sensor/LiveService/app/src/main/java/com/commonsware/android/livedata/MainActivity.java)

Principally, we want to bind it to our main layout resource:

<?xml version="1.0" encoding="utf-8"?>
<layout><layout>

<data><data>

<variable<variable
name="viewModel"
type="com.commonsware.android.livedata.ServiceViewModel" />/>

</data></data>

<android.support.constraint.ConstraintLayout<android.support.constraint.ConstraintLayout
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<TextView<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginBottom="8dp"
android:layout_marginEnd="8dp"
android:layout_marginStart="8dp"
android:layout_marginTop="8dp"
android:text="@string/label_light"
android:textAppearance="@android:style/TextAppearance.Material.Large"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent"
app:layout_constraintVertical_bias="0.25" />/>

<TextView<TextView
android:layout_width="wrap_content"

LIVEDATA AND BOUND SERVICES

253

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Sensor/LiveService/app/src/main/java/com/commonsware/android/livedata/MainActivity.java

android:layout_height="wrap_content"
android:layout_marginBottom="8dp"
android:layout_marginEnd="8dp"
android:layout_marginStart="8dp"
android:layout_marginTop="8dp"
android:text="@{viewModel.sensorLiveData}"
android:textAppearance="@android:style/TextAppearance.Material.Large"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent"
app:layout_constraintVertical_bias="0.75" />/>

</android.support.constraint.ConstraintLayout></android.support.constraint.ConstraintLayout>
</layout></layout>

(from Sensor/LiveService/app/src/main/res/layout/main.xml)

The layout uses a binding expression to find out about changes in the light sensor,
by tying our ServiceLiveData to a TextView. The setLightReading()
BindingAdapter in MainActivity will wind up being used by the data binding
framework to take the Float values from ServiceLiveData and pour them into the
TextView.

And, so that the data binding framework can use the LiveData properly, not only do
we call setViewModel() on the code-generated MainBinding, but we also call
setLifecycleOwner() to give the data binding framework the LifecycleOwner to
use.

LIVEDATA AND BOUND SERVICES

254

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Sensor/LiveService/app/src/main/res/layout/main.xml

Exploring Architecture

Immutability

Generally, developers like setters.

After all, it stands to reason that if you can get a piece of data from an object, you
should be able to modify that piece of data in that same object. We are used to read-
write data structures, whether in memory or persisted.

However, there are some costs to allowing objects to be mutable (in other words,
able to be modified). In some cases, you can have a more robust app architecture if
you consider objects to be immutable and unable to be modified. The objects get
replaced outright, rather than changing their contents. This winds up being a bit
more reminiscent of a transactional database, where changes are applied as a unit,
rather than piecemeal.

In this chapter, we will explore the benefits (and costs) of immutability and how to
create immutable (or mostly immutable) objects in Java.

The Benefits of Immutability
Having immutable objects — particularly for things like models — is not a new
concept. Immutability has had its adherents for quite some time. It is what lead to
libraries like AutoValue for Java, and immutability features in languages like Kotlin.

So, why go with immutability?

No Dirty Data

A perpetual problem with model objects (and related objects, such as view-models),
is knowing what data changed, when, and by what. That comes from promiscuous

257

use of setters, blindly changing data that might be in use already.

For example:

• You implement a model cache, shared between your code that gets data from
the server and your UI code, to minimize memory consumption

• You construct a view-model from a model object, representing data to be
presented to the user in the UI

• You use two-way data binding, so user interactions with the UI directly
update the view-model

• Your code for communicating with the server finds out about an update that
happens to affect that same model object, and it updates the model object in
the cache

• Your UI code, after the user clicks Save to commit the data changes, uses the
view-model contents to update the model object

Now, we have possible data consistency issues:

• The model started in state A
• The view-model was created based on that state A
• The user mutates the view-model and moves it to state B
• The server-sync code mutates the model and moves it to state C
• The view-model updates the model and moves it to state B… potentially

ignoring the changes the server-sync code made that resulted in state C

Immutable model and view-model objects do not prevent this sort of situation, but
they help to make it a bit more obvious. Changing the state is a more obvious action;
it is not merely a matter of calling some setters.

Thread Safety

If more than one thread has access to the same data, and that data can change, we
wind up having to synchronize access to that data, so that changes can be made
atomically. We do not want a thread to be part-way through updating the data when
another thread tries reading it, as the partly-updated data may be in an inconsistent
state at that moment. We wind up using synchronized and CopyOnWriteArrayList
and all sorts of other constructs to allow mutable data to be shared between threads.

This goes away if the data is immutable. Multiple threads can read the same,
unchanging data whenever they want without issue. Now, we limit our
synchronization to more specific scenarios, such as updating shared caches: so long

IMMUTABILITY

258

as we are replacing a cache entry atomically, all consumers of the cache can run in
parallel, if the cache entries themselves are immutable.

Functional Programming

One way to combat the complexities of multi-threaded development is to use
functional programming. Functional programming is based on pure functions:
methods (or the equivalent) that operate solely on input parameters, with no side-
effects that affect the operation of the program.

RxJava is based on functional programming concepts. We build up chains of RxJava
operators, where each operator applies some sort of function to the input, such as
the map() operator applying a Function to convert objects from one type to another.

Immutability is one way of imposing a contract upon yourself, as a developer, to
avoid side effects. Calling a setter is a very casual act in programming, even if calling
that setter introduces a side effect. Immutability enforces the creation of new
objects, ideal for use in pure functions, where the function can create objects to
return but cannot change the parameters’ contents and cause side effects.

The Costs of Immutability
Immutability is not without its downsides. Partly, that comes from its use in
languages where immutability is not an integrated feature, such as Java. And partly,
that comes from environments where mutability is the norm; you may be unable to
impose immutability due to environmental restrictions.

Partial Immutability Problems

In a language like Java, where immutability is not a built-in feature, you need to
implement it manually, ensuring that your to-be-immutable objects lack setters or
other means of manipulating their contents. On the surface, this may not seem very
difficult. After all, not writing code (e.g., setters) should take less time than would
actually writing that code.

However, not everything can be made immutable just by avoiding setters.

For example, suppose we have:

classclass FooModelFooModel {

IMMUTABILITY

259

https://en.wikipedia.org/wiki/Functional_programming

finalfinal String bar;
finalfinal List<GooModel> goos;

FooModel(String bar, List<GooModel> goos) {
thisthis.bar=bar;
thisthis.goos=goos;

}
}

There are no setters, and both fields are final. This is immutable, right?

Actually, no, because the goos List might be mutable. If this is just an ordinary
ArrayList, for example, holders of a FooModel instance can call add() or remove()
on the goos field, changing its contents.

This can be improved somewhat via the Collections class and its
unmodifiableList() method:

classclass FooModelFooModel {
finalfinal String bar;
finalfinal List<GooModel> goos;

FooModel(String bar, List<GooModel> goos) {
thisthis.bar=bar;
thisthis.goos=Collections.unmodifiableList(goos);

}
}

Now, goos will fail if you attempt to call add(), remove(), etc. on it.

However, not all collection types have a corresponding unmodifiable...() method.
Plus, you need to remember to use the unmodifiable...() method, such as we do
here in the constructor. And, what if GooModel is mutable? Holders of a FooModel
could reach into goos, pluck out a GooModel, and change it.

Creating surface-level immutability is not that hard, even in Java. The challenge is in
having immutability “all the way down”.

Some Things Want Setters

Unfortunately, some things really want setters or other forms of mutability:

• An interface might imply mutability. Spannable, for example, has setSpan()

IMMUTABILITY

260

and removeSpan() methods, implying mutability.
• Some frameworks might require mutability, at least for some features. Data

binding, for example, works with immutable objects… except for two-way
binding, which requires some means to modify the existing bound object.
Even for one-way binding, Observable requires that the object support
registering and removing listeners, which itself is an aspect of mutability.

In these and similar cases, avoiding mutability may be impossible, just because you
are trying to use something that itself expects some degree of mutability.

Garbage, To Be Collected

One big problem with immutability is that it leads to lots of data copying. Instead of
simply updating a field of a model object with a new value, we create a new instance
of that model object. We cannot even use an object pool to help minimize the
garbage that gets created, because typically we cannot reuse an existing object…
because to reuse it, we often need to fill in different data, and that requires
mutability.

The copies might be shallow copies, reducing the amount of garbage. Going back to
the earlier example, we could have:

classclass FooModelFooModel {
finalfinal String bar;
finalfinal List<GooModel> goos;

FooModel(String bar, List<GooModel> goos) {
thisthis.bar=bar;
thisthis.goos=Collections.unmodifiableList(goos));

}

FooModel withNewBar(String bar) {
returnreturn(newnew FooModel(bar, thisthis.goos));

}
}

Here, we create a new FooModel, but both the old and the new instance of FooModel
share the same goos collection. If goos is immutable, sharing it between two
FooModel instances is not a problem. So, we consume the extra memory for an extra
FooModel, but not an extra list of GooModel instances, keeping the memory
consumption down.

However, there is little doubt that immutability leads to more garbage in Java. On

IMMUTABILITY

261

Android 5.0+, ART’s garbage collector will help reduce the impact of this garbage,
but it cannot completely eliminate its effects.

Immutability via AutoValue
Many developers who elect to make immutable classes in Java elect to use Google’s
AutoValue library. This library uses annotations and code generation to help enforce
immutability, while also handling aggravating details like implementing equals(),
hashCode(), and so forth.

For basic stuff, using AutoValue is fairly simple: implement an abstract class with
abstract getter methods for the data that you want the immutable class to hold.
Add the @AutoValue annotation — along with the dependency that supplies it —
and AutoValue takes over from there.

Earlier in the book, we had the Sensor/LiveList sample app, where we wrapped the
SensorManager in a LiveData. The Sensor/AutoSensor sample project is a clone of
that one, where we use AutoValue for the event objects.

The original project had a simple Event static class inside of SensorLiveData, using
final for its limited immutability:

staticstatic classclass EventEvent {
finalfinal Date date=newnew Date();
finalfinal float[] values;

Event(SensorEvent event) {
values=newnew float[event.values.length];

System.arraycopy(event.values, 0, values, 0, event.values.length);
}

}

(from Sensor/LiveList/app/src/main/java/com/commonsware/android/livedata/SensorLiveData.java)

The revised project pulls that Event class out to a top-level AutoSensorEvent class
and applies AutoValue to it:

packagepackage com.commonsware.android.livedata;

importimport android.hardware.SensorEventandroid.hardware.SensorEvent;
importimport com.google.auto.value.AutoValuecom.google.auto.value.AutoValue;
importimport java.util.ArrayListjava.util.ArrayList;

IMMUTABILITY

262

https://github.com/google/auto/blob/master/value/userguide/index.md
https://github.com/google/auto/blob/master/value/userguide/index.md
http://github.com/commonsguy/cw-androidarch/tree/master/Sensor/AutoSensor
http://github.com/commonsguy/cw-androidarch/tree/master/Sensor/AutoSensor
https://github.com/commonsguy/cw-androidarch/blob/v1.0/Sensor/LiveList/app/src/main/java/com/commonsware/android/livedata/SensorLiveData.java

importimport java.util.Arraysjava.util.Arrays;
importimport java.util.Collectionsjava.util.Collections;
importimport java.util.Datejava.util.Date;
importimport java.util.Listjava.util.List;

@AutoValue
abstractabstract classclass AutoSensorEventAutoSensorEvent {

abstractabstract long date();
abstractabstract List<Float> values();

staticstatic AutoSensorEvent from(SensorEvent event) {
ArrayList<Float> values=newnew ArrayList<>();

forfor (float value : event.values) {
values.add(value);

}

returnreturn(newnew AutoValue_AutoSensorEvent(System.currentTimeMillis(),
Collections.unmodifiableList(values)));

}
}

(from Sensor/AutoSensor/app/src/main/java/com/commonsware/android/livedata/AutoSensorEvent.java)

Annotating an abstract class with @AutoValue causes AutoValue to find all getter-
style abstract methods — in this case, date() and values(). AutoValue then code-
generates a shadow class, AutoValue_AutoSensorEvent, that is a concrete
implementation of the AutoSensorEvent API. We use the concrete class constructor
to make instances of an AutoSensorEvent-compatible class. Outside parties using
AutoSensorEvent should neither know nor care that the actual implementation is
actually AutoValue_AutoSensorEvent. The AutoValue_AutoSensorEvent class not
only handles our two data values but also the equals(), hashCode(), and
toString() methods as well.

Our from() factory method sets up the data to be passed to the
AutoValue_AutoSensorEvent constructor. We use unmodifiableList() to ensure
that nobody can modify the contents of the values() List, and since Float itself is
immutable, that makes values() immutable “all the way down”. Similarly, the long
that is returned by date() is immutable, so nothing can be changed in the
AutoSensorEvent.

All of this is possible because we are adding AutoValue’s dependencies:

dependencies {
implementation 'com.android.support:recyclerview-v7:28.0.0'

IMMUTABILITY

263

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Sensor/AutoSensor/app/src/main/java/com/commonsware/android/livedata/AutoSensorEvent.java

implementation 'com.android.support:support-fragment:28.0.0'
implementation 'android.arch.lifecycle:runtime:1.1.1'
implementation 'android.arch.lifecycle:livedata:1.1.1'
compileOnly 'com.google.auto.value:auto-value:1.5.2'
annotationProcessor 'com.google.auto.value:auto-value:1.5.2'

}

(from Sensor/AutoSensor/app/build.gradle)

Here, the same dependency (com.google.auto.value:auto-value) is used twice.
The annotationProcessor dependency enables the compile-time handling of
@AutoValue and related annotations. The provided dependency adds in runtime
support code that the generated code depends upon.

AutoValue itself has many more features, including:

• Generating an optional builder-style API for constructing instances of the
@AutoValue-annotated class

• Support for @Nullable to indicate if a value can be null or not
• Memoization support for caching the results of derived values, which is

particularly useful if those calculations are expensive

AutoValue and LiveData

LiveData and AutoValue work together nicely. The revised SensorLiveData simply
uses the from() factory method to create AutoSensorEvent instances that wrap up
the data we want to cache from a SensorEvent:

packagepackage com.commonsware.android.livedata;

importimport android.arch.lifecycle.LiveDataandroid.arch.lifecycle.LiveData;
importimport android.content.Contextandroid.content.Context;
importimport android.hardware.Sensorandroid.hardware.Sensor;
importimport android.hardware.SensorEventandroid.hardware.SensorEvent;
importimport android.hardware.SensorEventListenerandroid.hardware.SensorEventListener;
importimport android.hardware.SensorManagerandroid.hardware.SensorManager;

classclass SensorLiveDataSensorLiveData extendsextends LiveData<AutoSensorEvent> {
finalfinal privateprivate SensorManager sensorManager;
privateprivate finalfinal Sensor sensor;
privateprivate finalfinal int delay;

SensorLiveData(Context ctxt, int sensorType, int delay) {
sensorManager=

(SensorManager)ctxt.getApplicationContext()

IMMUTABILITY

264

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Sensor/AutoSensor/app/build.gradle

.getSystemService(Context.SENSOR_SERVICE);
thisthis.sensor=sensorManager.getDefaultSensor(sensorType);
thisthis.delay=delay;

ifif (thisthis.sensor==nullnull) {
throwthrow newnew IllegalStateException("Cannot obtain the requested sensor");

}
}

@Override
protectedprotected void onActive() {

supersuper.onActive();

sensorManager.registerListener(listener, sensor, delay);
}

@Override
protectedprotected void onInactive() {

sensorManager.unregisterListener(listener);

supersuper.onInactive();
}

finalfinal privateprivate SensorEventListener listener=newnew SensorEventListener() {
@Override
publicpublic void onSensorChanged(SensorEvent event) {

setValue(AutoSensorEvent.from(event));
}

@Override
publicpublic void onAccuracyChanged(Sensor sensor, int accuracy) {

// unused
}

};

}

(from Sensor/AutoSensor/app/src/main/java/com/commonsware/android/livedata/SensorLiveData.java)

AutoValue and Room

Unfortunately, AutoValue and Room 1.x do not work together, at least for @Entity
classes:

• Room wants to work with a constructor, and an @AutoValue abstract class
cannot have a constructor

IMMUTABILITY

265

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Sensor/AutoSensor/app/src/main/java/com/commonsware/android/livedata/SensorLiveData.java

• Annotations like @PrimaryKey and @ColumnInfo go on fields, and an
@AutoValue class has no fields

• Room’s documentation indicates that it wants setter methods or public
fields, and an @AutoValue class has neither

This will be added in a future update to Room.

IMMUTABILITY

266

https://issuetracker.google.com/issues/62408420

The Repository Pattern

There are lots of possible ways that your app’s data can be stored. It could be local,
remote, or both. The local copy could be in SQLite, XML files, JSON files, or other
forms. The server could be using REST, GraphQL, gRPC, or something else.

And, on the whole, your UI should not care.

Your UI code has enough problems to deal with. Figuring out where the data comes
from (to show the user) and where it goes (after getting input from the user) is more
than it should have to bear.

That is where the repository pattern comes into play. In a nutshell: you design a
single API that abstracts out all of the storage stuff. The repository implementation
deals with all of the decision-making for where the data goes, what all has to get
updated, what has to be refreshed from some remote source, and so on. The API just
offers “give me X” and “here is an update to Y” and so on — the basic operations that
the UI needs in order to function.

Therefore, in many respects, the repository pattern is not significantly different from
any other abstraction that one might use. However, since data storage and retrieval
is usually the reason why the app exists, it is important to give this pattern some
thought.

What the Repository Does
A repository has a few key roles inside of your app.

267

Manages Data Storage

First and foremost, this is where you isolate all of the details of the data storage,
including all the esoteric rules that your app may require (e.g., we have to update the
catalog after midnight in the server’s time zone).

The repository is responsible for:

• Making any real-time requests of a server that may be necessary, to retrieve
data that is not yet available locally

• Managing or directing any in-memory cache of that data
• Saving the data in a local persistent store, whether on a temporary or long-

term basis
• Orchestrating any background data transfers that may be necessary (e.g.,

responding to push requests, periodically synchronizing with a server)

The details of this will vary widely from app to app. Some of those details may be
dictated by business requirements. Some of those details may be dictated by the
server team. Some of those details might be under your control. As a result, there is
no single recipe for implementing a repository — all books like this can do is explain
the role, illustrate some implementations, and provide general guidance.

Normalizes Model Objects

Your UI code probably will work best with a nice clean object model representing
the data that the app needs to allow the user to see and manipulate.

However, it is quite likely that you will not get a clean object model from the data
storage code:

• Plain SQLite uses Cursor and ContentValues, which do not resemble
business objects

• Object wrappers around SQLite like Room may impose their own
limitations, such as Room’s approach for relations

• Web service APIs cannot model some data structures at all (e.g., M:N
relations), requiring some amount of data conversion to craft the desired
object model

• Some Web service APIs will have further limitations, because the developers
of the Web service had a different vision at the time they created the Web
service (e.g., older approaches, targeting other platforms)

• And so on

THE REPOSITORY PATTERN

268

Your UI code should not have to deal with any of that.

So, another part of the repository is to normalize the data from the data storage into
clean model objects that the UI code can consume. So, the repository gets to convert
those Retrofit POJOs and those Room POJOs (neither of which may resemble the
other) into some consistent POJOs that form the object model that the rest of the
app uses.

Provides a Clean Reactive API

The UI code needs to be able to make generic requests for normalized data, with the
repository handling all of the “dirty details” for making that happen.

At the same time, the UI code needs to have the patience to allow the repository to
do its work. The responsiveness of the repository could range from microseconds to
seconds, depending on a lot of environmental factors:

• Is the data that the UI wants in a memory cache? A disk cache?
• Do we have to perform a SQL request? How about a network call?
• Do we have to do several of these things, because the UI is seeking a big

object graph, and our data storage options deal in smaller slices?

Here, “reactive” could mean RxJava, or possibly LiveData. It could be some form of
event bus. It could be a callback system. What it has to be is asynchronous — the
API exposed by the repository has to force the UI code to receive the data at some
time in the future, not immediately.

Isolates Rest of App from Strategy Changes

You might be tempted to cut corners on the previous point, and have some APIs
exposed by the repository that return immediately. So long as those APIs are set up
to gracefully fail — such as returning null if the data is not cached in memory —
that can be fine. However, in general, that is still not a good idea, for one simple
reason: things change. Today, your implementation might support those real-time
APIs. Tomorrow, your implementation might not, for any number of reasons:

• You elect to switch to some newer approach that simply lacks an equivalent
to the in-memory cache that you are using

• You elect to switch to some newer approach that does not offer its own real-
time API, and you need to “pass along” the reactive approach

• You jettison this particular cache because you keep running out of memory

THE REPOSITORY PATTERN

269

• And so on

If you design a reactive API around a generalized object model, you should be able to
change the implementation of the repository without requiring changes in the UI
code. The only time that the UI code would change is if the data structure itself
changes (e.g., new fields or objects added to the object model).

High-Level Repository Strategies
There are many, many ways to implement a repository. How one app approaches it
may differ significantly from how another app approaches it, and neither approach
is necessarily wrong (or right).

That being said, there are a few commonalities among the approaches that will tend
to arise, based on where the data is being stored.

Pure Network

Occasionally, you will have an app where the repository always makes network
requests whenever the UI needs data. This is fairly uncommon, as it implies that
caching is not an option, and usually there is some amount of caching that can be
applied to the problem.

Network + Network API Caching

Sometimes, the caching can be provided by whatever API you are using to access
that network:

• OkHttp offers integrated caching, assuming that the Web server uses
appropriate cache-control headers

• Apollo-Android — a library for making GraphQL requests — offers its own
caching, in addition to possibly using caching at the OkHttp layer

• Picasso, Glide, and other image-loading libraries often have their own caches
• And so on

In these cases, other than configuring the cache (e.g., specifying the directory to use
for a disk cache), there is little cache-related code in the repository itself.

THE REPOSITORY PATTERN

270

https://github.com/square/okhttp/wiki/Recipes#response-caching
https://github.com/apollographql/apollo-android#support-for-cached-responses
https://github.com/apollographql/apollo-android#support-for-cached-responses

Network + External Caching

Sometimes, you may want more sophisticated caching than might be offered by the
API that you are using to access the network, Or, perhaps the caching required by
the app does not match what the libraries offer (e.g., the Web server does not use
cache-control headers, as the caching is handled by client-side rules rather than
server-side configuration). In those cases, you need to handle caching “above” the
software layer represented by those networking APIs.

The Store library offers an “all-in-one” solution for this, though the learning curve is
steep.

Network + First-Class Persistence

Sometimes — particularly for an app that offers rich offline functionality – you need
to put the local storage first in your mind, with network functionality serving in a
“sync” role.

While a robust caching system can help with “offline-first” apps, you are limited in
how you can access that cached data to whatever APIs are offered by the caches. For
caches integrated into the networking APIs, that means that all you can do is make a
network request and deal with the failures when the device is offline and the data is
not cached. Often you have no way of examining the cache to try to determine what
you can do locally.

Also, most caching systems are designed for read operations, where the “system of
record” is the server and the cache is a replica of data retrieved from that server.
Many caches offer little to no support for buffering write operations while the device
is offline. And caches, by definition, are never a “system of record”, and sometimes
the device is the primary storage location, with the network serving in the role as a
backup.

For these, your repository will be built around a rich local storage API: SQLite, an
object database, etc. The repository will be responsible for the network I/O as well,
though that network I/O may be a “side” piece of functionality, not used in the
direct fulfillment of requests from the UI.

Persistence-Only

Sometimes, there is no server. In those cases, the repository wraps around your local

THE REPOSITORY PATTERN

271

https://github.com/NYTimes/Store

storage API of choice, with the abstraction helping to isolate you from your choice of
local storage API, in case you change your mind later.

Let’s Roll the Dice
In The Busy Coder’s Guide to Android Development, one of the sample apps is a
“diceware” app, to help you generate a passphrase made up of a series of randomly-
selected words, such as correct horse battery staple. However, that sample puts
most of the work inside a single fragment, which is messy. So, let’s rebuild that app,
hiding all of the data-loading details in a repository, with a view-model to mediate
communications between the fragment and the repository. The results can be found
in the Diceware/Repository sample project.

The Repository

In our case, the words come from two locations: a “baked in” word list in assets/
and a word list of the user’s choosing, obtained via ACTION_OPEN_DOCUMENT. However,
the data structure for each is the same: a list of words, one per line. Hence, we do
not have a sophisticated data model, only a list of strings. So our repository does not
need to worry about normalizing disparate model objects, though we might if we
obtained words from some Web service. And, our repository does not need to worry
about data modification, as the word lists are treated as read-only.

However, we still need a nice reactive API. The code for getting the words from a
user-chosen document is a bit different from the code for getting the words from an
asset. Moreover, if we want to cache the words, we need to handle the case where we
have not yet loaded the words and the case where the words are cached.

API

In the end, what our UI needs is a set of randomly-selected words, with the UI
providing the number of words and the source of those words.

To that end, Repository has a single instance method that is exposed to the rest of
the app: getWords(). It takes the Uri representing the data source and the number
of words to return. The words themselves will be a List of String objects. We wrap
that in an RxJava Single, as we do not know how long it will take to come up with
those words at compile time, since the word list from the data source may not be
cached yet. However, we do know that this is a one-shot event, and so Single makes
more sense than does a generic Observable.

THE REPOSITORY PATTERN

272

https://commonsware.com/Android
https://www.xkcd.com/936/
https://www.xkcd.com/936/
http://github.com/commonsguy/cw-androidarch/tree/master/Diceware/Repository
http://github.com/commonsguy/cw-androidarch/tree/master/Diceware/Repository

The Repository is a singleton, so we will have a static method named get() to
retrieve that singleton, given a Context to use for lazy initialization.

Implementation

getWords() breaks the problem down into two pieces: getting the full word list and
then choosing a random subset of those words:

Single<List<String>> getWords(Uri source, finalfinal int count) {
returnreturn(getWordsFromSource(source)

.map(strings -> (randomSubset(strings, count))));
}

(from Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/Repository.java)

The map() operator delegates the “choose a random subset” work to a
randomSubset() method, which uses a SecureRandom instance to choose the words:

privateprivate List<String> randomSubset(List<String> words, int count) {
List<String> result=newnew ArrayList<>();
int size=words.size();

forfor (int i=0;i<count;i++) {
result.add(words.get(random.nextInt(size)));

}

returnreturn(result);
}

(from Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/Repository.java)

getWordsFromSource() needs to look to see if we have a cached copy of the word list
for the requested Uri. If not, we need to arrange to load and cache those words;
otherwise, we can just use the cache. Our cache is ConcurrentHashMap mapping the
Uri to the word list:

privateprivate finalfinal ConcurrentHashMap<Uri, List<String>> cache=newnew ConcurrentHashMap<>();

(from Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/Repository.java)

getWordsFromSource() checks the cache and creates an Single chain based on
whether or not the words are cached:

synchronizedsynchronized privateprivate Single<List<String>> getWordsFromSource(Uri source) {
List<String> words=cache.get(source);
finalfinal Single<List<String>> result;

THE REPOSITORY PATTERN

273

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/Repository.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/Repository.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/Repository.java

ifif (words==nullnull) {
result=Single.just(source)

.subscribeOn(Schedulers.io())

.map(uri -> (open(uri)))

.map(in -> (readWords(in)))

.doOnSuccess(strings -> cache.put(source, strings));
}
elseelse {

result=Single.just(words);
}

returnreturn(result);
}

(from Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/Repository.java)

If the words are cached, our job is simple: just return that word list, wrapped in an
Single, for getWords() to use to come up with the random subset.

If the words are not yet cached, we:

• Wrap the Uri in an Single to start a chain
• Use an open() method to get an InputStream on the contents identified by

that Uri (or pulling in our one-and-only asset if the Uri seems to point to
assets):

privateprivate InputStream open(Uri uri) throwsthrows IOException {
String scheme=uri.getScheme();
String path=uri.getPath();

ifif ("file".equals(scheme) && path.startsWith("/android_asset")) {
returnreturn(ctxt.getAssets().open(ASSET_FILENAME));

}

ContentResolver cr=ctxt.getContentResolver();

cr.takePersistableUriPermission(uri, Intent.FLAG_GRANT_READ_URI_PERMISSION);

returnreturn(cr.openInputStream(uri));
}

(from Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/Repository.java)

• Use a readWords() method to convert that InputStream into a word list:

privateprivate staticstatic List<String> readWords(InputStream in) throwsthrows IOException {
InputStreamReader isr=newnew InputStreamReader(in);
BufferedReader reader=newnew BufferedReader(isr);

THE REPOSITORY PATTERN

274

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/Repository.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/Repository.java

String line;
List<String> result=newnew ArrayList<>();

whilewhile ((line = reader.readLine())!=nullnull) {
String[] pieces=line.split("\s");

ifif (pieces.length==2) {
result.add(pieces[1]);

}
}

returnreturn(result);
}

(from Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/Repository.java)

• Arrange to do all that work on a background thread
• As a side effect, put the word list in the cache for later use, via
doOnSuccess()

The ViewModel

The Repository API is fairly clean, isolating the caching and data loading and stuff
behind a reactive response. However, there is one hiccup: each call to getWords()
results in a new Single. This is somewhat of a headache for the UI, as we would
need a fresh subscription — via a fresh LiveData – whenever the user asks for a new
set of words, or changes the word count, or opens a new word list. That is on top of
having to manage the subscriptions across lifecycle events.

What would be nice is if the UI could have a single Observable, on which all the
words would come in, regardless of the trigger (including getting a set of words on
first launch). We would still have to deal with lifecycle events, but we have LiveData
for that.

So, this app has a ViewModel implementation — named PassphraseViewModel – that
offers a LiveData of the incoming words that the UI can use, in addition to tracking
our current word source and word count across configuration changes.

Repository Integration

The PassphraseViewModel constructor takes, among other things, a Context as a
parameter, to use to retrieve the Repository singleton, held in a field named repo.
We also have source and count fields to hold how many words we should retrieve

THE REPOSITORY PATTERN

275

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/Repository.java

and where we should retrieve them from, initialized to some starter values:

privateprivate finalfinal Repository repo;
privateprivate Uri source=Uri.parse("file:///android_asset/eff_short_wordlist_2_0.txt");
privateprivate int count=6;
privateprivate Disposable sub=Disposables.empty();

(from Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/PassphraseViewModel.java)

Getting words to the UI is handled by a words() method, that returns a LiveData for
random word list subsets. That LiveData is in the form of a liveWords field:

LiveData<List<String>> words() {
returnreturn(liveWords);

}

(from Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/PassphraseViewModel.java)

As noted, though, we will get multiple Single instances from the Repository, one
for each getWords() call that we need. If we want the UI to use this stable LiveData
instance, we need a way to feed different Single results to it over time.

The approach that PassphraseViewModel takes is to have liveWords be a
MutableLiveData:

privateprivate finalfinal MutableLiveData<List<String>> liveWords=newnew MutableLiveData<>();

(from Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/PassphraseViewModel.java)

The PassphraseViewModel has a refresh() method. Partly, this is used literally for a
“refresh” operation, to load a fresh batch of words given the current count and
source values. In fact, everything else that needs to trigger loading words routes
through refresh(). refresh() calls the getWords() method that we have on
Repository and forwards the events to the liveWords by using a Java 8 method
reference to tie the subscribe() of the Single to postValue() of the liveWords:

void refresh() {
sub.dispose();
sub=repo.getWords(source, count)

.observeOn(Schedulers.io())

.subscribe(liveWords::postValue);
}

(from Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/PassphraseViewModel.java)

The net effect is that every time refresh() is called, the liveWords eventually will
deliver a new random subset of the current word list.

THE REPOSITORY PATTERN

276

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/PassphraseViewModel.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/PassphraseViewModel.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/PassphraseViewModel.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/PassphraseViewModel.java

Saving State

We need to get the source and the count from the UI, for use in refresh(). And,
along the way, we can hold onto that information across configuration changes,
since this is a ViewModel. Plus, we can also have the PassphraseViewModel store this
information in the saved instance state Bundle, so the view-model is the single
“source of truth” for the current source and count.

To that end, the constructor on PassphraseViewModel takes a saved instance state
Bundle as input and — if the Bundle is not null — populates the source and count
from its contents:

PassphraseViewModel(Context ctxt, Bundle state) {
repo=Repository.get(ctxt);

ifif (state!=nullnull) {
source=state.getParcelable(STATE_SOURCE);
count=state.getInt(STATE_COUNT, 6);

}

refresh();
}

(from Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/PassphraseViewModel.java)

The constructor also calls refresh(), to queue up the first random set of words, so
we can populate the UI as quickly as possible.

PassphraseViewModel then has its own onSaveInstanceState(), where it fills in the
state Bundle using the same keys that its constructor uses to read the values out:

void onSaveInstanceState(Bundle state) {
state.putParcelable(STATE_SOURCE, source);
state.putInt(STATE_COUNT, count);

}

(from Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/PassphraseViewModel.java)

(hat tip to Danny Preussler for the idea of centralizing both view-model and saved
instance state logic in the ViewModel)

The Factory

However, by default, the Architecture Components’ ViewModel system has no way to

THE REPOSITORY PATTERN

277

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/PassphraseViewModel.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/PassphraseViewModel.java

create an instance of PassphraseViewModel. After all, it has no idea what this Bundle
is.

To help with that, PassphraseViewModel has a Factory nested class that implements
ViewModelProvider.Factory. This provides the “glue” for tying the Architecture
Components to PassphraseViewModel, by creating an instance of
PassphraseViewModel as needed:

staticstatic classclass FactoryFactory implementsimplements ViewModelProvider.Factory {
privateprivate finalfinal Bundle state;
privateprivate finalfinal Context ctxt;

Factory(Context ctxt, Bundle state) {
thisthis.ctxt=ctxt.getApplicationContext();
thisthis.state=state;

}

@NonNull
@Override
publicpublic <T extendsextends ViewModel> T create(@NonNull Class<T> modelClass) {

returnreturn((T)newnew PassphraseViewModel(ctxt, state));
}

}

(from Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/PassphraseViewModel.java)

When we create an instance of the Factory, we need to provide a Context (such as
the Activity hosting our UI) and the incoming saved instance state Bundle, for the
Factory to pass along to the newly-created instance.

The Fragment

The launcher (and only) activity — MainActivity — simply sets up a
PassphraseFragment:

packagepackage com.commonsware.android.diceware;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.app.FragmentActivityandroid.support.v4.app.FragmentActivity;

publicpublic classclass MainActivityMainActivity extendsextends FragmentActivity {
@Override
protectedprotected void onCreate(Bundle state) {

supersuper.onCreate(state);

ifif (getSupportFragmentManager().findFragmentById(android.R.id.content) == nullnull) {
getSupportFragmentManager().beginTransaction()

.add(android.R.id.content,

THE REPOSITORY PATTERN

278

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/PassphraseViewModel.java

newnew PassphraseFragment()).commit();
}

}
}

(from Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/MainActivity.java)

All of the real UI/UX work resides in the fragment.

The UI

The UI for PassphraseFragment consists of a TextView for the words, wrapped in a
CardView to make it a bit more aesthetically interesting:

<FrameLayout<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:padding="8dp">>

<android.support.v7.widget.CardView<android.support.v7.widget.CardView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center"
android:padding="8dp">>

<TextView<TextView
android:id="@+id/passphrase"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="20sp"
android:typeface="monospace" />/>

</android.support.v7.widget.CardView></android.support.v7.widget.CardView>

</FrameLayout></FrameLayout>

(from Diceware/Repository/app/src/main/res/layout/activity_main.xml)

The core of our UI setup is in onViewCreated():

@Override
publicpublic void onViewCreated(View view, Bundle state) {

supersuper.onViewCreated(view, state);

passphrase=view.findViewById(R.id.passphrase);
viewModel=ViewModelProviders

.of(thisthis, newnew PassphraseViewModel.Factory(getActivity(), state))

.get(PassphraseViewModel.class);
updateMenu();

THE REPOSITORY PATTERN

279

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/MainActivity.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/Diceware/Repository/app/src/main/res/layout/activity_main.xml

viewModel.words().observe(thisthis,
words -> passphrase.setText(TextUtils.join(" ", words)));

}

(from Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/PassphraseFragment.java)

Here, we:

• Retrieve the passphrase TextView to hold our random word list subset
• Obtain our PassphraseViewModel, by way of ViewModelProviders and our
Factory

• Update our menu, described in the next section
• observe() our LiveData, taking the list of words and populating the
TextView, joining those words with spaces

For a newly-created PassphraseViewModel, the constructor’s call to refresh() will
give us some words to show automatically. On a configuration change, our LiveData
will hand back our last set of words automatically. Plus, the LiveData handles the
rest of the lifecycle work for us.

The Menu

The fragment also has a menu, with a drop-down for the word count, a “refresh”
item to get a fresh random subset of words, and an “open” item to choose a word list
document:

<?xml version="1.0" encoding="utf-8"?>
<menu<menu xmlns:android="http://schemas.android.com/apk/res/android">>

<item<item
android:id="@+id/word_count"
android:showAsAction="ifRoom"
android:title="@string/menu_words">>
<menu><menu>

<group<group android:checkableBehavior="single">>
<item<item

android:id="@+id/word_count_4"
android:title="4" />/>

<item<item
android:id="@+id/word_count_5"
android:title="5" />/>

<item<item
android:id="@+id/word_count_6"
android:checked="true"
android:title="6" />/>

THE REPOSITORY PATTERN

280

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/PassphraseFragment.java

<item<item
android:id="@+id/word_count_7"
android:title="7" />/>

<item<item
android:id="@+id/word_count_8"
android:title="8" />/>

<item<item
android:id="@+id/word_count_9"
android:title="9" />/>

<item<item
android:id="@+id/word_count_10"
android:title="10" />/>

</group></group>
</menu></menu>

</item></item>
<item<item

android:id="@+id/refresh"
android:icon="@drawable/ic_cached_white_24dp"
android:showAsAction="ifRoom"
android:title="@string/menu_refresh" />/>

<item<item
android:id="@+id/open"
android:enabled="false"
android:showAsAction="never"
android:title="@string/open" />/>

</menu></menu>

(from Diceware/Repository/app/src/main/res/menu/actions.xml)

The “refresh” item ties directly to the refresh() method on the view-model, while
the word count items update their checked state and route to a setCount() method
on the view-model:

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

switchswitch(item.getItemId()) {
casecase R.id.open:

open();
returnreturn(truetrue);

casecase R.id.refresh:
viewModel.refresh();
returnreturn(truetrue);

casecase R.id.word_count_4:
casecase R.id.word_count_5:

THE REPOSITORY PATTERN

281

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Diceware/Repository/app/src/main/res/menu/actions.xml

casecase R.id.word_count_6:
casecase R.id.word_count_7:
casecase R.id.word_count_8:
casecase R.id.word_count_9:
casecase R.id.word_count_10:

item.setChecked(!item.isChecked());
viewModel.setCount(Integer.parseInt(item.getTitle().toString()));

returnreturn(truetrue);
}

returnreturn(supersuper.onOptionsItemSelected(item));
}

(from Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/PassphraseFragment.java)

The “open” item routes to an open() method, which brings up an
ACTION_OPEN_DOCUMENT activity for the user to choose a word list:

privateprivate void open() {
Intent i=

newnew Intent()
.setType("text/plain")
.setAction(Intent.ACTION_OPEN_DOCUMENT)
.addCategory(Intent.CATEGORY_OPENABLE);

startActivityForResult(i, REQUEST_OPEN);
}

(from Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/PassphraseFragment.java)

If we get a document, that is passed over to a setSource() method on the view-
model:

@Override
publicpublic void onActivityResult(int requestCode, int resultCode,

Intent resultData) {
ifif (resultCode==Activity.RESULT_OK) {

viewModel.setSource(resultData.getData());
}

}

(from Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/PassphraseFragment.java)

The setCount() and setSource() methods on PassphraseViewModel not only
update their respective fields, but they also call refresh(), to deliver a fresh set of
words based on the new count or new source of words:

THE REPOSITORY PATTERN

282

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/PassphraseFragment.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/PassphraseFragment.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/PassphraseFragment.java

void setSource(Uri source) {
thisthis.source=source;
refresh();

}

void setCount(int count) {
thisthis.count=count;
refresh();

}

(from Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/PassphraseViewModel.java)

As a result, when the user chooses any of those action bar items, if there is an actual
state change (e.g., a new count), we get a new roster of words.

We also need to set the checked state of the word count items based on the count,
either from the default value or from our state (view-model or saved instance state).
Since we do not know whether the menu or the view-model will be set up first, we
call a central updateMenu() method from a couple of places to check the right action
bar item:

privateprivate void updateMenu() {
ifif (menu!=nullnull && viewModel!=nullnull) {

MenuItem checkable=menu.findItem(WORD_COUNT_MENU_IDS[viewModel.getCount()-4]);

ifif (checkable!=nullnull) {
checkable.setChecked(truetrue);

}
}

}

(from Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/PassphraseFragment.java)

And, our fragment’s onSaveInstanceState() forwards that Bundle to the
PassphraseViewModel for saving the state:

@Override
publicpublic void onSaveInstanceState(Bundle outState) {

supersuper.onSaveInstanceState(outState);
viewModel.onSaveInstanceState(outState);

}

(from Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/PassphraseFragment.java)

The Event Flow

When our fragment is created, we create our view-model. It, in turn, asks the
repository to give us our initial random subset of words, triggering some background

THE REPOSITORY PATTERN

283

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/PassphraseViewModel.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/PassphraseFragment.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/PassphraseFragment.java

file I/O to read in the initial word list. When that is done, the random words wind
their way to the fragment, which pops them into the UI.

When the user requests different words — a different count, a different source, or
just words that maybe they might like better — the fragment updates the view-
model, which in turn asks the repository for words for the now-current word count
and word source. Eventually, another random subset of words make its way to
fragment, which displays them using the same code as before.

On a configuration change, our newly-recreated fragment winds up connecting to
the same view-model as before, courtesy of the Architecture Components’
ViewModel system. Our LiveData gives us back the words we were showing in the
previous fragment, so we can show them again.

So, each layer has its role in the event flow:

• The fragment manages the UI, including the menu
• The repository manages the data loading and random-subset work
• The view-model mediates the communications between them, folding all of

the disparate Single objects from the repository into a single stream of
events for the fragment to consume

THE REPOSITORY PATTERN

284

And, of course, the user gets a reasonably-secure passphrase to use for some app or
site that needs it:

Figure 3: Diceware Demo, Showing Random Words

Blending Data Sources
A repository is not limited to only using a single data source.

Sometimes, the repository will use multiple data sources that are holding model
objects. For example, the repository might implement a two-level cache (memory
plus disk), with the “system of record” being a Web service. For some requests, the
repository would need to check some or all of these locations for the data.

Sometimes, while the primary model data resides in one data source, ancillary data
resides in another. For example, perhaps the model data contains a URL to an image,
or an image URL can be derived from the model data (e.g., an avatar icon). A typical
approach is to have the repository ignore that, allowing the UI layer to request the
image from an image-loading library (e.g., Picasso, Glide), which serves as its own
repository. But if you need to perform transformations on that image, you might find
it better to handle that yourself in your own repository. In that case, while most of

THE REPOSITORY PATTERN

285

the model data might come from one place (local database, Web service), other
aspects of that model data might come from another place.

The Diceware/Pwned sample project will demonstrate this, by validating our
randomly-generated passphrase to confirm that it has not already been “pwned”.

Pwned Passwords

In the parlance of Troy Hunt, a password is “pwned” if it has appeared in a data
breach. Sometimes, the breach is of a database where passwords were held in
plaintext (inexplicably). Sometimes, the copied database used hashing, but the hash
was weak and passwords could be obtained using rainbow tables and other attacks.

Mr. Hunt maintains a database of “pwned passwords”. There are several ways of
using this database, including a lightweight Web service API.

In particular, this API provides a way to check a password against the database
without disclosing the password itself to the Web service. Instead, the client:

• Creates a SHA-1 hash of the password
• Submits the first five characters of that hash
• Receives in response the suffixes of all of the hashes of all of the passwords in

the database that start with those five characters

That response will be several hundred entries, but that is still small enough to scan
for matches against the rest of the password’s hash. This way, all the Web service
knows is that you have a password whose hash starts with those five characters; the
password itself is never passed to the Web service. This is a nice way to validate a
password against the database, as the candidate password is never disclosed.

In principle, a diceware app should not need to use this Web service. It is very
unlikely that a randomly-generated set of words from decently-long word lists will
have been used previously as a password. It is even less likely that it will have been
used previously as a password that wound up in Mr. Hunt’s database. However, “very
unlikely” is not the same as “impossible”, and since the Web service API is easy to
use, it may be worthwhile to check the generated passphrase.

There are other cases where using this Web service API is more important, such as:

• User-supplied passwords for local data
• User-supplied passwords for an account to be created on your Web service

THE REPOSITORY PATTERN

286

http://github.com/commonsguy/cw-androidarch/tree/master/Diceware/Pwned
http://github.com/commonsguy/cw-androidarch/tree/master/Diceware/Pwned
https://haveibeenpwned.com/Passwords
https://haveibeenpwned.com/API/v2

(where the Web service itself is not checking that password for pwnage)
• Pwnage checking integration into a password safe

PwnedCheck

The PwnedCheck class provides a simple RxJava/OkHttp wrapper around the Web
service. The Web service does not use JSON, XML, or other conventional data
structures for its response, and so a dedicated REST client API like Retrofit will not
help much here.

PwnedCheck has a one-parameter constructor that takes an OkHttpClient instance. If
you are already using OkHttp, pass in your existing OkHttpClient instance, so you
can share the pools that OkHttp maintains (threads, connections, etc.). Or, just
create a new OkHttpClient() and pass that in.

PwnedCheck exposes two methods that supply Observable responses related to
passphrase validation: score() and validate().

score()

The core one is score(). This will return an Integer — via an Observable —
representing the number of times the supplied passphrase appears in the database,
or 0 if it is not in the database at all:

Observable<Integer> score(String passphrase) {
returnreturn Observable.just(passphrase)

.map(PwnedCheck::getSha1Hex)

.flatMap(thisthis::fetchCandidates)

.map(PwnedCheck::findCount);
}

(from Diceware/Pwned/app/src/main/java/com/commonsware/android/diceware/PwnedCheck.java)

Here, we start an Observable chain just() on the passphrase. Then, we use map() to
convert that passphrase to its SHA-1 hash, using getSha1Hex():

// based on https://stackoverflow.com/a/33260623/115145

privateprivate staticstatic String getSha1Hex(String original) throwsthrows Exception {
MessageDigest messageDigest=MessageDigest.getInstance("SHA-1");

messageDigest.update(original.getBytes("UTF-8"));

THE REPOSITORY PATTERN

287

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Diceware/Pwned/app/src/main/java/com/commonsware/android/diceware/PwnedCheck.java

byte[] bytes=messageDigest.digest();
StringBuilder buffer=newnew StringBuilder();

forfor (byte b : bytes) {
buffer.append(Integer.toString((b & 0xff)+0x100, 16).substring(1));

}

returnreturn buffer.toString();
}

(from Diceware/Pwned/app/src/main/java/com/commonsware/android/diceware/PwnedCheck.java)

Then, we flatMap() to get a new Observable, one that wraps around OkHttp to
make the REST request of the Web service, via fetchCandidates():

privateprivate Observable<FetchResult> fetchCandidates(String sha1) throwsthrows IOException {
String url="https://api.pwnedpasswords.com/range/"+sha1.substring(0, 5);
Request request=newnew Request.Builder().url(url).build();

returnreturn Observable.fromCallable(
() -> newnew FetchResult(okHttpClient.newCall(request).execute(), sha1));

}

(from Diceware/Pwned/app/src/main/java/com/commonsware/android/diceware/PwnedCheck.java)

The URL used for the Web service is simply a particular base URL with the first five
characters of the SHA-1 has appended as a path segment.

fetchCandidates() returns a FetchResult, wrapped in an Observable. A
FetchResult is a simple POJO wrapping our hash and the Response object from
OkHttp:

privateprivate staticstatic classclass FetchResultFetchResult {
finalfinal Response response;
finalfinal String sha1;

privateprivate FetchResult(Response response, String sha1) {
thisthis.response=response;
thisthis.sha1=sha1;

}
}

(from Diceware/Pwned/app/src/main/java/com/commonsware/android/diceware/PwnedCheck.java)

score() completes the chain by converting the FetchResult into the count of
occurrences of the passphrase, using findCount():

privateprivate staticstatic int findCount(FetchResult fetch) throwsthrows IOException {

THE REPOSITORY PATTERN

288

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Diceware/Pwned/app/src/main/java/com/commonsware/android/diceware/PwnedCheck.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/Diceware/Pwned/app/src/main/java/com/commonsware/android/diceware/PwnedCheck.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/Diceware/Pwned/app/src/main/java/com/commonsware/android/diceware/PwnedCheck.java

String candidates=fetch.response.body().string();
String suffix=fetch.sha1.substring(5).toUpperCase();

forfor (String line : candidates.split("\r\n")) {
ifif (line.startsWith(suffix)) {

returnreturn(Integer.parseInt(line.split(":")[1]));
}

}

returnreturn 0;
}

(from Diceware/Pwned/app/src/main/java/com/commonsware/android/diceware/PwnedCheck.java)

The response from the server is a series of lines. Each line contains the trailing 35
characters of the SHA-1 hash, after the common five-character prefix. Each line also
has the number of occurrences of that hash in the database, separated from the hash
suffix via a colon. So, findCount():

• Retrieves the entire response as a String
• Splits that into lines
• Checks to see if the line starts with the trailing 35 characters of the candidate

passphrase’s SHA-1 hash
• If it is, pick out the count and return it

So, the chain set up by score() results in you getting that score: the number of
times the passphrase appears in the database, or 0 if it is not in the database at all.

Note that the Observable chain set up by score() performs network I/O, so clients
will want to use subscribeOn() or something to ensure that the work is performed
on a background thread.

validate()

Most of the time, though, you do not need the score. You just need to know if the
passphrase appears in the database.

One way to do that would be to have an Observable of Boolean, with false
indicating that the passphrase is invalid (i.e., it is in the database and therefore is
pwned). Another approach is to have an Observable chain that throws an exception
for invalid passphrases. This approach can then be used as part of RxJava’s “retry”
options — in the case of this app, we can generate another random set of words and
try again.

THE REPOSITORY PATTERN

289

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Diceware/Pwned/app/src/main/java/com/commonsware/android/diceware/PwnedCheck.java

So, validate() wraps the score() Observable and yields one of two outcomes:

• You get an Observable that gives you your passphrase back, so you do not
necessarily need to hold onto it elsewhere, or

• a PwnedException, if the score() is a positive number

Observable<String> validate(finalfinal String passphrase) {
returnreturn score(passphrase).map(score -> {

ifif (score>0) {
throwthrow newnew PwnedException();

}

returnreturn passphrase;
});

}

privateprivate staticstatic classclass PwnedExceptionPwnedException extendsextends RuntimeException {

}

(from Diceware/Pwned/app/src/main/java/com/commonsware/android/diceware/PwnedCheck.java)

Adding OkHttp and INTERNET

To make all of this work, the project has the OkHttp dependency, plus it has the
INTERNET permission requested in the manifest.

Integrating PwnedCheck

Given the PwnedCheck class, our Repository can now blend it into its work for
generating random passphrases based on word lists.

Modifying the Model

In the earlier sample, we considered the “model” to be a list of strings, of a UI-
determined length. The UI was responsible for combining those into a passphrase
using some delimiter (in this case, a space).

However, the Pwned Passwords API wants a simple passphrase as a String. So, we
need to modify the app to have the model be a single String, not a list. And, we will
need to have the Repository create the combined string.

This requires a few changes to consumers of the Repository.

THE REPOSITORY PATTERN

290

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Diceware/Pwned/app/src/main/java/com/commonsware/android/diceware/PwnedCheck.java

PassphraseViewModel now has a MutableLiveData of String:

privateprivate finalfinal MutableLiveData<String> livePassphrase=newnew MutableLiveData<>();

(from Diceware/Pwned/app/src/main/java/com/commonsware/android/diceware/PassphraseViewModel.java)

This also affects the method used to get that LiveData, now renamed to be
passphraseStream():

LiveData<String> passphraseStream() {
returnreturn(livePassphrase);

}

(from Diceware/Pwned/app/src/main/java/com/commonsware/android/diceware/PassphraseViewModel.java)

When PassphraseFragment observes that LiveData, it no longer needs to use
TextUtils to join the words into a single string. Instead, it gets the already-joined
words and can just put them into the TextView:

@Override
publicpublic void onViewCreated(View view, Bundle state) {

supersuper.onViewCreated(view, state);

passphrase=view.findViewById(R.id.passphrase);
viewModel=ViewModelProviders

.of(thisthis, newnew PassphraseViewModel.Factory(getActivity(), state))

.get(PassphraseViewModel.class);
updateMenu();
viewModel.passphraseStream().observe(thisthis,

newPhrase -> passphrase.setText(newPhrase));
}

(from Diceware/Pwned/app/src/main/java/com/commonsware/android/diceware/PassphraseFragment.java)

Validating the Passphrase

The original sample’s Repository had a getWords() method that randomly selected
the words out of the given source:

Single<List<String>> getWords(Uri source, finalfinal int count) {
returnreturn(getWordsFromSource(source)

.map(strings -> (randomSubset(strings, count))));
}

(from Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/Repository.java)

THE REPOSITORY PATTERN

291

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Diceware/Pwned/app/src/main/java/com/commonsware/android/diceware/PassphraseViewModel.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/Diceware/Pwned/app/src/main/java/com/commonsware/android/diceware/PassphraseViewModel.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/Diceware/Pwned/app/src/main/java/com/commonsware/android/diceware/PassphraseFragment.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/Diceware/Repository/app/src/main/java/com/commonsware/android/diceware/Repository.java

That method is now getPassphrase(), and it involves a slightly longer Observable
chain:

Observable<String> getPassphrase(Uri source, finalfinal int count) {
returnreturn(getWordsFromSource(source)

.map(strings -> (randomSubset(strings, count)))

.map(pieces -> TextUtils.join(" ", pieces))

.flatMap(checker::validate)

.retryWhen(errors -> errors.retry(3)));
}

(from Diceware/Pwned/app/src/main/java/com/commonsware/android/diceware/Repository.java)

The first two steps in the chain — getWordsFromSource() and the map() for
randomSubset() — are what we had originally.

Next, we use another map() to join() the words here, rather than in the
PassphraseFragment as before.

Then, we can use flatMap() to pull in our PwnedCheck instance, held in a field
named checker:

privateprivate finalfinal PwnedCheck checker=newnew PwnedCheck(newnew OkHttpClient());

(from Diceware/Pwned/app/src/main/java/com/commonsware/android/diceware/Repository.java)

At this point, our stream is now an Observable of the passphrase itself… unless it
fails validation, in which case a PwnedException is thrown. So, our final step uses
RxJava’s retry(), which will try the entire chain from the start if directed to, up to 3
times (as we are calling retry(3)).

So, if you get a passphrase from the Observable returned by getPassphrase(), it has
been validated by the Pwned Passwords Web service and is guaranteed to be a fresh,
un-pwned passphrase. More importantly, other than the change in data type from a
list of strings to a single string, nothing outside of the repository knows or cares
about the details of how the random passphrase is generated.

THE REPOSITORY PATTERN

292

https://github.com/commonsguy/cw-androidarch/blob/v1.0/Diceware/Pwned/app/src/main/java/com/commonsware/android/diceware/Repository.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/Diceware/Pwned/app/src/main/java/com/commonsware/android/diceware/Repository.java

Introducing Model-View-Intent

MVC. MVP. MVVM. MVI. These abbreviations get tossed around a lot in app
development discussions, and increasingly in Android app development discussions.
Those using these abbreviations often think that:

• Everybody knows what they mean, and
• There is a single universal definition for each of those abbreviations, one

that everybody holds

In reality, these MV* abbreviations are well-known in some circles and unknown in
others. And, even among people who think they know these abbreviations, there is a
fair bit of disagreement about what the abbreviations mean, particularly when it
comes time to writing actual code. In this chapter, we will explore what these
abbreviations mean, with a particular emphasis on the last of the four: MVI, which
stands for Model-View-Intent. And, as an illustration of the problems inherent in
applying these abbreviations:

• The “model” in Model-View-Intent may or may not be what you might think
of as the model

• The “view” in Model-View-Intent is unlikely to be a View
• The “intent” in Model-View-Intent is not going to be an Intent

GUI Architectures
MVC, MVP, MVVM, MVI, and others are GUI architecture patterns. They describe
different ways of organizing your code to update your UI based upon user input and
other changes in data, such as the results of server requests or database operations.
The abbreviations, as you might expect, abbreviate short phrases that are the formal
names of these patterns:

293

• MVC = Model-View-Controller
• MVP = Model-View-Presenter
• MVVM = Model-View-Viewmodel
• MVI = Model-View-Intent

In these, “model” represents some data, and “view” represents some way of
visualizing that data. The trailing portion of the GUI architecture name indicates
another component that is involved in taking model changes and updating the view,
and taking user input (e.g., button clicks, text entry) and updating the models…
which in turn updates views.

Some people may find it surprising that there are so many different organization
patterns for this work, and that developers spend time debating the merits of one
pattern over another. Debates over GUI architectures are reminiscent of debates over
text editors (emacs versus vi), in that they tend to be debates over minutiae and
ignore other options (e.g., Sublime Text 3).

Why People Worry About GUI Architectures
Those participating in these debates over GUI architectures will tend to unite
against architecture-agnostics, hammering home their belief that you should have
some formal GUI architecture in your app — the debate merely is over which one.
There are some reasons why formal GUI architecture adherents are strident in their
beliefs that such architectures are universally beneficial.

Avoiding Known Problems

GUI development can be tricky. Android GUI development can be trickier than
others, with things like configuration changes, tasks, and the like adding lots of edge
and corner cases to worry about.

If a popular GUI architecture has been applied to Android — and if those results
have been published in a blog post, conference presentation, etc. — part of the work
will be to address those tricky bits. Some of the points of contention in the GUI
architecture debates are how they handle things like configuration changes, where
architectures that handle those things gracefully are considered to be better than
those that ignore the problem.

This is not to say that using one of these formal GUI architectures is a requirement
to address these problem areas in Android. However, if you implement an Android

INTRODUCING MODEL-VIEW-INTENT

294

version of one of these GUI architectures, there is a decent chance that these
problem areas will be covered as part of that work.

Consistency Between Team Members

Many Android apps are developed by teams, rather than by solo developers. Team
members may switch between working on different parts of the code base at
different times, and so while certain areas may have a specific “owner”, that owner
may not be the only one to work in those areas. For example, if a critical bug is
discovered while an “owner” is away from the office, somebody else may need to step
in and fix the bug, so that users are not harmed any longer than is necessary.

Having team members be able to work in any portion of an app’s code base is the
reason for overall standards, such as:

• Tabs versus spaces for indents
• Line lengths
• Naming conventions (as opposed to NamingConventions or
namingConventions or naming_conventions)

• And so on

At a higher level, teams may elect to standardize on a GUI architecture so that
different developers writing different portions of a UI (e.g., different activities) will
create similar code. It will be easier for others to adopt and modify that code if it is
similar to other areas of the code that were seen previously.

Consistency Over Time

Teams are rarely stable for long. Team members come and go, within the overall
organization or departing for greener pastures elsewhere. As such, “onboarding” of
team members is important, and having a standardized approach to UI
construction, in the form of a specific GUI architecture, can help here.

However, even solo developers are victims of time. Code that might make sense
today may make less sense in a year and no sense at all in three years. Developer
experience and expertise change, even when the code does not. Having consistent
code within an app reduces this problem, in part by making it more likely that the
developer will have seen similar code recently. And, adopting a specific GUI
architecture means that all the world’s prose on that GUI architecture act as
documentation for the project that the developer does not have to write.

INTRODUCING MODEL-VIEW-INTENT

295

Why Others Ignore GUI Architectures
It is quite likely that the vast majority of Android apps do not use any of these GUI
architectures.

In some cases, this is unintentional, insofar as the developer(s) of the app do not
know about such architectures or have not considered them. Not everybody has
equal education and experience, and that will be reflected in the tactical and
strategic development decisions that they make or participate in making.

However, in some cases, there are clear reasons why a classic MV* GUI architecture
is unsuitable.

Atypical Apps

These GUI architectures have been refined for “typical” app structures:

• You have some data (local or remote)
• You want to display that data to the user (in collections or for individual

items)
• Often, the user can manipulate that data, adding to it, modifying it, or

perhaps deleting it
• Sometimes, the data can change on the fly from outside of the app (e.g.,

push messages, other forms of server-centered updates)
• You want those data changes to flow back to the data source, plus update the

UI of the app as needed

Lots of apps fit that general description. At the same time, lots of apps do not fit
that general description, such as:

• Many types of games
• System-integrated tools, like soft keyboards and VPNs
• Musical instrument simulators
• Terminal emulators
• Camera apps
• Calculators
• And so on

Some of these will have their own architecture patterns, perhaps tied to libraries or
frameworks. Game development, for example, has its own approaches, often

INTRODUCING MODEL-VIEW-INTENT

296

embodied in toolkits like Unity3D. Those approaches may not resemble the MV*
architectures that you might use in, say, a social network client.

It is up to you to decide how well these sorts of GUI architectures fit your particular
type of app.

YAGNI and Overhead

The bigger the app, the more likely it is that you will gain benefit from a formal GUI
architecture. Such apps are more likely to have more developers and be used for
more time, where a formal GUI architecture can yield benefits.

Conversely, the smaller the app, the less likely it is that a formal GUI architecture is
necessarily worth it. Or, as the saying goes, “you aren’t going to need it” (YAGNI).

Most of the sample apps in this book, like the sample apps from The Busy Coder’s
Guide to Android Development, skip the formalities. That is because they are samples
of how to use particular APIs and usually have little code beyond that.

A well-architected app is likely to have more code than an equivalent app that “just
gets the job done”. The next chapter will profile a simple checklist-style “to-do” app
built using the MVI architecture. As you will see, the architecture itself dictates that
many more classes be created, above and beyond what might be needed for the core
functionality.

No Obvious User Benefit

The counterpart to this issue is that the user rarely, if ever, benefits directly from the
use of a formal GUI architecture. Developers may benefit, and their organization
(where relevant) may benefit. However, the user is not necessarily going to see
anything different. A note-taking app, or a chat client, or a video player, should look
the same to the user whether the developer(s) used MVC, MVP, MVVM, MVI, some
other GUI architecture… or no specific GUI architecture at all.

It is entirely possible that bugs will exist in an informally-developed app that would
not exist had the developers chosen and implemented a formal GUI architecture.
However, there is no guarantee that bugs will exist in an informally-developed app.
Similarly, there is no guarantee that using an MV* architecture will eliminate all of
your bugs by magic. A development team that doesn’t pay much attention to GUI
architecture — instead choosing to invest that time in an awesome test suite – may
have a better app in the end than a team that focused heavily on the architecture

INTRODUCING MODEL-VIEW-INTENT

297

https://commonsware.com/Android
https://commonsware.com/Android

and did a sub-par job at testing.

Choosing a GUI architecture does not give the users any additional features. There
are no new marketing buzzwords to tout. The media will not praise the app for its
adherence to some GUI architecture. If management thinks that investing in a GUI
architecture is slowing down “work that matters”, management might steer
developers towards other efforts and away from a formal architecture. Frequently,
decisions made on this basis turn out to be bad ones… but management is free to
make those decisions.

No Consistency In Definitions

Compounding that latter problem is that it may take a while to figure out how to
implement a GUI architecture, as they are very ill-defined. We toss around terms
like “model” and “view” without clear definitions, particularly with respect to
concrete scenarios and Android apps. As a result, not only does the development
team need to debate which architecture to use, but also what that architecture really
means in practice.

A Rough Comparison of GUI Architectures
For the purposes of this book, the primary differences between the major GUI
architectures is how data and control flow from the model data and the visual
representation of that model data (the view).

INTRODUCING MODEL-VIEW-INTENT

298

The simplest, in many respects, is Model-View-Presenter:

Figure 4: Model-View-Presenter

We have a UI, we have data, and we have glue code — in the form of a “presenter” —
that ties the two together. The presenter is responsible for:

• Sinking events raised by the UI, such as form submissions, and using that
information to update the stored representation of that data (the model),
applying relevant business rules along the way

• Taking updates from the model — originating from this presenter, another
presenter, asynchronous changes from a remote server, etc. — and updating
its associated visual representation (the view)

It’s nice and straightforward. On Android, things get a bit interesting with
configuration changes, so while early Android apps might consider the activity or
fragment to be the presenter, nowadays they are considered to be part of the view
(along with the widgets). The presenter is a separate object, one that can be
(carefully) reused across configuration changes, as a stable platform as our activities
and fragments come and go.

INTRODUCING MODEL-VIEW-INTENT

299

Ironically, what today is called Model-View-Presenter originated as Model-View-
Controller. Long-time MVC fans — those who worked on Smalltalk development in
1993, for example — need to deal with this name change. Nowadays, MVC is a
slightly different approach than MVP:

Figure 5: Model-View-Controller

The principal difference is that now data changes from the model flow directly to
the view, bypassing any intermediary. In Android terms, if the model is publishing
RxJava streams, for example, the view is the subscriber of those streams, whereas in
MVP, the presenter would be the subscriber.

The benefit of this approach is the unidirectional data flow. A presenter serves as a
common junction for data flows, which is OK in simple scenarios, but can get messy
in larger use cases. In particular, the presenter needs to keep track not only of the
data, but who knows about that particular piece of data:

• Is this some interim POJO, updated from the view, that needs to get reflected
in the model?

• Is this some interim POJO, updated from the model, that needs to get
reflected in the view?

If you use the same POJO class for each — and particularly if you are applying
caching to hold onto that data in the presenter — there is a risk of bugs causing the
data to stop flowing. For example, you get a revised POJO from the model, you
update the presenter’s cache… and fail to do anything to update the view. Or, you get
data from the view, prepare changes for the model, then the model gives you new
data from some other source, and you need to somehow merge this stuff together.

A unidirectional data flow, particularly with immutable objects, makes this simpler.

INTRODUCING MODEL-VIEW-INTENT

300

Now, each component is responsible for doing some work and passing the results
along to a single destination, rather than having to remember which destination
needs the results of the work.

Microsoft led the charge to convert Model-View-Presenter into Model-View-
ViewModel (MVVM). From a diagram standpoint, MVVM looks strangely familiar:

Figure 6: Model-View-ViewModel

In fact, typically, a MVVM app still has something called a presenter, which is
responsible for preparing the view-model and connecting it with the view. MVVM
implementations tend to emphasize two-way data binding, so the “business logic”
for updating the view-model lies in a declarative UI (e.g., Android’s layout resources,
Microsoft’s XAML). For major operations, such as form submission, the presenter
takes the view-model and uses that information to update the “real” model.

This helps to clean up the communications somewhat. The presenter is mapping
from the model to the view-model, applying appropriate changes along the way,
such as:

• Data minimization: only exposing data in the view-model that the view
needs

• Data transformation: taking the data in the form that the model stores it and
changing it to something more amenable to the UI, such as converting
currencies, converting time formats (e.g., Unix epoch times to richer date
objects), and so on

INTRODUCING MODEL-VIEW-INTENT

301

The Basics of Model-View-Intent
While you have been working in Android, Web development has continued its own
innovations. Redux has popularized a new approach to Web app development, and
Redux in turn has led to interest in Model-View-Intent (MVI) as a GUI architecture.

However, as with the rest of the major GUI architectures, MVI is defined fairly
loosely. However, at its core, it is a return to the unidirectional data flow that MVC
offered… though with a few more parts:

Figure 7: Model-View-Intent

Things start off a bit like MVC, where the view lets the controller know about
actions that the user has taken, such as submitting a form or requesting a search.
And, as with MVC, the controller is responsible for updating the model.

However, at that point, things start to differ, introducing a couple of new concepts:
the view state and the reducer.

What’s a View State?

The view state is somewhat reminiscent of the view-model in MVVM. It is the data
necessary to render the view, by populating widgets and so forth.

The key behind many MVI implementations is that the view state is immutable. The
view is handed a view state and needs to update the UI to reflect that new state. In
many cases, that is simply filling in all of the widgets. In a few cases, that might get
more elaborate, such as using DiffUtil to update the contents of a RecyclerView.

INTRODUCING MODEL-VIEW-INTENT

302

https://redux.js.org/

The Redux folks would phrase this something like “the view is a function applied to
the state”. The view layer does not care why the view state changed, just that it
changed, and so it just updates the UI to match that state.

What’s a Reducer?

The view state may be very complex, as it needs to be as complex as the UI that is
being rendered. A single activity or fragment that has multiple tabs in a ViewPager
might have several lists of material to go into those tabs, plus perhaps some
additional data, all as part of the view state.

However, any individual action by the user is likely to only change a little bit of that
view state. The user might mark some list item as a favorite, or add a new item, or
swipe away an existing item. Most of the view state is stable.

In MVI, the controller is not directly responsible for maintaining that view state. It
simply consumes actions from the view, updates the model, and publishes some sort
of result to indicate that the work has been completed. Results do not have to map
1:1 to actions, though in many cases they will.

The “reducer” — whose name stems from the MapReduce model, presumably — is
responsible for taking the result and crafting a new view state that reflects that
incremental change in the data needed by the view. So, for example, if the user
marks an item in the list as a favorite:

• The view emits an “mark-as-favorite” action
• The controller tells the model to persist that change and emits a “marked-as-

favorite” result
• The reducer uses the result to update the in-memory representation of the

list data to show that the favorite has been marked

The view does not update itself based upon the user’s request. Instead, it emits the
action, then renders the updated view state once it arrives.

INTRODUCING MODEL-VIEW-INTENT

303

https://en.wikipedia.org/wiki/MapReduce

Where Does the “Intent” Thing Show Up?

In the diagram shown above, there is a split between a result and a view state. In
some MVI implementations, there is also a split between an “intent” and an “action”.
The intent is what the view publishes, but what the controller consumes is an
action. There is a separate component that converts intents into actions.

Figure 8: Model-View-Intent, With Actual Intents

Part of the rationale here is having a strictly layered separation of concerns:

• Intents and view state on the view side of the interpretor and reducer
• Actions and results on the controller side of the interpretor and reducer

For some UIs, it may be that the distinction between intents and actions may be
fruitful over time. For example, perhaps you have a UI with a search option. On
mobile devices, search is triggered by the typical sort of magnifying-glass icon in a
toolbar. When the search is submitted, the UI wants to get a view state with search
results. However, on Chromebooks or other devices with physical keyboards, you
want to offer a direct typing approach, where the user can just start typing a search
expression, and that automatically displays the SearchView, skipping the toolbar
icon. The result is the same: conduct a search. But, perhaps you want to distinguish
those as separate intents, with an eye towards perhaps offering different behaviors
for searches triggered by each mechanism. However, the controller does not care
whether the search was triggered by a toolbar icon click, just typing on the
keyboard, selecting some saved search in a list or whatever. The controller just needs
to know that a search is required. In this case, the view can publish different intents
based upon how the search was requested, but the interpretor can normalize those
into a smaller set of actions.

INTRODUCING MODEL-VIEW-INTENT

304

In practice, though, this approach can wind up with a lot of code duplication, as you
mind-numbingly convert intents into actions on a 1:1 basis. For the sample MVI app
profiled in the next chapter, the author originally wrote the app with intent/action
separation… then got rid of the intents. If you feel that the intent/action separation
is worthwhile, certainly use it. In the author’s opinion, for many apps, the YAGNI
principle applies: you aren’t going to need it.

Additional MVI Resources
Here are some additional resources on MVI in Android that you may find useful:

• Jake Wharton’s 2017 Devoxx US presentation – while Jake does not mention
MVI, the architecture that he demonstrates is the Redux/MVI approach

• Yousuf Haque’s droidcon NYC 2017 presentation on MVI
• Benoît Quenaudon’s droidcon NYC 2017 presentation on MVI, and his

associated sample app and blog post

INTRODUCING MODEL-VIEW-INTENT

305

https://speakerdeck.com/jakewharton/the-state-of-managing-state-with-rxjava-devoxx-us-2017
https://www.youtube.com/watch?v=8JewfcZl5TQ
https://www.youtube.com/watch?v=PXBXcHQeDLE
https://github.com/oldergod/android-architecture/tree/todo-mvi-rxjava
https://proandroiddev.com/the-contract-of-the-model-view-intent-architecture-777f95706c1e

A Deep Dive Into MVI

The preceding chapter introduced Model-View-Intent (MVI) as a GUI architecture
pattern… without any code.

This chapter will look at a concrete implementation of MVI, so you can see how it
works. Note, though, that all of these GUI architectures are fairly malleable, and so
this chapter’s approach may differ somewhat from other MVI implementations.

What the Sample App Does
A popular app category is a to-do list. These track outstanding tasks that need to be
done, usually with some sort of checkbox or other indicator to denote which ones
have been completed. Some offer due dates, recurring tasks, or other features to
make it easier for you to set up a roster of tasks that match your needs. Some
synchronize with a Web service, so that you can view your to-do list in multiple
places, such as both on your phone and from a desktop Web browser.

Google has published a long list of sample apps that use a to-do list as a way of
exploring various GUI architectures. The ToDo/MVI sample project is not a fork of
those, but rather a “cleanroom” implementation of a to-do list with similar
functionality. That functionality is tied into three fragments: the to-do list roster, the
viewer, and the editor.

307

https://github.com/googlesamples/android-architecture
http://github.com/commonsguy/cw-androidarch/tree/master/ToDo/MVI
http://github.com/commonsguy/cw-androidarch/tree/master/ToDo/MVI

The Roster

When initially launched, the app will show a roster of the recorded to-do items, if
there are any. Hence, on the first run, it will show just an “empty view”, prompting
the user to click the “add” action bar item to add a new item:

Figure 9: ToDo MVI App, As Initially Launched, with No Items

A DEEP DIVE INTO MVI

308

Once there are some items in the database, the roster will show those items, in
alphabetical order by title, with a checkbox indicating whether or not they have
been completed:

Figure 10: ToDo MVI App, Showing Two Items

A DEEP DIVE INTO MVI

309

From here, the user can tap the checkbox to quickly mark an item as completed (or
un-mark it if needed). A filter drop-down allows the user to toggle the list from
showing all items, only those marked as completed, or only those still outstanding
(i.e., not yet checked as completed):

Figure 11: ToDo MVI App, Showing Filter Options

A DEEP DIVE INTO MVI

310

Long-pressing on an item switches the list into multiple-selection mode, where the
user can then tap on items to build up a selection:

Figure 12: ToDo MVI App, Showing Multi-Select Mode with Two Selected Items

A DEEP DIVE INTO MVI

311

The “trash can” toolbar button will allow the user to delete the selected items, after
confirmation:

Figure 13: ToDo MVI App, Showing Delete Confirmation Snackbar

A DEEP DIVE INTO MVI

312

On a smaller-screen device, such as a phone, the roster will fill the screen. However,
on larger-screen devices, the activity adopts the master-detail pattern and shows the
viewer or editor fragment side-by-side with the roster:

Figure 14: ToDo MVI App, Showing Master-Detail UI

A DEEP DIVE INTO MVI

313

The Viewer

A simple tap on an item in the roster brings up the viewer fragment, either
alongside the roster on a larger screen or on its own on a smaller screen:

Figure 15: ToDo MVI App, Showing a Completed Item

This just shows additional information about the item, including any notes the user
entered to provide more detail than the simple description that gets shown in the
roster. The checkmark icon will appear for completed items.

From here, the user can edit this item (via the “pencil” icon). The user can also swipe
left and right to traverse the roster of items — this is particularly useful on a phone,
to avoid the “ping-pong” effect of having to navigate back to the roster fragment just
to view details of the next item.

The Editor

The editor is a simple form, either to define a new to-do item or edit an existing one.
If the user taps on the “add” action bar item from the roster, the editor will appear
blank, and submitting the form will create a new to-do item. If the user taps on the
“edit” (pencil) action bar item from the viewer, the editor will have the existing

A DEEP DIVE INTO MVI

314

item’s data, which can be altered and saved:

Figure 16: ToDo MVI App, Editing a Completed Item

Clicking the “save” toolbar button will either add the new item or edit the item that
the user requested to edit. For an edit, the “delete” toolbar button will be available
and will allow the user to delete this specific item, after confirmation.

A DEEP DIVE INTO MVI

315

MVI and the Sample App
The sample app uses the simplified MVI approach outlined in the preceding
chapter, skipping the intent/action separation and just having the view emit actions:

Figure 17: Model-View-Intent, As Used In This App

The view consists of our three fragments, as they each operate off of the same state:
the roster of to-do items.

The model is made up of two parts:

• The to-do items themselves, stored in a Room-managed database, fronted by
a repository, and converted into model objects used as part of our view state

• The filter mode, which we want to persist across runs of the app, stored in a
SharedPreferences fronted by another repository

We also have actions, a controller, results, and a reducer as well, to mirror the MVI
structure. Though, as you will see, the reducer is named something other than
Reducer.

The Model
We need some in-memory representation of a to-do item. That comes in the form of
a ToDoModel POJO class.

In addition to a unique ID, there are four pieces of additional data that we track
about each to-do item in ToDoModel:

A DEEP DIVE INTO MVI

316

• The description, which is the text that the user sees in the roster
• Some notes, in case there are additional instructions that the user wants to

track for this to-do item
• Whether or not this item is completed, in the form of a simple boolean
• The date and time on which this to-do item was created

We could track more information — last-updated timestamp, revision history,
categories, etc. — but we are trying to keep this relatively simple.

ToDoModel, like the actions, uses AutoValue for immutability. So, our class has the
@AutoValue annotation and abstract methods for each of the properties that we are
tracking:

@AutoValue
publicpublic abstractabstract classclass ToDoModelToDoModel {

publicpublic abstractabstract String id();
publicpublic abstractabstract boolean isCompleted();
publicpublic abstractabstract String description();
@Nullable publicpublic abstractabstract String notes();
publicpublic abstractabstract Calendar createdOn();

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/ToDoModel.java)

The notes() method is annotated with @Nullable, so AutoValue will allow null for
that property. All other properties are required.

We are using the builder pattern, so we have an @AutoValue.Builder-annotated
static class named Builder, with corresponding setter methods for the properties,
plus build() to create a ToDoModel instance from the Builder:

@AutoValue.Builder
publicpublic abstractabstract staticstatic classclass BuilderBuilder {

abstractabstract Builder id(String id);
publicpublic abstractabstract Builder isCompleted(boolean isCompleted);
publicpublic abstractabstract Builder description(String desc);
publicpublic abstractabstract Builder notes(String notes);
abstractabstract Builder createdOn(Calendar date);
publicpublic abstractabstract ToDoModel build();

}

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/ToDoModel.java)

We also have three methods for getting Builder instances:

• builder() is a static method that just returns an instance of the

A DEEP DIVE INTO MVI

317

https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/ToDoModel.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/ToDoModel.java

AutoValue-generated Builder implementation
• creator() is a static method that takes the builder() and fills in some

default information (a generated ID, the current timestamp, and false for
isCompleted())

• toBuilder() is an instance method that takes a builder() and fills in all of
the current data

staticstatic Builder builder() {
returnreturn(newnew AutoValue_ToDoModel.Builder());

}

publicpublic staticstatic Builder creator() {
returnreturn(builder()

.isCompleted(falsefalse)

.id(UUID.randomUUID().toString())

.createdOn(Calendar.getInstance()));
}

publicpublic Builder toBuilder() {
returnreturn(builder()

.id(id())

.isCompleted(isCompleted())

.description(description())

.notes(notes())

.createdOn(createdOn()));
}

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/ToDoModel.java)

So, creating a new ToDoModel instance is a matter of calling creator(), then
whatever setters are necessary, then build() to create the instance. To modify an
existing ToDoModel, call toBuilder() on it, then whatever setters are necessary, then
build() to create the modified instance.

While the sample app uses Room to save the to-do items, ToDoModel is not a Room
@Entity. There is a separate ToDoEntity class that models our database table, and
the app maps between ToDoModel and ToDoEntity instances as needed.

The View State
Our view layer gets its ToDoModel instances from the ViewState. This class
aggregates all of the data necessary to render our three fragments. It includes:

• The list of models to display (as this sample app makes the tremendously

A DEEP DIVE INTO MVI

318

https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/ToDoModel.java

simplifying assumption that the entire set of to-do items can be held in
memory)

• A boolean indicating whether the data has been loaded or not, so we can
distinguish whether an empty list of models means “we have no to-do items”
or “we have not yet loaded the to-do items”

• A list of indices into the model data representing items that are selected,
when the list fragment is in multi-select mode

• The current filter mode, indicating what subset of the list of models should
be rendered

• The “current” model, for situations where our display or edit fragments are
visible, to reflect the model that they are showing

• A Throwable, in case there was some exception coming from the repository
that we need to show to the user

As with ToDoModel, ViewState uses AutoValue to create a more-or-less immutable
object. So, we have abstract methods for each of those properties that we want to
track:

@AutoValue
publicpublic abstractabstract classclass ViewStateViewState {

publicpublic abstractabstract boolean isLoaded();
publicpublic abstractabstract List<ToDoModel> items();
abstractabstract Set<Integer> selections();
@Nullable publicpublic abstractabstract Throwable cause();
publicpublic abstractabstract FilterMode filterMode();
@Nullable publicpublic abstractabstract ToDoModel current();

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/ViewState.java)

We also have an associated Builder:

@AutoValue.Builder
abstractabstract staticstatic classclass BuilderBuilder {

abstractabstract Builder isLoaded(boolean isLoaded);
abstractabstract Builder items(List<ToDoModel> items);
abstractabstract Builder selections(Set<Integer> positions);
abstractabstract Builder cause(Throwable cause);
abstractabstract Builder filterMode(FilterMode mode);
abstractabstract Builder current(ToDoModel current);
abstractabstract ViewState build();

}

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/ViewState.java)

We have a builder() method that returns a Builder with a likely set of default

A DEEP DIVE INTO MVI

319

https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/ViewState.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/ViewState.java

values (e.g., no current selections):

staticstatic Builder builder() {
returnreturn(newnew AutoValue_ViewState.Builder()

.isLoaded(falsefalse)

.selections(newnew HashSet<>())

.filterMode(FilterMode.ALL));
}

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/ViewState.java)

Beyond that, we have a series of helper methods for common scenarios, such as
empty() for returning a Builder set up with no items:

staticstatic Builder empty() {
returnreturn(builder().items(newnew ArrayList<>()));

}

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/ViewState.java)

…and a toBuilder() method, which creates a Builder pre-populated with the
current values from a ViewState, to be able to revise those values and create a fresh
ViewState from the Builder:

privateprivate Builder toBuilder() {
returnreturn(builder()

.isLoaded(isLoaded())

.cause(cause())

.items(items())

.selections(selections())

.current(current())

.filterMode(filterMode()));
}

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/ViewState.java)

The View
The MainActivity and its fragments implement the “view” layer of the MVI
architecture. These classes have two primary jobs:

1. Render the view state when it arrives
2. Create actions and get them over to the controller

Of course, this is Android, and so there are other details to be worried about.

A DEEP DIVE INTO MVI

320

https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/ViewState.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/ViewState.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/ViewState.java

Configuration changes are chief among those details.

Right now, we will focus on RosterListFragment, the fragment for displaying the list
of to-do items. Later on, we will look briefly at the other two fragments. Note that
RosterListFragment inherits from an AbstractRosterFragment, as some of its logic
is shared with DisplayFragment.

Incorporating a ViewModel

The fragments use a ViewModel, named RosterViewModel, as the state to be retained
across configuration changes. To that end, MainActivity is a FragmentActivity and
the three fragments each extend from the support libraries’ edition of Fragment. The
fragments hold onto the RosterViewModel in a viewModel field and initialize it in
onCreate():

@Override
publicpublic void onCreate(@Nullable Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

viewModel=ViewModelProviders.of(getActivity()).get(RosterViewModel.class);
}

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/ui/AbstractRosterFragment.java)

Notice that we are passing the activity into of(), not the fragment. As a result, all
three fragments share a common RosterViewModel. For relatively tightly-coupled
fragments, this likely will be a common pattern.

RosterViewModel has two key roles:

1. It holds onto the Controller to be used by the view and forwards actions
from the view to that Controller

2. It serves as the reducer, receiving results from the Controller and
converting them into updated view states, delivering those to the view as
results arrive

Receiving View States

We need to get ViewState instances from the RosterViewModel to the fragments,
when results arrive from the Controller.

To that end, RosterViewModel has a LiveData object, representing a stream of view

A DEEP DIVE INTO MVI

321

https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/ui/AbstractRosterFragment.java

states. That is made available to the view layer via a simple stateStream() method:

publicpublic LiveData<ViewState> stateStream() {
returnreturn(states);

}

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/RosterViewModel.java)

Our fragments then use that LiveData to subscribe to the stream and route the
ViewState objects to a render() method:

viewModel.stateStream().observe(thisthis, thisthis::render);

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/ui/AbstractRosterFragment.java)

Rendering View States

Each of our three fragments has its own render() method, responsible for taking
the data in our ViewState and updating its own bit of the UI to match.

In the case of the RosterListFragment, render() is responsible for populating the
RecyclerView:

@Override
void render(ViewState state) {

ifif (adapter!=nullnull) {
ifif (state.cause()==nullnull) {

adapter.setState(state);

ifif (state.isLoaded() && state.filteredItems().size()==0) {
getEmptyView().setVisibility(View.VISIBLE);

ifif (state.items().size()>0) {
getEmptyView().setText(R.string.msg_empty_filter);

}
elseelse {

getEmptyView().setText(R.string.msg_empty);
}

}
elseelse {

getEmptyView().setVisibility(View.GONE);
}

ifif (state.getSelectionCount()==0 && snackbar!=nullnull &&
snackbar.isShown()) {
snackbar.dismiss();

A DEEP DIVE INTO MVI

322

https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/RosterViewModel.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/ui/AbstractRosterFragment.java

}
}
elseelse {

Snackbar
.make(getView(), R.string.msg_crash, Snackbar.LENGTH_LONG)
.show();

Log.e(getClass().getSimpleName(), "Exception in obtaining view state",
state.cause());

}
}

}

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/ui/RosterListFragment.java)

If we have no adapter, then our UI has not been set up just yet, and so we need to
skip this rendering event.

If the ViewState contains a cause(), we show a Snackbar to alert the user to the
problem, plus log the Throwable to Logcat for debugging purposes.

In the more normal case, where everything worked and we have our UI, we:

• Pass the ViewState along to the RosterListAdapter, to update the contents
of the RecyclerView

• Hide, show, and update the prose for the empty view, as appropriate
• If we happen to have some other Snackbar showing (e.g., from a delete

request), dismiss it

The empty view is a bit complicated, because we have three conditions:

1. There are items in the list, in which case we do not want to show the empty
view, so we mark it GONE

2. There are no items in the list, because there are simply no items at all
3. There are items in the list, but the current filter mode that the user has

chosen blocks all of them (e.g., the user chose outstanding items and all
items are completed)

The ViewState has a helper method, filteredItems(), which returns only the
subset of the items() list that apply for the currently-chosen filter:

@Memoized
publicpublic List<ToDoModel> filteredItems() {

returnreturn(ToDoModel.filter(items(), filterMode()));
}

A DEEP DIVE INTO MVI

323

https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/ui/RosterListFragment.java

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/ViewState.java)

Here, @Memoized means that the ViewState will cache the results of computing this
list, to save time on subsequent calls — this is a feature of AutoValue.

ToDoModel.filter(), in turn, does the actual filtering:

publicpublic staticstatic List<ToDoModel> filter(List<ToDoModel> models,
FilterMode filterMode) {

List<ToDoModel> result;

ifif (filterMode==FilterMode.COMPLETED) {
result=newnew ArrayList<>();

forfor (ToDoModel model : models) {
ifif (model.isCompleted()) {

result.add(model);
}

}
}
elseelse if (filterMode==FilterMode.OUTSTANDING) {

result=newnew ArrayList<>();

forfor (ToDoModel model : models) {
ifif (!model.isCompleted()) {

result.add(model);
}

}
}
elseelse {

result=newnew ArrayList<>(models);
}

returnreturn(result);
}

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/ToDoModel.java)

The implementation of setState() on RosterListAdapter is responsible for
updating the RecyclerView contents. That is fairly complicated and not particularly
relevant for the discussion of MVI, so we will skip that here, other than to note that
it uses DiffUtil to animate any relevant changes to the visible rows in the list,
comparing the new view state with its predecessor.

A DEEP DIVE INTO MVI

324

https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/ViewState.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/ToDoModel.java

The Actions
There are several possible actions that our view layer will be able to publish:

• The user might add a new to-do item
• The user might edit an existing to-do item, replacing some of its data with

new values
• The user might delete one or more to-do items
• In the dual-pane master-detail mode, the user might select or unselect items

– while this is not part of a persistent data model, it is information that we
need to retain across configuration changes and therefore forms part of our
view state

• The user might change the filter mode for controlling which set of to-do
items appears in the roster

In addition, we need a “load” action to load our content when the UI first appears.

Some of these actions have associated data. For example, to add a new to-do item,
we need some sort of model object describing the item. Some actions need no
additional data, such as the “load” or “unselect-all” actions.

To that end, we have an Action class. This class is abstract, with concrete
subclasses for each specific action. This way, some of our code can just deal with
actions in general via the Action base type, while the rest of our code can work with
the specific action types where needed. Each concrete class can hold whatever data
that action needs.

The Action class:

• Defines those concrete subclasses, either directly (if the action has no
associated data) or via AutoValue (if the action has data, for immutable
action types)

• Defines helper static methods to create instances of the appropriate Action
concrete type

packagepackage com.commonsware.android.todo.impl;

importimport com.google.auto.value.AutoValuecom.google.auto.value.AutoValue;
importimport java.util.Collectionsjava.util.Collections;
importimport java.util.Listjava.util.List;

A DEEP DIVE INTO MVI

325

publicpublic abstractabstract classclass ActionAction {
publicpublic staticstatic Action add(ToDoModel model) {

returnreturn(newnew AutoValue_Action_Add(model));
}

publicpublic staticstatic Action edit(ToDoModel model) {
returnreturn(newnew AutoValue_Action_Edit(model));

}

publicpublic staticstatic Action delete(List<ToDoModel> models) {
returnreturn(newnew AutoValue_Action_Delete(Collections.unmodifiableList(models)));

}

publicpublic staticstatic Action delete(ToDoModel model) {
returnreturn(delete(Collections.singletonList(model)));

}

publicpublic staticstatic Action select(int position) {
returnreturn(newnew AutoValue_Action_Select(position));

}

publicpublic staticstatic Action unselect(int position) {
returnreturn(newnew AutoValue_Action_Unselect(position));

}

publicpublic staticstatic Action unselectAll() {
returnreturn(newnew UnselectAll());

}

publicpublic staticstatic Action show(ToDoModel model) {
returnreturn(newnew AutoValue_Action_Show(model));

}

publicpublic staticstatic Action filter(FilterMode mode) {
returnreturn(newnew AutoValue_Action_Filter(mode));

}

publicpublic staticstatic Action load() {
returnreturn(newnew Action.Load());

}

@AutoValue
publicpublic staticstatic abstractabstract classclass AddAdd extendsextends Action {

publicpublic abstractabstract ToDoModel model();
}

@AutoValue
publicpublic staticstatic abstractabstract classclass EditEdit extendsextends Action {

A DEEP DIVE INTO MVI

326

publicpublic abstractabstract ToDoModel model();
}

@AutoValue
publicpublic staticstatic abstractabstract classclass DeleteDelete extendsextends Action {

publicpublic abstractabstract List<ToDoModel> models();
}

@AutoValue
staticstatic abstractabstract classclass SelectSelect extendsextends Action {

publicpublic abstractabstract int position();
}

@AutoValue
staticstatic abstractabstract classclass UnselectUnselect extendsextends Action {

publicpublic abstractabstract int position();
}

staticstatic classclass UnselectAllUnselectAll extendsextends Action {

}

@AutoValue
staticstatic abstractabstract classclass ShowShow extendsextends Action {

publicpublic abstractabstract ToDoModel current();
}

@AutoValue
staticstatic abstractabstract classclass FilterFilter extendsextends Action {

publicpublic abstractabstract FilterMode filterMode();
}

publicpublic staticstatic classclass LoadLoad extendsextends Action {

}
}

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/Action.java)

This looks complicated, but it is just a number of occurrences of the same basic
pattern. For example, for the “add” action we have an Add subclass of Action, set up
via AutoValue:

@AutoValue
publicpublic staticstatic abstractabstract classclass AddAdd extendsextends Action {

publicpublic abstractabstract ToDoModel model();
}

A DEEP DIVE INTO MVI

327

https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/Action.java

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/Action.java)

We also have a static method named add() on Action to create an instance of an
Action.Add:

publicpublic staticstatic Action add(ToDoModel model) {
returnreturn(newnew AutoValue_Action_Add(model));

}

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/Action.java)

Publishing Actions
Our RosterViewModel has a process() method that our fragments call to publish
actions. In the case of RosterListFragment and RosterListAdapter, this happens in
a few places.

First, the user might modify a to-do item directly from the RecyclerView by clicking
the item’s CheckBox. This sample app uses the data binding framework, and so the
CheckBox has a binding expression for the onCheckedChanged event, routing it to the
view (by way of RosterListAdapter and its associated RosterRowHolder for each
row). That, in turn, eventually triggers a process() call to publish an edit event:

publicpublic void edit(ToDoModel model, boolean isChecked) {
process(Action.edit(model.toBuilder().isCompleted(isChecked).build()));

}

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/ui/RosterListFragment.java)

Here, we:

• Get a Builder with the current item’s data from toBuilder()
• Call isCompleted() to mark the item as completed
• build() a new ToDoModel from that Builder
• Pass that ToDoModel to the edit() helper method on Action to create the

proper Action instance
• Hand that Action over to process()

Similarly, if the user clicks the “delete” icon in multi-select mode, we want to get
confirmation from the user, then delete those items. That eventually gets handled by
a requestDelete() method on RosterListFragment, which shows a Snackbar and
calls process() for delete() Action if the user clicks the Snackbar action:

A DEEP DIVE INTO MVI

328

https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/Action.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/Action.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/ui/RosterListFragment.java

publicpublic void requestDelete(int selectionCount) {
Resources res=getResources();
String msg=res.getQuantityString(R.plurals.snackbar_delete,

selectionCount, selectionCount);

snackbar=Snackbar.make(getView(), msg, Snackbar.LENGTH_LONG);

snackbar
.setAction(android.R.string.ok, view -> {

process(Action.delete(adapter.getSelectedModels()));
adapter.exitMultiSelectMode();

})
.show();

}

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/ui/RosterListFragment.java)

Our filter mode is part of our view state, and the filter mode is something that we
want to persist. That is why we have actions related to filter mode, and why when
the user toggles those menu items we call process() to publish the associated
actions:

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

switchswitch (item.getItemId()) {
casecase R.id.add:

((Contract)getActivity()).addModel();
returnreturn(truetrue);

casecase R.id.all:
filterAll.setChecked(truetrue);
process(Action.filter(FilterMode.ALL));
returnreturn(truetrue);

casecase R.id.completed:
filterCompleted.setChecked(truetrue);
process(Action.filter(FilterMode.COMPLETED));
returnreturn(truetrue);

casecase R.id.outstanding:
filterOutstanding.setChecked(truetrue);
process(Action.filter(FilterMode.OUTSTANDING));
returnreturn(truetrue);

casecase R.id.export:
export();
returnreturn(truetrue);

A DEEP DIVE INTO MVI

329

https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/ui/RosterListFragment.java

casecase R.id.share:
share();
returnreturn(truetrue);

casecase R.id.backup:
backup();
returnreturn(truetrue);

casecase R.id.restore:
restore();
returnreturn(truetrue);

}

returnreturn(supersuper.onOptionsItemSelected(item));
}

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/ui/RosterListFragment.java)

Note that in none of these cases do we update the fragment’s UI based on these
events. Of course, in the case of the CheckBox, that happens automatically. But if the
user deletes items or changes the filter mode, we do not update the RecyclerView.
Instead, we just publish the actions, and we only update the UI in render(), when
we get the updated view state.

One oddball action is the “load” action. Somewhere along the line, when we start up
the app, we need to load our data — without the data, we have no view state and we
have nothing to render. But, at the same time, we only want to load the data when
we are starting out, not after a configuration change, so we cannot readily use
lifecycle methods on the activity or fragments to trigger a load. Instead,
RosterViewModel, as part of its constructor, publishes a load() Action on its own.
Hence, when we create the view-model, we initiate loading of the data. Since a
ViewModel is only created once per “logical” activity instance (taking into account
configuration changes), we only load this data once for the entire activity. This
might be insufficient in a more elaborate app, where multiple activities might share
a common repository, but it will suffice here.

The Repositories
Eventually, our Controller will need to update backing stores, so that our to-do
items and filter modes are persistent from run to run of our app. This sample app
uses the repository pattern, with two repositories: ToDoRepository for to-do items
and FilterModeRepository for filter modes.

A DEEP DIVE INTO MVI

330

https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/ui/RosterListFragment.java

The objective of each repository is simple:

• Modify the backing store as needed, where the caller is required to establish
the appropriate thread to do this on

• Offer an observable API to load the data

Each repository is a singleton, so all logic routes through central points for each type
of data.

ToDoRepository

The ToDoRepository wraps around a ToDoDatabase and ToDoEntity objects, where
those have the appropriate Room annotations to set up a SQLite database.

ToDoEntity has fields that map to the same pieces of data that ToDoModel holds. In
principle, we could have dispensed with the separation and passed around
ToDoEntity objects where we are currently passing around ToDoModel objects.
However, it is possible that some future edition of this sample might have multiple
backing stores (e.g., local database and a server), in which case keeping some
separation between the in-memory model and the persistent representations is
worthwhile. In this case, converting between the two is relatively simple, and
ToDoEntity has a constructor and toModel() methods that do just that:

packagepackage com.commonsware.android.todo.impl;

importimport android.arch.persistence.room.Daoandroid.arch.persistence.room.Dao;
importimport android.arch.persistence.room.Deleteandroid.arch.persistence.room.Delete;
importimport android.arch.persistence.room.Entityandroid.arch.persistence.room.Entity;
importimport android.arch.persistence.room.Indexandroid.arch.persistence.room.Index;
importimport android.arch.persistence.room.Insertandroid.arch.persistence.room.Insert;
importimport android.arch.persistence.room.PrimaryKeyandroid.arch.persistence.room.PrimaryKey;
importimport android.arch.persistence.room.Queryandroid.arch.persistence.room.Query;
importimport android.arch.persistence.room.Updateandroid.arch.persistence.room.Update;
importimport android.support.annotation.NonNullandroid.support.annotation.NonNull;
importimport java.util.Calendarjava.util.Calendar;
importimport java.util.Listjava.util.List;
importimport io.reactivex.Singleio.reactivex.Single;

@Entity(tableName="todos", indices=@Index(value="id"))
publicpublic classclass ToDoEntityToDoEntity {

@PrimaryKey
@NonNull finalfinal String id;
@NonNull finalfinal String description;
finalfinal String notes;
finalfinal boolean isCompleted;
@NonNull finalfinal Calendar createdOn;

publicpublic staticstatic ToDoEntity fromModel(ToDoModel model) {
returnreturn(newnew ToDoEntity(model.id(), model.description(), model.isCompleted(),

A DEEP DIVE INTO MVI

331

model.notes(), model.createdOn()));
}

ToDoEntity(@NonNull String id, @NonNull String description, boolean isCompleted,
String notes, @NonNull Calendar createdOn) {

thisthis.id=id;
thisthis.description=description;
thisthis.isCompleted=isCompleted;
thisthis.notes=notes;
thisthis.createdOn=createdOn;

}

publicpublic ToDoModel toModel() {
returnreturn(ToDoModel.builder()

.id(id)

.description(description)

.isCompleted(isCompleted)

.notes(notes)

.createdOn(createdOn)

.build());
}

@Dao
publicpublic interfaceinterface StoreStore {

@Query("SELECT * FROM todos ORDER BY description ASC")
Single<List<ToDoEntity>> all();

@Insert
void insert(ToDoEntity... entities);

@Update
void update(ToDoEntity... entities);

@Delete
void delete(ToDoEntity... entities);

@Delete
void delete(List<ToDoEntity> entities);

@Query("DELETE FROM todos")
void deleteAll();

}
}

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/ToDoEntity.java)

ToDoRepository then maps between the models that it uses as its API and the
entities that it uses with the ToDoDatabase:

packagepackage com.commonsware.android.todo.impl;

importimport android.content.Contextandroid.content.Context;
importimport java.util.ArrayListjava.util.ArrayList;
importimport java.util.Listjava.util.List;
importimport io.reactivex.Singleio.reactivex.Single;
importimport io.reactivex.annotations.NonNullio.reactivex.annotations.NonNull;

A DEEP DIVE INTO MVI

332

https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/ToDoEntity.java

importimport io.reactivex.functions.Functionio.reactivex.functions.Function;

publicpublic classclass ToDoRepositoryToDoRepository {
privateprivate staticstatic volatilevolatile ToDoRepository INSTANCE=nullnull;
privateprivate finalfinal ToDoDatabase db;

publicpublic synchronizedsynchronized staticstatic ToDoRepository get(Context ctxt) {
ifif (INSTANCE==nullnull) {

INSTANCE=newnew ToDoRepository(ctxt.getApplicationContext());
}

returnreturn(INSTANCE);
}

privateprivate ToDoRepository(Context ctxt) {
db=ToDoDatabase.get(ctxt);

}

publicpublic Single<List<ToDoModel>> all() {
returnreturn(db.todoStore().all().map(entities -> {

ArrayList<ToDoModel> result=newnew ArrayList<>(entities.size());

forfor (ToDoEntity entity : entities) {
result.add(entity.toModel());

}

returnreturn(result);
}));

}

publicpublic void add(ToDoModel model) {
db.todoStore().insert(ToDoEntity.fromModel(model));

}

publicpublic void replace(ToDoModel model) {
db.todoStore().update(ToDoEntity.fromModel(model));

}

publicpublic void delete(List<ToDoModel> models) {
List<ToDoEntity> entities=newnew ArrayList<>();

forfor (ToDoModel model : models) {
entities.add(ToDoEntity.fromModel(model));

}

db.todoStore().delete(entities);
}

}

A DEEP DIVE INTO MVI

333

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/ToDoRepository.java)

Its all() method is a Single, used for the initial data load, which gets all the
entities, then uses a map() operator to convert those entities into models.

FilterModeRepository

The filter mode is saved in SharedPreferences. The FilterMode itself is an enum that
knows how to map between stable int values and the corresponding enum values:

packagepackage com.commonsware.android.todo.impl;

publicpublic enumenum FilterMode {
ALL(0),
COMPLETED(1),
OUTSTANDING(2);

privateprivate finalfinal int value;

staticstatic FilterMode forValue(int value) {
FilterMode result=ALL;

ifif (value==1) {
result=COMPLETED;

}
elseelse if (value==2) {

result=OUTSTANDING;
}

returnreturn(result);
}

FilterMode(int value) {
thisthis.value=value;

}

int getValue() {
returnreturn(value);

}
}

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/FilterMode.java)

FilterModeRepository hides the storage details, accepting in FilterMode objects
and offering a load() method to obtain the current FilterMode via a Single:

A DEEP DIVE INTO MVI

334

https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/ToDoRepository.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/FilterMode.java

packagepackage com.commonsware.android.todo.impl;

importimport android.annotation.SuppressLintandroid.annotation.SuppressLint;
importimport android.content.Contextandroid.content.Context;
importimport android.content.SharedPreferencesandroid.content.SharedPreferences;
importimport io.reactivex.Singleio.reactivex.Single;

classclass FilterModeRepositoryFilterModeRepository {
privateprivate staticstatic finalfinal String PREF_MODE="filterMode";
privateprivate staticstatic volatilevolatile FilterModeRepository INSTANCE=nullnull;
privateprivate SharedPreferences prefs=nullnull;

synchronizedsynchronized staticstatic FilterModeRepository get() {
ifif (INSTANCE==nullnull) {

INSTANCE=newnew FilterModeRepository();
}

returnreturn(INSTANCE);
}

Single<FilterMode> load(Context ctxt) {
finalfinal Context app=ctxt.getApplicationContext();

returnreturn(Single.create(e -> {
synchronizedsynchronized(thisthis) {

ifif (prefs==nullnull) {
prefs=app.getSharedPreferences(getClass().getCanonicalName(),

Context.MODE_PRIVATE);
}

}

e.onSuccess(FilterMode.forValue(prefs.getInt(PREF_MODE, 0)));
}));

}

@SuppressLint("ApplySharedPref")
void save(FilterMode mode) {

prefs.edit().putInt(PREF_MODE, mode.getValue()).commit();
}

}

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/FilterModeRepository.java)

The Controller
Given the actions and the repositories, the controller is the glue code, updating the
repositories based on the actions and emitting results to trigger updates to the view

A DEEP DIVE INTO MVI

335

https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/FilterModeRepository.java

state and, from there, the UI.

Subscribing to Actions

To get the actions over to the Controller, the RosterViewModel has an RxJava
PublishSubject that serves as its Observable source of a stream of Action objects.
Every time process() is called, the RosterViewModel emits that Action onto the
actionSubject:

publicpublic void process(Action action) {
actionSubject.onNext(action);

}

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/RosterViewModel.java)

As part of its constructor, the RosterViewModel creates a Controller. Once again,
this may not be an appropriate approach for a more complex app, where there may
be multiple view-models needing to work with a common Controller, but it suffices
for here. Along the way, the RosterViewModel calls a subscribeToActions()
method, so that the Controller can subscribe to those Action events:

publicpublic void subscribeToActions(Observable<Action> actionStream) {
actionStream

.observeOn(Schedulers.single())

.subscribe(thisthis::processImpl);
}

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/Controller.java)

This particular subscription routes the work to a single() thread, to keep the
repository work off of the main application thread. And, it passes the Action objects
to a processImpl() method.

Doing the Work and Publishing Results

So far, the only place where we care about specific types of Action is when we
publish them. In effect, we take several event types and combine them into a single
type for convenience. However, at some point, we need to split them back out again,
so we can handle specific logic for specific actions, and that occurs in
processImpl():

privateprivate void processImpl(Action action) {
ifif (action instanceofinstanceof Action.Add) {

A DEEP DIVE INTO MVI

336

https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/RosterViewModel.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/Controller.java

add(((Action.Add)action).model());
}
elseelse if (action instanceofinstanceof Action.Edit) {

modify(((Action.Edit)action).model());
}
elseelse if (action instanceofinstanceof Action.Delete) {

delete(((Action.Delete)action).models());
}
elseelse if (action instanceofinstanceof Action.Load) {

load();
}
elseelse if (action instanceofinstanceof Action.Select) {

select(((Action.Select)action).position());
}
elseelse if (action instanceofinstanceof Action.Unselect) {

unselect(((Action.Unselect)action).position());
}
elseelse if (action instanceofinstanceof Action.UnselectAll) {

unselectAll();
}
elseelse if (action instanceofinstanceof Action.Show) {

show(((Action.Show)action).current());
}
elseelse if (action instanceofinstanceof Action.Filter) {

filter(((Action.Filter)action).filterMode());
}
elseelse {

throwthrow newnew IllegalStateException("Unexpected action: "+action.toString());
}

}

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/Controller.java)

This basically “unwraps” the action and invokes a dedicated method per action type.
Most of those methods work with one of the repositories for the data associated
with that action. All of these methods use a BehaviorSubject named resultSubject
to publish the result, and we will examine that in detail a bit later.

The action method can be broken down into four groups, based on the data being
operated on and the operation type.

add()/modify()/delete()

These three methods are fairly straightforward. They call the associated method on
the ToDoRepository and publish their results:

A DEEP DIVE INTO MVI

337

https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/Controller.java

privateprivate void add(ToDoModel model) {
toDoRepo.add(model);
resultSubject.onNext(Result.added(model));

}

privateprivate void modify(ToDoModel model) {
toDoRepo.replace(model);
resultSubject.onNext(Result.modified(model));

}

privateprivate void delete(List<ToDoModel> toDelete) {
toDoRepo.delete(toDelete);
resultSubject.onNext(Result.deleted(toDelete));

}

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/Controller.java)

filter()

filter() is similar, except that it works with the FilterModeRepository:

privateprivate void filter(FilterMode mode) {
filterModeRepo.save(mode);
resultSubject.onNext(Result.filter(mode));

}

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/Controller.java)

select()/unselect()/unselectAll()

The selections are not persistent — they are purely a UI contrivance. However, they
are part of the view state, and the only way to update the view state is by going
through the action-controller-reducer flow. So, these three methods just publish
results to get their data updates over to the reducer:

privateprivate void select(int position) {
resultSubject.onNext(Result.selected(position));

}

privateprivate void unselect(int position) {
resultSubject.onNext(Result.unselected(position));

}

privateprivate void unselectAll() {
resultSubject.onNext(Result.unselectedAll());

}

A DEEP DIVE INTO MVI

338

https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/Controller.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/Controller.java

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/Controller.java)

load()

load() is the quirky one, as this would not be traditional computer programming if
everything were simple.

privateprivate void load() {
Single<Result> loader=

Single.zip(toDoRepo.all(), filterModeRepo.load(ctxt),
(models, mode) -> (Result.loaded(models, mode)));

loader
.subscribeOn(Schedulers.single())
.subscribe(resultSubject::onNext);

}

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/Controller.java)

The load action is to load our data. In our case, though, we have data from two
repositories: the ToDoRepository and the FilterModeRepository. Each publishes a
Single for loading their particular bits of data. We need to publish results once both
of those Single objects have completed processing.

RxJava’s zip() operator — which has nothing much to do with ZIP files, zip ties, or
ziplines — is designed for this sort of scenario. You give zip() multiple observables,
and it invokes your code for each set of results emitted by the source observables.
Since our observables are Single, they only emit one object, and so we get control
once both Single results are in. We then publish those as our own result.

About Those Results
Just as we have a common Action type that wraps up a bunch of disparate actions,
we have a common Result type that wraps up a bunch of disparate results. The
Controller uses the aforementioned BehaviorSubject to emit Result objects to
interested parties.

Result is structured similarly to Action, using AutoValue for immutable objects,
with static factory methods to create instances associated with each type:

packagepackage com.commonsware.android.todo.impl;

importimport com.google.auto.value.AutoValuecom.google.auto.value.AutoValue;
importimport java.util.Collectionsjava.util.Collections;

A DEEP DIVE INTO MVI

339

https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/Controller.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/Controller.java

importimport java.util.Listjava.util.List;

publicpublic abstractabstract classclass ResultResult {
publicpublic staticstatic Result added(ToDoModel model) {

returnreturn(newnew AutoValue_Result_Added(model));
}

publicpublic staticstatic Result modified(ToDoModel model) {
returnreturn(newnew AutoValue_Result_Modified(model));

}

staticstatic Result deleted(List<ToDoModel> models) {
returnreturn(newnew AutoValue_Result_Deleted(Collections.unmodifiableList(models)));

}

staticstatic Result loaded(List<ToDoModel> models, FilterMode filterMode) {
returnreturn(newnew AutoValue_Result_Loaded(Collections.unmodifiableList(models), filterMode));

}

staticstatic Result selected(int position) {
returnreturn(newnew AutoValue_Result_Selected(position));

}

staticstatic Result unselected(int position) {
returnreturn(newnew AutoValue_Result_Unselected(position));

}

staticstatic Result unselectedAll() {
returnreturn(newnew AutoValue_Result_UnselectedAll());

}

staticstatic Result showed(ToDoModel current) {
returnreturn(newnew AutoValue_Result_Showed(current));

}

staticstatic Result filter(FilterMode mode) {
returnreturn(newnew AutoValue_Result_Filter(mode));

}

@AutoValue
publicpublic staticstatic abstractabstract classclass AddedAdded extendsextends Result {

publicpublic abstractabstract ToDoModel model();
}

@AutoValue
publicpublic staticstatic abstractabstract classclass ModifiedModified extendsextends Result {

publicpublic abstractabstract ToDoModel model();
}

@AutoValue
publicpublic staticstatic abstractabstract classclass DeletedDeleted extendsextends Result {

publicpublic abstractabstract List<ToDoModel> models();
}

@AutoValue
staticstatic abstractabstract classclass SelectedSelected extendsextends Result {

publicpublic abstractabstract int position();
}

@AutoValue

A DEEP DIVE INTO MVI

340

staticstatic abstractabstract classclass UnselectedUnselected extendsextends Result {
publicpublic abstractabstract int position();

}

@AutoValue
staticstatic abstractabstract classclass UnselectedAllUnselectedAll extendsextends Result {
}

@AutoValue
staticstatic abstractabstract classclass ShowedShowed extendsextends Result {

publicpublic abstractabstract ToDoModel current();
}

@AutoValue
staticstatic abstractabstract classclass FilterFilter extendsextends Result {

publicpublic abstractabstract FilterMode filterMode();
}

@AutoValue
publicpublic staticstatic abstractabstract classclass LoadedLoaded extendsextends Result {

publicpublic abstractabstract List<ToDoModel> models();
publicpublic abstractabstract FilterMode filterMode();

}
}

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/Result.java)

The Reducer in the RosterViewModel
What remains is the reducer: accepting the results and updating the view state to
match. In this sample app, that is part of the role of the RosterViewModel.

You might wonder why this is called “RosterViewModel”, given that it has
responsibilities that do not exactly line up with a classic view-model. The name
comes from the base class: AndroidViewModel. We want to retain this object across
configuration changes, and the way to do that with the Architecture Components is
to use ViewModel, AndroidViewModel, ViewModelProviders, and so forth. In the
author’s opinion, Google would have been better served naming their system
something that did not have “ViewModel” in it, just as Room does not have “Model”
or “Repository” in it.

Subscribing to Results

Our Controller publishes Result objects via the resultSubject Observable,
exposed via a resultStream() method. RosterViewModel needs to subscribe to that
stream, take the results, fold them into the view state, and publish an updated view
state.

A DEEP DIVE INTO MVI

341

https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/Result.java

That is wired together in the RosterViewModel constructor:

publicpublic RosterViewModel(Application ctxt) {
supersuper(ctxt);

ObservableTransformer<Result, ViewState> toView=
results -> (results.map(result -> {

lastState=foldResultIntoState(lastState, result);

returnreturn(lastState);
}));

Controller controller=newnew Controller(ctxt);

states=LiveDataReactiveStreams
.fromPublisher(controller.resultStream()

.subscribeOn(Schedulers.single())

.compose(toView)

.cache()

.toFlowable(BackpressureStrategy.LATEST)

.share());
controller.subscribeToActions(actionSubject);
process(Action.load());

}

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/RosterViewModel.java)

The stateStream() method that our views use to get the updated live states is a
LiveData, held onto as a states field and exposed via stateStream(). To create
states, we:

• Get the resultStream() Observable from the Controller
• Arrange to process those Result objects on a background thread
• Use the toView ObservableTransformer to convert Result objects into a new
ViewState — we will examine this part in greater detail shortly

• Cache the resulting ViewState
• Convert the Observable to a Flowable, only worrying about the latest
ViewState that we receive

• share() that Flowable among multiple subscribers
• Convert that Flowable into a LiveData using
LiveDataReactiveStreams.fromPublisher()

A DEEP DIVE INTO MVI

342

https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/RosterViewModel.java

Merging Results Into the ViewState

An ObservableTransformer is simply a way of packaging an RxJava operator or chain
of operators into a separate object. That can be useful in cases where:

• You might want to reuse the same operator(s) in multiple chains
• The operator might be fairly complex, and so you want to pull it out of the

chain declaration to keep the chain itself more readable

So, let’s look at that operator more closely:

ObservableTransformer<Result, ViewState> toView=
results -> (results.map(result -> {

lastState=foldResultIntoState(lastState, result);

returnreturn(lastState);
}));

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/RosterViewModel.java)

We get in our Result stream, and our declaration says that we are emitting a
ViewState. We are using the map() operator to make that conversion, where the
bulk of the logic lies in a foldResultIntoState() method.

What we are trying to do is to mix a new Result with the previous ViewState to get
a new ViewState. This implies that we have the previous ViewState somewhere.
That is the lastState field, initialized to be an empty ViewState at the outset:

privateprivate ViewState lastState=ViewState.empty().build();

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/RosterViewModel.java)

It is the job of foldResultIntoState() to create the new ViewState, which the
ObservableTransformer both holds in lastState and returns to flow through the
rest of the chain.

foldResultIntoState() needs to identify the specific type of Result (e.g., we added
an item, we deleted an item) and update the ViewState. foldResultIntoState()
mostly handles the first part: identifying the specific type of Result:

privateprivate ViewState foldResultIntoState(@NonNull ViewState state,
@NonNull Result result) throwsthrows Exception {
ifif (result instanceofinstanceof Result.Added) {

returnreturn(state.add(((Result.Added)result).model()));
}

A DEEP DIVE INTO MVI

343

https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/RosterViewModel.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/RosterViewModel.java

elseelse if (result instanceofinstanceof Result.Modified) {
returnreturn(state.modify(((Result.Modified)result).model()));

}
elseelse if (result instanceofinstanceof Result.Deleted) {

returnreturn(state.delete(((Result.Deleted)result).models()));
}
elseelse if (result instanceofinstanceof Result.Loaded) {

List<ToDoModel> models=((Result.Loaded)result).models();

returnreturn(ViewState.builder()
.isLoaded(truetrue)
.items(models)
.filterMode(((Result.Loaded)result).filterMode())
.current(models.size()==0 ? nullnull : models.get(0))
.build());

}
elseelse if (result instanceofinstanceof Result.Selected) {

returnreturn(state.selected(((Result.Selected)result).position()));
}
elseelse if (result instanceofinstanceof Result.Unselected) {

returnreturn(state.unselected(((Result.Unselected)result).position()));
}
elseelse if (result instanceofinstanceof Result.UnselectedAll) {

returnreturn(state.unselectedAll());
}
elseelse if (result instanceofinstanceof Result.Showed) {

returnreturn(state.show(((Result.Showed)result).current()));
}
elseelse if (result instanceofinstanceof Result.Filter) {

returnreturn(state.filtered(((Result.Filter)result).filterMode()));
}
elseelse {

throwthrow newnew IllegalStateException("Unexpected result type: "+result.toString());
}

}

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/RosterViewModel.java)

In the case of Result.Loaded, we are creating a brand-new ViewState from scratch.
We only get this event when we first load the data, and so there is no meaningful
prior state to use. In all the other scenarios, we call mutation methods on the
existing ViewState, which turn around and create a new ViewState with the
requested changes applied:

ViewState add(ToDoModel model) {
List<ToDoModel> models=newnew ArrayList<>(items());

models.add(model);
sort(models);

returnreturn(toBuilder()
.items(Collections.unmodifiableList(models))
.current(model)
.build());

}

ViewState modify(ToDoModel model) {

A DEEP DIVE INTO MVI

344

https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/RosterViewModel.java

List<ToDoModel> models=newnew ArrayList<>(items());
ToDoModel original=find(models, model.id());

ifif (original!=nullnull) {
int index=models.indexOf(original);
models.set(index, model);

}

sort(models);

returnreturn(toBuilder()
.items(Collections.unmodifiableList(models))
.build());

}

ViewState delete(List<ToDoModel> toDelete) {
List<ToDoModel> models=newnew ArrayList<>(items());

forfor (ToDoModel model : toDelete) {
ToDoModel original=find(models, model.id());

ifif (original==nullnull) {
throwthrow newnew IllegalArgumentException("Cannot find model to delete: "+model.toString());

}
elseelse {

models.remove(original);
}

}

sort(models);

returnreturn(toBuilder()
.items(Collections.unmodifiableList(models))
.build());

}

ViewState selected(int position) {
HashSet<Integer> selections=newnew HashSet<>(selections());

selections.add(position);

returnreturn(toBuilder()
.selections(Collections.unmodifiableSet(selections))
.build());

}

ViewState unselected(int position) {
HashSet<Integer> selections=newnew HashSet<>(selections());

selections.remove(position);

returnreturn(toBuilder()
.selections(Collections.unmodifiableSet(selections))
.build());

}

ViewState unselectedAll() {
returnreturn(toBuilder()

.selections(Collections.unmodifiableSet(newnew HashSet<>()))

.build());

A DEEP DIVE INTO MVI

345

}

ViewState show(ToDoModel current) {
returnreturn(toBuilder()

.current(current)

.build());
}

ViewState filtered(FilterMode mode) {
returnreturn(toBuilder()

.filterMode(mode)

.build());
}

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/ViewState.java)

In all cases, we get a new immutable ViewState, which then flows out of the
RosterViewModel to the view layer, so the fragments can update their UI as needed.

Examining the Other Fragments
While most of the code that we have reviewed so far was common for all three
fragments, it is worth mentioning the other two fragments, as they have some
different wrinkles.

DisplayFragment

DisplayFragment does not publish any actions itself. It is simply a passive consumer
of view states.

However, its view state logic is a bit more complicated than is the
RosterListFragment. While the user may think that the DisplayFragment is only
displaying one to-do item, in reality it uses a RecyclerView to display the same
roster that RosterListFragment does. While RosterListFragment displays the roster
in a vertically-scrolling list, DisplayFragment displays the roster via horizontal
swipes, akin to the behavior of a ViewPager. The DisplayFragment needs to know
what particular to-do item to be displaying. That can be determined by:

• the RosterListFragment and MainActivity, if the user taps on an item in
the list

• the user, via swipe gestures

As a result, DisplayFragment has two view-models. AbstractRosterFragment
handles most of the logic for working with the RosterViewModel, as it does for
RosterListFragment. DisplayFragment has its own DisplayViewModel that keeps

A DEEP DIVE INTO MVI

346

https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/ViewState.java

track of the currently-viewed page in the “pager”, so we can restore this after a
configuration change.

EditFragment

EditFragment publishes three actions:

• If the user saves the form, and this is a new to-do item, it publishes an “add”
action

• If the user saves the form, and this is an existing to-do item, it publishes an
“edit” action

• If the user taps on the “Delete” toolbar button and confirms this request, it
publishes a “delete” action

Unlike DisplayFragment, EditFragment only ever works on a single to-do item. The
ID of the ToDoModel which it is editing arrives via the newInstance() factory method
and is saved in the arguments Bundle, so we do not need a separate view-model for
it.

Summary
This sample app is far from perfect.

Strategically, this is quite a bit of code for a silly little to-do app. To an extent, the
value of formal architectures increases with the size and scope of the app. The more
“disposable” the app is, the more likely it is that you can skip some architectural
complexity and just focus on writing a working app. As the preceding chapter noted,
for smaller apps, YAGNI (You Aren’t Going to Need It).

Tactically, the sample app makes a core simplifying assumption: that the entire set
of to-do items fits comfortably in memory. Sometimes that will be the case with full
production-grade apps. Sometimes that will not be the case, and the complexity of
the app rises.

A DEEP DIVE INTO MVI

347

Advanced Topics

Backing Up a Room

In some apps, the local database is little more than a cache. Perhaps it is a true
cache, where the app directly hits the network when some necessary data is not in
the database. Perhaps the app uses a synchronization model, where the network is
still the “system of record”, but the local copy can be used offline and is periodically
synchronized with the server.

But, in other apps, the local database itself is the “system of record”. Android does
not offer a real backup solution — the best it has amounts to a disaster recovery
option, since users have little ability to restore a backup. Third-party apps cannot
back up the internal storage of other apps (except perhaps on rooted devices), which
is why there are few backup utilities for Android. Instead, if you want your app’s
local data to be backed up, you need to do that yourself.

So, with that in mind, let’s explore backing up SQLite databases, with an eye towards
Room.

What Do We Need to Back Up?
The first question whenever “backup” is discussed is that of scope: what files are we
supposed to back up and be able to restore?

Plan A: The Whole Directory

The simple solution is to back up the entire directory that contains database files.
That way, you do not care exactly what files are in there — you just back up
everything.

To find out the default directory for Room database files, use:

351

ctxt.getDatabasePath("foo").getParentFile()

where ctxt is some Context and "foo" is, well, "foo". In theory, you could replace
"foo" with the name of a real database, but since you are not actually going to use
that value, it just needs to be some valid string. This code snippet will return the
directory where that database would be stored.

Given that directory, you could then just back up the entire directory’s contents,
knowing that your database and its files will be in there.

Plan B: Just SQLite’s Files

However, that directory may contain databases other than yours. For example, if you
are using WebView, it may have databases there for its own caches. Third-party
libraries might have databases as well. It may make sense to back all of them up as
well, in which case Plan A is ideal. But, perhaps you have reasons to only back up
your own database.

You are in control over the name of the database file, as you provide it to your
RoomDatabase as a part of configuring the RoomDatabase.Builder:

Room.databaseBuilder(ctxt.getApplicationContext(), ToDoDatabase.class,
"stuff.db").build();

Here, stuff.db is the name of the database.

It is possible that Room and SQLite will have more files than just this one, though.
Ideally, that will not be the case. But, you may want to consider backing up all files
that begin with your database name, as other files, such as ones with -shm or -wal
suffixes, might be around.

One risk with this would be if Room started writing other files of its own, instead of
just whatever SQLite uses. The same risk holds if you use other
SupportSQLiteDatabase implementations.

Beware of Open Rooms
SQLite database files are just ordinary files. There is nothing particularly magic
about actually making the backup: just make a copy of the file.

However, as with most files, it is important that nothing be trying to write to that

BACKING UP A ROOM

352

file while we are making a copy. Otherwise, we may have a mix of old and new data,
and most likely that will result in a corrupted and unusable database.

So, we need to take steps to ensure that nothing is trying to use the database while
the backup is going on (or while we are restoring a backup). We will explore specific
ways of doing that here in this chapter.

When Do We Back Up the Database?
Databases do not get backed up automatically — we have to do that work. That in
turn implies that we know when to do that work.

When the User Asks

The simple possibility is to back up the database when the user asks, via an action
bar item or some similar option.

However, copying a database file will take some time. Exactly how long it will take
depends on a lot of factors, particularly the size of the file and the speed of the
device. We need to make sure that the user is not doing things in our app that need
the database while the backup is going on. One approach is to have the backup be
performed while some dedicated UI — such as an activity with a ProgressBar — is
in the foreground.

When You Feel Like It

In principle, you could try backing up the database at odd times, when you think
that the user is not going to be using the app. This has the advantage of being
automatic, so you can offer to restore a backup that the user did not request
manually. Plus, in theory, the backup will not disturb the user if you are doing it, say,
in the middle of the night.

However:

• Some users might want to use your app in the middle of the night
• If you have your own scheduled tasks (e.g., WorkManager periodic work), that

might run in the middle of your backup
• If the user tries to get into your app while the backup is running, you would

need smarts in all of your app’s entry points (e.g., launcher activity) to detect
that a backup is going on and take steps to not use the database

BACKING UP A ROOM

353

You might think that your app has only one entry point: the launcher activity.
However, suppose that the user had been using your app 10 minutes ago, and you
decide to run the automatic backup. While that backup is ongoing, the user tries
returning to your task (intentionally or accidentally) via the overview screen. The
user will be returned to whatever activity they were on last, which may or may not be
the launcher activity.

One way to help reduce the likelihood of problems is to have some sort of a usage
timer, perhaps using ProcessLifecycleOwner, where you do not do the backup until
at least 30 minutes has elapsed since your UI was last in the foreground. This should
cause the overview screen to return the user to your launcher activity, rather than to
some other point based on an outstanding task.

When You Think Room Is Not Using It

As mentioned previously, part of the struggle is in ensuring that Room is not using
the database. Keeping the user out of database-driven UI and stopping any
database-related background tasks are key steps… but that may not be quite enough.

A Simple Close

RoomDatabase has a close() method. In principle, it should close the underlying
SupportSQLiteDatabase and prevent further use of the RoomDatabase.

However, Room itself has its own background threads, particularly in a class named
InvalidationTracker. This code monitors your database I/O and arranges to re-
deliver updated data to reactive queries (e.g., where your DAO returns an
Observable or LiveData). It is unclear whether InvalidationTracker will shut
down when you close() the RoomDatabase, and InvalidationTracker does not have
any API of its own to shut it down.

The Nuclear Option

The safest way to ensure that nothing is using your Room database is a two-step
process:

1. Put your backup and restore logic in a separate process
2. When it comes time to actually perform a backup or restore operation, you

fork that separate process… then kill your main app’s process

BACKING UP A ROOM

354

In the dedicated backup/restore process, you do not use Room and you do not open
the SQLite database. You just copy files around.

Terminating your own process in Android is easy enough. The android.os.Process
class has a killProcess() method that will kill a process given its process ID
(“PID”). You get your own process’ ID by calling myPid() on android.os.Process.
Note that the class here is android.os.Process — be careful, as Java has its own
Process class, one that is always visible owing to it being in the java.lang package.

(pro tip: do not name your own classes the same as classes in java.lang)

Terminating your own process itself is somewhat risky. For example, you should not
assume that onDestroy() of anything gets called. This is why we rarely do this and
certainly do not do it as a part of normal app operations. But, there are
extraordinary cases where it may be useful: backup and restore operations are two
such cases.

A Basic Backup Example
With all that as prologue, let’s look at the backup and restore logic in the ToDo/MVI
sample project, originally covered in a chapter on the Model-View-Intent
architecture pattern.

Triggering the Operation

The RosterListFragment has a pair of action bar items for “Backup” and “Restore”.
These are tied to backup() and restore() methods, which in turn pass control to
launchAndGoAway():

privateprivate void backup() {
launchAndGoAway(truetrue);

}

privateprivate void restore() {
launchAndGoAway(falsefalse);

}

privateprivate void launchAndGoAway(boolean isBackup) {
ToDoDatabase.shutdown();
startActivity(BackupRestoreActivity.newIntent(getActivity(), isBackup));

}

BACKING UP A ROOM

355

http://github.com/commonsguy/cw-androidarch/tree/master/ToDo/MVI
http://github.com/commonsguy/cw-androidarch/tree/master/ToDo/MVI

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/ui/RosterListFragment.java)

launchAndGoAway() starts by calling a shutdown() method on ToDoDatabase, which
simply calls close() on our singleton (if it exists) and sets that singleton field to
null:

publicpublic synchronizedsynchronized staticstatic void shutdown() {
ifif (INSTANCE!=nullnull) {

INSTANCE.close();
INSTANCE=nullnull;

}
}

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/ToDoDatabase.java)

In principle, this resets matters to where we were before we started using the
database. Right now, close() does not appear to perform any disk I/O; if some
future version of Room does perform I/O here, we would want to make our
shutdown() call be asynchronous (perhaps using an RxJava Completable).

In addition to ToDoDatabase.shutdown(), this would be the spot where our code
would need to suspend any other background work, particularly work that might be
triggered even if our process goes away. This includes things like WorkManager,
JobScheduler, and AlarmManager. In this case, the app has none of these things, so
there is nothing that we need to worry about.

Finally, launchAndGoAway() retrieves an Intent from BackupRestoreActivity, then
starts an activity based on that Intent. BackupRestoreActivity is where our actual
backup and restore logic resides. That newIntent() method builds an Intent
identifying BackupRestoreActivity and populates that Intent as
BackupRestoreActivity needs:

staticstatic Intent newIntent(Context ctxt, boolean isBackup) {
returnreturn newnew Intent(ctxt, BackupRestoreActivity.class)

.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK|Intent.FLAG_ACTIVITY_CLEAR_TASK)

.putExtra(EXTRA_IS_BACKUP, isBackup)

.putExtra(EXTRA_MAIN_PID, Process.myPid());
}

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/ui/BackupRestoreActivity.java)

Specifically, we:

• Use

BACKING UP A ROOM

356

https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/ui/RosterListFragment.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/impl/ToDoDatabase.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/ui/BackupRestoreActivity.java

addFlags(Intent.FLAG_ACTIVITY_NEW_TASK|Intent.FLAG_ACTIVITY_CLEAR_TASK)
to destroy any outstanding activities (in this case, it would be just
MainActivity)

• Add the supplied boolean value as an extra, to denote whether this is a
backup or a restore request

• Capture our PID and put that as an extra as well

Our UI

BackupRestoreActivity uses a dialog theme (Theme.Apptheme.Dialog), so it does
not take up the entire screen:

<style<style name="Theme.Apptheme.Dialog" parent="@android:style/Theme.Material.Light.Dialog.NoActionBar">>
<item<item name="android:colorPrimary">>@color/primary</item></item>
<item<item name="android:colorPrimaryDark">>@color/primary_dark</item></item>
<item<item name="android:colorAccent">>@color/accent</item></item>
<item<item name="android:windowMinWidthMajor">>@android:dimen/dialog_min_width_major</item></item>
<item<item name="android:windowMinWidthMinor">>@android:dimen/dialog_min_width_minor</item></item>

</style></style>

(from ToDo/MVI/app/src/main/res/values/styles.xml)

Our layout (activity_progress) is just a ProgressBar and TextView, wrapped in a
ConstraintLayout:

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:padding="16dp">>

<ProgressBar<ProgressBar
android:id="@+id/progressBar"
style="?android:attr/progressBarStyle"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginBottom="8dp"
android:layout_marginStart="8dp"
android:layout_marginTop="8dp"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent" />/>

<TextView<TextView
android:id="@+id/title"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_marginBottom="8dp"
android:layout_marginEnd="8dp"
android:layout_marginStart="8dp"
android:layout_marginTop="8dp"
android:text="@string/msg_wait"

BACKING UP A ROOM

357

https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/res/values/styles.xml

android:textAppearance="@android:style/TextAppearance.Material.Large"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toEndOf="@+id/progressBar"
app:layout_constraintTop_toTopOf="parent" />/>

</android.support.constraint.ConstraintLayout></android.support.constraint.ConstraintLayout>

(from ToDo/MVI/app/src/main/res/layout/activity_progress.xml)

The net result is that we will show indefinite progress as our UI:

Figure 18: RoomBackup UI

In onCreate(), we load up that layout, plus we get an instance of our viewmodel (VM)
via a VMFactory:

@Override
protectedprotected void onCreate(@Nullable Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_progress);

VMFactory factory=
newnew VMFactory(getApplication(),

getIntent().getBooleanExtra(EXTRA_IS_BACKUP, truetrue),
getIntent().getIntExtra(EXTRA_MAIN_PID, -1));

BACKING UP A ROOM

358

https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/res/layout/activity_progress.xml

VM vm=ViewModelProviders.of(thisthis, factory).get(VM.class);

vm.results.observe(thisthis, unused -> {
startActivity(MainActivity.newIntent(thisthis));
finish();

});
}

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/ui/BackupRestoreActivity.java)

That VMFactory takes our extras and passes them into the viewmodel:

privateprivate classclass VMFactoryVMFactory extendsextends ViewModelProvider.AndroidViewModelFactory {
privateprivate finalfinal boolean isBackup;
privateprivate finalfinal int pid;

publicpublic VMFactory(@NonNull Application app, boolean isBackup, int pid) {
supersuper(app);
thisthis.isBackup=isBackup;
thisthis.pid=pid;

}

@NonNull
@Override
publicpublic <T extendsextends ViewModel> T create(@NonNull Class<T> modelClass) {

returnreturn (T)newnew VM(getApplication(), isBackup, pid);
}

}

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/ui/BackupRestoreActivity.java)

The VM viewmodel exposes a LiveData named results, which will emit an object
when our backup or restore is completed. At that point, we start up MainActivity
again and finish() the BackupRestoreActivity, so the user is taken right back to
the main app UI.

Performing the Operation

The “heavy lifting” for the backup and restore operations is handled inside of VM for
simplicity. One could argue that this sort of work belongs in a repository, and for
mainstream functionality or a larger app that may make sense. However, the only
place where such a repository would be used is right here in this viewmodel, so it is
unclear how this book example would be improved by using a repository.

In onCreate(), we set up an RxJava Single that invokes a process() method that

BACKING UP A ROOM

359

https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/ui/BackupRestoreActivity.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/ui/BackupRestoreActivity.java

will do the real work. The Single just allows us to do that work on a background
thread, plus get a LiveData for our UI layer to use (via
LiveDataReactiveStreams.fromPublisher()):

publicpublic staticstatic classclass VMVM extendsextends AndroidViewModel {
finalfinal LiveData<Boolean> results;

publicpublic VM(@NonNull Application application, boolean isBackup, int pid) {
supersuper(application);

Single<Boolean> backup=
Single.create((SingleOnSubscribe<Boolean>)emitter -> {

process(isBackup, pid);
emitter.onSuccess(truetrue);

})
.subscribeOn(Schedulers.single())
.observeOn(AndroidSchedulers.mainThread());

results=LiveDataReactiveStreams.fromPublisher(backup.toFlowable());
}

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/ui/BackupRestoreActivity.java)

process() starts off by sleeping for one second, to give that main process extra time
for any cleanup, particularly for any asynchronous work that we do not control.
Then, it uses Process.killProcess() to terminate the main process, using the PID
passed in via the extra:

privateprivate void process(boolean isBackup, int pid) throwsthrows IOException {
SystemClock.sleep(1000); // wait for things to settle

Process.killProcess(pid);

File dbDir=getApplication().getDatabasePath("foo").getParentFile();
File extDir=getApplication().getExternalFilesDir(nullnull);
File backupDir=newnew File(extDir, "db-backup");

ifif (isBackup) {
ifif (backupDir.exists()) {

delete(backupDir);
}

backupDir.mkdirs();
copy(dbDir, backupDir);

}
elseelse {

ifif (dbDir.exists()) {

BACKING UP A ROOM

360

https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/ui/BackupRestoreActivity.java

delete(dbDir);
}

dbDir.mkdirs();
copy(backupDir, dbDir);

}
}

}

(from ToDo/MVI/app/src/main/java/com/commonsware/android/todo/ui/BackupRestoreActivity.java)

What happens next depends a bit on the operation:

• If we are performing a backup, we make an empty directory for that backup,
then copy the files from the database directory to the backup directory

• If we are performing a restore, we make an empty directory for the database,
then copy the files from the backup directory to the database directory

You can see all of this in action by running the sample app:

• Create a couple of to-do items
• Run a backup
• Change your roster of to-do items (e.g., add some more)
• Run a restore
• See that your backed-up roster of to-do is restored

Areas for Improvement

There are many things that could be improved in this sample, things that a
production app would need to have:

• We are doing no validation to confirm that the backed up data is a complete
bit-for-bit copy of the original data. Probably it is, but random I/O hiccups
could give us a corrupt backup, which is useless.

• We are deleting the “real” database prior to restoring the backup. If the
restore process fails for some reason, we are now stuck. We could, instead,
rename the database directory, restore to a new database directory, and
confirm the restore result to ensure that it is a bit-for-bit copy of the backup
and we can successfully open the database. If that succeeds, we can then
delete the renamed older database directory. If the restore fails, we can
delete the failed restored copy, rename the old database directory back to its
original name, and be right back where we started prior to the restoration
attempt.

BACKING UP A ROOM

361

https://github.com/commonsguy/cw-androidarch/blob/v1.0/ToDo/MVI/app/src/main/java/com/commonsware/android/todo/ui/BackupRestoreActivity.java

• We are only allowing one backup, in a location chosen by us as developers.
We could use ACTION_OPEN_DOCUMENT_TREE to allow the user to choose where
to make the backup. In this case, though, we cannot be completely certain
that the backup location will be on the device, as we get a Uri to a
documents provider. It is possible that working with that provider will be
slow, particularly if it is transferring the data in real time to a server. It may
be better to make a local backup first, then copy the backup to the provider.

• We are not validating the backup. We assume that it exists, and that it
contains a valid database. Clearly, this might not be the case.

Backing Up Off-Device
All of this has focused on making a backup to a location on the device. That is
useful, but that usefulness fades if the device itself is lost, damaged, or destroyed.
For that, we would need to backup to an off-device location.

However, that may be slow and may not be possible at the time of the backup, due
to the nature of Internet connections. As with the document provider scenario
mentioned in the preceding section, consider backing up locally first, then
transferring the backup to the server as a separate second step. Once the local
backup is complete, you can let the app return to normal operation, as transferring
the backup to a server should not be affected by other work done on the live
database.

BACKING UP A ROOM

362

Room and Full-Text Searching

SQLite supports FTS virtual tables for full-text searching of content.

Room does not.

NOTE: The upcoming 2.1.0 version of Room will support FTS. That edition of Room
is part of AndroidX; this book focuses on the original android.arch edition of
Room, which pre-dates this FTS support.

However, there are ways to get FTS support in a Room-managed database, but it
requires you to do more of the work yourself. In this chapter, we will explore how to
make this work, while also traveling in time. Or perhaps just reading about
somebody who travels in time.

What Is FTS?
Standard SQL databases are great for ordinary queries. In particular, when it comes
to text, SQL databases are great for finding rows where a certain column value
matches a particular string. They are usually pretty good about finding when a
column value matches a particular string prefix, if there is an index on that column.
Things start to break down when you want to search for an occurrence of a string in
a column — “find all rows where the column prose contains the word vague” – as
this usually requires a “table scan” (i.e., iteratively examining each row to see if this
matches). And getting more complex than that is often impossible, or at least rather
difficult.

SQLite, in its stock form, inherits all those capabilities and limitations. However,
SQLite also offers full-text indexing, where we can search our database much like
how we use a search engine (e.g., “find all rows where this column has both foo and

363

https://sqlite.org/fts3.html
https://medium.com/@sienatime/enabling-sqlite-fts-in-room-2-1-75e17d0f0ff8

bar in it somewhere”). While a full-text index takes up additional disk space, the
speed of the full-text searching is quite impressive.

There are a few full-text indexing options available in SQLite: FTS3, FTS4, and FTS5.
Newer versions (higher numbers) are generally faster but take more disk space. FTS3
has been around since the beginning of Android. FTS4 arrived with the version of
SQLite used in API Level 11. FTS5, by constrast, is only likely to be available on API
Level 24 and higher devices.

This chapter does not cover all of the details of using FTS with SQLite. For that,
please see the “Advanced Database Techniques” chapter in The Busy Coder’s Guide to
Android Development and the SQLite FTS documentation. This chapter is focused
solely on enabling this stuff from Room, though you will see a bit of how FTS works
along the way.

The Room 1.x FTS Recipe
Room 1.x cannot create an FTS table for us. However, Room can work with an FTS
table, at least for data retrieval, using @RawQuery.

As a result, we can get partial support for FTS from Room, if we are willing to do the
rest ourselves, using the support database API, such as what we use with migrations.

Manually Create the Table

First, we will need to manually create our FTS virtual table.

At minimum, we need to do this when we create the database. We can use a
RoomDatabase.Callback object for that, as part of setting up our
RoomDatabase.Builder:

RoomDatabase.Builder<BookDatabase> b=
Room.databaseBuilder(ctxt.getApplicationContext(), BookDatabase.class,

DB_NAME);

b.addCallback(newnew Callback() {
@Override
publicpublic void onCreate(@NonNull SupportSQLiteDatabase db) {

supersuper.onCreate(db);

db.execSQL("CREATE VIRTUAL TABLE booksearch USING fts4(sequence, prose)");
}

});

BookDatabase books=b.build();

ROOM AND FULL-TEXT SEARCHING

364

https://commonsware.com/Android/previews/advanced-database-techniques
https://commonsware.com/Android
https://commonsware.com/Android

(from TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookDatabase.java)

RoomDatabase.Callback was covered in the chapter on the support database API.

Here, as part of setting up an instance of a BookDatabase, we request to get control
when the database is created and add our own booksearch virtual table.

If you are adding the FTS table to an already-existing app, you will also need to
create your FTS virtual table in the appropriate Migration object(s).

RawQuery the Table

To get data out of the virtual table, we can use a @RawQuery-annotated method on
some @Dao class that references the table that we created manually. While @RawQuery
can work with tables defined via Room entities, that is not a requirement. @RawQuery
can work with any table, so long as Room can figure out how to map the columns
that you request to the POJO that you want to return.

So, given some sort of BookSearchResult POJO that matches the booksearch table
structure used above, we could have:

@RawQuery
protectedprotected abstractabstract List<BookSearchResult> _searchSynchronous(SupportSQLiteQuery query);

(from TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookStore.java)

Things get a bit tricky if we want a reactive response (e.g., Observable) or if we want
to use paging, as we will see later in this chapter.

To put data into the virtual table, the official solution is to use a
SupportSQLiteDatabase. You get one by calling
getOpenHelper().getWritableDatabase() on your RoomDatabase. Then, just as we
used one of those for a CREATE VIRTUAL
TABLE statement (see above), we can use one for INSERT/UPDATE/DELETE statements
or the corresponding insert(), update(), or delete() methods.

Unofficially, @RawQuery works for these as well:

@RawQuery
protectedprotected abstractabstract long _insert(SupportSQLiteQuery queryish);

(from TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookStore.java)

ROOM AND FULL-TEXT SEARCHING

365

https://github.com/commonsguy/cw-androidarch/blob/v1.0/TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookDatabase.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookStore.java
https://issuetracker.google.com/issues/78842400
https://github.com/commonsguy/cw-androidarch/blob/v1.0/TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookStore.java

Searching a Book
The above code snippets come from the TimeMachine/RoomFTS sample project,
demonstrating the use of FTS virtual tables for searching through large blocks of
text. The techniques outlined in this chapter, via this sample, resemble the
techniques used in the APK edition of The Busy Coder’s Guide to Android
Development, which offered a similar full-text search capability for a few years.

The Book

This sample app, though, does not allow searching through a book on Android app
development. Instead, it allows the user to read and search a copy of the Project
Gutenberg edition of H. G. Wells’ “The Time Machine”. This book is stored in a
series of text files in the assets/ directory. On first run, the app will pour that text
into a SQLite database, both in a regular table and in an FTS4 virtual table. It then
has two fragments, each with a RecyclerView:

• The first one shows the entire book, using the paging library to minimize the
memory usage

• The second one shows FTS search results, again using the paging library,
along with our semi-manual FTS support

ROOM AND FULL-TEXT SEARCHING

366

http://github.com/commonsguy/cw-androidarch/tree/master/TimeMachine/RoomFTS
http://github.com/commonsguy/cw-androidarch/tree/master/TimeMachine/RoomFTS
https://commonsware.com/Android
https://commonsware.com/Android
http://www.gutenberg.org/files/35/35-0.txt
http://www.gutenberg.org/files/35/35-0.txt

The Data Model

The text files in assets/ are subdivided into chapters, with the chapter title as the
core of the filename:

Figure 19: Android Studio, Showing the Contents of assets/

We want to be able to full-text search the prose of those chapters. For that, we would
only need an FTS table, as we can get the text itself from the assets. However, to
make this sample a bit more realistic, we will pour the book contents into regular
SQLite tables, then add an FTS table for searching. That will more closely resemble
common FTS scenarios, where the data to be searched is also in SQLite.

To that end, we have a ChapterEntity to model a chapter:

packagepackage com.commonsware.android.room.fts;

importimport android.arch.persistence.room.Entityandroid.arch.persistence.room.Entity;
importimport android.arch.persistence.room.PrimaryKeyandroid.arch.persistence.room.PrimaryKey;

@Entity(tableName = "chapters")
publicpublic classclass ChapterEntityChapterEntity {

@PrimaryKey(autoGenerate = truetrue)

ROOM AND FULL-TEXT SEARCHING

367

long id;
String title;

ChapterEntity(String title) {
thisthis.title=title;

}
}

(from TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/ChapterEntity.java)

Notably, this has the chapter title, but it does not have the chapter prose. Instead,
we have a 1:N relation with a ParagraphEntity, that will represent an individual
paragraph from a chapter:

packagepackage com.commonsware.android.room.fts;

importimport android.arch.persistence.room.Entityandroid.arch.persistence.room.Entity;
importimport android.arch.persistence.room.ForeignKeyandroid.arch.persistence.room.ForeignKey;
importimport android.arch.persistence.room.Indexandroid.arch.persistence.room.Index;
importimport android.arch.persistence.room.PrimaryKeyandroid.arch.persistence.room.PrimaryKey;

@Entity(tableName="paragraphs",
foreignKeys=@ForeignKey(entity=ChapterEntity.class, parentColumns="id",

childColumns="chapterId", onDelete=ForeignKey.CASCADE),
indices={@Index(value="chapterId")})

publicpublic classclass ParagraphEntityParagraphEntity {
@PrimaryKey
long sequence;
String prose;
long chapterId;

ParagraphEntity(String prose) {
thisthis.prose=prose;

}
}

(from TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/ParagraphEntity.java)

Here, the sequence is the order in which this paragraph appears in the book overall.
By dividing our prose into paragraphs, we can offer per-paragraph FTS searches. This
app does not presently use the chapter information, though it could (e.g., section
headings in the scrollable book, nav drawer to jump to a particular chapter).

The Database

Our database needs to hold the chapters, paragraphs, and full-text search index.

ROOM AND FULL-TEXT SEARCHING

368

https://github.com/commonsguy/cw-androidarch/blob/v1.0/TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/ChapterEntity.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/ParagraphEntity.java

Moreover, when we create the database, we need to set up those chapters,
paragraphs, and full-text search index.

This gets a bit tricky, particularly if we want to use Room for as much of this as
possible.

The RoomDatabase subclass in this app is BookDatabase, with a declaration that it is
tied to ChapterEntity, ParagraphEntity, and a BookStore that is our DAO:

@Database(entities = {ChapterEntity.class, ParagraphEntity.class}, version=1)
abstractabstract publicpublic classclass BookDatabaseBookDatabase extendsextends RoomDatabase {

staticstatic finalfinal String DB_NAME="time-machine.db";

abstractabstract publicpublic BookStore store();

(from TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookDatabase.java)

As with many of the other samples in this book, the BookDatabase is a singleton:

privateprivate staticstatic volatilevolatile BookDatabase INSTANCE=nullnull;

synchronizedsynchronized staticstatic BookDatabase get(Context ctxt) {
ifif (INSTANCE==nullnull) {

INSTANCE=create(ctxt);
}

returnreturn INSTANCE;
}

(from TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookDatabase.java)

And, as with many of the other samples, the create() method creates our database:

privateprivate staticstatic BookDatabase create(Context ctxt) {
RoomDatabase.Builder<BookDatabase> b=

Room.databaseBuilder(ctxt.getApplicationContext(), BookDatabase.class,
DB_NAME);

b.addCallback(newnew Callback() {
@Override
publicpublic void onCreate(@NonNull SupportSQLiteDatabase db) {

supersuper.onCreate(db);

db.execSQL("CREATE VIRTUAL TABLE booksearch USING fts4(sequence, prose)");
}

});

BookDatabase books=b.build();

populate(ctxt, books);

ROOM AND FULL-TEXT SEARCHING

369

https://github.com/commonsguy/cw-androidarch/blob/v1.0/TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookDatabase.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookDatabase.java

returnreturn books;
}

(from TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookDatabase.java)

Our Callback gives us control when the database is created, and we directly create a
booksearch FTS table using the supplied SupportSQLiteDatabase. This bypasses the
need for a Room entity for this table. If this app had more than one schema version,
and booksearch was added in a later schema, we would also be registering
Migration objects, where one or more of those would also create this booksearch
FTS table.

The other departure is the populate() call. In that method, we load the
BookDatabase with our chapters and paragraphs, if that data does not already exist.
In principle, we could do this in onCreate() of the Callback. However, in that
method, all we have is a SupportSQLiteDatabase, meaning that we cannot use our
Room entities and DAO, but instead would roll all of the database code manually. If
we do that, we might as well consider dumping Room altogether. So, instead,
populate() will check the database to see if we already have our prose loaded, and if
not, will load the prose into the database.

Our BookStore has a simple chapterCount() @Query method to return the number
of chapters:

@Query("SELECT COUNT(*) FROM chapters")
abstractabstract int chapterCount();

(from TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookStore.java)

populate() starts by calling that method to determine whether we our database is
empty:

privateprivate staticstatic void populate(Context ctxt, BookDatabase books) {
ifif (books.store().chapterCount()==0) {

trytry {
AssetManager assets=ctxt.getAssets();
int sequenceNumber=0;

forfor (String path : assets.list("")) {
List<String> paragraphs=paragraphs(assets.open(path));
String title=title(path);
ChapterEntity chapter=newnew ChapterEntity(title);
List<ParagraphEntity> paragraphEntities=newnew ArrayList<>();

ROOM AND FULL-TEXT SEARCHING

370

https://github.com/commonsguy/cw-androidarch/blob/v1.0/TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookDatabase.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookStore.java

forfor (String paragraph : paragraphs) {
paragraphEntities.add(newnew ParagraphEntity(paragraph));

}

sequenceNumber=
books.store().insert(chapter, paragraphEntities, sequenceNumber);

}
}
catchcatch (IOException e) {

Log.e("BookDatabase", "Exception reading in assets", e);
}

}
}

(from TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookDatabase.java)

If it is empty, we use AssetManager to iterate over those 17 text files in assets/. For
each, we use a paragraphs() method to divide the text into paragraphs, with a blank
line serving as the delimiter between paragraphs:

// inspired by https://stackoverflow.com/a/10065920/115145

privateprivate staticstatic List<String> paragraphs(InputStream is) throwsthrows IOException {
BufferedReader in=newnew BufferedReader(newnew InputStreamReader(is));
List<String> result=newnew ArrayList<>();

trytry {
StringBuilder paragraph=newnew StringBuilder();

whilewhile (truetrue) {
String line=in.readLine();

ifif (line==nullnull) {
breakbreak;

}
elseelse if (TextUtils.isEmpty(line)) {

ifif (!TextUtils.isEmpty(paragraph)) {
result.add(paragraph.toString().trim());
paragraph=newnew StringBuilder();

}
}
elseelse {

paragraph.append(line);
paragraph.append(' ');

}
}

ROOM AND FULL-TEXT SEARCHING

371

https://github.com/commonsguy/cw-androidarch/blob/v1.0/TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookDatabase.java

ifif (!TextUtils.isEmpty(paragraph)) {
result.add(paragraph.toString().trim());

}
}
finallyfinally {

is.close();
}

returnreturn result;
}

(from TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookDatabase.java)

We use a title() method to convert the “slug”-style filename into a normal title,
using spaces instead of dashes for word separators:

privateprivate staticstatic String title(String path) {
String[] pieces=path.substring(0, path.length()-4).split("-");
StringBuilder buf=newnew StringBuilder();

forfor (int i=1;i<pieces.length;i++) {
buf.append(pieces[i]);
buf.append(' ');

}

returnreturn buf.toString().trim();
}

(from TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookDatabase.java)

We convert the paragraphs into ParagraphEntity instances, then call an insert()
method on our BookStore, passing it the ChapterEntity and each of the
ParagraphEntity instances to be inserted into our database, plus the last-used
sequence number (initialized at 0). insert() is supposed to put all of this data into
the database and return the new last-used sequence number, to be applied in the
next pass of the loop.

insert() uses a @Transaction annotation, so it can perform multiple database
operations inside of a single transaction:

@Transaction
int insert(ChapterEntity chapter, List<ParagraphEntity> paragraphs,

int startingSequenceNo) {
long chapterId=insert(chapter);

forfor (ParagraphEntity paragraph : paragraphs) {

ROOM AND FULL-TEXT SEARCHING

372

https://github.com/commonsguy/cw-androidarch/blob/v1.0/TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookDatabase.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookDatabase.java

paragraph.chapterId=chapterId;
paragraph.sequence=startingSequenceNo++;
insertFTS(paragraph);

}

insert(paragraphs);

returnreturn startingSequenceNo;
}

(from TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookStore.java)

First, insert() calls another insert() method, to insert a ChapterEntity. That is
just a standard @Insert method:

@Insert
abstractabstract long insert(ChapterEntity chapter);

(from TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookStore.java)

It returns the primary key used for this ChapterEntity, as the entity has
@PrimaryKey(autoGenerate = true) on its long id field. We can then use that, plus
an incremented sequence number, to fill in the missing details on the
ParagraphEntity.

And, at this point, we cheat.

As was noted earlier in the chapter, we are supposed to use SupportSQLiteDatabase
to work with booksearch. In reality, at least with Room 1.1.0, we can use @RawQuery
for this. However, @RawQuery requires that its method take a SupportSQLiteQuery as
a parameter:

@RawQuery
protectedprotected abstractabstract long _insert(SupportSQLiteQuery queryish);

(from TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookStore.java)

That is inconvenient. So, we wrap that in an insertFTS() method that generates the
SupportSQLiteQuery:

void insertFTS(ParagraphEntity entity) {
_insert(newnew SimpleSQLiteQuery("INSERT INTO booksearch (sequence, prose) VALUES (?, ?)",

newnew Object[] {entity.sequence, entity.prose}));
}

(from TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookStore.java)

ROOM AND FULL-TEXT SEARCHING

373

https://github.com/commonsguy/cw-androidarch/blob/v1.0/TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookStore.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookStore.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookStore.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookStore.java

The _insert() method has the leading underscore and is marked as protected to
try to minimize the likelihood that anyone outside of BookStore would use that
method. Unfortunately, we cannot make the method be private, because then the
Room code generator cannot generate an implementation in a concrete subclass of
BookStore.

Once we have iterated over all of the ParagraphEntity instances and added them to
the FTS table, we insert them into their own table, using another insert() method:

@Insert
abstractabstract void insert(List<ParagraphEntity> paragraphs);

(from TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookStore.java)

Finally, we return the updated sequence number, for use in a future pass of this
insert() method.

The net: when we open our BookDatabase and start working with it, we will lazy-
populate the database, including the FTS table.

The BookStore also has a method for loading our paragraphs, in sequence order,
using the paging library to maximize speed and minimize memory usage:

@Query("SELECT * FROM paragraphs ORDER BY sequence ASC")
abstractabstract DataSource.Factory<Integer, ParagraphEntity> paragraphs();

(from TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookStore.java)

The Searches

To search the booksearch FTS table, we turn once again to @RawQuery methods on
the BookStore:

@RawQuery(observedEntities = ParagraphEntity.class)
protectedprotected abstractabstract DataSource.Factory<Integer, BookSearchResult> _search(SupportSQLiteQuery query);

@RawQuery
protectedprotected abstractabstract List<BookSearchResult> _searchSynchronous(SupportSQLiteQuery query);

(from TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookStore.java)

There are two such methods, _search and _searchSynchronous(). The latter is for
testing purposes, and it does the database I/O synchronously. The former is for the
actual UI, and it uses the paging library.

ROOM AND FULL-TEXT SEARCHING

374

https://github.com/commonsguy/cw-androidarch/blob/v1.0/TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookStore.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookStore.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookStore.java

However, @RawQuery insists upon having an observedEntities property, if your
method returns an asynchronous type: DataSource.Factory, LiveData, Observable,
etc. This is a fairly bizarre limitation, particularly given the fact that we are supposed
to use @RawQuery for FTS tables, which have no associated entities. With luck, this
will get addressed someday. In the meantime, we use ParagraphEntity, as being the
closest entity that matches this table, and hope that this holds up.

Both of these methods return instances of a POJO named BookSearchResult:

packagepackage com.commonsware.android.room.fts;

publicpublic classclass BookSearchResultBookSearchResult {
long sequence;
String snippet;

}

(from TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookSearchResult.java)

The sequence field provides the primary key for the ParagraphEntity, should we
want to find the full paragraph. However, mostly, we will use the snippet field,
which will supply us with a SQLite-prepared bit of text highlighting our search term
in the result.

As with _insert(), these two methods need a SupportSQLiteQuery, so we wrap
them with methods that hide that detail:

DataSource.Factory<Integer, BookSearchResult> search(String expr) {
returnreturn _search(buildSearchQuery(expr));

}

List<BookSearchResult> searchSynchronous(String expr) {
returnreturn _searchSynchronous(buildSearchQuery(expr));

}

(from TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookStore.java)

privateprivate SimpleSQLiteQuery buildSearchQuery(String expr) {
returnreturn newnew SimpleSQLiteQuery("SELECT sequence, snippet(booksearch) AS snippet FROM booksearch WHERE

prose MATCH ? ORDER BY sequence ASC",
newnew Object[] {expr});

}

(from TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookStore.java)

ROOM AND FULL-TEXT SEARCHING

375

https://issuetracker.google.com/issues/78806349
https://issuetracker.google.com/issues/78806349
https://github.com/commonsguy/cw-androidarch/blob/v1.0/TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookSearchResult.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookStore.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookStore.java

The Repository

Our BookDatabase and BookStore are wrapped in a BookRepository:

packagepackage com.commonsware.android.room.fts;

importimport android.arch.paging.DataSourceandroid.arch.paging.DataSource;
importimport android.content.Contextandroid.content.Context;
importimport io.reactivex.Singleio.reactivex.Single;

publicpublic classclass BookRepositoryBookRepository {
privateprivate staticstatic volatilevolatile BookRepository INSTANCE=nullnull;
privateprivate finalfinal Context ctxt;

synchronizedsynchronized staticstatic BookRepository get(Context ctxt) {
ifif (INSTANCE==nullnull) {

INSTANCE=newnew BookRepository(ctxt);
}

returnreturn INSTANCE;
}

privateprivate BookRepository(Context ctxt) {
thisthis.ctxt=ctxt.getApplicationContext();

}

Single<DataSource.Factory<Integer, ParagraphEntity>> paragraphs() {
returnreturn Single.create(emitter ->

emitter.onSuccess(BookDatabase.get(ctxt).store().paragraphs()));
}

Single<DataSource.Factory<Integer, BookSearchResult>> search(String expr) {
returnreturn Single.create(emitter ->

emitter.onSuccess(BookDatabase.get(ctxt).store().search(expr)));
}

}

(from TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookRepository.java)

DataSource.Factory is asynchronous, in that our paragraphs() and search()
methods do not perform any database I/O immediately. However, due to our lazy-
loading of the book contents into the database, the get() method on BookDatabase
does do database I/O, and potentially a fair bit of it (if this is the first run of the
app). To avoid StrictMode violations and jank, we need to move
BookDatabase.get() onto a background thread. So, the BookRepository wraps the
BookStore edition of the paragraphs() and search() methods in its own, returning

ROOM AND FULL-TEXT SEARCHING

376

https://github.com/commonsguy/cw-androidarch/blob/v1.0/TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookRepository.java

a Single, so that we can perform the BookDatabase.get() call on a background
thread.

The ViewModels

The BookRepository is used by two AndroidViewModel subclasses.

One — BookViewModel — will be used by the UI that displays the entire book
contents:

packagepackage com.commonsware.android.room.fts;

importimport android.app.Applicationandroid.app.Application;
importimport android.arch.lifecycle.AndroidViewModelandroid.arch.lifecycle.AndroidViewModel;
importimport android.arch.lifecycle.LiveDataandroid.arch.lifecycle.LiveData;
importimport android.arch.lifecycle.LiveDataReactiveStreamsandroid.arch.lifecycle.LiveDataReactiveStreams;
importimport android.arch.lifecycle.Transformationsandroid.arch.lifecycle.Transformations;
importimport android.arch.paging.DataSourceandroid.arch.paging.DataSource;
importimport android.arch.paging.LivePagedListBuilderandroid.arch.paging.LivePagedListBuilder;
importimport android.arch.paging.PagedListandroid.arch.paging.PagedList;
importimport io.reactivex.Singleio.reactivex.Single;
importimport io.reactivex.schedulers.Schedulersio.reactivex.schedulers.Schedulers;

publicpublic classclass BookViewModelBookViewModel extendsextends AndroidViewModel {
finalfinal LiveData<PagedList<ParagraphEntity>> paragraphs;

publicpublic BookViewModel(Application app) {
supersuper(app);

Single<DataSource.Factory<Integer, ParagraphEntity>> liveParagraphs=
BookRepository.get(app).paragraphs().subscribeOn(Schedulers.single());

paragraphs=Transformations
.switchMap(LiveDataReactiveStreams.fromPublisher(liveParagraphs.toFlowable().cache()),

factory -> newnew LivePagedListBuilder<>(factory, 50).build());
}

}

(from TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookViewModel.java)

Here, we:

• Subscribe to the Single on a background thread
(subscribeOn(Schedulers.single()))

• Convert that Single to a cached Flowable
• Wrap that in a LiveData, using LiveDataReactiveStreams.fromPublisher()
• Use Transformations.switchMap() to take the DataSource.Factory that we

get from the Single and convert that into a LivePagedListBuilder for use in
the UI

ROOM AND FULL-TEXT SEARCHING

377

https://github.com/commonsguy/cw-androidarch/blob/v1.0/TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookViewModel.java

There is a similar SearchViewModel for processing the results of a search:

packagepackage com.commonsware.android.room.fts;

importimport android.app.Applicationandroid.app.Application;
importimport android.arch.lifecycle.AndroidViewModelandroid.arch.lifecycle.AndroidViewModel;
importimport android.arch.lifecycle.LiveDataandroid.arch.lifecycle.LiveData;
importimport android.arch.lifecycle.LiveDataReactiveStreamsandroid.arch.lifecycle.LiveDataReactiveStreams;
importimport android.arch.lifecycle.Transformationsandroid.arch.lifecycle.Transformations;
importimport android.arch.paging.DataSourceandroid.arch.paging.DataSource;
importimport android.arch.paging.LivePagedListBuilderandroid.arch.paging.LivePagedListBuilder;
importimport android.arch.paging.PagedListandroid.arch.paging.PagedList;
importimport io.reactivex.Singleio.reactivex.Single;
importimport io.reactivex.schedulers.Schedulersio.reactivex.schedulers.Schedulers;

publicpublic classclass SearchViewModelSearchViewModel extendsextends AndroidViewModel {
LiveData<PagedList<BookSearchResult>> results;

publicpublic SearchViewModel(Application app) {
supersuper(app);

}

LiveData<PagedList<BookSearchResult>> search(String expr) {
Single<DataSource.Factory<Integer, BookSearchResult>> liveSearch=

BookRepository.get(getApplication()).search(expr).subscribeOn(Schedulers.single());

results=Transformations
.switchMap(LiveDataReactiveStreams.fromPublisher(liveSearch.toFlowable().cache()),

factory -> newnew LivePagedListBuilder<>(factory, 50).build());

returnreturn results;
}

}

(from TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/SearchViewModel.java)

The UI

Our MainActivity is pretty simple. It just loads up a BookFragment on startup. It
also offers a search() method so that the BookFragment can request a search, which
will result in a SearchFragment being placed on the back stack:

packagepackage com.commonsware.android.room.fts;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.app.FragmentActivityandroid.support.v4.app.FragmentActivity;
importimport android.text.TextUtilsandroid.text.TextUtils;

publicpublic classclass MainActivityMainActivity extendsextends FragmentActivity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (getSupportFragmentManager().findFragmentById(android.R.id.content)==nullnull) {
getSupportFragmentManager().beginTransaction()

.add(android.R.id.content, newnew BookFragment())

ROOM AND FULL-TEXT SEARCHING

378

https://github.com/commonsguy/cw-androidarch/blob/v1.0/TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/SearchViewModel.java

.commit();
}

}

publicpublic void search(String expr) {
ifif (!TextUtils.isEmpty(expr)) {

getSupportFragmentManager().beginTransaction()
.replace(android.R.id.content, SearchFragment.newInstance(expr))
.addToBackStack(nullnull)
.commit();

}
}

}

(from TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/MainActivity.java)

BookFragment has an action bar with a SearchView in it:

<?xml version="1.0" encoding="utf-8"?>
<menu<menu xmlns:android="http://schemas.android.com/apk/res/android">>

<item<item
android:id="@+id/search"
android:actionViewClass="android.widget.SearchView"
android:icon="@drawable/ic_search_white_24dp"
android:showAsAction="ifRoom|collapseActionView"
android:title="@string/search">>

</item></item>

</menu></menu>

(from TimeMachine/RoomFTS/app/src/main/res/menu/actions.xml)

BookFragment is that action bar with the SearchView, plus a RecyclerView to show
the paragraphs of the book:

packagepackage com.commonsware.android.room.fts;

importimport android.arch.lifecycle.ViewModelProvidersandroid.arch.lifecycle.ViewModelProviders;
importimport android.arch.paging.PagedListAdapterandroid.arch.paging.PagedListAdapter;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.annotation.Nullableandroid.support.annotation.Nullable;
importimport android.support.v7.util.DiffUtilandroid.support.v7.util.DiffUtil;
importimport android.support.v7.widget.LinearLayoutManagerandroid.support.v7.widget.LinearLayoutManager;
importimport android.support.v7.widget.RecyclerViewandroid.support.v7.widget.RecyclerView;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Menuandroid.view.Menu;
importimport android.view.MenuInflaterandroid.view.MenuInflater;
importimport android.view.MenuItemandroid.view.MenuItem;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.SearchViewandroid.widget.SearchView;
importimport android.widget.TextViewandroid.widget.TextView;

ROOM AND FULL-TEXT SEARCHING

379

https://github.com/commonsguy/cw-androidarch/blob/v1.0/TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/MainActivity.java
https://github.com/commonsguy/cw-androidarch/blob/v1.0/TimeMachine/RoomFTS/app/src/main/res/menu/actions.xml

publicpublic classclass BookFragmentBookFragment extendsextends RecyclerViewFragment implementsimplements
SearchView.OnQueryTextListener, SearchView.OnCloseListener {
privateprivate SearchView sv=nullnull;

@Override
publicpublic void onCreate(@Nullable Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

setHasOptionsMenu(truetrue);
}

@Override
publicpublic void onViewCreated(View view, Bundle savedInstanceState) {

supersuper.onViewCreated(view, savedInstanceState);

setLayoutManager(newnew LinearLayoutManager(getActivity()));

BookViewModel vm=ViewModelProviders.of(thisthis).get(BookViewModel.class);
finalfinal ParagraphAdapter adapter=newnew ParagraphAdapter(getActivity().getLayoutInflater());

vm.paragraphs.observe(thisthis, adapter::submitList);

setAdapter(adapter);
}

@Override
publicpublic void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {

inflater.inflate(R.menu.actions, menu);

configureSearchView(menu);

supersuper.onCreateOptionsMenu(menu, inflater);
}

@Override
publicpublic boolean onQueryTextChange(String newText) {

returnreturn falsefalse;
}

@Override
publicpublic boolean onQueryTextSubmit(String query) {

search(query);

returnreturn truetrue;
}

@Override
publicpublic boolean onClose() {

returnreturn truetrue;
}

privateprivate void configureSearchView(Menu menu) {
MenuItem search=menu.findItem(R.id.search);

sv=(SearchView)search.getActionView();
sv.setOnQueryTextListener(thisthis);
sv.setOnCloseListener(thisthis);
sv.setSubmitButtonEnabled(truetrue);
sv.setIconifiedByDefault(truetrue);

}

ROOM AND FULL-TEXT SEARCHING

380

privateprivate void search(String expr) {
((MainActivity)getActivity()).search(expr);

}

privateprivate staticstatic classclass ParagraphAdapterParagraphAdapter extendsextends PagedListAdapter<ParagraphEntity, RowHolder> {
privateprivate finalfinal LayoutInflater inflater;

ParagraphAdapter(LayoutInflater inflater) {
supersuper(PARA_DIFF);
thisthis.inflater=inflater;

}

@Override
publicpublic RowHolder onCreateViewHolder(ViewGroup parent, int viewType) {

returnreturn(newnew RowHolder(inflater.inflate(R.layout.row, parent, falsefalse)));
}

@Override
publicpublic void onBindViewHolder(RowHolder holder, int position) {

ParagraphEntity paragraph=getItem(position);

ifif (paragraph==nullnull) {
holder.clear();

}
elseelse {

holder.bind(paragraph);
}

}
}

privateprivate staticstatic classclass RowHolderRowHolder extendsextends RecyclerView.ViewHolder {
privateprivate finalfinal TextView prose;

RowHolder(View itemView) {
supersuper(itemView);

prose=itemView.findViewById(R.id.prose);
}

void bind(ParagraphEntity paragraph) {
prose.setText(paragraph.prose);

}

void clear() {
prose.setText(nullnull);

}
}

staticstatic finalfinal DiffUtil.ItemCallback<ParagraphEntity> PARA_DIFF=
newnew DiffUtil.ItemCallback<ParagraphEntity>() {

@Override
publicpublic boolean areItemsTheSame(ParagraphEntity oldItem,

ParagraphEntity newItem) {
returnreturn oldItem.sequence==newItem.sequence;

}

@Override
publicpublic boolean areContentsTheSame(ParagraphEntity oldItem,

ParagraphEntity newItem) {

ROOM AND FULL-TEXT SEARCHING

381

returnreturn oldItem.prose.equals(newItem.prose);
}

};
}

(from TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookFragment.java)

Of note:

• onViewCreated() observes the LiveData for our PagedList of paragraphs,
routing the list to submitList() on the PagedListAdapter, to show those
paragraphs as they become available

• When the user submits a search in the SearchView, BookFragment calls
search() on the MainActivity, to bring up the SearchFragment

SearchFragment has a similar structure, just without the SearchView:

packagepackage com.commonsware.android.room.fts;

importimport android.arch.lifecycle.ViewModelProvidersandroid.arch.lifecycle.ViewModelProviders;
importimport android.arch.paging.PagedListAdapterandroid.arch.paging.PagedListAdapter;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v7.util.DiffUtilandroid.support.v7.util.DiffUtil;
importimport android.support.v7.widget.DividerItemDecorationandroid.support.v7.widget.DividerItemDecoration;
importimport android.support.v7.widget.LinearLayoutManagerandroid.support.v7.widget.LinearLayoutManager;
importimport android.support.v7.widget.RecyclerViewandroid.support.v7.widget.RecyclerView;
importimport android.text.Htmlandroid.text.Html;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Menuandroid.view.Menu;
importimport android.view.MenuInflaterandroid.view.MenuInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass SearchFragmentSearchFragment extendsextends RecyclerViewFragment {
privateprivate staticstatic finalfinal String ARG_EXPR="expr";

staticstatic SearchFragment newInstance(String expr) {
SearchFragment result=newnew SearchFragment();
Bundle args=newnew Bundle();

args.putString(ARG_EXPR, expr);
result.setArguments(args);

returnreturn result;
}

@Override
publicpublic void onViewCreated(View view, Bundle savedInstanceState) {

supersuper.onViewCreated(view, savedInstanceState);

setLayoutManager(newnew LinearLayoutManager(getActivity()));
getRecyclerView()

.addItemDecoration(newnew DividerItemDecoration(getActivity(),
LinearLayoutManager.VERTICAL));

ROOM AND FULL-TEXT SEARCHING

382

https://github.com/commonsguy/cw-androidarch/blob/v1.0/TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/BookFragment.java

SearchViewModel vm=ViewModelProviders.of(thisthis).get(SearchViewModel.class);
BookSearchAdapter adapter=

newnew BookSearchAdapter(getActivity().getLayoutInflater());

vm.search(getArguments().getString(ARG_EXPR))
.observe(thisthis, adapter::submitList);

setAdapter(adapter);
}

privateprivate staticstatic classclass BookSearchAdapterBookSearchAdapter extendsextends PagedListAdapter<BookSearchResult, RowHolder> {
privateprivate finalfinal LayoutInflater inflater;

BookSearchAdapter(LayoutInflater inflater) {
supersuper(SEARCH_DIFF);
thisthis.inflater=inflater;

}

@Override
publicpublic RowHolder onCreateViewHolder(ViewGroup parent, int viewType) {

returnreturn(newnew RowHolder(inflater.inflate(R.layout.row, parent, falsefalse)));
}

@Override
publicpublic void onBindViewHolder(RowHolder holder, int position) {

BookSearchResult result=getItem(position);

ifif (result==nullnull) {
holder.clear();

}
elseelse {

holder.bind(result);
}

}
}

privateprivate staticstatic classclass RowHolderRowHolder extendsextends RecyclerView.ViewHolder {
privateprivate finalfinal TextView prose;

RowHolder(View itemView) {
supersuper(itemView);

prose=itemView.findViewById(R.id.prose);
}

void bind(BookSearchResult result) {
prose.setText(Html.fromHtml(result.snippet));

}

void clear() {
prose.setText(nullnull);

}
}

staticstatic finalfinal DiffUtil.ItemCallback<BookSearchResult> SEARCH_DIFF=
newnew DiffUtil.ItemCallback<BookSearchResult>() {

@Override
publicpublic boolean areItemsTheSame(BookSearchResult oldItem,

BookSearchResult newItem) {

ROOM AND FULL-TEXT SEARCHING

383

returnreturn oldItem==newItem;
}

@Override
publicpublic boolean areContentsTheSame(BookSearchResult oldItem,

BookSearchResult newItem) {
returnreturn oldItem.snippet.equals(newItem.snippet);

}
};

}

(from TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/SearchFragment.java)

In its onViewCreated(), SearchFragment gets the search expression out of the
arguments Bundle (placed there via newInstance()) and passes that to the search()
method on the SearchViewModel, then observes the results and routes them to the
PagedListAdapter.

The Results

When initially launched, you see the first few paragraphs of the book:

Figure 20: BookFragment, As Initially Launched

ROOM AND FULL-TEXT SEARCHING

384

https://github.com/commonsguy/cw-androidarch/blob/v1.0/TimeMachine/RoomFTS/app/src/main/java/com/commonsware/android/room/fts/SearchFragment.java

If the user taps on the search icon and types in a search:

Figure 21: BookFragment, with Search Expression

ROOM AND FULL-TEXT SEARCHING

385

…then submits it, the search results are shown in a SearchFragment:

Figure 22: BookFragmSearchFragmentent, with Search Results

The search expressions can be simple words or anything supported by SQLite’s FTS
query syntax, including AND/OR/NOT/NEAR operators.

ROOM AND FULL-TEXT SEARCHING

386

Room and Conflict Resolution

For @Insert and @Update methods in your @Dao, you can have onConflict properties
in the annotations that stipulate what should happen if the insert or update results
in a violation of a few types of constraints:

• A unique index, including a duplicate primary key
• A NULL value being put into a NOT NULL column
• A CHECK constraint (which Room does not support presently)

Room gives you five OnConflictStrategy enum values to choose from for your
onConflict property. Each of those OnConflictStrategy values maps to an
equivalent SQLite keyword, and each of those strategies results is different behavior
in SQLite.

387

Value Meaning

OnConflictStrategy.ABORT
Cancel this statement but preserve prior results

in the transaction and keeps the transaction
alive

OnConflictStrategy.FAIL

Like ABORT, but accepts prior changes by this
specific statement (e.g., if we fail on the 50th
row to be updated, keep the changes to the

preceding 49)

OnConflictStrategy.IGNORE
Like FAIL, but continues processing this

statement (e.g., if we fail on the 50th row out of
100, keep the changes to the other 99)

OnConflictStrategy.REPLACE
For uniqueness violations, deletes other rows

that would cause the violation before executing
this statement

OnConflictStrategy.ROLLBACK Rolls back the current transaction

However, they may not wind up with different behavior in Room, due to the way
that Room works with SQLite.

In this chapter, we will examine those five options and see what SQLite does and
what the resulting effects are in a Room-based app. As you will see, while there are
five official options, fewer are practical.

Abort
@Insert(onConflict = OnConflictStrategy.ABORT)

@Update(onConflict = OnConflictStrategy.ABORT)

What SQLite Does

This strategy maps to INSERT OR ABORT or UPDATE OR ABORT statements. If a
constraint violation would occur from this statement, the statement is skipped.
SQLiteDatabase throws a SQLiteConstraintException. However, if you have started
a transaction, that transaction remains open, so further statements in the

ROOM AND CONFLICT RESOLUTION

388

transaction can be executed.

Effects in Room

An individual @Insert or @Update method that uses OnConflictStrategy.ABORT will
throw a SQLiteConstraintException if there is a constraint violation. In isolation,
this fits with what you might expect.

The problem comes with @Transaction.

Every method that Room generates in response to your @Dao-annotated methods has
the same basic structure:

@Override
publicpublic void whatever(SomeEntity... entities) {

__db.beginTransaction();
trytry {

// the real work for whatever whatever() does
__db.setTransactionSuccessful();

} finallyfinally {
__db.endTransaction();

}
}

This includes @Transaction-annotated methods, which just wrap that template
around a call to your real method:

@Override
publicpublic void whatever(SomeEntity... entities) {

__db.beginTransaction();
trytry {

supersuper.whatever(entities);
__db.setTransactionSuccessful();

} finallyfinally {
__db.endTransaction();

}
}

If anything in your @Transaction method throws an exception, of any kind, the
entire transaction gets rolled back, courtesy of the try/finally structure.

So, even though ABORT is supposed to keep the transaction open, Room rolls back
the transaction, so that your @Transaction is atomic.

ROOM AND CONFLICT RESOLUTION

389

Fail
@Insert(onConflict = OnConflictStrategy.FAIL)

@Update(onConflict = OnConflictStrategy.FAIL)

What SQLite Does

This strategy maps to INSERT OR FAIL or UPDATE OR FAIL statements. These work
much like their ABORT counterparts, in that a SQLiteConstraintException is thrown,
but the transaction remains open.

The difference is in what happens if your UPDATE statement affects several rows. In
that case, rows that were changed prior to the constraint violation remain changed.
The row with the constraint violation, and any others after it, are unchanged.

Frankly, this does not seem like a particularly good idea. At least with ABORT, you
have consistent behavior. With FAIL, some arbitrary amount of data gets changed,
and the rest is not, and without doing your own post-FAIL analysis, you have no idea
what to expect.

Effects in Room

Neither @Insert nor @Update will affect multiple rows in a single SQL statement.
Even if your method accepts multiple entities (via varargs, List, etc.), they will each
be processed in separate SQL statements, wrapped in a transaction. Room will roll
back the transaction when it encounters the SQLiteConstraintException. As a
result, FAIL will behave akin to ABORT when used with @Insert and @Update.

Ignore
@Insert(onConflict = OnConflictStrategy.IGNORE)

@Update(onConflict = OnConflictStrategy.IGNORE)

What SQLite Does

This strategy maps to INSERT OR IGNORE or UPDATE OR IGNORE statements. This has
two key differences to how FAIL works:

ROOM AND CONFLICT RESOLUTION

390

• It does not throw any sort of exception.
• It tries to process everything that the statement should affect. So, if there are

100 rows to be updated, and the 50th row winds up with a constraint
violation, that row is skipped, but SQLite continues to try to process any
not-yet-updated rows.

The result is that everything that can be inserted or updated is inserted or updated,
with individual rows being skipped where they fail on constraint violations.

This is risky, in that you may not necessarily have a good way of knowing that some
of your requested data manipulations did not take effect.

Effects in Room

Since IGNORE does not trigger an exception, Room will commit the transaction that
contains your @Insert or @Update work. Hence, this “works”, insofar as Room does
not reject changes that SQLite would otherwise accept because Room rolled back
the transaction. You still suffer from not knowing what exactly was changed by your
@Insert or @Update method, though.

Replace
@Insert(onConflict = OnConflictStrategy.REPLACE)

@Update(onConflict = OnConflictStrategy.REPLACE)

What SQLite Does

This strategy maps to INSERT OR REPLACE or UPDATE OR REPLACE statements.

If SQLite encounters a row where a UNIQUE or PRIMARY KEY constraint conflicts with
the change requested via the INSERT OR REPLACE or UPDATE OR REPLACE statement,
SQLite deletes the existing data and proceeds with the statement. The net effect is
that you replace the old data with the new data.

If SQLite encounters a row where a NOT NULL constraint is violated, it will attempt to
replace the null value with the default value for that column, if there is one defined
in the table schema. If not, this strategy behaves like ABORT.

And for any other constraint violation, this strategy behaves like ABORT.

ROOM AND CONFLICT RESOLUTION

391

As a result, this is useful, but only in fairly controlled circumstances, and then
mostly for INSERT OR REPLACE. This guarantees that your desired row will wind up
in the table, either because it is new or because SQLite gets rid of the previous
edition of that row.

Effects in Room

This strategy, like IGNORE, works pretty much as SQLite intends, for the most
common use case: a duplicate on a UNIQUE or PRIMARY KEY constraint, resulting in
data replacement.

This strategy will have the same problems as ABORT in the cases where it behaves like
ABORT — Room will roll back the transaction once it sees the
SQLiteConstraintException.

Rollback
@Insert(onConflict = OnConflictStrategy.ROLLBACK)

@Update(onConflict = OnConflictStrategy.ROLLBACK)

What SQLite Does

This strategy maps to INSERT OR ROLLBACK or UPDATE OR ROLLBACK statements.

It rolls back the transaction, as you might expect given the name.

Effects in Room

Frankly, it does not work very well. The Room-generated code does not expect the
transaction to be rolled back, and so its call to endTransaction() fails with an
obscure SQLiteException.

Since ABORT and FAIL also have the net effect in Room of rolling back the
transaction, they are better choices.

What Should You Use with Room?
@Insert(onConflict = OnConflictStrategy.REPLACE) may have its uses,
particularly for cases where you are trying to use non-generated primary keys (e.g.,

ROOM AND CONFLICT RESOLUTION

392

“natural” keys).

Beyond that, ABORT, FAIL, and ROLLBACK all have the effect in Room of rolling back
your requested insert or update. The first two throw a SQLiteConstraintException,
which is a better exception than the SQLiteException that you get from ROLLBACK.
And, since ABORT happens to be the default strategy, sticking with the default may
well be your best option.

ROOM AND CONFLICT RESOLUTION

393

Configuring SQLite Beyond Room

Room covers a lot of what you will need when interacting with SQLite from your
app. Room might not cover everything of what you would like to use with SQLite,
though.

Some things — particularly anything involving table definitions — pretty much
requires Room itself to be upgraded in order to work. For example, you cannot
readily add full-text searching yourself, as that requires particular options in the
CREATE TABLE statement.

Anything that lies outside of Room, though, is fair game, though you have to resort
to classic SQLite approaches to make it work.

When To Make Changes
You have two main events for when to make changes outside of Room to the
database: when it is created and when it is opened. Which you use depends on the
nature of your changes.

Changes that are persistent would be applied when the database is created, or
(eventually) via a Migration when the database schema is modified. For example,
using CREATE TRIGGER to create a trigger results in a persistent change to the
database, so you only need to do this when the database schema is created or
modified.

However, some PRAGMA statements are transient, living for the life of our connection
to the database. Once the connection is closed, the effects of those PRAGMA
statements go away. As a result, we have to apply these every time that the database
is opened.

395

Example: Turbo Boost Mode
Some developers are desperate to wring every last bit of performance out of their
database, even to the point of risking data loss or corruption. Some PRAGMA
statements tie into performance this way.

For example, normally, many times when SQLite writes data to disk, it will use
fsync() or the equivalent to block until all of the bytes are confirmed to be written.
This is important in operating systems with write-caching filesystems, as otherwise
the data that you think that you wrote might actually just be in a buffer waiting to
be written in the future. Android, when using the ext4 filesystem, is one such OS.
However, PRAGMA synchronous = OFF tells SQLite to skip those fsync() calls. This
speeds up I/O, with increased risk of the database becoming corrupted if there is a
major system problem while that I/O is going on. This is a transient PRAGMA, only
affecting the current connection.

Even riskier is PRAGMA journal_mode = MEMORY. In effect, this says to keep the
transaction log of the database in memory, rather than writing it to disk. As the
documentation states, “if the application using SQLite crashes in the middle of a
transaction when the MEMORY journaling mode is set, then the database file will
very likely go corrupt”. But, some people would consider performance gains as being
a valid trade-off here. This is a persistent setting, and so it only needs to be applied
once.

The approach for both of these cases is to use a RoomDatabase.Callback, as seen in
the CityPop/RoomPragma sample project. RoomDatabase.Callback was introduced in
the chapter on the support database API.

The create() method that we use to create an instance of our CityDatabase uses a
RoomDatabase.Builder as normal. However, based on a boolean parameter, it may
also use addCallback() to add a RoomDatabase.Callback to the builder:

staticstatic CityDatabase create(Context ctxt, finalfinal boolean applyPragmas) {
RoomDatabase.Builder<CityDatabase> b=

Room.databaseBuilder(ctxt.getApplicationContext(), CityDatabase.class,
DB_NAME);

ifif (applyPragmas) {
b.addCallback(newnew Callback() {

@Override
publicpublic void onCreate(@NonNull SupportSQLiteDatabase db) {

supersuper.onCreate(db);

CONFIGURING SQLITE BEYOND ROOM

396

http://sqlite.org/pragma.html#pragma_journal_mode
http://sqlite.org/pragma.html#pragma_journal_mode
http://github.com/commonsguy/cw-androidarch/tree/master/CityPop/RoomPragma
http://github.com/commonsguy/cw-androidarch/tree/master/CityPop/RoomPragma

db.query("PRAGMA journal_mode = MEMORY");
}

@Override
publicpublic void onOpen(@NonNull SupportSQLiteDatabase db) {

supersuper.onOpen(db);

db.query("PRAGMA synchronous = OFF");
}

});
}

returnreturn(b.build());
}

(from CityPop/RoomPragma/app/src/main/java/com/commonsware/android/citypop/CityDatabase.java)

There are two methods that you can supply on a Callback implementation:
onCreate() and onOpen(). As the names suggest, they are called when the database
is created and opened, respectively. In each, you are handed a
SupportSQLiteDatabase instance, which has an API reminiscent of the framework’s
SQLiteDatabase. It has a query() method that works like rawQuery(), taking a
simple SQL statement (that might return a result set) and executing it. Since PRAGMA
might return a result set, we have to use query() instead of execSQL(). Here, we
invoke our PRAGMA statements at the appropriate times.

And, in truth, there does seem to be a significant performance gain:

Scenario
Use the
PRAGMAPRAGMAs?

Time
(milliseconds)

Inserting 1,063 cities via individual
insert() calls

No 18,766

Inserting 1,063 cities via individual
insert() calls

Yes 1,331

Inserting 1,063 cities in a single insert()
call

No 402

Inserting 1,063 cities in a single insert()
call

Yes 126

CONFIGURING SQLITE BEYOND ROOM

397

https://github.com/commonsguy/cw-androidarch/blob/v1.0/CityPop/RoomPragma/app/src/main/java/com/commonsware/android/citypop/CityDatabase.java

(tests conducted on a Google Pixel)

Proper use of transactions — such as doing all of the inserts at once rather than one
at a time — has a much bigger impact, though. Using these two PRAGMA statements
is a bit like using a holodeck with the safeties off: you may have some casualties.

CONFIGURING SQLITE BEYOND ROOM

398

http://memory-alpha.wikia.com/wiki/Holodeck_safety_protocol

	Table of Contents
	Preface
	First-Generation Book
	Prerequisites
	Source Code and Its License
	Creative Commons and the Four-to-Free (42F) Guarantee
	Acknowledgments

	Room Basics
	Wrenching Relations Into Objects
	Room Requirements
	Room Furnishings
	Entities
	DAO
	Database

	Get a Room

	Testing Room
	Writing Instrumentation Tests
	Using In-Memory Databases
	Importing Starter Data

	Writing Unit Tests via Mocks

	The Dao of Entities
	Configuring Entities
	Primary Keys
	Auto-Generated Primary Keys
	Composite Primary Keys

	Adding Indexes
	Ignoring Fields
	NOT NULL Fields
	Custom Table and Column Names
	Other @ColumnInfo Options
	Indexing
	Collation
	Type Affinity

	DAOs and Queries
	Adding Parameters
	WHERE Clause
	Other Clauses

	What You Can Return
	Specific Return Types
	Breadth of Results

	Aggregate Functions

	Dynamic Queries
	query()
	@RawQuery

	Other DAO Operations
	Parameters
	Return Values
	Conflict Resolution
	Other Operations

	Transactions and Room
	Using @Transaction
	Custom Methods
	On @Query Methods

	Using RoomDatabase

	Threads and Room

	Room and Custom Types
	Type Converters
	Setting Up a Type Converter
	Example: Dates and Times
	Example: Locations
	Example: Simple Collections

	Embedded Types
	Example: Locations
	Simple vs. Prefixed

	Updating the Trip Sample

	Room and Relations
	The Classic ORM Approach
	A History of Threading Mistakes
	The Room Approach
	No Direct Entity References
	Foreign Keys
	Cascades on Updates and Deletes
	Cascades on… Retrievals?

	Plans for Trips
	The Domain Model
	The New Entities
	The Updated DAO and Database

	Self-Referential Relations for Tree Structures
	Using @Relation
	@Relation and @Query
	Representing No Relation

	The Support Database API
	“Can’t You See That This is a Facade?”
	Requery
	CWAC-SafeRoom
	AssetRoom
	Other ORMs

	When Will We Use This?
	Configuring Room’s Database Access
	Get a Factory
	Add a Callback

	Room and Migrations
	What’s a Migration?
	When Do We Migrate?
	But First, a Word About Exporting Schemas
	Writing Migrations
	Employing Migrations
	How Room Applies Migrations
	Testing Migrations
	Adding the Artifact
	Adding the Schemas
	Creating and Using a MigrationTestHelper
	Adding the Rule
	Setting Up the Helper
	Creating a Database for a Schema Version
	Testing a Migration

	Lifecycles and Owners
	A Tale of Terminology
	Lifecycle
	Lifecycle Owner
	Lifecycle Observers

	Adding the Lifecycle Components
	Getting a Lifecycle
	…From a FragmentActivity or a Support Fragment
	…From an AppCompatActivity
	…From an Activity or Fragment
	…From Anything Else

	Observing a Lifecycle
	Legacy Options
	Ordinary Activities and Fragments, and Other Objects
	Pre-Java 8

	So, What’s the Point of This?

	LiveData
	Observables Are the New Black
	Yet More Terminology
	LiveData
	Observer
	Active State

	Implementing LiveData
	Dependencies
	State Transitions
	Updating the Observers
	Retaining the LiveData

	Other LiveData Examples
	Event Bus
	Room

	ViewModel
	Viewmodels, As Originally Envisioned
	ViewModel Versus…
	…Saved Instance State
	…Retained Objects

	Dependencies
	Mommy, Where Does a ViewModel Come From?
	ViewModel In Action
	Defining a ViewModel
	Getting a ViewModel
	Using the ViewModel
	Getting Rid of the ViewModel

	Other Lifecycle Owners
	LifecycleService
	ProcessLifecycleOwner
	Wait… Where Are LifecycleProvider and LifecycleReceiver?

	LiveData and Data Binding
	A Data Binding Recap
	New Layout Resource Structure
	Binding Expressions
	Adapters
	Binding from Code
	Observable Data Sources

	LiveData Updating Data Binding
	Updating Observables
	Binding to LiveData

	Handling Changes to LiveData
	The Saved Instance State Situation
	Existing Model
	New Model

	WorkManager
	Where Should We Use WorkManager?
	Where Should We Not Use WorkManager?
	WorkManager Dependencies
	Workers: They Do Work
	Performing Simple Work
	Work Inputs
	Constrained Work
	Tagged Work
	Monitoring Work
	Getting the Status Updates
	Consuming the Status Updates… In Code
	Consuming the Status Updates… In Data Binding

	Canceling Work
	Delayed Work
	Parallel Work
	Chained Work
	Why?
	How Do We Chain Work?
	How Do We Pass Data Along the Chain?
	OK, Where’s the Code?
	How Complex Can This Get?

	Periodic Work
	Unique Work
	Testing Work
	WorkManager and Side Effects

	M:N Relations in Room
	Implementing a Join Entity
	Static Entity Classes
	Foreign Keys and Indices

	Implementing DAO Methods
	Adding and Removing Relations
	Fetching Via the Join

	Where’s That Good Ol’ Object Feel?

	Polymorphic Room Relations
	Polymorphism With Separate Tables
	Can I Join a UNION?

	Polymorphism With a Single Table
	Polymorphism With M:N Relations

	LiveData Transformations
	The Bucket Brigade
	Mapping Data to Data
	Mapping Data to… LiveData?
	Writing a Transformation
	Do We Really Want This?

	RxJava and Room
	Adding RxJava
	Decisions, Decisions
	One-Time or Ongoing?
	Zero, One, or N?

	The One-Time Option: Single
	Item Singles
	List Singles

	The One-Time 0-1 Option: Maybe
	The Ongoing Option: Flowable
	Item Flowables
	List Flowables

	@RawQuery and Reactive Responses

	RxJava and Lifecycles
	The Classic Approach
	Bridging RxJava and LiveData
	From RxJava to LiveData
	From LiveData to RxJava

	The Uber Solution: AutoDispose

	Packing Up a Room
	The Problem
	The Classic Solution: SQLiteAssetHelper
	The New Problem
	Merging SQLiteAssetHelper with Room

	Paging Room Data
	The Problem: Too Much Data
	Addressing the UX
	Enter the Paging Library
	PagedList
	PagedListAdapter
	DataSource.Factory
	LivePagedListProvider

	Paging and Room
	The Dependency
	The Entity, DAO, and Database
	The ViewModel
	The PagedListAdapter
	The CitiesFragment
	The Results

	What About RxJava?

	LiveData and Bound Services
	Old API, New Coat of Paint
	Remote Sensors
	The AIDL
	The Service and the Process
	The LiveData and the ViewModel
	The Activity and the Layout

	Immutability
	The Benefits of Immutability
	No Dirty Data
	Thread Safety
	Functional Programming

	The Costs of Immutability
	Partial Immutability Problems
	Some Things Want Setters
	Garbage, To Be Collected

	Immutability via AutoValue
	AutoValue and LiveData
	AutoValue and Room

	The Repository Pattern
	What the Repository Does
	Manages Data Storage
	Normalizes Model Objects
	Provides a Clean Reactive API
	Isolates Rest of App from Strategy Changes

	High-Level Repository Strategies
	Pure Network
	Network + Network API Caching
	Network + External Caching
	Network + First-Class Persistence
	Persistence-Only

	Let’s Roll the Dice
	The Repository
	API
	Implementation

	The ViewModel
	Repository Integration
	Saving State
	The Factory

	The Fragment
	The UI
	The Menu
	The Event Flow

	Blending Data Sources
	Pwned Passwords
	PwnedCheck
	score()
	validate()
	Adding OkHttp and INTERNET

	Integrating PwnedCheck
	Modifying the Model
	Validating the Passphrase

	Introducing Model-View-Intent
	GUI Architectures
	Why People Worry About GUI Architectures
	Avoiding Known Problems
	Consistency Between Team Members
	Consistency Over Time

	Why Others Ignore GUI Architectures
	Atypical Apps
	YAGNI and Overhead
	No Obvious User Benefit
	No Consistency In Definitions

	A Rough Comparison of GUI Architectures
	The Basics of Model-View-Intent
	What’s a View State?
	What’s a Reducer?
	Where Does the “Intent” Thing Show Up?

	Additional MVI Resources

	A Deep Dive Into MVI
	What the Sample App Does
	The Roster
	The Viewer
	The Editor

	MVI and the Sample App
	The Model
	The View State
	The View
	Incorporating a ViewModel
	Receiving View States
	Rendering View States

	The Actions
	Publishing Actions
	The Repositories
	ToDoRepository
	FilterModeRepository

	The Controller
	Subscribing to Actions
	Doing the Work and Publishing Results
	add()/modify()/delete()
	filter()
	select()/unselect()/unselectAll()
	load()

	About Those Results
	The Reducer in the RosterViewModel
	Subscribing to Results
	Merging Results Into the ViewState

	Examining the Other Fragments
	DisplayFragment
	EditFragment

	Summary

	Backing Up a Room
	What Do We Need to Back Up?
	Plan A: The Whole Directory
	Plan B: Just SQLite’s Files

	Beware of Open Rooms
	When Do We Back Up the Database?
	When the User Asks
	When You Feel Like It
	When You Think Room Is Not Using It
	A Simple Close
	The Nuclear Option

	A Basic Backup Example
	Triggering the Operation
	Our UI
	Performing the Operation
	Areas for Improvement

	Backing Up Off-Device

	Room and Full-Text Searching
	What Is FTS?
	The Room 1.x FTS Recipe
	Manually Create the Table
	RawQuery the Table

	Searching a Book
	The Book
	The Data Model
	The Database
	The Searches
	The Repository
	The ViewModels
	The UI
	The Results

	Room and Conflict Resolution
	Abort
	What SQLite Does
	Effects in Room

	Fail
	What SQLite Does
	Effects in Room

	Ignore
	What SQLite Does
	Effects in Room

	Replace
	What SQLite Does
	Effects in Room

	Rollback
	What SQLite Does
	Effects in Room

	What Should You Use with Room?

	Configuring SQLite Beyond Room
	When To Make Changes
	Example: Turbo Boost Mode

