

Android’s Architecture Components

by Mark L. Murphy

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Android’s Architecture Components
by Mark L. Murphy

Copyright © 2017 CommonsWare, LLC. All Rights Reserved.
Printed in the United States of America.

Printing History:
August 2017: Version 0.2

The CommonsWare name and logo, “Busy Coder's Guide”, and related trade dress are trademarks of CommonsWare,
LLC.

All other trademarks referenced in this book are trademarks of their respective firms.

The publisher and author(s) assume no responsibility for errors or omissions or for damages resulting from the use of the
information contained herein.

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Table of Contents
Headings formatted in bold-italic have changed since the last version.

• Preface
◦ How the Book Is Structured .. v
◦ Prerequisites .. vi
◦ About the Updates .. vi
◦ What’s New in Version 0.2? .. vi
◦ Warescription ... vii
◦ Book Bug Bounty .. viii
◦ Source Code and Its License ... viii
◦ Creative Commons and the Four-to-Free (42F) Guarantee ix
◦ Acknowledgments .. ix

• Room Basics
◦ Wrenching Relations Into Objects ... 1
◦ Room Requirements .. 2
◦ Room Furnishings ... 3
◦ Get a Room .. 9
◦ Be Careful with Table Name Prefixes .. 10

• Testing Room
◦ Writing Instrumentation Tests ... 11
◦ Writing Unit Tests via Mocks .. 15

• The Dao of Entities
◦ Configuring Entities .. 21
◦ DAOs and Queries ... 29
◦ Other DAO Operations ... 36
◦ Transactions and Room ... 39
◦ Threads and Room .. 39

• Room and Custom Types
◦ Type Converters .. 42
◦ Embedded Types ... 49
◦ Updating the Trip Sample ... 52

• Room and Relations
◦ The Classic ORM Approach .. 57
◦ A History of Threading Mistakes .. 58
◦ The Room Approach ... 59
◦ Plans for Trips ... 60
◦ Self-Referential Relations for Tree Structures 68

i

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Using @Relation .. 70
◦ Representing No Relation ... 72

• Room and Migrations
◦ What’s a Migration? ... 73
◦ When Do We Migrate? .. 74
◦ But First, a Word About the Support Database Classes 74
◦ …And a Word About Exporting Schemas .. 75
◦ Writing Migrations ... 78
◦ Employing Migrations ... 83
◦ How Room Applies Migrations ... 85
◦ Testing Migrations ... 85
◦ Migrating Under Protest .. 90

• Securing Your Room
◦ Meet the Players .. 91
◦ Using CWAC-SafeRoom .. 92
◦ More to Come! .. 94

• Lifecycles and Owners
◦ A Tale of Terminology ... 97
◦ Adding the Lifecycle Components .. 98
◦ Getting a Lifecycle .. 99
◦ Observing a Lifecycle ... 102
◦ So, What’s the Point of This? .. 104

• LiveData
◦ Observables Are the New Black ... 105
◦ Yet More Terminology ... 106
◦ Implementing LiveData .. 107
◦ Other LiveData Examples .. 112
◦ Testing LiveData .. 117

• ViewModel
◦ ViewModels, As Originally Envisioned ... 119
◦ ViewModel Versus… .. 120
◦ Mommy, Where Do ViewModels Come From? 121
◦ ViewModels, Google’s Way ... 122
◦ ViewModels as Simple POJOs .. 125

• Other Lifecycle Owners
◦ ProcessLifecycleOwner .. 129
◦ LifecycleService ... 133
◦ Wait… Where Is LifecycleProvider and LifecycleReceiver? 134

• M:N Relations in Room
◦ Implementing a Join Entity ... 137
◦ Implementing DAO Methods ... 141

ii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Where’s That Good Ol’ Object Feel? .. 143
• LiveData Transformations

◦ The Bucket Brigade .. 145
◦ Mapping Data to Data ... 146
◦ Mapping Data to… LiveData? .. 148
◦ Writing a Transformation ... 149
◦ Do We Really Want This? ... 151

iii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Preface

Thanks!

Thanks for your interest in Android app development, the world’s most popular
operating system! And, thanks for your interest in the Android Architecture
Components, released by Google in 2017 to help address common “big-ticket”
problems in Android app development.

And, most of all, thanks for your interest in this book! I sincerely hope you find it
useful!

(OTOH, if you find it completely useless… um, don’t tell anyone, OK?)

How the Book Is Structured
We start off with a look at Room, an object/relational mapping (ORM) library. This
makes it a bit easier to integrate your app with SQLite, the built-in relational
database engine in Android.

We then move into the lifecycle components. These components help you deal with
objects that have lifecycles, particularly activities and services. The LiveData class in
particular gives you a lightweight “reactive” way of consuming data while still
honoring things like configuration changes and the typical activity/fragment
destroy-and-recreate cycle. We will also peek at ViewModel, the Architecture
Components’ way of helping you maintain state across configuration changes.

In future editions of this book, we will then explore more advanced topics related to
the Architecture Components, such as how these components tie into things like
data binding, RxJava/RxAndroid, ContentProvider, and more.

v

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Prerequisites
This book is targeted at:

• People who have read the core chapters of the companion volume, The Busy
Coder’s Guide to Android Development, or

• Intermediate Android app developers — those with some experience but not
necessarily “experts” in the field

About the Updates
This book will be updated a few times per year, to reflect new advances with the
Architecture Components.

If you obtained this book through the Warescription, you will be able to download
updates as they become available, for the duration of your subscription period.

If you obtained this book through other channels… um, well, it’s still a really nice
book!

Each release has notations to show what is new or changed compared with the
immediately preceding release:

• The Table of Contents shows sections with changes in bold-italic font
• Those sections have changebars on the right to denote specific paragraphs

that are new or modified

And, there is the “What’s New” section, just below this paragraph.

What’s New in Version 0.2?
This update:

• Adds a new chapter on M:N relations in Room, showing how to set up and
use join entities

• Adds a new chapter on transformations with LiveData, to map data from
one type to another as part of observing the stream of events

• Fixes various errata and makes other improvements

PREFACE

vi

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://commonsware.com/Android
https://commonsware.com/Android

Warescription
If you purchased the Warescription, read on! If you obtained this book from other
channels, feel free to jump ahead.

The Warescription entitles you, for the duration of your subscription, to digital
editions of this book and its updates, in PDF, EPUB, and Kindle (MOBI/KF8)
formats. You also have access to a version of the book as its own Android APK file,
complete with high-speed full-text searching. You also have access to other titles
that CommonsWare publishes during that subscription period, such as the
aforementioned The Busy Coder’s Guide to Android Development.

Each subscriber gets personalized editions of all editions of each title. That way,
your books are never out of date for long, and you can take advantage of new
material as it is made available.

However, you can only download the books while you have an active Warescription.
There is a grace period after your Warescription ends: you can still download the
book until the next book update comes out after your Warescription ends. After
that, you can no longer download the book. Hence, please download your
updates as they come out. You can find out when new releases of this book are
available via:

1. The CommonsBlog
2. The CommonsWare Twitter feed
3. The Warescription newsletter, which you can subscribe to off of your

Warescription page
4. Just check back on the Warescription site every month or two

Subscribers also have access to other benefits, including:

• “Office hours” — online chats to help you get answers to your Android
application development questions. You will find a calendar for these on
your Warescription page.

• A Stack Overflow “bump” service, to get additional attention for a question
that you have posted there that does not have an adequate answer.

• A discussion board for asking arbitrary questions about Android app
development

PREFACE

vii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://commonsware.com/Android
https://commonsware.com/blog
http://twitter.com/CommonsWare
https://wares.commonsware.com
https://wares.commonsware.com

Book Bug Bounty
Find a problem in the book? Let CommonsWare know!

Be the first to report a unique concrete problem in the current digital edition, and
CommonsWare will extend your Warescription by six months as a bounty for
helping CommonsWare deliver a better product.

By “concrete” problem, we mean things like:

1. Typographical errors
2. Sample applications that do not work as advertised, in the environment

described in the book
3. Factual errors that cannot be open to interpretation

By “unique”, we mean ones not yet reported. Be sure to check the book’s errata
page, though, to see if your issue has already been reported. One coupon is given
per email containing valid bug reports.

We appreciate hearing about “softer” issues as well, such as:

1. Places where you think we are in error, but where we feel our interpretation
is reasonable

2. Places where you think we could add sample applications, or expand upon
the existing material

3. Samples that do not work due to “shifting sands” of the underlying
environment (e.g., changed APIs with new releases of an SDK)

However, those “softer” issues do not qualify for the formal bounty program.

Questions about the bug bounty, or problems you wish to report for bounty
consideration, should be sent to bounty@commonsware.com.

Source Code and Its License
The source code samples shown in this book are available for download from the
book’s GitHub repository. All of the Android projects are licensed under the Apache
2.0 License, in case you have the desire to reuse any of it.

PREFACE

viii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://commonsware.com/AndroidArch/errata
https://commonsware.com/AndroidArch/errata
mailto:bounty@commonsware.com
https://github.com/commonsguy/cw-androidarch
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.apache.org/licenses/LICENSE-2.0.html

Copying source code directly from the book, in the PDF editions, works best with
Adobe Reader, though it may also work with other PDF viewers. Some PDF viewers,
for reasons that remain unclear, foul up copying the source code to the clipboard
when it is selected.

Creative Commons and the Four-to-Free (42F)
Guarantee
Each CommonsWare book edition will be available for use under the Creative
Commons Attribution-Noncommercial-ShareAlike 3.0 license as of the fourth
anniversary of its publication date, or when 4,000 copies of the edition have been
sold, whichever comes first. That means that, once four years have elapsed (perhaps
sooner!), you can use this prose for non-commercial purposes. That is our Four-to-
Free Guarantee to our readers and the broader community. For the purposes of this
guarantee, new Warescriptions and renewals will be counted as sales of this edition,
starting from the time the edition is published.

This edition of this book will be available under the aforementioned Creative
Commons license on 1 August 2021. Of course, watch the CommonsWare Web site,
as this edition might be relicensed sooner based on sales.

For more details on the Creative Commons Attribution-Noncommercial-ShareAlike
3.0 license, visit the Creative Commons Web site

Note that future editions of this book will become free on later dates, each four years
from the publication of that edition or based on sales of that specific edition.
Releasing one edition under the Creative Commons license does not automatically
release all editions under that license.

Acknowledgments

PREFACE

ix

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Room

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Room Basics

First, let’s spend some time working with Room.

Google describes Room as providing “an abstraction layer over SQLite to allow
fluent database access while harnessing the full power of SQLite.”

In other words, Room aims to make your use of SQLite easier, through a lightweight
annotation-based implementation of an object-relational mapping (ORM) engine.

NOTE: The material in this chapter — and in all the chapters of this book edition —
is based on the alpha3 release of Room and the rest of the Android Architecture
Components. Since this is a preview release, there may be changes in newer versions
that affect you.

Wrenching Relations Into Objects
If you have ever worked with a relational database — like SQLite — from an object-
oriented language — like Java — undoubtedly you have encountered the “object-
relational impedance mismatch”. That is a very fancy way of saying “gosh, it’s a pain
getting stuff into and out of the database”.

In object-oriented programming, we are used to objects holding references to other
objects, forming some sort of object graph. However, traditional SQL-style relational
databases work off of tables of primitive data, using foreign keys and join tables to
express relationships. Figuring out how to get our Java classes to map to relational
tables is aggravating, and it usually results in a lot of boilerplate code.

Traditional Android development uses SQLiteDatabase for interacting with SQLite.
That, in turn, uses Cursor objects to represent the results of queries and

1

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://en.wikipedia.org/wiki/Object-relational_mapping
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch

ContentValues objects to represent data to be inserted or updated. While Cursor
and ContentValues are objects, they are fairly generic, much in the way that a
HashMap or ArrayList is generic. In particular, neither Cursor nor ContentValues
has any of our business logic. We have to somehow either wrap that around those
objects or convert between those objects and some of ours.

That latter approach is what object-relational mapping engines, or ORMs, take. A
typical ORM works off of Java code and either generates a suitable database
structure or works with you to identify how the Java classes should map to some
existing table structure (e.g., a legacy one that you are stuck with). The ORM usually
generates some code for you, and supplies a library, which in combination hide
much of the database details from you.

The quintessential Java ORM is Hibernate. However, Hibernate was developed with
server-side Java in mind and is not well-suited for slim platfoms like Android
devices. However, a vast roster of Android ORMs have been created over the years to
try to fill that gap. Some of the more popular ones have been:

• DBFlow
• greenDAO
• OrmLite
• Sugar ORM

Room also helps with the object-relational impedance mismatch. It is not as deep of
an ORM as some of the others, as you will be dealing with SQL a fair bit. However,
Room has one huge advantage: it is from Google, and therefore it will be deemed
“official” in the eyes of many developers and middle managers.

While this book is focused on the Architecture Components — and Room is part of
those — you may wish to explore other ORMs if you are interested in using Java
objects but saving the data in SQLite. Room is likely to become popular, but it is far
from the only option.

Room Requirements
To use Room, you need two dependencies in your module’s build.gradle file:

1. The runtime library version, using the standard compile directive
2. An annotation processor, using the annotationProcessor directive

ROOM BASICS

2

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://hibernate.org/
https://android-arsenal.com/tag/69?sort=created
https://github.com/Raizlabs/DBFlow
https://github.com/greenrobot/greenDAO
https://github.com/j256/ormlite-android
http://satyan.github.io/sugar

compile "android.arch.persistence.room:runtime:1.0.0-alpha8"
annotationProcessor "android.arch.persistence.room:compiler:1.0.0-alpha8"

(from Trips/RoomBasics/app/build.gradle)

Note that alpha3 of Room has a minSdkVersion requirement of API Level 15 or
higher. If you attempt to build with a lower minSdkVersion, you will get a build error.
If you try to override Room’s minSdkVersion using manifest merger elements, while
the project will build, expect Room to crash horribly.

Room Furnishings
Roughly speaking, your use of Room is divided into three sets of classes:

1. Entities, which are POJOs that model the data you are transferring into and
out of the database

2. The data access object (DAO), that provides the description of the Java API
that you want for working with certain entities

3. The database, which ties together all of the entities and DAOs for a single
SQLite database

If you have used Square’s Retrofit, some of this will seem familiar:

• The DAO is roughly analogous to your Retrofit interface on which you
declare your Web service API

• Your entities are the POJOs that you are expecting Gson (or whatever) to
create based on the Web service response

In this chapter, we will look at the Trips/RoomBasics sample project. This app is
the first of a linked series of apps that we will examine in this book, as we build a
travel itinerary manager. It will track your upcoming trips in a database and allow
you to add, edit, and remove trips. Right now, though, we are settling for being able
to see some very rudimentary trips get into and out of a database.

Entities

In many ORM systems, the entity (or that system’s equivalent) is a POJO that you
happen to want to store in the database. It usually represents some part of your
overall domain model, so a payroll system might have entities representing
departments, employees, and paychecks.

ROOM BASICS

3

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/Trips/RoomBasics/app/build.gradle
https://github.com/square/retrofit
http://github.com/commonsguy/cw-androidarch/tree/master/Trips/RoomBasics
http://github.com/commonsguy/cw-androidarch/tree/master/Trips/RoomBasics

With Room, a better description of entities is that they are POJOs representing:

• the data that you want to store into the database, and
• a typical unit of a result set that you are trying to retrieve from the database

That difference may sound academic. It starts to come into play a bit more when we
start thinking about relations.

However, it also more closely matches the way Retrofit maps to Web services. With
Retrofit, we are not describing the contents of the Web service’s database. Rather, we
are describing how we want to work with defined Web service endpoints. Those
endpoints have a particular set of content that we can work with, courtesy of
whoever developed the Web service. We are simply mapping those to methods and
POJOs, both for input and output. Room is somewhere in between a Retrofit-style
“we just take what the Web service gives us” approach and a full ORM-style “we
control everything about the database” approach.

Tactically, an entity is a Java class marked with the @Entity annotation. For example,
here is a Trip class that serves as a Room entity:

packagepackage com.commonsware.android.room;

importimport android.arch.persistence.room.Entityandroid.arch.persistence.room.Entity;
importimport android.arch.persistence.room.Ignoreandroid.arch.persistence.room.Ignore;
importimport android.arch.persistence.room.PrimaryKeyandroid.arch.persistence.room.PrimaryKey;
importimport java.util.UUIDjava.util.UUID;

@Entity(tableName = "trips")
classclass TripTrip {

@PrimaryKey
publicpublic finalfinal String id;

publicpublic finalfinal String title;
publicpublic finalfinal int duration;

@Ignore
Trip(String title, int duration) {

thisthis(UUID.randomUUID().toString(), title, duration);
}

Trip(String id, String title, int duration) {
thisthis.id=id;
thisthis.title=title;
thisthis.duration=duration;

}

ROOM BASICS

4

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic String toString() {

returnreturn(title);
}

}

(from Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/Trip.java)

There is no particular superclass required for entities, and the expectation is that
often they will be simple POJOs, as we see here.

Sometimes, your fields will be marked with annotations describing their roles. In
this example, the id field has the @PrimaryKey annotation, telling Room that this is
the unique identifier for this entity. Room will use that to know how to update and
delete Trip objects by their primary key values.

Similarly, sometimes your methods will be marked with annotations. In this case,
Trip has two constructors: one that generates the id from a UUID, and one that takes
the id as a constructor parameter. Room needs to know which constructor(s) are
eligible for its use; you mark the other constructors with the @Ignore annotation.

For Room to work with a field, it needs to be public or have JavaBean-style getter
and setter methods, so Room can access them. If the fields are final, as they are on
Trip, Room will try to find a constructor to use to populate the fields, as final fields
will lack setters.

We will explore entities in greater detail in an upcoming chapter.

DAO

“Data access object” (or DAO for short) is a fancy way of saying “the API into the
data”. The idea is that you have a DAO that provides methods for the database
operations that you need: queries, inserts, updates, deletes, whatever.

In Room, the DAO is identified by the @Dao annotation, applied to either an
abstract class or an interface. The actual concrete implementation will be code-
generated for you by the Room annotation processor.

The primary role of the @Dao-annotated abstract class or interface is to have one
or more methods, with their own Room annotations, identifying what you want to

ROOM BASICS

5

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/Trip.java

do with the database and your entities. This serves the same role as the methods
annotated @GET or @POST in Retrofit.

The sample app has a TripStore that is our DAO:

packagepackage com.commonsware.android.room;

importimport android.arch.persistence.room.Daoandroid.arch.persistence.room.Dao;
importimport android.arch.persistence.room.Deleteandroid.arch.persistence.room.Delete;
importimport android.arch.persistence.room.Insertandroid.arch.persistence.room.Insert;
importimport android.arch.persistence.room.OnConflictStrategyandroid.arch.persistence.room.OnConflictStrategy;
importimport android.arch.persistence.room.Queryandroid.arch.persistence.room.Query;
importimport android.arch.persistence.room.Updateandroid.arch.persistence.room.Update;
importimport java.util.Listjava.util.List;

@Dao
interfaceinterface TripStoreTripStore {

@Query("SELECT * FROM trips ORDER BY title")
List<Trip> selectAll();

@Query("SELECT * FROM trips WHERE id=:id")
Trip findById(String id);

@Insert
void insert(Trip... trips);

@Update
void update(Trip... trips);

@Delete
void delete(Trip... trips);

}

(from Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripStore.java)

Besides the @Dao annotation on the TripStore interface, we have five methods, each
with their own annotations. Your four main annotations for these methods are
@Query, @Insert, @Update, and @Delete, which map to the corresponding database
operations.

Two TripStore methods — selectAll() and findById() — have the @Query
annotation. Principally, @Query will be used for SQL SELECT statements, where you
put the actual SQL in the annotation itself. To a large extent, any valid SQLite query
can be used here. However, instead of using ? as placeholders for arguments, as we
would in traditional SQLite, you use :-prefixed method parameter names. So, in

ROOM BASICS

6

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripStore.java

findById(), we have a String parameter named id, so we can use :id in the SQL
statement wherever we might have used ? to indicate the value to bind in.

The remaining three methods use the @Insert, @Update, and @Delete annotations,
mapped to methods of the same name. Here, the methods take a varargs of Trip,
meaning that we can insert, update, or delete as many Trip objects as we want
(passing in zero Trip objects works, though that would be rather odd).

If you want custom code on your DAO, beyond the code-generated implementations
of your Room-annotated methods, use an abstract class and mark all the Room-
annotated methods as abstract. If, on the other hand, all you need on the DAO are
the Room-annotated methods, you can use an interface and skip all the abstract
keywords, as we did with Trip.

We will explore the DAO in greater detail in an upcoming chapter.

Database

In addition to entities and DAOs, you will have at least one @Database-annotated
abstract class, extending a RoomDatabase base class. This class knits together the
database file, the entities, and the DAOs.

In the sample project, we have a TripDatabase serving this role:

packagepackage com.commonsware.android.room;

importimport android.arch.persistence.room.Databaseandroid.arch.persistence.room.Database;
importimport android.arch.persistence.room.Roomandroid.arch.persistence.room.Room;
importimport android.arch.persistence.room.RoomDatabaseandroid.arch.persistence.room.RoomDatabase;
importimport android.content.Contextandroid.content.Context;

@Database(entities={Trip.class}, version=1)
abstractabstract classclass TripDatabaseTripDatabase extendsextends RoomDatabase {

abstractabstract TripStore tripStore();

privateprivate staticstatic finalfinal String DB_NAME="trips.db";
privateprivate staticstatic volatilevolatile TripDatabase INSTANCE=nullnull;

synchronizedsynchronized staticstatic TripDatabase get(Context ctxt) {
ifif (INSTANCE==nullnull) {

INSTANCE=create(ctxt, falsefalse);
}

returnreturn(INSTANCE);

ROOM BASICS

7

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}

staticstatic TripDatabase create(Context ctxt, boolean memoryOnly) {
RoomDatabase.Builder<TripDatabase> b;

ifif (memoryOnly) {
b=Room.inMemoryDatabaseBuilder(ctxt.getApplicationContext(),

TripDatabase.class);
}
elseelse {

b=Room.databaseBuilder(ctxt.getApplicationContext(), TripDatabase.class,
DB_NAME);

}

returnreturn(b.build());
}

}

(from Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripDatabase.java)

The @Database annotation configures the code generation process, including:

• Identifying all of the entity classes that you care about in the entities
collection

• Identifying the schema version of the database (as you see with
SQLiteOpenHelper in conventional Android SQLite development)

@Database(entities={Trip.class}, version=1)

(from Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripDatabase.java)

Here, we are saying that we have just one entity class (Trip), and that this is schema
version 1.

You also need abstract methods for each DAO class that return an instance of that
class:

abstractabstract TripStore tripStore();

(from Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripDatabase.java)

In this app, we have but one DAO (TripStore), so we have an abstract method to
return an instance of TripStore.

ROOM BASICS

8

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripDatabase.java
https://github.com/commonsguy/cw-androidarch/tree/v0.2/Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripDatabase.java
https://github.com/commonsguy/cw-androidarch/tree/v0.2/Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripDatabase.java

Extending RoomDatabase, having the @Database annotation, and having the
abstract method(s) for your DAOs are the requirements. Anything beyond that is
up to you, and some apps may elect to have nothing more here.

In our case, we have a bit more logic.

Get a Room
In this example, the database is a singleton. TripDatabase has a static getter
method, cunningly named get(), that creates our singleton. get(), in turn, calls a
create() method that is responsible for creating our TripDatabase:

staticstatic TripDatabase create(Context ctxt, boolean memoryOnly) {
RoomDatabase.Builder<TripDatabase> b;

ifif (memoryOnly) {
b=Room.inMemoryDatabaseBuilder(ctxt.getApplicationContext(),

TripDatabase.class);
}
elseelse {

b=Room.databaseBuilder(ctxt.getApplicationContext(), TripDatabase.class,
DB_NAME);

}

returnreturn(b.build());
}

(from Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripDatabase.java)

To create a TripDatabase, we use a RoomDatabase.Builder, which we get by calling
one of two methods on the Room class:

• databaseBuilder() is what you will normally use
• inMemoryDatabaseBuilder() does what the method name suggests: it

creates an in-memory SQLite database, useful for instrumentation tests
where you do not necessarily need to persist the data for a user

Both of those methods take a Context and the Java Class object for the desired
RoomDatabase subclass. databaseBuilder() also takes the filename of the SQLite
database to use, much as SQLiteOpenHelper does in traditional Android SQLite
development.

ROOM BASICS

9

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripDatabase.java

While there are some configuration methods that can be called on the
RoomDatabase.Builder, we skip those here, simply calling build() to build the
TripDatabase. The result is that when we call get(), we get a singleton lazy-
initialized TripDatabase.

From there, we can:

• Call tripStore() on the TripDatabase to retrieve the TripStore DAO
• Call methods on the TripStore to query, insert, update, or delete Trip

objects

We will see how to do that in the next chapter, where we look at how to write
instrumentation tests for our Room-generated database code.

Be Careful with Table Name Prefixes
In SQLite, as with other databases, sometimes you need to use table name prefixes
as part of implementing a query. This is particularly true when using JOIN syntax,
as now 2+ tables are referenced in the query, and sometimes they have duplicate
column names. We prefix the column name with the table name (e.g.,
table_name.column) to disambiguate the references.

Room, in general, does not mind this… but there is at least one bug where Room
crashes at compile time when encountering a table name prefix. Hopefully, this will
get resolved soon.

ROOM BASICS

10

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://issuetracker.google.com/issues/64539805

Testing Room

Once you have a RoomDatabase and its associated DAO(s) and entities set up, you
should start testing it.

The good news is that testing Room is not dramatically different than is testing
anything else in Android. Room has a few characteristics that make it a bit easier
than some things to test, as it turns out.

Writing Instrumentation Tests
On the whole, writing instrumentation tests for Room — where the tests run on an
Android device or emulator — is unremarkable. You get an instance of your
RoomDatabase subclass and exercise it from there.

So, for example, here is an instrumentation test case class to exercise the
TripDatabase from the preceding chapter:

packagepackage com.commonsware.android.room;

importimport android.support.test.InstrumentationRegistryandroid.support.test.InstrumentationRegistry;
importimport android.support.test.runner.AndroidJUnit4android.support.test.runner.AndroidJUnit4;
importimport org.junit.Afterorg.junit.After;
importimport org.junit.Beforeorg.junit.Before;
importimport org.junit.Testorg.junit.Test;
importimport org.junit.runner.RunWithorg.junit.runner.RunWith;
importimport java.util.Listjava.util.List;
importimport staticstatic junit.framework.Assert.assertNotNull;
importimport staticstatic junit.framework.Assert.assertTrue;
importimport staticstatic org.junit.Assert.assertEquals;
importimport staticstatic org.junit.Assert.assertNotEquals;

11

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@RunWith(AndroidJUnit4.class)
publicpublic classclass TripTestsTripTests {

TripDatabase db;
TripStore store;

@Before
publicpublic void setUp() {

db=TripDatabase.create(InstrumentationRegistry.getTargetContext(), truetrue);
store=db.tripStore();

}

@After
publicpublic void tearDown() {

db.close();
}

@Test
publicpublic void basics() {

assertEquals(0, store.selectAll().size());

finalfinal Trip first=newnew Trip("Foo", 2880);

assertNotNull(first.id);
assertNotEquals(0, first.id.length());
store.insert(first);

assertTrip(store, first);

finalfinal Trip updated=newnew Trip(first.id, "Foo!!!", 1440);

store.update(updated);
assertTrip(store, updated);

store.delete(updated);
assertEquals(0, store.selectAll().size());

}

privateprivate void assertTrip(TripStore store, Trip trip) {
List<Trip> results=store.selectAll();

assertNotNull(results);
assertEquals(1, results.size());
assertTrue(areIdentical(trip, results.get(0)));

Trip result=store.findById(trip.id);

assertNotNull(result);
assertTrue(areIdentical(trip, result));

TESTING ROOM

12

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}

privateprivate boolean areIdentical(Trip one, Trip two) {
returnreturn(one.id.equals(two.id) &&

one.title.equals(two.title) &&
one.duration==two.duration);

}
}

(from Trips/RoomBasics/app/src/androidTest/java/com/commonsware/android/room/TripTests.java)

Here, we:

• Create an empty database
• Get the DAO (TripStore)
• Confirm that there are no trips in the database
• Create a Trip object and insert() it into the database, then confirm that the

database was properly inserted
• Create a new Trip object with the same ID as the first, update() the

database using it, then confirm that the database was properly inserted
• Delete the Trip object, then confirm that the database has no trips once

again

Using In-Memory Databases

When testing a database, though, one of the challenges is in making those tests
hermetic, or self-contained. One test method should not depend upon another test
method, and one test method should not affect the results of another test method
accidentally. This means that we want to start with a known starting point before
each test, and we have to consider how to do that.

One approach — the one taken in the above TripTests class — is to use an in-
memory database. The static create() method on TripDatabase, if you pass true
for the second parameter, creates a TripDatabase backed by memory, not disk:

staticstatic TripDatabase create(Context ctxt, boolean memoryOnly) {
RoomDatabase.Builder<TripDatabase> b;

ifif (memoryOnly) {
b=Room.inMemoryDatabaseBuilder(ctxt.getApplicationContext(),

TripDatabase.class);
}
elseelse {

b=Room.databaseBuilder(ctxt.getApplicationContext(), TripDatabase.class,

TESTING ROOM

13

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/Trips/RoomBasics/app/src/androidTest/java/com/commonsware/android/room/TripTests.java

DB_NAME);
}

returnreturn(b.build());
}

(from Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripDatabase.java)

There are two key advantages for using an in-memory database for instrumentation
testing:

1. It is intrinsically self-contained. Once the TripDatabase is closed, its
memory is released, and if separate tests use separate TripDatabase
instances, one will not affect the other.

2. Reading and writing to and from memory is much faster than is reading and
writing to and from disk, so the tests run much faster.

On the other hand, this means that the instrumentation tests are useless for
performance testing, as (presumably) your production app will actually store its
database on disk. You could use Gradle command-line switches, custom build types
and buildConfigField, or other means to decide when tests are run whether they
should use memory or disk.

Importing Starter Data

The one downside to having an empty starter database, such as a fresh in-memory
database, is that you have no data. Eventually, you need some data to test.

That could come from test code, such as what TripTests does. In many cases, this is
a necessary part of testing, to confirm that all of your DAO methods work as
expected.

Alternatives include:

• Loading the data from some neutral format (e.g., JSON) via some utility
method

• Packaging one or more starter database as assets in the instrumentation
tests (e.g., src/androidTest/assets/), then using ATTACH DATABASE ... and
INSERT INTO ... SELECT FROM ... SQLite code to copy from the starter
database to the database to be used in testing

TESTING ROOM

14

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripDatabase.java

Writing Unit Tests via Mocks
Let’s look again at the TripStore DAO:

packagepackage com.commonsware.android.room;

importimport android.arch.persistence.room.Daoandroid.arch.persistence.room.Dao;
importimport android.arch.persistence.room.Deleteandroid.arch.persistence.room.Delete;
importimport android.arch.persistence.room.Insertandroid.arch.persistence.room.Insert;
importimport android.arch.persistence.room.OnConflictStrategyandroid.arch.persistence.room.OnConflictStrategy;
importimport android.arch.persistence.room.Queryandroid.arch.persistence.room.Query;
importimport android.arch.persistence.room.Updateandroid.arch.persistence.room.Update;
importimport java.util.Listjava.util.List;

@Dao
interfaceinterface TripStoreTripStore {

@Query("SELECT * FROM trips ORDER BY title")
List<Trip> selectAll();

@Query("SELECT * FROM trips WHERE id=:id")
Trip findById(String id);

@Insert
void insert(Trip... trips);

@Update
void update(Trip... trips);

@Delete
void delete(Trip... trips);

}

(from Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripStore.java)

This is a pure interface. More importantly, other than annotations, its API is purely
domain-specific. Everything revolves around our Trip entity and other business
logic (e.g., String values as identifiers).

Room DAOs are designed to be mocked, using a mocking library like Mockito, so
that you can write unit tests (tests that run on your development machine or CI
server) in addition to — or perhaps instead of — instrumentation tests.

The primary advantage of unit tests is execution speed, as they do not have to be run
on Android devices or emulators. On the other hand, setting up mocks can be
tedious.

TESTING ROOM

15

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripStore.java

The RoomBasics project not only has the instrumentation tests shown earlier in this
chapter, but an equivalent unit test in test/, embodied in a TripUnitTests class:

packagepackage com.commonsware.android.room;

importimport org.junit.Beforeorg.junit.Before;
importimport org.junit.Testorg.junit.Test;
importimport org.mockito.Matchersorg.mockito.Matchers;
importimport org.mockito.Mockitoorg.mockito.Mockito;
importimport org.mockito.invocation.InvocationOnMockorg.mockito.invocation.InvocationOnMock;
importimport org.mockito.stubbing.Answerorg.mockito.stubbing.Answer;
importimport java.util.ArrayListjava.util.ArrayList;
importimport java.util.Collectionsjava.util.Collections;
importimport java.util.Comparatorjava.util.Comparator;
importimport java.util.HashMapjava.util.HashMap;
importimport java.util.Listjava.util.List;
importimport staticstatic org.junit.Assert.assertEquals;
importimport staticstatic org.junit.Assert.assertNotEquals;
importimport staticstatic org.junit.Assert.assertNotNull;
importimport staticstatic org.junit.Assert.assertTrue;
importimport staticstatic org.mockito.Matchers.any;
importimport staticstatic org.mockito.Mockito.doAnswer;

publicpublic classclass TripUnitTestsTripUnitTests {
privateprivate TripStore store;

@Before
publicpublic void setUp() {

store=Mockito.mock(TripStore.class);

finalfinal HashMap<String, Trip> trips=newnew HashMap<>();

doAnswer(newnew Answer() {
@Override
publicpublic Object answer(InvocationOnMock invocation) throwsthrows Throwable {

ArrayList<Trip> result=newnew ArrayList<>(trips.values());

Collections.sort(result, newnew Comparator<Trip>() {
@Override
publicpublic int compare(Trip left, Trip right) {

returnreturn(left.title.compareTo(right.title));
}

});

returnreturn(result);
}

}).when(store).selectAll();

TESTING ROOM

16

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

doAnswer(newnew Answer() {
@Override
publicpublic Object answer(InvocationOnMock invocation) throwsthrows Throwable {

String id=(String)invocation.getArguments()[0];

returnreturn(trips.get(id));
}

}).when(store).findById(any(String.class));

doAnswer(newnew Answer() {
@Override
publicpublic Object answer(InvocationOnMock invocation) throwsthrows Throwable {

forfor (Object rawTrip : invocation.getArguments()) {
Trip trip=(Trip)rawTrip;

trips.put(trip.id, trip);
}

returnreturn(nullnull);
}

}).when(store).insert(Matchers.<Trip>anyVararg());

doAnswer(newnew Answer() {
@Override
publicpublic Object answer(InvocationOnMock invocation) throwsthrows Throwable {

forfor (Object rawTrip : invocation.getArguments()) {
Trip trip=(Trip)rawTrip;

trips.put(trip.id, trip);
}

returnreturn(nullnull);
}

}).when(store).update(Matchers.<Trip>anyVararg());

doAnswer(newnew Answer() {
@Override
publicpublic Object answer(InvocationOnMock invocation) throwsthrows Throwable {

forfor (Object rawTrip : invocation.getArguments()) {
Trip trip=(Trip)rawTrip;

trips.remove(trip.id);
}

returnreturn(nullnull);
}

}).when(store).delete(Matchers.<Trip>anyVararg());

TESTING ROOM

17

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}

@Test
publicpublic void basics() {

assertEquals(0, store.selectAll().size());

finalfinal Trip first=newnew Trip("Foo", 2880);

assertNotNull(first.id);
assertNotEquals(0, first.id.length());
store.insert(first);

assertTrip(store, first);

finalfinal Trip updated=newnew Trip(first.id, "Foo!!!", 1440);

store.update(updated);
assertTrip(store, updated);

store.delete(updated);
assertEquals(0, store.selectAll().size());

}

privateprivate void assertTrip(TripStore store, Trip trip) {
List<Trip> results=store.selectAll();

assertNotNull(results);
assertEquals(1, results.size());
assertTrue(areIdentical(trip, results.get(0)));

Trip result=store.findById(trip.id);

assertNotNull(result);
assertTrue(areIdentical(trip, result));

}

privateprivate boolean areIdentical(Trip one, Trip two) {
returnreturn(one.id.equals(two.id) &&

one.title.equals(two.title) &&
one.duration==two.duration);

}
}

(from Trips/RoomBasics/app/src/test/java/com/commonsware/android/room/TripUnitTests.java)

The basics() test method, and its supporting utility methods, are the same as in the
instrumentation tests. What differs is where the TripStore comes from. In the

TESTING ROOM

18

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/Trips/RoomBasics/app/src/test/java/com/commonsware/android/room/TripUnitTests.java

instrumentation tests, we created an in-memory TripDatabase and retrieved a
TripStore from it. In the unit tests, we use Mockito to create a mock TripStore (via
Mockito.mock(TripStore.class)), then teach the mock how to respond to its
methods. In this case, we mock a database with a simple HashMap, with a roster of
the trips, keyed by their ID values. Each of the doAnswer() calls mocks a specific
method on the TripStore, down to the details of having selectAll() return the
trips ordered by title.

Whether this is worth the effort is for you to decide. For many projects,
instrumentation tests will suffice. For larger projects, where the speed difference
between unit tests and instrumentation tests is substantial, it might be worth the
engineering time to create the mocks. While mocking is also useful for scenarios
that are difficult to reproduce, it is unlikely that your DAO will have any of those
scenarios.

TESTING ROOM

19

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Dao of Entities

Two chapters ago, we went through the basic steps for setting up Room:

• Create and annotate your entity classes
• Create, annotate, and define operator methods on your DAO(s)
• Create a subclass of RoomDatabase to tie the entities and DAO(s) together
• Create an instance of that RoomDatabase at some likely point in time, while

you are safely on a background thread
• Use the RoomDatabase instance to retrieve your DAO and from there work

with your entities

However, we only scratched the surface of what can be configured on entities and
DAOs. In this chapter — and the subsequent chapters on custom types and relations
— we will explore the rest of the configuration for entities and DAOs.

Many of the code snippets shown in this chapter come from the General/RoomDao
sample project. This contains a library module (stuff) with entity and DAO code
along with instrumentation tests for bits of that code.

Configuring Entities
The only absolute requirements for a Room entity class is that it be annotated with
the @Entity annotation and have a field identified as the primary key, typically by
way of a @PrimaryKey annotation. Anything above and beyond that is optional.

However, there is a fair bit that is “above and beyond that”. Some — though probably
not all — of these features will be of interest in larger apps.

21

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-androidarch/tree/master/General/RoomDao
http://github.com/commonsguy/cw-androidarch/tree/master/General/RoomDao

Primary Keys

If you have a single field that is the primary key for your entity, using the
@PrimaryKey annotation is simple and helps you clearly identify that primary key at
a later point.

However, you do have some other options.

Auto-Generated Primary Keys

In SQLite, if you have an INTEGER column identified as the PRIMARY KEY, you can
optionally have SQLite assign unique values for that column, by way of the
AUTOINCREMENT keyword.

In Room, if you have an int or Integer field that is your @PrimaryKey, you can
optionally apply AUTOINCREMENT to the corresponding column by adding
autoGenerate=true to the annotation:

@Entity
publicpublic classclass ConstantConstant {

@PrimaryKey(autoGenerate=truetrue)
publicpublic int id;
String title;
double value;

@Override
publicpublic String toString() {

returnreturn(title);
}

}

By default, autoGenerate is false. Setting that property to true gives you
AUTOINCREMENT in the generated CREATE TABLE statement:

CREATECREATE TABLETABLE IF NOTNOT EXISTSEXISTS constants (id INTEGER PRIMARYPRIMARY KEYKEY AUTOINCREMENT, title
TEXT, value REAL NOTNOT NULLNULL)

However, this starts to get complicated in the app. You do not know your primary
key until you insert the entity into a database. That presents “trickle-down”
complications — for example, you cannot make the primary key field final, as then
you cannot create an instance of an entity that is not yet in the database. While you
can try to work around this (e.g., default the id to -1), then you have to keep
checking to see whether you have a valid identifier.

THE DAO OF ENTITIES

22

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Most of the samples in this book will use a UUID instead. While these take up much
more room than a simple int, they can be uniquely generated outside of the
database. For your production apps, you will need to decide if the headaches
surrounding database-generated identifiers are worth their benefits.

Also, notice that the value column has NOT NULL applied to it. Room’s rule is that
primitive fields (int, double, etc.) will be NOT NULL, while their object equivalents
(Integer, Double, etc.) will allow null values.

Composite Primary Keys

In some cases, you may have a composite primary key, made up of two or more
columns in the database. This is particularly true if you are trying to design your
entities around an existing database structure, one that used a composite primary
key for one of its tables (for whatever reason).

If, logically, those are all part of a single object, you could combine them into a
single field, as we will see in the next chapter. However, it may be that they should
be individual fields in your entity, but they happen to combine to create the primary
key. In that case, you can skip the @PrimaryKey annotation and use the primaryKeys
property of the @Entity.

One scenario for this is data versioning, where we are tracking changes to data over
time, the way a version control system tracks changes to source code and other files
over time. There are several ways of implementing data versioning. One approach
has all versions of the same entity in the same table, with a version code attached to
the “natural” primary key to identify a specific version of that content. In that case,
you could have something like:

@Entity(primaryKeys={"id", "versionCode"})
classclass VersionedThingyVersionedThingy {

publicpublic finalfinal String id;
publicpublic finalfinal int versionCode;

VersionedThingy(String id, int versionCode) {
thisthis.id=id;
thisthis.versionCode=versionCode;

}
}

Room will then use the PRIMARY KEY keyword in the CREATE TABLE statement to set
up the composite primary key:

THE DAO OF ENTITIES

23

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

CREATECREATE TABLETABLE IF NOTNOT EXISTSEXISTS VersionedThingy (id TEXT, versionCode INTEGER NOTNOT NULLNULL,
PRIMARYPRIMARY KEYKEY(id, versionCode))

Adding Indexes

Your primary key is indexed automatically by SQLite. However, you may wish to set
up other indexes for other columns or collections of columns, to speed up queries.
To do that, use the indices property on @Entity. This property takes a list of @Index
annotations, each of which declares an index.

For example, as part of a Customer entity, you might have an address, which might
contain a postalCode. You might be querying directly on postalCode as part of a
search form, and so having an index on that would be useful. To do that, add the
appropriate @Index to indices:

@Entity(indices={@Index("postalCode")})
classclass CustomerCustomer {

@PrimaryKey
publicpublic finalfinal String id;

publicpublic finalfinal String postalCode;
publicpublic finalfinal String displayName;

Customer(String id, String postalCode, String displayName) {
thisthis.id=id;
thisthis.postalCode=postalCode;
thisthis.displayName=displayName;

}
}

Room will add the requested index:

CREATECREATE INDEXINDEX index_Customer_postalCode ONON Customer (postalCode)

If you have a composite index, consisting of two or more fields, @Index takes a
comma-delimited list of column names and will generate the composite index.

If the index should also enforce uniqueness — only one entity can have the indexed
value — add unique=true to the @Index. This requires you to assign the column(s)
for the index to the value property, due to the way Java annotations work:

@Entity(indices={@Index(value="postalCode", unique=truetrue)})
classclass CustomerCustomer {

@PrimaryKey

THE DAO OF ENTITIES

24

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

publicpublic finalfinal String id;

publicpublic finalfinal String postalCode;
publicpublic finalfinal String displayName;

Customer(String id, String postalCode, String displayName) {
thisthis.id=id;
thisthis.postalCode=postalCode;
thisthis.displayName=displayName;

}
}

This causes Room to add the UNIQUE keyword to the CREATE INDEX statement:

CREATECREATE UNIQUEUNIQUE INDEXINDEX index_Customer_postalCode ONON Customer (postalCode)

Ignoring Fields

If there are fields in the entity class that should not be persisted, annotate them with
@Ignore:

@Entity(primaryKeys={"id", "versionCode"})
classclass VersionedThingyVersionedThingy {

publicpublic finalfinal String id;
publicpublic finalfinal int versionCode;

@Ignore
privateprivate String something;

VersionedThingy(String id, int versionCode) {
thisthis.id=id;
thisthis.versionCode=versionCode;

}
}

That annotation is required. For example, this does not work:

@Entity(primaryKeys={"id", "versionCode"})
classclass VersionedThingyVersionedThingy {

publicpublic finalfinal String id;
publicpublic finalfinal int versionCode;

privateprivate String something;

VersionedThingy(String id, int versionCode) {
thisthis.id=id;

THE DAO OF ENTITIES

25

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

thisthis.versionCode=versionCode;
}

}

You might think that since the field is private and has no setter, that Room would
ignore it automatically. Room, instead, generates a build error, as it cannot tell if you
want to ignore that field or if you simply forgot to add it properly.

Similarly, transient is insufficient:

@Entity(primaryKeys={"id", "versionCode"})
classclass VersionedThingyVersionedThingy {

publicpublic finalfinal String id;
publicpublic finalfinal int versionCode;

publicpublic transienttransient String something;

VersionedThingy(String id, int versionCode) {
thisthis.id=id;
thisthis.versionCode=versionCode;

}
}

Since this is a public field, Room will try persisting it, even though you have the
transient keyword in the Java class. You still need to add @Ignore to it.

Note that you can also @Ignore constructors. This may be required to clear up Room
build errors, if the code generator cannot determine what constructor to use:

@Entity(primaryKeys={"id", "versionCode"})
classclass VersionedThingyVersionedThingy {

publicpublic finalfinal String id;
publicpublic finalfinal int versionCode;

@Ignore
privateprivate String something;

@Ignore
VersionedThingy() {

thisthis(UUID.randomUUID().toString(), 1);
}

VersionedThingy(String id, int versionCode) {
thisthis.id=id;
thisthis.versionCode=versionCode;

THE DAO OF ENTITIES

26

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://issuetracker.google.com/issues/62600692
https://issuetracker.google.com/issues/62600692
https://issuetracker.google.com/issues/62600692

}
}

NOT NULL Fields

As noted earlier, primitive fields get converted into NOT NULL columns in the table,
while object fields allow null values.

If you want an object field to be NOT NULL, apply the @NonNull annotation:

@Entity(indices={@Index("postalCode")})
classclass CustomerCustomer {

@PrimaryKey
publicpublic finalfinal String id;

@NonNull
publicpublic finalfinal String postalCode;
publicpublic finalfinal String displayName;

Customer(String id, String postalCode, String displayName) {
thisthis.id=id;
thisthis.postalCode=postalCode;
thisthis.displayName=displayName;

}
}

This will make the associated column have NOT NULL applied to it.

Custom Table and Column Names

By default, Room will generate names for your tables and columns based off of the
entity class names and field names. In general, it does a respectable job of this, and
so you may just leave them alone. However, you may find that you need to control
these names, particularly if you are trying to match an existing database schema
(e.g., you are migrating an existing Android app to use Room instead of using SQLite
directly). And for table names in particular, setting your own name can simplify
some of the SQL that you have to write for @Query-annotated methods.

To control the table name, use the tableName property on the @Entity attribute, and
give it a valid SQLite table name. For example, while in Java we might want to call
the class VersionedThingy, we might prefer the table to just be thingy:

THE DAO OF ENTITIES

27

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Entity(tableName="thingy", primaryKeys={"id", "versionCode"})
classclass VersionedThingyVersionedThingy {

publicpublic finalfinal String id;
publicpublic finalfinal int versionCode;

@Ignore
privateprivate String something;

@Ignore
VersionedThingy() {

thisthis(UUID.randomUUID().toString(), 1);
}

VersionedThingy(String id, int versionCode) {
thisthis.id=id;
thisthis.versionCode=versionCode;

}
}

To rename a column, add the @ColumnInfo annotation to the field, with a name
property that provides your desired name for the column:

@Entity(tableName="thingy", primaryKeys={"id", "versionCode"})
classclass VersionedThingyVersionedThingy {

publicpublic finalfinal String id;

@ColumnInfo(name="version_code")
publicpublic finalfinal int versionCode;

@Ignore
privateprivate String something;

@Ignore
VersionedThingy() {

thisthis(UUID.randomUUID().toString(), 1);
}

VersionedThingy(String id, int versionCode) {
thisthis.id=id;
thisthis.versionCode=versionCode;

}
}

Here, we changed the versionCode field’s column to version_code, along with
specifying the table name.

THE DAO OF ENTITIES

28

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, this fails. The values in the primaryKeys property are the column names,
not the field names. Since we renamed the column, we need to update primaryKeys
to match:

packagepackage com.commonsware.android.room.dao;

importimport android.arch.persistence.room.ColumnInfoandroid.arch.persistence.room.ColumnInfo;
importimport android.arch.persistence.room.Entityandroid.arch.persistence.room.Entity;
importimport android.arch.persistence.room.Ignoreandroid.arch.persistence.room.Ignore;
importimport android.arch.persistence.room.PrimaryKeyandroid.arch.persistence.room.PrimaryKey;
importimport java.util.UUIDjava.util.UUID;

@Entity(tableName="thingy", primaryKeys={"id", "version_code"})
classclass VersionedThingyVersionedThingy {

publicpublic finalfinal String id;

@ColumnInfo(name="version_code")
publicpublic finalfinal int versionCode;

@Ignore
privateprivate String something;

@Ignore
VersionedThingy() {

thisthis(UUID.randomUUID().toString(), 1);
}

VersionedThingy(String id, int versionCode) {
thisthis.id=id;
thisthis.versionCode=versionCode;

}
}

(from General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/VersionedThingy.java)

DAOs and Queries
One popular thing to do with a database is to get data out of it. For that, we add
@Query methods on our DAO.

Those do not have to be especially complicated, as we saw with the TripStore:

packagepackage com.commonsware.android.room;

importimport android.arch.persistence.room.Daoandroid.arch.persistence.room.Dao;
importimport android.arch.persistence.room.Deleteandroid.arch.persistence.room.Delete;

THE DAO OF ENTITIES

29

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/VersionedThingy.java

importimport android.arch.persistence.room.Insertandroid.arch.persistence.room.Insert;
importimport android.arch.persistence.room.OnConflictStrategyandroid.arch.persistence.room.OnConflictStrategy;
importimport android.arch.persistence.room.Queryandroid.arch.persistence.room.Query;
importimport android.arch.persistence.room.Updateandroid.arch.persistence.room.Update;
importimport java.util.Listjava.util.List;

@Dao
interfaceinterface TripStoreTripStore {

@Query("SELECT * FROM trips ORDER BY title")
List<Trip> selectAll();

@Query("SELECT * FROM trips WHERE id=:id")
Trip findById(String id);

@Insert
void insert(Trip... trips);

@Update
void update(Trip... trips);

@Delete
void delete(Trip... trips);

}

(from Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripStore.java)

However, SQL queries with SQLite can get remarkably complicated. Room tries to
support a lot of the standard SQL syntax, but Room adds its own complexity, in
terms of trying to decipher how to interpret your @Query method’s arguments and
return type.

Adding Parameters

As we saw with findById() on TripStore, you can map method arguments to query
parameters by using : syntax. Put : before the argument name and its value will be
injected into the query:

@Query("SELECT * FROM thingy WHERE id=:id AND version_code=:versionCode")
VersionedThingy findById(String id, int versionCode);

(from General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java)

Bear in mind that the rest of the SQL statement is based on the table, not the entity.
Table names and column names will either be the code-generated names or your
overridden names (via tableName and @ColumnInfo).

THE DAO OF ENTITIES

30

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripStore.java
https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java

WHERE Clause

Principally, your method arguments will be injected into your WHERE clause, such as
in the above examples.

Note that Room has special support for IN in a WHERE clause. So, while this works for
a single postalCode:

@Query("SELECT * FROM Customer WHERE postalCode IN (:postalCodes)")
List<Customer> findByPostalCodes(String postalCodes);

…you can also do:

@Query("SELECT * FROM Customer WHERE postalCode IN (:postalCodes)")
List<Customer> findByPostalCodes(List<String> postalCodes);

…or even:

@Query("SELECT * FROM Customer WHERE postalCode IN (:postalCodes)")
List<Customer> findByPostalCodes(String... postalCodes);

Room will convert the collection argument into a comma-delimited list for use with
the SQL query.

Other Clauses

If SQLite allows ? placeholders, Room should allow method arguments to be used
instead.

So, for example, you can parameterize a LIMIT clause:

@Query("SELECT * FROM Customer WHERE postalCode IN (:postalCodes) LIMIT :max")
List<Customer> findByPostalCodes(int max, String... postalCodes);

(from General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java)

Here, because Java needs the varargs to be the last parameter, we need to have max
first.

THE DAO OF ENTITIES

31

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java

What You Can Return

We have seen that a @Query can return a single entity (e.g., findById() returning a
single Trip) or a collection of entity (e.g., selectAll() returning a List of Trip
entities).

While those are simple, Room offers a fair bit more flexibility than that. In
particular, not only does Room support reactive return values, but we can return
objects that are not actually entities.

Specific Return Types

In addition to returning single objects or collections of objects, a Room @Query can
return a good old-fashioned Cursor. This is particularly useful if you are migrating
legacy code that uses CursorAdapter or other Cursor-specific classes. Similarly, if
you are looking to expose part of a Room-defined database via a ContentProvider, it
may be more convenient for you to get your results in the form of a Cursor, so that
you can just return that from the provider’s query() method.

Beyond that, a @Query method can return:

• A Flowable or Publisher from RxJava2, a popular framework for reactive
programming

• A LiveData object

We will explore what a LiveData object is later in this book.

Breadth of Results

For small entities, like Trip, usually we will retrieve all columns in the query.
However, the real rule is: the core return object of the @Query method must be
something that Room knows how to fill in from the columns that you request.

For wider tables with many columns, this is important. For example, perhaps for a
RecyclerView, you only need a couple of columns, but for all entities in the table. In
that case, it might be nice to only retrieve those specific columns. You have two ways
to do that:

THE DAO OF ENTITIES

32

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1. Have your @Entity support only a subset of columns, allowing the rest to be
null or otherwise tracking the fact that we only retrieved a subset of
columns from the table

2. Return something other than the entity that you have associated with this
table

If you look at your @Dao-annotated interface, you will notice that while methods
might refer to entities, its annotations do not. That is because the DAO is somewhat
independent of the entities. The entities describe the table, but the DAO is not
limited to using those entities. So long as the DAO can fulfill the contract stipulated
by the SQL, the method arguments, and the method return type, Room is perfectly
content.

So, for example, suppose that Customer not only tracks an id and a postalCode, but
also has many other fields, including a displayName:

packagepackage com.commonsware.android.room.dao;

importimport android.arch.persistence.room.Entityandroid.arch.persistence.room.Entity;
importimport android.arch.persistence.room.Ignoreandroid.arch.persistence.room.Ignore;
importimport android.arch.persistence.room.Indexandroid.arch.persistence.room.Index;
importimport android.arch.persistence.room.PrimaryKeyandroid.arch.persistence.room.PrimaryKey;
importimport java.util.UUIDjava.util.UUID;

@Entity(indices={@Index(value="postalCode", unique=truetrue)})
classclass CustomerCustomer {

@PrimaryKey
publicpublic finalfinal String id;

publicpublic finalfinal String postalCode;
publicpublic finalfinal String displayName;

@Ignore
Customer(String postalCode, String displayName) {

thisthis(UUID.randomUUID().toString(), postalCode, displayName);
}

Customer(String id, String postalCode, String displayName) {
thisthis.id=id;
thisthis.postalCode=postalCode;
thisthis.displayName=displayName;

}
}

(from General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/Customer.java)

THE DAO OF ENTITIES

33

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/Customer.java

Perhaps to show a list of customers, we need the displayName (to show in the list)
and the id (to know which specific customer this is). But we do not need the
postalCode or the rest of the fields in the Customer class.

We can still return a Customer:

@Query("SELECT id, displayName FROM Customer WHERE postalCode IN (:postalCodes) LIMIT
:max")
List<Customer> findByPostalCodes(List<String> postalCodes, int max);

The code that Room generates will simply fill in null for the postalCode, since that
was not one of the returned columns. However, then it is not obvious whether a
given instance of Customer is completely filled in from data in the table (and it is
genuinely missing its postalCode) or whether this is a partially-populated Customer
object.

However, we could also define a dedicated CustomerDisplayTuple class:

packagepackage com.commonsware.android.room.dao;

publicpublic classclass CustomerDisplayTupleCustomerDisplayTuple {
publicpublic finalfinal String id;
publicpublic finalfinal String displayName;

publicpublic CustomerDisplayTuple(String id, String displayName) {
thisthis.id=id;
thisthis.displayName=displayName;

}
}

(from General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/CustomerDisplayTuple.java)

Then, we can return a List of CustomerDisplayTuple from our DAO:

@Query("SELECT id, displayName FROM Customer WHERE postalCode IN (:postalCodes) LIMIT :max")
List<CustomerDisplayTuple> loadDisplayTuplesByPostalCodes(int max, String... postalCodes);

(from General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java)

This way, we get our subset of data, and we know by class whether we have the full
Customer or just the subset for display purposes.

Note that @ColumnInfo annotations can be used on any class, not just entities. In
particular, if you use @ColumnInfo on a field in an entity, you will need the same

THE DAO OF ENTITIES

34

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/CustomerDisplayTuple.java
https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java

@ColumnInfo on any “tuple”-style classes that represent subsets of data that include
that same field.

Aggregate Functions

A @Query can also return an int, for simple aggregate functions:

@Query("SELECT COUNT(*) FROM Customer")
int getCustomerCount();

(from General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java)

If you wish to compute several aggregate functions, create a “tuple”-style class to
hold the values:

packagepackage com.commonsware.android.room.dao;

publicpublic classclass CustomerStatsCustomerStats {
publicpublic finalfinal int count;
publicpublic finalfinal String max;

publicpublic CustomerStats(int count, String max) {
thisthis.count=count;
thisthis.max=max;

}
}

(from General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/CustomerStats.java)

…and use AS to name the aggregate function “columns” to match the tuple:

@Query("SELECT COUNT(*) AS count, MAX(postalCode) AS max FROM Customer")
CustomerStats getCustomerStats();

(from General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java)

Dynamic Queries

Sometimes, you do not know the query at compile time.

One scenario for this is when you want to expose a Room-managed database via a
ContentProvider to third-party apps. You could document that you support a
limited set of options in your provider’s query() method, ones that you can map to
@Query methods on your DAO. Alternatively, you could generate a SQL statement

THE DAO OF ENTITIES

35

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java
https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/CustomerStats.java
https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java

using SQLiteQueryBuilder that supports what your table offers, but then you need
to somehow execute that statement and get a Cursor back.

For that, RoomDatabase has a query() method that is analogous to rawQuery() on a
SQLiteDatabase. Pass it the SQL statement and an Object array of position
parameters, and RoomDatabase will give you a Cursor back.

Other DAO Operations
To get data out of a database, generally it is useful to put data into it. We have seen
basic @Insert, @Update, and @Delete DAO methods on TripStore:

packagepackage com.commonsware.android.room;

importimport android.arch.persistence.room.Daoandroid.arch.persistence.room.Dao;
importimport android.arch.persistence.room.Deleteandroid.arch.persistence.room.Delete;
importimport android.arch.persistence.room.Insertandroid.arch.persistence.room.Insert;
importimport android.arch.persistence.room.OnConflictStrategyandroid.arch.persistence.room.OnConflictStrategy;
importimport android.arch.persistence.room.Queryandroid.arch.persistence.room.Query;
importimport android.arch.persistence.room.Updateandroid.arch.persistence.room.Update;
importimport java.util.Listjava.util.List;

@Dao
interfaceinterface TripStoreTripStore {

@Query("SELECT * FROM trips ORDER BY title")
List<Trip> selectAll();

@Query("SELECT * FROM trips WHERE id=:id")
Trip findById(String id);

@Insert
void insert(Trip... trips);

@Update
void update(Trip... trips);

@Delete
void delete(Trip... trips);

}

(from Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripStore.java)

Generally speaking, these scenarios are simpler than @Query. The @Insert, @Update,
and @Delete set up simple methods for inserting, updating, or deleting entities

THE DAO OF ENTITIES

36

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripStore.java

passed to their methods… and that is pretty much it. However, there are a few
additional considerations that we should explore.

Parameters

@Insert, @Update, and @Delete work with entities. TripStore uses varargs, so we can
pass zero, one, or several Trip objects, though passing zero objects would be a waste
of time.

However, in addition to varargs, you can have these methods accept:

• A single entity
• Individual entities as separate parameters (void insert(Trip trip1, Trip
trip2))

• A List of entities

Return Values

Frequently, you just have these methods return void.

However:

• For @Update and @Delete, you can have them return an int, which will be
the number of rows affected by the update or delete operation

• For an @Insert method accepting a single entity, you can have it return a
long which will be the ROWID of the entity (and, if you are using an auto-
increment int as your primary key, this will also be that key)

• For an @Insert method accepting multiple entities, you can have it return an
array of long objects or a List of Long objects, being the corresponding
ROWID values for those inserted entities

Conflict Resolution

@Insert and @Update support an optional onConflict property. This maps to
SQLite’s ON CONFLICT clause and indicates what should happen if there is either a
uniqueness violation (e.g., duplicate primary keys) or a NOT NULL violation when the
insert or update should occur.

The value of onConflict is an OnConflictStrategy value:

THE DAO OF ENTITIES

37

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://sqlite.org/lang_conflict.html
https://sqlite.org/lang_conflict.html

Value Meaning

OnConflictStrategy.ABORT
Cancel this statement but preserve prior results in

the transaction and keeps the transaction alive

OnConflictStrategy.FAIL
Like ABORT, but accepts prior changes by this specific

statement (e.g., if we fail on the 50th row to be
updated, keep the changes to the preceding 49)

OnConflictStrategy.IGNORE
Like FAIL, but continues processing this statement
(e.g., if we fail on the 50th row out of 100, keep the

changes to the other 99)

OnConflictStrategy.REPLACE
For uniqueness violations, deletes other rows that

would cause the violation before executing this
statement

OnConflictStrategy.ROLLBACK Rolls back the current transaction

The default strategy for @Insert and @Update is ABORT. You might want to consider
changing that to be ROLLBACK, particularly if you start using transactions:

@Insert(onConflict=OnConflictStrategy.ROLLBACK)
void insert(Trip... trips);

Other Operations

The primary problem with @Insert, @Update, and @Delete is that they need entities.
In part, that is so the DAO method knows what table to work against.

For anything else, use @Query. @Query does not only work with operations that
return result sets, but any SQL that you wish to execute.

So, for example, you could have:

@Query("DELETE FROM Customer")
void nukeCustomersFromOrbit();

…or:

@Query("DELETE FROM Customer WHERE id IN (:ids)")
int nukeCertainCustomersFromOrbit(String... ids);

(from General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java)

THE DAO OF ENTITIES

38

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java

…or INSERT INTO ... SELECT FROM ... syntax, or pretty much any other
combination that cannot be supported directly by @Insert, @Update, and @Delete
annotations directly.

Consider @Insert, @Update, and @Delete to be “convenience annotations” for entity-
based operations, where @Query is the backbone for your DAO methods.

Transactions and Room
Many times, we need to wrap a number of SQL statements into a transaction.
RoomDatabase offers the same beginTransaction(), endTransaction(), and
setTransactionSuccessful() methods that you see on SQLiteDatabase, and so you
use the same basic algorithm:

roomDb.beginTransaction();

trytry {
// bunch of DAO operations here
roomDb.setTransactionSuccessful();

}
finallyfinally {

roomDb.endTransaction();
}

Threads and Room
@Insert, @Update, and @Delete-annotated methods are synchronous, performing
their work on the current thread. Hence, they should only be called from a
background thread.

@Query methods that return entities, int, tuples, etc. directly also are synchronous.
However, @Query methods that return an RxJava type (e.g., Flowable) or a LiveData
are not synchronous. Instead, the real work will be performed on a background
thread.

As noted earlier, we will explore what this “LiveData” is later in the book. For now,
take it on faith that it is another piece of the Android Architecture Components, one
that offers an alternative to RxJava for reactive programming

THE DAO OF ENTITIES

39

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Room and Custom Types

So far, all of our fields have been basic primitives (int, float, etc.) or String. There
is a good reason for that: those are all that Room understands “out of the box”.
Everything else requires some amount of assistance on our part.

Sometimes, a field in an entity will be related to another entity. Those are relations,
and we will consider those in the next chapter.

However, sometimes our preferred Java entity implementation does not map directly
to primitives and String types. For example:

• What do we do with a Java Date or Calendar object? Do we want to store
that as a milliseconds-since-the-Unix-epoch value as a Java long? Do we
want to store a string representation in a standard format, for easier
readability (at the cost of disk space and other issues)?

• What do we do with a Location object? Here, we have two pieces: a latitude
and a longitude. Do we have two columns that combine into one field? Do
we convert the Location to and from a String representation?

• What do we do with collections of strings, such as lists of tags?
• What do we do with enums?

And so on.

In this chapter, we will explore two approaches for handling these things without
creating another entity class: type converters and embedded types.

41

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Type Converters
Type converters are a pair of methods, annotated with @TypeConverter, that map
the type for a single database column to a type for a Java field. So, for example, we
can:

• Map a Date field to a Long, which can go in a SQLite INTEGER column
• Map a Location field to a String, which can go in a SQLite TEXT column
• Map a collection of String values to a single String (e.g., comma-separated

values), which can go in a SQLite TEXT column
• And so forth

However, type converters offer only a 1:1 conversion: a single Java field to and from a
single SQLite column. If you have a single Java field that should map to several
SQLite columns, the @Embedded approach can handle that, as we will see later in this
chapter.

Setting Up a Type Converter

First, define a Java class somewhere. The name, package, superclass, etc. do not
matter.

Next, for each type to be converted, create two public static methods that convert
from one type to the other. So for example, you would have one public static
method that takes a Date and returns a Long (e.g., returning the milliseconds-since-
the-Unix-epoch value), and a counterpart method that takes a Long and returns a
Date. If the converter method is passed null, the proper result is null. Otherwise,
the conversion is whatever you want, so long as the “round trip” works, so that the
output of one converter method, supplied as input to the other converter method,
returns the original value.

Then, each of those methods get the @TypeConverter annotation. The method
names do not matter, so pick a convention that works for you.

Finally, you add a @TypeConverters annotation, listing this and any other type
converter classes, to… something. What the “something” is controls the scope of
where that type converter can be used.

The simple solution is to add @TypeConverters to the RoomDatabase, which means
that anything associated with that database can use those type converters. However,

ROOM AND CUSTOM TYPES

42

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

sometimes, you may have situations where you want different conversions between
the same pair of types, for whatever reason. In that case, you can put the
@TypeConverters annotations on narrower scopes:

@TypeConverters@TypeConverters Location Affected Areas

Entity class all fields in the entity

Entity field that one field in the entity

DAO class all methods in the DAO

DAO method that one method in the DAO, for all parameters

DAO method parameter that one parameter on that one method

POJO all fields on the POJO

The General/RoomTypes sample project illustrates the use of type converters. As
with the RoomDao project from the preceding chapter, this project contains a single
library module with an associated instrumentation test case. In fact, it is a clone of
the RoomDao project, just with some type converters.

Example: Dates and Times

A typical way of storing a date/time value in a database is to use the number of
milliseconds since the Unix epoch (i.e., the number of milliseconds since midnight, 1
January 1970). Date has a getTime() method that returns this value.

So, the project has a TypeTransmogrifiers class that contains two methods, each
annotated with @TypeConverter, for converting Date to and from a Long:

@TypeConverter
publicpublic staticstatic Long fromDate(Date date) {

ifif (date==nullnull) {
returnreturn(nullnull);

}

returnreturn(date.getTime());
}

@TypeConverter
publicpublic staticstatic Date toDate(Long millisSinceEpoch) {

ifif (millisSinceEpoch==nullnull) {
returnreturn(nullnull);

}

returnreturn(newnew Date(millisSinceEpoch));
}

ROOM AND CUSTOM TYPES

43

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-androidarch/tree/master/General/RoomTypes
http://github.com/commonsguy/cw-androidarch/tree/master/General/RoomTypes

(from General/RoomTypes/stuff/src/main/java/com/commonsware/android/room/dao/TypeTransmogrifier.java)

StuffDatabase then has the @TypeConverters annotation, listing
TypeTransmogrifier as the one class that has type conversion methods:

packagepackage com.commonsware.android.room.dao;

importimport android.arch.persistence.room.Databaseandroid.arch.persistence.room.Database;
importimport android.arch.persistence.room.Roomandroid.arch.persistence.room.Room;
importimport android.arch.persistence.room.RoomDatabaseandroid.arch.persistence.room.RoomDatabase;
importimport android.arch.persistence.room.TypeConvertersandroid.arch.persistence.room.TypeConverters;
importimport android.content.Contextandroid.content.Context;

@Database(
entities={Customer.class, VersionedThingy.class},
version=1

)
@TypeConverters({TypeTransmogrifier.class})
abstractabstract classclass StuffDatabaseStuffDatabase extendsextends RoomDatabase {

abstractabstract StuffStore stuffStore();

privateprivate staticstatic finalfinal String DB_NAME="stuff.db";
privateprivate staticstatic volatilevolatile StuffDatabase INSTANCE=nullnull;

synchronizedsynchronized staticstatic StuffDatabase get(Context ctxt) {
ifif (INSTANCE==nullnull) {

INSTANCE=create(ctxt, falsefalse);
}

returnreturn(INSTANCE);
}

staticstatic StuffDatabase create(Context ctxt, boolean memoryOnly) {
RoomDatabase.Builder<StuffDatabase> b;

ifif (memoryOnly) {
b=Room.inMemoryDatabaseBuilder(ctxt.getApplicationContext(),

StuffDatabase.class);
}
elseelse {

b=Room.databaseBuilder(ctxt.getApplicationContext(), StuffDatabase.class,
DB_NAME);

}

returnreturn(b.build());
}

}

ROOM AND CUSTOM TYPES

44

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/RoomTypes/stuff/src/main/java/com/commonsware/android/room/dao/TypeTransmogrifier.java

(from General/RoomTypes/stuff/src/main/java/com/commonsware/android/room/dao/StuffDatabase.java)

Now, classes like Customer can use Date fields, which will be stored in INTEGER
columns in the database.

CREATECREATE TABLETABLE IF NOTNOT EXISTSEXISTS Customer (id TEXT, postalCode TEXT, displayName TEXT,
creationDate INTEGER, PRIMARYPRIMARY KEYKEY(`id`))

Example: Locations

A Location object contains a latitude, longitude, and perhaps other values (e.g.,
altitude). If we only care about the latitude and longitude, we could save those in
the database in a single TEXT column, so long as we can determine a good format to
use for that string. If we use Locale.US formatting for the latitude and longitude, so
that the decimal place is denoted by a ., we could use a two-element comma-
separated values list for the string.

That is what these two type converter methods on TypeTransmogrifiers do:

@TypeConverter
publicpublic staticstatic String fromLocation(Location location) {

ifif (location==nullnull) {
returnreturn(nullnull);

}

returnreturn(String.format(Locale.US, "%f,%f", location.getLatitude(),
location.getLongitude()));

}

@TypeConverter
publicpublic staticstatic Location toLocation(String latlon) {

ifif (latlon==nullnull) {
returnreturn(nullnull);

}

String[] pieces=latlon.split(",");
Location result=newnew Location("");

result.setLatitude(Double.parseDouble(pieces[0]));
result.setLongitude(Double.parseDouble(pieces[1]));

returnreturn(result);
}

(from General/RoomTypes/stuff/src/main/java/com/commonsware/android/room/dao/TypeTransmogrifier.java)

ROOM AND CUSTOM TYPES

45

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/RoomTypes/stuff/src/main/java/com/commonsware/android/room/dao/StuffDatabase.java
https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/RoomTypes/stuff/src/main/java/com/commonsware/android/room/dao/TypeTransmogrifier.java

Since TypeTransmogrifiers is registered on the StuffDatabase, a Customer could
have a Location field, which would be mapped to a TEXT column in the database:

CREATECREATE TABLETABLE IF NOTNOT EXISTSEXISTS Customer (id TEXT, postalCode TEXT, displayName TEXT,
creationDate INTEGER, officeLocation TEXT, PRIMARYPRIMARY KEYKEY(`id`))

However, the downside of using this approach is that we cannot readily search based
on location. If your location data is not a searchable field, and it merely needs to be
available when you load your entities from the database, using a type converter like
this is fine. Later in this chapter, we will see another approach (@Embedded) that
allows us to store the latitude and longitude as separate columns while still mapping
them to a single POJO in Java.

Example: Simple Collections

TEXT and BLOB columns are very flexible. So long as you can marshal your data into a
String or byte array, you can save that data in TEXT and BLOB columns. As with the
comma-separated values approach in the preceding section, though, columns used
this way are poor for searching.

So, suppose that you have a Set of String values that you want to store, perhaps
representing tags to associate with an entity. One approach is to have a separate Tag
entity and set up a relation. This is the best approach in many cases. But, perhaps
you do not want to do that for some reason.

You can use a type converter, but you need to decide how to represent your data in a
column. If you are certain that the tags will not contain some specific character (e.g.,
a comma), you can use the delimited-list approach demonstrated with locations in
the preceding section. If you need more flexibility than that, you can always use
JSON encoding, as these type converters do:

@TypeConverter
publicpublic staticstatic String fromStringSet(Set<String> strings) {

ifif (strings==nullnull) {
returnreturn(nullnull);

}

StringWriter result=newnew StringWriter();
JsonWriter json=newnew JsonWriter(result);

trytry {
json.beginArray();

ROOM AND CUSTOM TYPES

46

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

forfor (String s : strings) {
json.value(s);

}

json.endArray();
json.close();

}
catchcatch (IOException e) {

Log.e(TAG, "Exception creating JSON", e);
}

returnreturn(result.toString());
}

@TypeConverter
publicpublic staticstatic Set<String> toStringSet(String strings) {

ifif (strings==nullnull) {
returnreturn(nullnull);

}

StringReader reader=newnew StringReader(strings);
JsonReader json=newnew JsonReader(reader);
HashSet<String> result=newnew HashSet<>();

trytry {
json.beginArray();

whilewhile (json.hasNext()) {
result.add(json.nextString());

}

json.endArray();
}
catchcatch (IOException e) {

Log.e(TAG, "Exception parsing JSON", e);
}

returnreturn(result);
}

(from General/RoomTypes/stuff/src/main/java/com/commonsware/android/room/dao/TypeTransmogrifier.java)

Here, we use the JsonReader and JsonWriter classes that have been part of Android
since API Level 11. Alternatively, you could use a third-party JSON library (e.g.,
Gson).

ROOM AND CUSTOM TYPES

47

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/RoomTypes/stuff/src/main/java/com/commonsware/android/room/dao/TypeTransmogrifier.java

Note that type converter methods cannot throw checked exceptions, as the Room
code generator does not wrap type converter calls in a try/catch block. Here, the
IOExceptions should never happen, since we are working with strings, not files or
other types of streams. In other cases, though, you may need to wrap the checked
exception in some form of RuntimeException and throw that, to trigger your app’s
unhandled-exception logic, as it is unlikely that you can recover from within a type
converter method.

But, given these type conversion methods, we can now use a Set of String values in
Customer:

packagepackage com.commonsware.android.room.dao;

importimport android.arch.persistence.room.Entityandroid.arch.persistence.room.Entity;
importimport android.arch.persistence.room.Ignoreandroid.arch.persistence.room.Ignore;
importimport android.arch.persistence.room.Indexandroid.arch.persistence.room.Index;
importimport android.arch.persistence.room.PrimaryKeyandroid.arch.persistence.room.PrimaryKey;
importimport android.location.Locationandroid.location.Location;
importimport java.util.Datejava.util.Date;
importimport java.util.HashSetjava.util.HashSet;
importimport java.util.Setjava.util.Set;
importimport java.util.UUIDjava.util.UUID;

@Entity(indices={@Index(value="postalCode", unique=truetrue)})
classclass CustomerCustomer {

@PrimaryKey
publicpublic finalfinal String id;

publicpublic finalfinal String postalCode;
publicpublic finalfinal String displayName;
publicpublic finalfinal Date creationDate;
publicpublic finalfinal Location officeLocation;
publicpublic finalfinal Set<String> tags;

@Ignore
Customer(String postalCode, String displayName, Location officeLocation,

Set<String> tags) {
thisthis(UUID.randomUUID().toString(), postalCode, displayName, newnew Date(),

officeLocation, tags);
}

Customer(String id, String postalCode, String displayName, Date creationDate,
Location officeLocation, Set<String> tags) {

thisthis.id=id;
thisthis.postalCode=postalCode;
thisthis.displayName=displayName;

ROOM AND CUSTOM TYPES

48

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

thisthis.creationDate=creationDate;
thisthis.officeLocation=officeLocation;
thisthis.tags=tags;

}
}

(from General/RoomTypes/stuff/src/main/java/com/commonsware/android/room/dao/Customer.java)

…where the tags will be stored in a TEXT column:

CREATECREATE TABLETABLE IF NOTNOT EXISTSEXISTS Customer (id TEXT, postalCode TEXT, displayName TEXT,
creationDate INTEGER, officeLocation TEXT, tags TEXT, PRIMARYPRIMARY KEYKEY(`id`))

Embedded Types
With type converters, we are teaching Room how to deal with custom types, but we
are limited to mapping from one field to one column. That field might be complex,
but it still goes into one column in the table.

What happens, though, when we have multiple columns that should combine to
create a single field?

In that case, we can use the @Embedded annotation on some POJO, then use that
POJO as a type in an entity.

Example: Locations

For example, as was noted earlier in this chapter, cramming a location into a single
TEXT field works, but we cannot readily query on the resulting field. If we want to
query for locations near some location in the database, it would be much more
convenient to have the latitude and longitude stored as individual REAL columns.
But, using type converters, we cannot map two columns to one field.

With @Embedded, we can, as we can see in the General/RoomEmbedded sample
project. This is a clone of the RoomTypes project from earlier in this chapter, where
we have changed Customer to have the officeLocation be represented by a
LocationColumns POJO:

packagepackage com.commonsware.android.room.dao;

importimport android.arch.persistence.room.Embeddedandroid.arch.persistence.room.Embedded;
importimport android.arch.persistence.room.Entityandroid.arch.persistence.room.Entity;
importimport android.arch.persistence.room.Ignoreandroid.arch.persistence.room.Ignore;
importimport android.arch.persistence.room.Indexandroid.arch.persistence.room.Index;

ROOM AND CUSTOM TYPES

49

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/RoomTypes/stuff/src/main/java/com/commonsware/android/room/dao/Customer.java
http://github.com/commonsguy/cw-androidarch/tree/master/General/RoomEmbedded
http://github.com/commonsguy/cw-androidarch/tree/master/General/RoomEmbedded

importimport android.arch.persistence.room.PrimaryKeyandroid.arch.persistence.room.PrimaryKey;
importimport android.location.Locationandroid.location.Location;
importimport java.util.Datejava.util.Date;
importimport java.util.HashSetjava.util.HashSet;
importimport java.util.Setjava.util.Set;
importimport java.util.UUIDjava.util.UUID;

@Entity(indices={@Index(value="postalCode", unique=truetrue)})
classclass CustomerCustomer {

@PrimaryKey
publicpublic finalfinal String id;

publicpublic finalfinal String postalCode;
publicpublic finalfinal String displayName;
publicpublic finalfinal Date creationDate;

@Embedded
publicpublic finalfinal LocationColumns officeLocation;

publicpublic finalfinal Set<String> tags;

@Ignore
Customer(String postalCode, String displayName, LocationColumns officeLocation,

Set<String> tags) {
thisthis(UUID.randomUUID().toString(), postalCode, displayName, newnew Date(),

officeLocation, tags);
}

Customer(String id, String postalCode, String displayName, Date creationDate,
LocationColumns officeLocation, Set<String> tags) {

thisthis.id=id;
thisthis.postalCode=postalCode;
thisthis.displayName=displayName;
thisthis.creationDate=creationDate;
thisthis.officeLocation=officeLocation;
thisthis.tags=tags;

}
}

(from General/RoomEmbedded/stuff/src/main/java/com/commonsware/android/room/dao/Customer.java)

The @Embedded annotation tells Room to combine the columns from the annotated
type into the table for this entity. In this case, LocationColumns has two fields, for
latitude and longitude:

packagepackage com.commonsware.android.room.dao;

publicpublic classclass LocationColumnsLocationColumns {
publicpublic finalfinal double latitude;
publicpublic finalfinal double longitude;

publicpublic LocationColumns(double latitude, double longitude) {
thisthis.latitude=latitude;
thisthis.longitude=longitude;

ROOM AND CUSTOM TYPES

50

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/RoomEmbedded/stuff/src/main/java/com/commonsware/android/room/dao/Customer.java

}
}

(from General/RoomEmbedded/stuff/src/main/java/com/commonsware/android/room/dao/LocationColumns.java)

LocationColumns itself is a POJO, not an entity, though you can use @ColumnInfo
annotations if needed to rename the columns associated with the POJO’s fields.

Now, Room will use individual REAL columns for our latitude and longitude:

CREATECREATE TABLETABLE IF NOTNOT EXISTSEXISTS Customer (id TEXT, postalCode TEXT, displayName TEXT,
creationDate INTEGER, tags TEXT, latitude REAL, longitude REAL, PRIMARYPRIMARY KEYKEY(id))

…and we can query on those:

@Query("SELECT * FROM Customer WHERE ABS(latitude-:lat)<.000001 AND ABS(longitude-:lon)<.000001")
List<Customer> findCustomersAt(double lat, double lon);

(from General/RoomEmbedded/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java)

Simple vs. Prefixed

What happens if we need two locations, though? Perhaps we need officeLocation
and affiliateLocation, or something like that.

By default, Room generates column names based on the @Embedded POJO’s field
names, perhaps modified by @ColumnInfo annotations on the POJO. In this case,
though, if we have two LocationColumns fields in the Customer entity, we would
wind up with two latitude and two longitude columns, which neither Room nor
SQLite will support.

To address this, the @Embedded annotation accepts an optional prefix property:

@Embedded(prefix = "office_")
publicpublic finalfinal LocationColumns officeLocation;

The columns for that POJO will have the prefix added:

CREATECREATE TABLETABLE IF NOTNOT EXISTSEXISTS Customer (id TEXT, postalCode TEXT, displayName TEXT,
creationDate INTEGER, tags TEXT, office_latitude REAL, office_longitude REAL, PRIMARYPRIMARY
KEYKEY(id))

Hence, having two LocationColumns simply means that one or both need to use
distinct prefix values.

ROOM AND CUSTOM TYPES

51

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/RoomEmbedded/stuff/src/main/java/com/commonsware/android/room/dao/LocationColumns.java
https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/RoomEmbedded/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java

However, bear in mind that this changes the column names, so you will also need to
adjust any @Query method that references those names, so that you use the
appropriate prefix.

Updating the Trip Sample
Back in the chapter on Room basics, we started in on an app to track upcoming
travel. The Trips/RoomConverters sample project extends that app with four new
fields on Trip:

• priority, representing how important the trip is to the user
• startTime, indicating when the trip is to begin
• creationTime, indicating when the Trip was first created… somewhere
• updateTime, indicating when the Trip was last changed… somewhere

Those latter two are largely ignored for the moment, though they will become more
important later in the book.

The latter three are all Date fields, and so we need to have some code to support
getting them into and out of our table. So, this project has a TypeTransmogrifier
class, akin to the ones seen above, but right now only with the Date converters:

packagepackage com.commonsware.android.room;

importimport android.arch.persistence.room.TypeConverterandroid.arch.persistence.room.TypeConverter;
importimport java.util.Datejava.util.Date;

publicpublic classclass TypeTransmogrifierTypeTransmogrifier {
@TypeConverter
publicpublic staticstatic Long fromDate(Date date) {

ifif (date==nullnull) {
returnreturn(nullnull);

}

returnreturn(date.getTime());
}

@TypeConverter
publicpublic staticstatic Date toDate(Long millisSinceEpoch) {

ifif (millisSinceEpoch==nullnull) {
returnreturn(nullnull);

}

ROOM AND CUSTOM TYPES

52

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-androidarch/tree/master/Trips/RoomConverters
http://github.com/commonsguy/cw-androidarch/tree/master/Trips/RoomConverters

returnreturn(newnew Date(millisSinceEpoch));
}

}

(from Trips/RoomConverters/app/src/main/java/com/commonsware/android/room/TypeTransmogrifier.java)

priority, though, is an enum, as there is a list of valid values:

packagepackage com.commonsware.android.room;

importimport android.arch.persistence.room.TypeConverterandroid.arch.persistence.room.TypeConverter;

enumenum Priority {
LOW(0), MEDIUM(1), HIGH(2), OMG(3);

privateprivate finalfinal int level;

@TypeConverter
publicpublic staticstatic Priority fromLevel(Integer level) {

forfor (Priority p : values()) {
ifif (p.level==level) {

returnreturn(p);
}

}

returnreturn(nullnull);
}

@TypeConverter
publicpublic staticstatic Integer fromPriority(Priority p) {

returnreturn(p.level);
}

Priority(int level) {
thisthis.level=level;

}
}

(from Trips/RoomConverters/app/src/main/java/com/commonsware/android/room/Priority.java)

Here, we implement the @TypeConverter methods right on Priority, as there is
little value in having them elsewhere. Note that the enum assigns explicit numeric
values to the priorities (level). That way, we are in control over the mapping
between Priority values and their representation in the database.

Rather than apply these type converters on the TripDatabase (though we could), we
instead apply them on the Trip model:

ROOM AND CUSTOM TYPES

53

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/Trips/RoomConverters/app/src/main/java/com/commonsware/android/room/TypeTransmogrifier.java
https://github.com/commonsguy/cw-androidarch/tree/v0.2/Trips/RoomConverters/app/src/main/java/com/commonsware/android/room/Priority.java

packagepackage com.commonsware.android.room;

importimport android.arch.persistence.room.Entityandroid.arch.persistence.room.Entity;
importimport android.arch.persistence.room.Ignoreandroid.arch.persistence.room.Ignore;
importimport android.arch.persistence.room.PrimaryKeyandroid.arch.persistence.room.PrimaryKey;
importimport android.arch.persistence.room.TypeConvertersandroid.arch.persistence.room.TypeConverters;
importimport java.util.Datejava.util.Date;
importimport java.util.UUIDjava.util.UUID;

@Entity(tableName = "trips")
@TypeConverters({TypeTransmogrifier.class})
classclass TripTrip {

@PrimaryKey
publicpublic finalfinal String id;

publicpublic finalfinal String title;
publicpublic finalfinal int duration;

@TypeConverters({Priority.class})
publicpublic finalfinal Priority priority;

publicpublic finalfinal Date startTime;
publicpublic finalfinal Date creationTime;
publicpublic finalfinal Date updateTime;

@Ignore
Trip(String title, int duration, Priority priority, Date startTime) {

thisthis(UUID.randomUUID().toString(), title, duration, priority, startTime,
nullnull, nullnull);

}

Trip(String id, String title, int duration, Priority priority,
Date startTime, Date creationTime, Date updateTime) {

thisthis.id=id;
thisthis.title=title;
thisthis.duration=duration;
thisthis.priority=priority;
thisthis.startTime=startTime;
thisthis.creationTime=creationTime;
thisthis.updateTime=updateTime;

}

@Override
publicpublic String toString() {

returnreturn(title);
}

}

ROOM AND CUSTOM TYPES

54

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

(from Trips/RoomConverters/app/src/main/java/com/commonsware/android/room/Trip.java)

The Priority type converters are applied specific to the priority field, as this
specific conversion is only needed here. The TypeTransmogrifier is registered on
the Trip class, as there are multiple Date fields.

ROOM AND CUSTOM TYPES

55

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/Trips/RoomConverters/app/src/main/java/com/commonsware/android/room/Trip.java

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Room and Relations

SQLite is a relational database. At some point, Room should support relations.
Right?

Right?!?

Well, actually, the story is a bit more complicated than that. Yes, Room supports
entities being related to other content in other tables. Room does not support
entities being directly related to other entities, though.

And if that sounds strange, there is “a method to the madness”.

In this chapter, we will explore how you implement relational structures with Room
and why Room has the restrictions that it does.

The Classic ORM Approach
Java ORMs have long supported entities having relations to other entities, though
not every ORM uses the “entity” term.

One Android ORM that does is greenDAO. It allows you to use annotations to
indicate relations, such as:

@Entity
publicpublic classclass ThingyThingy {

@Id privateprivate Long id;

privateprivate long otherThingyId;

@ToOne(joinProperty="otherThingyId")

57

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://greenrobot.org/greendao

privateprivate OtherThingy otherThingy;

// other good stuff here
}

@Entity
publicpublic classclass OtherThingyOtherThingy {

@ID privateprivate Long id;
}

These annotations result in getOtherThingy() and setOtherThingy() methods to
be synthetically added to Thingy (or, more accurately, to a hidden subclass of
Thingy, but for the purposes of this section, we will ignore that). Which
OtherThingy our Thingy relates to is tied to that otherThingyId field, which is
stored as a column in the table. When you call getOtherThingy(), greenDAO will
query the database to load in the OtherThingy instance, assuming that it has not
been cached already.

That is where the threading problem creeps in.

A History of Threading Mistakes
In Android app development, we are constantly having to fight to keep disk I/O off
of the main application thread. Every millisecond that our code executes on the
main application thread is a millisecond that the main application thread is not
updating our UI. Disk I/O — such as queries on complex structures – can easily take
dozens or hundreds of milliseconds, particularly on older or low-end devices. As a
result, we freeze our UI while that disk I/O is occurring, possibly resulting in visual
“jank” for the user. Our objective is to move as much disk I/O as possible off the
main application thread.

The problem is that the nice encapsulation that we get from object-oriented
programming also encapsulates knowledge of whether disk I/O will be done when
we call a particular method.

Classic use of SQLiteDatabase encounters this with the rawQuery()/query() family
of methods. They return a Cursor. You might think — reasonably – that those
methods execute the SQL query that you request. In truth, they do not. All they do
is create a SQLiteCursor instance that holds onto the query and the
SQLiteDatabase. Later, when you call a method that requires the actual query result
(e.g., getCount(), to get the number of returned rows), then the query is executed
against the database. As a result, all the work that you do to call rawQuery() or

ROOM AND RELATIONS

58

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

query() on a background thread gets wasted if you do not also do something to
force the query to be executed on that same background thread. Otherwise, you may
wind up with the query being executed on the main application thread, with
impacts on the UI.

greenDAO relations can work the same way. If you retrieve your Thingy on a
background thread, then call getOtherThingy() on the main application thread,
depending on what else has all occurred, getOtherThingy() might need to perform
a database query… which you do not want on the main application thread.

The Room Approach
Room behaves a bit like other annotation-based Android ORMs, but when it comes
to relations, Room departs from norms, in an effort to reduce the likelihood of
threading problems.

No Direct Entity References

Unlike the greenDAO example above, with Room, a Thingy cannot have a field for
an OtherThingy that Room is expected to manage. You could have a field for an
OtherThingy marked as @Ignore, but then you are on your own for dealing with that
field.

The implication of an entity referencing another entity directly is that developers
would expect that when Room retrieves the outer entity, that Room either will
automatically retrieve the inner entity or will retrieve it lazily later on. The former
approach avoids threading issues but runs the risk of loading more data than is
necessary. The latter approach runs the risk of trying to do disk I/O on the main
application thread.

Foreign Keys

This does not mean that you cannot have foreign keys. Room fully supports foreign
key relationships, by way of a @ForeignKey annotation. This sets up the foreign keys
in the appropriate tables… but that’s about it. Room does very little else with these
keys.

ROOM AND RELATIONS

59

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Cascades on Updates and Deletes

Part of what you can place on a @ForeignKey annotation are onUpdate and onDelete
properties. These indicate what actions should be taken on this entity when the
parent of the foreign key relationship is updated or deleted. There are five
possibilities, denoted by ForeignKey constants:

Constant
Name

If the Parent Is Updated or Deleted…

NO_ACTION …do nothing

CASCADE …update or delete the child

RESTRICT
…fail the parent’s update or delete operation, unless there are no

children

SET_NULL …set the foreign key value to null

SET_DEFAULT …set the foreign key value to the column(s) default value

NO_ACTION is the default, though CASCADE will be a popular choice.

Cascades on… Retrievals?

You cannot have an entity automatically retrieve related objects via a @Query.

You can have an arbitrary POJO automatically retrieve related objects via a @Query,
by means of a @Relation annotation.

This seeming inconsistency will be explored later in this chapter.

Plans for Trips
Let’s explore how @ForeignKey works by adding some more entities to the trip-
tracking app, as seen in the Trips/RoomRelations sample project.

The app itself does not make use of these new changes in its fledgling UI — we will
address that much later in the book. This sample also drops off the mock-database
unit tests. For now, the focus is on adding the necessary Room bits and updating the
instrumentation tests.

ROOM AND RELATIONS

60

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-androidarch/tree/master/Trips/RoomRelations
http://github.com/commonsguy/cw-androidarch/tree/master/Trips/RoomRelations

The Domain Model

In the beginning, we had just the Trip entity. However, a trip is made up of lots of
pieces, so in this sample, we add two more: flights and lodgings. Not surprisingly,
these come in the form of Flight and Lodging entity classes. A Trip can have zero
or more related Flight instances and zero or more related Lodging instances.

However, many of the pieces of data that we need to track for these things – title,
duration, start time, etc. — are in common. So, we will pull those things into an
abstract base class named Plan, from which Trip, Flight, and Lodging will all
inherit.

The New Entities

As a result, Plan itself is pretty much what Trip used to be:

packagepackage com.commonsware.android.room;

importimport android.arch.persistence.room.Ignoreandroid.arch.persistence.room.Ignore;
importimport android.arch.persistence.room.PrimaryKeyandroid.arch.persistence.room.PrimaryKey;
importimport android.arch.persistence.room.TypeConvertersandroid.arch.persistence.room.TypeConverters;
importimport java.util.Datejava.util.Date;
importimport java.util.UUIDjava.util.UUID;

abstractabstract classclass PlanPlan {
@PrimaryKey
publicpublic finalfinal String id;

publicpublic finalfinal String title;
publicpublic finalfinal int duration;

@TypeConverters({Priority.class})
publicpublic finalfinal Priority priority;

publicpublic finalfinal Date startTime;
publicpublic finalfinal Date creationTime;
publicpublic finalfinal Date updateTime;

@Ignore
Plan(String title, int duration, Priority priority, Date startTime) {

thisthis(UUID.randomUUID().toString(), title, duration, priority, startTime,
nullnull, nullnull);

}

Plan(String id, String title, int duration, Priority priority,

ROOM AND RELATIONS

61

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Date startTime, Date creationTime, Date updateTime) {
thisthis.id=id;
thisthis.title=title;
thisthis.duration=duration;
thisthis.priority=priority;
thisthis.startTime=startTime;
thisthis.creationTime=creationTime;
thisthis.updateTime=updateTime;

}

@Override
publicpublic String toString() {

returnreturn(title);
}

}

(from Trips/RoomRelations/app/src/main/java/com/commonsware/android/room/Plan.java)

Note that while we have the Priority TypeConverter registered for the Priority
field, we do not have the TypeTransmogrifier registered on the Plan class, the way
we had it for Trip. That is due to a limitation in Room, whereby class-level
@TypeConverters annotations are not inherited, though field-level ones are.

Instead, the TypeTransmogrifier @TypeConverters annotation appears on our rump
Trip class:

packagepackage com.commonsware.android.room;

importimport android.arch.persistence.room.Entityandroid.arch.persistence.room.Entity;
importimport android.arch.persistence.room.Ignoreandroid.arch.persistence.room.Ignore;
importimport android.arch.persistence.room.PrimaryKeyandroid.arch.persistence.room.PrimaryKey;
importimport android.arch.persistence.room.TypeConvertersandroid.arch.persistence.room.TypeConverters;
importimport java.util.Datejava.util.Date;
importimport java.util.UUIDjava.util.UUID;

@Entity(tableName = "trips")
@TypeConverters({TypeTransmogrifier.class})
classclass TripTrip extendsextends Plan {

@Ignore
Trip(String title, int duration, Priority priority, Date startTime) {

supersuper(title, duration, priority, startTime);
}

Trip(String id, String title, int duration,
Priority priority, Date startTime, Date creationTime,
Date updateTime) {

supersuper(id, title, duration, priority, startTime, creationTime, updateTime);

ROOM AND RELATIONS

62

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/Trips/RoomRelations/app/src/main/java/com/commonsware/android/room/Plan.java
https://issuetracker.google.com/issues/62859504

}
}

(from Trips/RoomRelations/app/src/main/java/com/commonsware/android/room/Trip.java)

The relations that we are setting up from Trip to Flight and Lodging are 1:N
relations. As such, the parent (Trip) does not need any foreign keys. Those are held
by the children of the relation… such as Lodging:

packagepackage com.commonsware.android.room;

importimport android.arch.persistence.room.Entityandroid.arch.persistence.room.Entity;
importimport android.arch.persistence.room.ForeignKeyandroid.arch.persistence.room.ForeignKey;
importimport android.arch.persistence.room.Ignoreandroid.arch.persistence.room.Ignore;
importimport android.arch.persistence.room.Indexandroid.arch.persistence.room.Index;
importimport android.arch.persistence.room.TypeConvertersandroid.arch.persistence.room.TypeConverters;
importimport java.util.Datejava.util.Date;
importimport staticstatic android.arch.persistence.room.ForeignKey.CASCADE;

@Entity(
tableName="lodgings",
foreignKeys=@ForeignKey(

entity=Trip.class,
parentColumns="id",
childColumns="tripId",
onDelete=CASCADE),

indices=@Index("tripId"))
@TypeConverters({TypeTransmogrifier.class})
classclass LodgingLodging extendsextends Plan {

publicpublic finalfinal String address;
publicpublic finalfinal String tripId;

@Ignore
Lodging(String title, int duration, Priority priority, Date startTime,

String address, String tripId) {
supersuper(title, duration, priority, startTime);
thisthis.address=address;
thisthis.tripId=tripId;

}

Lodging(String id, String title, int duration,
Priority priority, Date startTime, Date creationTime,
Date updateTime, String address, String tripId) {

supersuper(id, title, duration, priority, startTime, creationTime, updateTime);
thisthis.address=address;
thisthis.tripId=tripId;

ROOM AND RELATIONS

63

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/Trips/RoomRelations/app/src/main/java/com/commonsware/android/room/Trip.java

}
}

(from Trips/RoomRelations/app/src/main/java/com/commonsware/android/room/Lodging.java)

Here, Lodging also extends from Plan, adding two fields, one to track the address of
the hotel (or whatever) and the tripId of the Trip that contains this Lodging. That
tripId field is then referenced in the @ForeignKey annotation,which:

• Sets up the relation as being with Trip (entity=Trip.class)
• Ties the id column on Trip (parentColumns="id") to the tripId on Lodging

(childColumns="tripId")
• Indicates that if the Trip is deleted, associated Lodging instances should also

be deleted (onDelete=CASCADE)

Lodging also sets up an index on tripId (indices=@Index("tripId")). Querying on
tripId will be fairly common, as we look up the Lodging instances associated with a
given Trip. Hence, typically you will want to set up an index on your foreign keys.
Room will even warn you about this, if you examine the Gradle Console output from
a build.

Flight works similarly:

packagepackage com.commonsware.android.room;

importimport android.arch.persistence.room.Entityandroid.arch.persistence.room.Entity;
importimport android.arch.persistence.room.ForeignKeyandroid.arch.persistence.room.ForeignKey;
importimport android.arch.persistence.room.Ignoreandroid.arch.persistence.room.Ignore;
importimport android.arch.persistence.room.Indexandroid.arch.persistence.room.Index;
importimport android.arch.persistence.room.TypeConvertersandroid.arch.persistence.room.TypeConverters;
importimport java.util.Datejava.util.Date;
importimport staticstatic android.arch.persistence.room.ForeignKey.CASCADE;

@Entity(
tableName="flights",
foreignKeys=@ForeignKey(

entity=Trip.class,
parentColumns="id",
childColumns="tripId",
onDelete=CASCADE),

indices=@Index("tripId"))
@TypeConverters({TypeTransmogrifier.class})
classclass FlightFlight extendsextends Plan {

publicpublic finalfinal String departingAirport;
publicpublic finalfinal String arrivingAirport;

ROOM AND RELATIONS

64

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/Trips/RoomRelations/app/src/main/java/com/commonsware/android/room/Lodging.java

publicpublic finalfinal String airlineCode;
publicpublic finalfinal String flightNumber;
publicpublic finalfinal String seatNumber;
publicpublic finalfinal String tripId;

@Ignore
Flight(String title, int duration, Priority priority, Date startTime,

String departingAirport, String arrivingAirport, String airlineCode,
String flightNumber, String seatNumber, String tripId) {

supersuper(title, duration, priority, startTime);
thisthis.departingAirport=departingAirport;
thisthis.arrivingAirport=arrivingAirport;
thisthis.airlineCode=airlineCode;
thisthis.flightNumber=flightNumber;
thisthis.seatNumber=seatNumber;
thisthis.tripId=tripId;

}

Flight(String id, String title, int duration,
Priority priority, Date startTime, Date creationTime,
Date updateTime, String departingAirport, String arrivingAirport,
String airlineCode, String flightNumber, String seatNumber,
String tripId) {

supersuper(id, title, duration, priority, startTime, creationTime, updateTime);
thisthis.departingAirport=departingAirport;
thisthis.arrivingAirport=arrivingAirport;
thisthis.airlineCode=airlineCode;
thisthis.flightNumber=flightNumber;
thisthis.seatNumber=seatNumber;
thisthis.tripId=tripId;

}
}

(from Trips/RoomRelations/app/src/main/java/com/commonsware/android/room/Flight.java)

The Updated DAO and Database

Since we added new entities, TripDatabase needs to know about them, via the
entities property on the @Database annotation:

packagepackage com.commonsware.android.room;

importimport android.arch.persistence.room.Databaseandroid.arch.persistence.room.Database;
importimport android.arch.persistence.room.Roomandroid.arch.persistence.room.Room;
importimport android.arch.persistence.room.RoomDatabaseandroid.arch.persistence.room.RoomDatabase;
importimport android.content.Contextandroid.content.Context;

ROOM AND RELATIONS

65

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/Trips/RoomRelations/app/src/main/java/com/commonsware/android/room/Flight.java

@Database(
entities={Trip.class, Lodging.class, Flight.class},
version=2

)
abstractabstract classclass TripDatabaseTripDatabase extendsextends RoomDatabase {

abstractabstract TripStore tripStore();

privateprivate staticstatic finalfinal String DB_NAME="trips.db";
privateprivate staticstatic volatilevolatile TripDatabase INSTANCE=nullnull;

synchronizedsynchronized staticstatic TripDatabase get(Context ctxt) {
ifif (INSTANCE==nullnull) {

INSTANCE=create(ctxt, falsefalse);
}

returnreturn(INSTANCE);
}

staticstatic TripDatabase create(Context ctxt, boolean memoryOnly) {
RoomDatabase.Builder<TripDatabase> b;

ifif (memoryOnly) {
b=Room.inMemoryDatabaseBuilder(ctxt.getApplicationContext(),

TripDatabase.class);
}
elseelse {

b=Room.databaseBuilder(ctxt.getApplicationContext(), TripDatabase.class,
DB_NAME);

}

returnreturn(b.build());
}

}

(from Trips/RoomRelations/app/src/main/java/com/commonsware/android/room/TripDatabase.java)

Note that now we are still on version=2. Ideally, this sort of change would involve
updating an existing database in-place, so as not to disturb any existing data. Room
calls these “migrations”, and they are covered in an upcoming chapter.

TripStore, our DAO, now needs methods for Lodging and Flight as well:

packagepackage com.commonsware.android.room;

importimport android.arch.persistence.room.Daoandroid.arch.persistence.room.Dao;
importimport android.arch.persistence.room.Deleteandroid.arch.persistence.room.Delete;
importimport android.arch.persistence.room.Insertandroid.arch.persistence.room.Insert;

ROOM AND RELATIONS

66

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/Trips/RoomRelations/app/src/main/java/com/commonsware/android/room/TripDatabase.java

importimport android.arch.persistence.room.OnConflictStrategyandroid.arch.persistence.room.OnConflictStrategy;
importimport android.arch.persistence.room.Queryandroid.arch.persistence.room.Query;
importimport android.arch.persistence.room.Updateandroid.arch.persistence.room.Update;
importimport java.util.Listjava.util.List;

@Dao
interfaceinterface TripStoreTripStore {

/*
Trip

*/

@Query("SELECT * FROM trips ORDER BY title")
List<Trip> selectAllTrips();

@Query("SELECT * FROM trips WHERE id=:id")
Trip findTripById(String id);

@Insert
void insert(Trip... trips);

@Update
void update(Trip... trips);

@Delete
void delete(Trip... trips);

/*
Lodging

*/

@Query("SELECT * FROM lodgings WHERE tripId=:tripId")
List<Lodging> findLodgingsForTrip(String tripId);

@Insert
void insert(Lodging... lodgings);

@Update
void update(Lodging... lodgings);

@Delete
void delete(Lodging... lodgings);

/*
Flight

*/

@Query("SELECT * FROM flights WHERE tripId=:tripId")
List<Flight> findFlightsForTrip(String tripId);

ROOM AND RELATIONS

67

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Insert
void insert(Flight... flights);

@Update
void update(Flight... flights);

@Delete
void delete(Flight... flights);

}

(from Trips/RoomRelations/app/src/main/java/com/commonsware/android/room/TripStore.java)

The Lodging and Flight @Query methods retrieve only those for a particular Trip,
based on the ID. There is nothing stopping us from having other @Query methods
(e.g., searching across all Lodging, regardless of Trip), but these will suffice for now.

We could elect to have separate DAO classes for each entity, or have nested @Dao-
annotated classes inside the entity for these sorts of methods. In those cases,
TripDatabase would have to be augmented with additional abstract methods to
return instances of those classes, mirroring the existing tripStore() method.

Self-Referential Relations for Tree Structures
With care, you can use Room for self-referential relations: an entity having a foreign
key back to itself. This is most commonly seen in tree structures:

• Categories having sub-categories
• Folders having folders and items
• And so on

The General/RoomTree sample project demonstrates the first of those examples: a
Category entity that has an optional parent Category:

packagepackage com.commonsware.android.room.dao;

importimport android.arch.persistence.room.Entityandroid.arch.persistence.room.Entity;
importimport android.arch.persistence.room.ForeignKeyandroid.arch.persistence.room.ForeignKey;
importimport android.arch.persistence.room.Ignoreandroid.arch.persistence.room.Ignore;
importimport android.arch.persistence.room.Indexandroid.arch.persistence.room.Index;
importimport android.arch.persistence.room.PrimaryKeyandroid.arch.persistence.room.PrimaryKey;
importimport java.util.UUIDjava.util.UUID;
importimport staticstatic android.arch.persistence.room.ForeignKey.CASCADE;

ROOM AND RELATIONS

68

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/Trips/RoomRelations/app/src/main/java/com/commonsware/android/room/TripStore.java
http://github.com/commonsguy/cw-androidarch/tree/master/General/RoomTree
http://github.com/commonsguy/cw-androidarch/tree/master/General/RoomTree

@Entity(
tableName="categories",
foreignKeys=@ForeignKey(

entity=Category.class,
parentColumns="id",
childColumns="parentId",
onDelete=CASCADE),

indices=@Index(value="parentId"))
publicpublic classclass CategoryCategory {

@PrimaryKey
publicpublic finalfinal String id;
publicpublic finalfinal String title;
publicpublic finalfinal String parentId;

@Ignore
publicpublic Category(String title) {

thisthis(title, nullnull);
}

@Ignore
publicpublic Category(String title, String parentId) {

thisthis(UUID.randomUUID().toString(), title, parentId);
}

publicpublic Category(String id, String title, String parentId) {
thisthis.id=id;
thisthis.title=title;
thisthis.parentId=parentId;

}
}

(from General/RoomTree/stuff/src/main/java/com/commonsware/android/room/dao/Category.java)

Here, Category has a @ForeignKey that points back to Category as the entity, with
a parentId column holding the id of the parent Category. onDelete is set to
CASCADE, so that when a parent Category is deleted, its children are deleted as well.

Now we can have DAO methods that work with the Category tree:

@Query("SELECT * FROM categories")
List<Category> selectAllCategories();

@Query("SELECT * FROM categories WHERE parentId IS NULL")
Category findRootCategory();

@Query("SELECT * FROM categories WHERE parentId=:parentId")
List<Category> findChildCategories(String parentId);

ROOM AND RELATIONS

69

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/RoomTree/stuff/src/main/java/com/commonsware/android/room/dao/Category.java

@Insert
void insert(Category... categories);

@Delete
void delete(Category... categories);

(from General/RoomTree/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java)

Using @Relation
If you have a POJO class — one that does not directly have the @Entity annotation
— you can use @Relation to automatically retrieve entities related to… something in
the POJO.

For example, in other Android ORMs, one might expect that Category would have
methods, fields, or something to get at the parent Category (where there is one) or
the child Category instances (where there are some). However, that is not supported
by Room and @Entity, but it is supported by separate POJO classes.

To that end, we can set up a CategoryTuple:

packagepackage com.commonsware.android.room.dao;

importimport android.arch.persistence.room.Relationandroid.arch.persistence.room.Relation;
importimport java.util.Listjava.util.List;

publicpublic classclass CategoryTupleCategoryTuple {
publicpublic finalfinal String id;
publicpublic finalfinal String title;
publicpublic finalfinal String parentId;

publicpublic CategoryTuple(String id, String title, String parentId) {
thisthis.id=id;
thisthis.title=title;
thisthis.parentId=parentId;

}

@Relation(parentColumn="id", entityColumn="parentId")
publicpublic List<Category> children;

@Relation(parentColumn="parentId", entityColumn="id")
publicpublic List<Category> parents;

}

ROOM AND RELATIONS

70

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/RoomTree/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java

(from General/RoomTree/stuff/src/main/java/com/commonsware/android/room/dao/CategoryTuple.java)

Here, we have two @Relation annotations. These go on fields, not methods, and they
indicate fields that Room should fill in when a @Query returns instances of this
POJO. The field type needs to be a List or Set of the related entity, not the POJO.
Hence, children and parents are lists of Category instances, not CategoryTuple.

The two required properties on @Relation are parentColumn and entityColumn.
entityColumn is the name of a column in the entity’s table; parentColumn is the
name of a field in the POJO representing the parent entity. In this case, the entity for
both is Category, as we are working with a self-referential relation. In the generated
code, Room is going to run a query that finds all objects whose entityColumn has
the value pulled from this POJO’s parentColumn field. More specifically:

• For the children field, Room will query the categories table to return all
rows where the parentId column equals the id of this CategoryTuple

• For the parent field, Room will query the categories table to return all rows
where the id column equals the parentId of this CategoryTuple

For a 1:N relation, Room’s restriction on @Relation data types (must be List or Set)
means that both the 1 side and the N side get represented by collection fields… even
though one should only ever have at most one element.

If there are no matching entities (e.g., no parent for the root Category, no children
for a leaf Category), the resulting field is either null or an empty collection.

But now, our DAO methods will not only set up the POJOs but all entities that are
called for by the @Relation fields:

@Query("SELECT * FROM categories WHERE parentId IS NULL")
CategoryTuple findRootCategoryTuple();

@Query("SELECT * FROM categories WHERE parentId=:parentId")
List<CategoryTuple> findChildCategoryTuples(String parentId);

(from General/RoomTree/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java)

However, this involved a lot of copying. CategoryTuple has the same fields as
Category. It would not have to have all of those fields, of course, as a POJO need not
have fields for all columns in the table. But, still, it seems to be a bit wasteful.

Another related approach is to create a “POJO” subclass of the entity… such as this
CategoryShadow:

ROOM AND RELATIONS

71

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/RoomTree/stuff/src/main/java/com/commonsware/android/room/dao/CategoryTuple.java
https://issuetracker.google.com/issues/62905145
https://issuetracker.google.com/issues/62905145
https://issuetracker.google.com/issues/62903497
https://issuetracker.google.com/issues/62903497
https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/RoomTree/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java

packagepackage com.commonsware.android.room.dao;

importimport android.arch.persistence.room.Relationandroid.arch.persistence.room.Relation;
importimport java.util.Listjava.util.List;

publicpublic classclass CategoryShadowCategoryShadow extendsextends Category {
publicpublic CategoryShadow(String id, String title, String parentId) {

supersuper(id, title, parentId);
}

@Relation(parentColumn="id", entityColumn="parentId")
publicpublic List<Category> children;

}

(from General/RoomTree/stuff/src/main/java/com/commonsware/android/room/dao/CategoryShadow.java)

Even though CategoryShadow inherits from Category, and even though Category is
an entity, Room treats CategoryShadow as a POJO, and we can have @Relation fields,
such as the children one shown. If you need most or all of the fields from the entity,
this subclass approach involves less code duplication than does the standalone-
POJO approach.

Representing No Relation
While much of this book will use UUID values for primary keys, plenty of other Room
examples will use int, particularly with autoGenerate set to true, to have SQLite
generate the keys.

However, this does not work well if those keys will be used as foreign key values, in
cases where there may be no value for the relation.

For example, Category uses String for its id (created from a UUID), and we
represented a root category by means of having null for its parentId value. That
works because String fields can be null.

If, however, we used int, we have no way of representing the no-relation scenario.
You cannot assign null to an int field in Java.

Hence, if you want to support the no-relation scenario, your foreign key field needs
to allow for null values. If you want to use auto-generated SQLite identifiers, use
Integer, not int.

ROOM AND RELATIONS

72

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/RoomTree/stuff/src/main/java/com/commonsware/android/room/dao/CategoryShadow.java

Room and Migrations

When you first ship your app, you think your database schema is beautiful, a true
work of art.

Then, you wake up the next morning and realize that you need to make changes to
that schema.

During initial development — and for silly little book examples — you just go in and
make changes to your entities, and Room will rebuild your database for you.
However, it does so by dropping all of your existing tables, taking all the data with it.
In development, that may not be so bad. In production… well, let’s just say that users
get a little irritated when you lose their data.

And that’s where migrations come into play.

What’s a Migration?
With traditional Android SQLite development, we typically use SQLiteOpenHelper.
This utility class manages a SQLiteDatabase for us and addresses two key problems:

1. What happens when our app first runs on a device — or after the user has
cleared our app’s data — and we have no database at all?

2. What happens when we need to modify the database schema from what it
was to some new structure?

SQLiteOpenHelper would do that by calling onCreate() and onUpgrade() callbacks,
where we could implement the logic to create the tables and adjust them as the
schemas change.

73

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

While onCreate() worked reasonably well, onUpgrade() rapidly grew out of control.
Long-lived apps might have dozens of different schemas, evolving over time.
Because users are not forced to take on app updates, our apps need to be able to
transition from any prior schema to the latest-and-greatest one. This meant that
onUpgrade() would need to identify exactly what bits of code are needed to migrate
the database from the old to the new version, and this could get unwieldy.

Room addresses this somewhat through the Migration class. You create subclasses
of Migration — typically as anonymous inner classes — that handle the conversion
from some older schema to a newer one. You pass a bunch of Migration instances
to Room, representing different pair-wise schema upgrade paths. Room then
determines which one(s) need to be used at any point in time, to update the
schema from whatever it was to whatever it needs to be.

When Do We Migrate?
On our RoomDatabase subclass, we have a @Database annotation. One of the
properties is version. This works like the version code that we would pass into the
SQLiteOpenHelper constructor. It is a monotonically increasing integer, with higher
numbers indicating newer schemas. The version in the code represents the schema
version that this code is expecting.

Once your app ships, any time you change your schema — mostly in the form of
modifying entity classes — you need to increment that version and create a
Migration that knows how to convert from the prior version to this new one.

Note that there is no requirement that you increment the version by 1, though that
is a common convention. If using a date-based format like YYYMMDD (e.g., 20170627)
makes your life easier, you are welcome to do so.

But First, a Word About the Support Database
Classes
So far, this book has portrayed Room as being an ORM-style bridge between your
code and SQLite.

Technically, that is not accurate.

ROOM AND MIGRATIONS

74

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Part of what we get with Room is a series of classes and interfaces in the
android.support.persistence.db package. These classes come from a separate
artifact (android.arch.persistence.room:support-db) and represent an
abstraction for SQLite-style database access.

We also get implementations of that abstraction, in the form of the “framework”
classes (from android.arch.persistence.room:support-db-impl). Those classes
use the Android standard SQLite environment. Room’s artifacts pull in these
support artifacts by default, and when we use RoomDatabase.Builder to set up our
RoomDatabase, we are using those “framework” classes for the database access.

There are two reasons why this is important.

First, database migrations are largely outside of Room itself. Room is expecting the
database to be set up with the appropriate schema. While a RoomDatabase.Builder
can use Migration objects to migrate the database schema, Room itself is not yet
ready at this point. We wind up using a SupportSQLiteDatabase class for modifying
the schema, where this class is from that abstraction library. So, while most of Room
hides you from most of SQLite-related Java code, migrations are one area where this
stuff becomes more visible.

Second, just because Room uses the device implementation of SQLite by default
does not mean that you have to use it. One of the methods on
RoomDatabase.Builder is openHelperFactory(), where you supply a
SupportSQLiteOpenHelper.Factory to use for working with the database. That, in
turn, can pull in another whole set of implementations of the database abstraction.
For example, you can use this approach to have Room interoperate with SQLCipher
for Android, an encrypted edition of SQLite. A later chapter will explore such a
library.

…And a Word About Exporting Schemas
One of the side-effects of using Room is that you do not write your own schema for
the database. Room generates it, based on your entity definitions. During the
ordinary course of programming, this is perfectly fine and saves you time and effort.

However, when it comes to migrations, now we have a problem. We cannot create
code to migrate from an old to a new schema without knowing what those schemas
are. And while schema information is baked into some code generated by Room’s

ROOM AND MIGRATIONS

75

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

annotation processor, that is only for the current version of your entity classes (and,
hence, your current schema), not for any historical ones.

Fortunately, Room offers something that helps a bit: exported schemas. You can
teach Room’s annotation processor to not only generate Java code but also generate
a JSON document describing the schema. Moreover, it will do that for each schema
version, saving them to version-specific JSON files. If you hold onto these files — for
example, if you save them in version control – you will have a history of your schema
and can use that information to write your migrations.

However, the real reason for those exported schemas is to help with testing your
migrations. As a result, the JSON format is not designed for developers to read.

To set this up, in the defaultConfig closure of your module’s build.gradle file, you
can add the following javaCompileOptions closure:

javaCompileOptions {
annotationProcessorOptions {

arguments = ["room.schemaLocation": "$projectDir/schemas".toString()]
}

}

(from Trips/RoomMigrations/app/build.gradle)

This teaches Room to save your schemas in a schemas/ directory off of the module
root directory. In principle, you could store them elsewhere by choosing a different
value for the room.schemaLocation argument.

The next time you (re-)build your project, that directory will be created.
Subdirectories with the fully-qualified class names of your RoomDatabase classes will
go inside there, and inside each of those will be a JSON file named after your schema
version (e.g., 1.json):

{
"formatVersion": 1,
"database": {

"version": 1,
"identityHash": "d46bfccddeca286f2948a702a4938d56",
"entities": [

{
"tableName": "trips",
"createSql": "CREATE TABLE IF NOT EXISTS `${TABLE_NAME}` (`id` TEXT, `title` TEXT, `duration`

INTEGER NOT NULL, `priority` INTEGER, `startTime` INTEGER, `creationTime` INTEGER, `updateTime` INTEGER,
PRIMARY KEY(`id`))",

"fields": [
{

"fieldPath": "id",

ROOM AND MIGRATIONS

76

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/Trips/RoomMigrations/app/build.gradle

"columnName": "id",
"affinity": "TEXT"

},
{

"fieldPath": "title",
"columnName": "title",
"affinity": "TEXT"

},
{

"fieldPath": "duration",
"columnName": "duration",
"affinity": "INTEGER"

},
{

"fieldPath": "priority",
"columnName": "priority",
"affinity": "INTEGER"

},
{

"fieldPath": "startTime",
"columnName": "startTime",
"affinity": "INTEGER"

},
{

"fieldPath": "creationTime",
"columnName": "creationTime",
"affinity": "INTEGER"

},
{

"fieldPath": "updateTime",
"columnName": "updateTime",
"affinity": "INTEGER"

}
],
"primaryKey": {

"columnNames": [
"id"

],
"autoGenerate": false

},
"indices": [],
"foreignKeys": []

}
],
"setupQueries": [

"CREATE TABLE IF NOT EXISTS room_master_table (id INTEGER PRIMARY KEY,identity_hash TEXT)",
"INSERT OR REPLACE INTO room_master_table (id,identity_hash) VALUES(42,

\"d46bfccddeca286f2948a702a4938d56\")"
]

}
}

(from Trips/RoomMigrations/app/schemas/com.commonsware.android.room.TripDatabase/1.json)

The JSON properties that will matter to you will be the createSql ones. There are
ones that create your tables and others that create your indexes.

ROOM AND MIGRATIONS

77

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/Trips/RoomMigrations/app/schemas/com.commonsware.android.room.TripDatabase/1.json

Writing Migrations
A Migration itself has only one required method: migrate(). You are given a
SupportSQLiteDatabase, which resembles a SQLiteDatabase and allows you to
execute SQL statements to modify the schema as needed.

The Migration constructor takes two parameters: the old schema version number
and the new schema version number. Hence, the recommended pattern is to use
anonymous inner classes, where you can provide the migrate() method to use for
migrating the schema between that particular pair of schema versions.

To determine what needs to be done, you need to examine that schema JSON and
determine what is different between the old and the new. Someday, we may get
some tools to help with this. For now, you are largely stuck “eyeballing” the SQL. You
can then craft the ALTER TABLE or other statements necessary to change the schema,
much as you might have done in onUpgrade() of a SQLiteOpenHelper.

For example, the Trips/RoomMigrations sample project has a FROM_1_TO_2
migration:

staticstatic finalfinal Migration FROM_1_TO_2=newnew Migration(1,2) {
@Override
publicpublic void migrate(SupportSQLiteDatabase db) {

db.execSQL("CREATE TABLE IF NOT EXISTS `lodgings` (`id` TEXT, `title` TEXT, `duration` INTEGER NOT
NULL, `priority` INTEGER, `startTime` INTEGER, `creationTime` INTEGER, `updateTime` INTEGER, `address`
TEXT, `tripId` TEXT, PRIMARY KEY(`id`), FOREIGN KEY(`tripId`) REFERENCES `trips`(`id`) ON UPDATE NO ACTION
ON DELETE CASCADE)");

db.execSQL("CREATE INDEX `index_lodgings_tripId` ON `lodgings` (`tripId`)");
db.execSQL("CREATE TABLE IF NOT EXISTS `flights` (`id` TEXT, `title` TEXT, `duration` INTEGER NOT

NULL, `priority` INTEGER, `startTime` INTEGER, `creationTime` INTEGER, `updateTime` INTEGER,
`departingAirport` TEXT, `arrivingAirport` TEXT, `airlineCode` TEXT, `flightNumber` TEXT, `seatNumber`
TEXT, `tripId` TEXT, PRIMARY KEY(`id`), FOREIGN KEY(`tripId`) REFERENCES `trips`(`id`) ON UPDATE NO ACTION
ON DELETE CASCADE)");

db.execSQL("CREATE INDEX `index_flights_tripId` ON `flights` (`tripId`)");
}

};

(from Trips/RoomMigrations/app/src/main/java/com/commonsware/android/room/Migrations.java)

Here, we create two tables and two indexes in migrate(). The SQL is mostly copied
from the 2.json file, representing the schema for version 2:

{
"formatVersion": 1,
"database": {

"version": 2,
"identityHash": "4ebc3fa474b72f9567fafb4658d7c9ce",
"entities": [

ROOM AND MIGRATIONS

78

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-androidarch/tree/master/Trips/RoomMigrations
http://github.com/commonsguy/cw-androidarch/tree/master/Trips/RoomMigrations
https://github.com/commonsguy/cw-androidarch/tree/v0.2/Trips/RoomMigrations/app/src/main/java/com/commonsware/android/room/Migrations.java

{
"tableName": "trips",
"createSql": "CREATE TABLE IF NOT EXISTS `${TABLE_NAME}` (`id` TEXT, `title` TEXT, `duration`

INTEGER NOT NULL, `priority` INTEGER, `startTime` INTEGER, `creationTime` INTEGER, `updateTime` INTEGER,
PRIMARY KEY(`id`))",

"fields": [
{

"fieldPath": "id",
"columnName": "id",
"affinity": "TEXT",
"notNull": false

},
{

"fieldPath": "title",
"columnName": "title",
"affinity": "TEXT",
"notNull": false

},
{

"fieldPath": "duration",
"columnName": "duration",
"affinity": "INTEGER",
"notNull": true

},
{

"fieldPath": "priority",
"columnName": "priority",
"affinity": "INTEGER",
"notNull": false

},
{

"fieldPath": "startTime",
"columnName": "startTime",
"affinity": "INTEGER",
"notNull": false

},
{

"fieldPath": "creationTime",
"columnName": "creationTime",
"affinity": "INTEGER",
"notNull": false

},
{

"fieldPath": "updateTime",
"columnName": "updateTime",
"affinity": "INTEGER",
"notNull": false

}
],
"primaryKey": {

"columnNames": [
"id"

],
"autoGenerate": false

},
"indices": [],
"foreignKeys": []

},
{

"tableName": "lodgings",

ROOM AND MIGRATIONS

79

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

"createSql": "CREATE TABLE IF NOT EXISTS `${TABLE_NAME}` (`id` TEXT, `title` TEXT, `duration`
INTEGER NOT NULL, `priority` INTEGER, `startTime` INTEGER, `creationTime` INTEGER, `updateTime` INTEGER,
`address` TEXT, `tripId` TEXT, PRIMARY KEY(`id`), FOREIGN KEY(`tripId`) REFERENCES `trips`(`id`) ON UPDATE
NO ACTION ON DELETE CASCADE)",

"fields": [
{

"fieldPath": "id",
"columnName": "id",
"affinity": "TEXT",
"notNull": false

},
{

"fieldPath": "title",
"columnName": "title",
"affinity": "TEXT",
"notNull": false

},
{

"fieldPath": "duration",
"columnName": "duration",
"affinity": "INTEGER",
"notNull": true

},
{

"fieldPath": "priority",
"columnName": "priority",
"affinity": "INTEGER",
"notNull": false

},
{

"fieldPath": "startTime",
"columnName": "startTime",
"affinity": "INTEGER",
"notNull": false

},
{

"fieldPath": "creationTime",
"columnName": "creationTime",
"affinity": "INTEGER",
"notNull": false

},
{

"fieldPath": "updateTime",
"columnName": "updateTime",
"affinity": "INTEGER",
"notNull": false

},
{

"fieldPath": "address",
"columnName": "address",
"affinity": "TEXT",
"notNull": false

},
{

"fieldPath": "tripId",
"columnName": "tripId",
"affinity": "TEXT",
"notNull": false

}
],

ROOM AND MIGRATIONS

80

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

"primaryKey": {
"columnNames": [

"id"
],
"autoGenerate": false

},
"indices": [

{
"name": "index_lodgings_tripId",
"unique": false,
"columnNames": [

"tripId"
],
"createSql": "CREATE INDEX `index_lodgings_tripId` ON `${TABLE_NAME}` (`tripId`)"

}
],
"foreignKeys": [

{
"table": "trips",
"onDelete": "CASCADE",
"onUpdate": "NO ACTION",
"columns": [

"tripId"
],
"referencedColumns": [

"id"
]

}
]

},
{

"tableName": "flights",
"createSql": "CREATE TABLE IF NOT EXISTS `${TABLE_NAME}` (`id` TEXT, `title` TEXT, `duration`

INTEGER NOT NULL, `priority` INTEGER, `startTime` INTEGER, `creationTime` INTEGER, `updateTime` INTEGER,
`departingAirport` TEXT, `arrivingAirport` TEXT, `airlineCode` TEXT, `flightNumber` TEXT, `seatNumber`
TEXT, `tripId` TEXT, PRIMARY KEY(`id`), FOREIGN KEY(`tripId`) REFERENCES `trips`(`id`) ON UPDATE NO ACTION
ON DELETE CASCADE)",

"fields": [
{

"fieldPath": "id",
"columnName": "id",
"affinity": "TEXT",
"notNull": false

},
{

"fieldPath": "title",
"columnName": "title",
"affinity": "TEXT",
"notNull": false

},
{

"fieldPath": "duration",
"columnName": "duration",
"affinity": "INTEGER",
"notNull": true

},
{

"fieldPath": "priority",
"columnName": "priority",
"affinity": "INTEGER",

ROOM AND MIGRATIONS

81

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

"notNull": false
},
{

"fieldPath": "startTime",
"columnName": "startTime",
"affinity": "INTEGER",
"notNull": false

},
{

"fieldPath": "creationTime",
"columnName": "creationTime",
"affinity": "INTEGER",
"notNull": false

},
{

"fieldPath": "updateTime",
"columnName": "updateTime",
"affinity": "INTEGER",
"notNull": false

},
{

"fieldPath": "departingAirport",
"columnName": "departingAirport",
"affinity": "TEXT",
"notNull": false

},
{

"fieldPath": "arrivingAirport",
"columnName": "arrivingAirport",
"affinity": "TEXT",
"notNull": false

},
{

"fieldPath": "airlineCode",
"columnName": "airlineCode",
"affinity": "TEXT",
"notNull": false

},
{

"fieldPath": "flightNumber",
"columnName": "flightNumber",
"affinity": "TEXT",
"notNull": false

},
{

"fieldPath": "seatNumber",
"columnName": "seatNumber",
"affinity": "TEXT",
"notNull": false

},
{

"fieldPath": "tripId",
"columnName": "tripId",
"affinity": "TEXT",
"notNull": false

}
],
"primaryKey": {

"columnNames": [
"id"

ROOM AND MIGRATIONS

82

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

],
"autoGenerate": false

},
"indices": [

{
"name": "index_flights_tripId",
"unique": false,
"columnNames": [

"tripId"
],
"createSql": "CREATE INDEX `index_flights_tripId` ON `${TABLE_NAME}` (`tripId`)"

}
],
"foreignKeys": [

{
"table": "trips",
"onDelete": "CASCADE",
"onUpdate": "NO ACTION",
"columns": [

"tripId"
],
"referencedColumns": [

"id"
]

}
]

}
],
"setupQueries": [

"CREATE TABLE IF NOT EXISTS room_master_table (id INTEGER PRIMARY KEY,identity_hash TEXT)",
"INSERT OR REPLACE INTO room_master_table (id,identity_hash) VALUES(42,

\"4ebc3fa474b72f9567fafb4658d7c9ce\")"
]

}
}

(from Trips/RoomMigrations/app/schemas/com.commonsware.android.room.TripDatabase/2.json)

In the JSON, the createSql properties have the table name as a template-style
macro (${TABLE_NAME}), which you will need to replace with the actual table name.
The backticks are supported in SQLite as they are in MySQL, and since they cause
no harm here, usually it is simpler just to leave them in there.

Employing Migrations
Simply creating a Migration as a static field somewhere is necessary but not
sufficient to have Room know about performing the migration. Instead, you need to
use the addMigrations() method on RoomDatabase.Builder to teach Room about
your Migration objects. addMigrations() accepts a varargs, and so you can pass in
one or several Migration objects as needed.

ROOM AND MIGRATIONS

83

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/Trips/RoomMigrations/app/schemas/com.commonsware.android.room.TripDatabase/2.json

packagepackage com.commonsware.android.room;

importimport android.arch.persistence.room.Databaseandroid.arch.persistence.room.Database;
importimport android.arch.persistence.room.Roomandroid.arch.persistence.room.Room;
importimport android.arch.persistence.room.RoomDatabaseandroid.arch.persistence.room.RoomDatabase;
importimport android.content.Contextandroid.content.Context;

@Database(
entities={Trip.class, Lodging.class, Flight.class},
version=2

)
abstractabstract classclass TripDatabaseTripDatabase extendsextends RoomDatabase {

abstractabstract TripStore tripStore();

privateprivate staticstatic finalfinal String DB_NAME="trips.db";
privateprivate staticstatic volatilevolatile TripDatabase INSTANCE=nullnull;

synchronizedsynchronized staticstatic TripDatabase get(Context ctxt) {
ifif (INSTANCE==nullnull) {

INSTANCE=create(ctxt, falsefalse);
}

returnreturn(INSTANCE);
}

staticstatic TripDatabase create(Context ctxt, boolean memoryOnly) {
returnreturn(create(ctxt, DB_NAME, memoryOnly));

}

staticstatic TripDatabase create(Context ctxt, String name, boolean memoryOnly) {
RoomDatabase.Builder<TripDatabase> b;

ifif (memoryOnly) {
b=Room.inMemoryDatabaseBuilder(ctxt.getApplicationContext(),

TripDatabase.class);
}
elseelse {

b=Room.databaseBuilder(ctxt.getApplicationContext(), TripDatabase.class,
name);

}

returnreturn(b.addMigrations(Migrations.FROM_1_TO_2).build());
}

}

(from Trips/RoomMigrations/app/src/main/java/com/commonsware/android/room/TripDatabase.java)

ROOM AND MIGRATIONS

84

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/Trips/RoomMigrations/app/src/main/java/com/commonsware/android/room/TripDatabase.java

Here, we teach the RoomDatabase.Builder about the FROM_1_TO_2 Migration. In this
sample project, the migrations are implemented in a separate Migrations class,
though you are welcome to have them directly in your RoomDatabase class or
wherever makes sense for you.

How Room Applies Migrations
When you create your RoomDatabase instance via the Migration-enhanced Builder,
Room will use SQLiteOpenHelper semantics to see if the schema version in the
existing database is older than the schema version that you declared in your
@Database annotation. If it is, Room will try to find a suitable Migration to use,
falling back to dropping all of your tables and rebuilding them from scratch, as
happens during ordinary development.

Much of the time, the schema will jump from one version to the next. If you are
using a simple numbering scheme starting at 1, the schema will then move to 2, then
3, then 4, and so on, for a given device. Hence, your primary Migration objects will
be ones that implement these incremental migrations.

However, it may be that for some device you need to skip a schema version, such as
moving from version 1 to version 3. Room is smart enough to find a chain of
Migration objects to use, and so if you have Migration objects for each incremental
schema change, Room can handle any combination of changes. For example, to go
from 1 to 3, Room might first use your (1,2) migration, then the (2,3) migration.

Sometimes, though, this can lead to unnecessary work. Suppose in schema version 2,
you created a bunch of new tables and stuff… then reverted those changes in schema
version 3. By using the incremental migrations, Room will create those tables and
then turn around and drop them right away.

However, all else being equal, Room will try to use the shortest possible chain.
Hence, you can create additional Migration objects where appropriate to streamline
particular upgrades. You could create a (1,3) migration that bypasses the obsolete
schema version 2, for example. This is optional but may prove useful from time to
time.

Testing Migrations
It would be nice if your migrations worked. Users, in particular, appreciate working
code… or, perhaps more correctly, get rather angry with non-working code.

ROOM AND MIGRATIONS

85

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Hence, you might want to test the migrations.

This gets a bit tricky, though. The code-generated Room classes are expecting the
latest-and-greatest schema version, so you cannot use your DAO for testing older
schemas. Besides, RoomDatabase.Builder wants to set up your database with that
latest-and-greatest schema automatically.

Fortunately, Room ships with some testing code to help you test your schemas in
isolation… though you bypass most of Room to do that.

Adding the Artifact

This testing code is in a separate android.arch.persistence.room:testing artifact,
one that you can add via androidTestCompile to put in your instrumentation tests
but leave out of your production code:

dependencies {
compile "com.android.support:recyclerview-v7:26.0.0"
compile "android.arch.persistence.room:runtime:1.0.0-alpha8"
annotationProcessor "android.arch.persistence.room:compiler:1.0.0-alpha8"
androidTestCompile "com.android.support:support-annotations:26.0.0"
androidTestCompile 'com.android.support.test:rules:0.5'
androidTestCompile "android.arch.persistence.room:testing:1.0.0-alpha8"

}

(from Trips/RoomMigrations/app/build.gradle)

Adding the Schemas

Remember those exported schemas? While we used them for helping us write the
migrations, their primary use is for this testing support code.

By default, those schemas are stored outside of anything that goes into your app.
After all, you do not need those JSON files cluttering up your production builds.
However, this also means that those schemas are not available to your test code, by
default.

However, we can fix that, by adding those schemas to the assets/ used in the
androidTest source set, by having this closure in your android closure of your
module’s build.gradle file:

ROOM AND MIGRATIONS

86

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/Trips/RoomMigrations/app/build.gradle

sourceSets {
androidTest.assets.srcDirs += files("$projectDir/schemas".toString())

}

(from Trips/RoomMigrations/app/build.gradle)

Here, "$projectDir/schemas".toString() is the same value that we used for the
room.schemaLocation annotation processor argument. This snippet tells Gradle to
include the contents of that schemas/ directory as part of our assets/.

The result is that our instrumentation test APK will have those directories named
after our RoomDatabase classes (e.g.,
com.commonsware.android.room.TripDatabase/) in the root of assets/. If you have
code that uses assets/, make sure that you are taking steps to ignore these extra
directories.

Creating and Using a MigrationTestHelper

The testing support comes in the form of a MigrationTestHelper that you can
employ in your instrumentation tests.

Adding the Rule

MigrationTestHelper is a JUnit4 rule, which you add to your test case class via the
@Rule annotation:

@Rule
publicpublic MigrationTestHelper helper;

(from Trips/RoomMigrations/app/src/androidTest/java/com/commonsware/android/room/MigrationTests.java)

Setting Up the Helper

You then need to create an instance of the MigrationTestHelper, such as in a
@Before-annotated method:

@Before
publicpublic void setUp() {

helper=newnew MigrationTestHelper(InstrumentationRegistry.getInstrumentation(),
TripDatabase.class.getCanonicalName());

}

(from Trips/RoomMigrations/app/src/androidTest/java/com/commonsware/android/room/MigrationTests.java)

MigrationTestHelper takes two parameters, both of which are a bit unusual.

ROOM AND MIGRATIONS

87

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/Trips/RoomMigrations/app/build.gradle
https://github.com/commonsguy/cw-androidarch/tree/v0.2/Trips/RoomMigrations/app/src/androidTest/java/com/commonsware/android/room/MigrationTests.java
https://github.com/commonsguy/cw-androidarch/tree/v0.2/Trips/RoomMigrations/app/src/androidTest/java/com/commonsware/android/room/MigrationTests.java

First, it takes an Instrumentation object. We use those in our test code, but it is rare
that we pass them as a parameter. You get your Instrumentation usually by calling
getInstrumentation() on the InstrumentationRegistry.

Then, it takes what appears to be the fully-qualified class name of the
RoomDatabase whose migrations we wish to test. Technically speaking, this is
actually the relative path, inside of assets/, where the schema JSON files are for
this particular RoomDatabase. Given the above configuration, each database’s
schemas are put into a directory named after the fully-qualified class name of the
RoomDatabase, which is why this works. However, if you change the configuration to
put the schemas somewhere else in assets/, you would need to modify this
parameter to match.

Creating a Database for a Schema Version

There are two main methods on MigrationTestHelper that we will use in testing.
One is createDatabase(). This creates the database, as a specific database file, for a
specific schema version… including any of our historical ones found in those schema
JSON files. Here, we ask the helper to create a database named DB_NAME for schema
version 1:

SupportSQLiteDatabase db=helper.createDatabase(DB_NAME, 1);

(from Trips/RoomMigrations/app/src/androidTest/java/com/commonsware/android/room/MigrationTests.java)

That SupportSQLiteDatabase object has an API reminiscent of a trimmed-down
SQLiteDatabase. query() replaces rawQuery() and is used for executing arbitrary
SQL SELECT statements. We also have execSQL(), insert(), update(), and
delete(), for other operations.

As part of testing a migration, you will need to add some sample data to the
database, using whatever schema you asked to be used, so that you can confirm that
the migration worked as expected and did not wreck the existing data. This code will
not be very Room-ish, but more like classic SQLite Android programming:

SupportSQLiteDatabase db=helper.createDatabase(DB_NAME, 1);

db.execSQL("INSERT INTO trips (title, duration) VALUES (NULL, 0)");

finalfinal Cursor firstResults=db.query("SELECT COUNT(*) FROM trips");

assertEquals(1, firstResults.getCount());
firstResults.moveToFirst();

ROOM AND MIGRATIONS

88

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/Trips/RoomMigrations/app/src/androidTest/java/com/commonsware/android/room/MigrationTests.java

assertEquals(1, firstResults.getInt(0));

firstResults.close();
db.close();

(from Trips/RoomMigrations/app/src/androidTest/java/com/commonsware/android/room/MigrationTests.java)

Testing a Migration

The other method of note on MigrationTestHelper is
runMigrationsAndValidate(). After you have set up a database in its starting
conditions via createDatabase() and CRUD operations,
runMigrationsAndValidate() will migrate that database from its original schema
version to the one that you specify:

db=helper.runMigrationsAndValidate(DB_NAME, 2, truetrue,
Migrations.FROM_1_TO_2);

(from Trips/RoomMigrations/app/src/androidTest/java/com/commonsware/android/room/MigrationTests.java)

You need to supply the same database name (DB_NAME), a higher schema version (2),
and the specific Migration that you want to use (Migration.FROM_1_TO_2).

Not only does this method perform the migration, but it validates the resulting
schema against what the entities have set up for that schema version, based on the
schema JSON files. If there is something wrong — your migration forgot a newly-
added column, for example — your test will fail with an assertion violation. The
true parameter shown above determines whether this schema validation will
checked for un-dropped tables. true means that if you have unnecessary tables in
the database, the test fails; false means that unnecessary tables are fine and will be
ignored.

However, all MigrationTestHelper can do is confirm that you set up the new
schema properly. It cannot determine whether the data is any good after the
migration. That you would need to test yourself. In many cases, there is little to test,
particularly if you are just setting up empty tables as we are doing in this migration.
However, if you had a complex table change, perhaps requiring a temp table and
statements like INSERT INTO ... SELECT FROM ..., you could write test code that
confirms the data is OK. However, you cannot use the Room DAO for this either;
instead, you will use the SupportSQLiteDatabase and work with the tables “the old-
fashioned way”, using query() and Cursor and such.

ROOM AND MIGRATIONS

89

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/Trips/RoomMigrations/app/src/androidTest/java/com/commonsware/android/room/MigrationTests.java
https://github.com/commonsguy/cw-androidarch/tree/v0.2/Trips/RoomMigrations/app/src/androidTest/java/com/commonsware/android/room/MigrationTests.java

Migrating Under Protest
In the 1.0.0-alpha8 edition of Room, subtle changes in your object model have
unexpected impacts on your database storage.

In particular, changing the order of fields as they appear in your entity forces you to
have a do-nothing migration if you want to keep your data. This appears to be
because:

• Room creates columns in the table in the same order as the fields appear in
the entity, so changing the field order changes the column order

• Room’s logic for detecting if a migration is needed does not take into
account the fact that the order of fields in a table does not matter

With luck, this will be addressed in a future update to Room.

Similarly, pay close attention to the release notes for Room. Updating your Room
implementation may require you to implement or modify a migration. For example,
upgrading from 1.0.0-alpha3 to 1.0.0-alpha8 changed the nature of columns
generated from int fields — these are now NOT NULL, where formerly they allowed
null values. However, since this changes the schema, you will now need to take this
account in the migration, altering those columns to be NOT NULL. With luck, once
1.0.0 ships in final form, breaking schema changes will be relegated to major
version releases.

ROOM AND MIGRATIONS

90

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://issuetracker.google.com/issues/64290754
https://issuetracker.google.com/issues/64290754
https://issuetracker.google.com/issues/64448324
https://issuetracker.google.com/issues/64448324
https://issuetracker.google.com/issues/64448324

Securing Your Room

Room, by default, works with the device’s stock copy of SQLite. This is fine, as far as
it goes. However, from a security standpoint, SQLite stores its data unencrypted.
Many apps should be considering encrypting their data “at rest”, when it is stored in
a database, to protect their users.

Fortunately, as noted in the last chapter, Room supports a pluggable SQLite
implementation, and so we can plug in a SQLite edition that supports encryption,
such as SQLCipher for Android. This chapter will outline how to do this.

Meet the Players
There are two pieces to the encrypted-database puzzle: a SQLite implementation
with encryption capability, and the “glue code” that allows Room to work with that
SQLite implementation.

SQLCipher for Android

Since SQLite is public domain, it is easy for people to grab the source code and hack
on it. SQLite also offers an extension system, making it relatively easy for developers
to add functionality with a minimal number of changes to SQLite’s core code. As a
result, a few encryption options for SQLite have been published.

One of these is SQLCipher, whose development is overseen by Zetitec. This offers
transparent AES-256 encryption of everything in the database: data, schema, etc.

With the help of the Guardian Project, Zetitec released SQLCipher for Android. This
combines a pre-compiled version of SQLite with Java classes that mimic an old
edition of Android’s native SQLite classes (e.g., SQLiteOpenHelper). SQLCipher for

91

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://www.zetetic.net/sqlcipher
https://www.zetetic.net
https://www.zetetic.net/sqlcipher/sqlcipher-for-android/

Android is open source, and if you can live with the increase in app size due to the
native binaries, it is an effective solution.

However, it knows nothing about Room.

CWAC-SafeRoom

To fill that gap, the author of this book has released CWAC-SafeRoom. This is an
implementation of Room’s pluggable database API to bridge between Room and
SQLCipher for Android. Using SQLCipher for Android then becomes mostly a
matter of a single method call on the RoomDatabase.Builder to use the CWAC-
SafeRoom code — everything else works as normal.

That being said, at the time of this writing, the latest release of Room is
1.0.0-alpha3, and CWAC-SafeRoom is 0.0.1. These are early days for both libraries,
and so changes may occur either at the Room or the CWAC-SafeRoom level.

Using CWAC-SafeRoom
Fortunately, using CWAC-SafeRoom is fairly straightforward, at least in terms of the
Java code.

The fact that SQLCipher for Android makes use of native libraries will make your
APK substantially larger, though using ABI filters and splits can help manage that.
However, those concerns would be the same for any use of SQLCipher for Android
and are not unique to CWAC-SafeRoom.

Adding the Dependency

As with all the CWAC libraries, you get CWAC-SafeRoom from the CWAC artifact
repository:

repositories {
maven {

url "https://s3.amazonaws.com/repo.commonsware.com"
}

}

(or use http://repo.commonsware.com if you cannot use SSL for your builds, for
some scary reason)

SECURING YOUR ROOM

92

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-saferoom/

Then, it is merely a matter of adding a dependency on the
com.commonsware.cwac:saferoom artifact. At the time of this writing, the artifact is
only available as a 0.0.1 release:

compile 'com.commonsware.cwac:saferoom:0.0.1'

Using CWAC-SafeRoom

When you use Room, you use Room.databaseBuilder() or
Room.inMemoryDatabaseBuilder() to get a RoomDatabase.Builder. After
configuring that object, you call build() to get an instance of your custom subclass
of RoomDatabase, whichever one that you supplied as a Java class object to the
Room.databaseBuilder() or Room.inMemoryDatabaseBuilder() method.

To use SafeRoom, on the RoomDatabase.Builder, before calling build():

• Create an instance of com.commonsware.cwac.saferoom.SafeHelperFactory,
passing in the passphrase to use

• Pass that SafeHelperFactory to the RoomDatabase.Builder via the
openHelperFactory() method

// EditText passphraseField;
SafeHelperFactory factory=SafeHelperFactory.fromUser(passphraseField.getText());

StuffDatabase db=Room.databaseBuilder(ctxt, StuffDatabase.class, DB_NAME)
.openHelperFactory(factory)
.build();

Passphrase Management

A cardinal rule of passphrases in Java is: do not hold them in String objects. You
have no means of clearing those from memory, as a String is an immutable value.

The SafeHelperFactory constructor takes a char array for the passphrase. If you are
getting the passphrase from the user via an EditText widget, use the fromUser()
factory method instead, supplying the Editable that you get from getText() on the
EditText.

SafeRoom will zero out the char array once the database is opened. If you use
fromUser(), SafeRoom will also clear the contents of the Editable.

SECURING YOUR ROOM

93

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

More to Come!
More material on CWAC-SafeRoom and the use of SQLCipher for Android will be
added to this book in the future, as Room, CWAC-SafeRoom, and this book all
mature.

SECURING YOUR ROOM

94

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Lifecycle Components and
ViewModels

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Lifecycles and Owners

Programmers, in any environment, often encounter one or more topics that inspire
the five stages of grief. It might be related to threads, to security, to UI
implementation (e.g., how to deal with resizeable windows).

Android developers experience this sort of grief on all those topics.

Another one that triggers this sort of grief is the concept of lifecycles. On the
surface, the concept seems unremarkable: objects are in use for a time and then
become discarded, and along the way we receive callbacks regarding their state.
However, dealing with the ramifications of those lifecycles — such as handling
configuration changes, like screen rotation — vex even seasoned Android
developers.

Part of the Architecture Components is a series of classes designed to help you deal
with lifecycles in a more consistent fashion.

A Tale of Terminology
The Architecture Components have very specific definitions for certain terms, and
these definitions affect the classes that we wind up using.

Lifecycle

A lifecycle is a series of states that an object can be in. Hence, a trivial lifecycle
simply has “alive” and “dead” or similar states.

The eponymous Lifecycle class, however, models a specific lifecycle, that of
activities and fragments.

97

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://en.wikipedia.org/wiki/K%C3%BCbler-Ross_model

Lifecycle Owner

A lifecycle owner is simply something that goes through a lifecycle. If the lifecycle is
the state, the lifecycle owner is what has the trigger events for navigating through
the state machine.

A LifecycleOwner is a Java interface, with a getLifecycle() method, that returns
the Lifecycle for a given owner. As we will see, various classes already implement
LifecycleOwner, and adding it to something else is not especially difficult.

Lifecycle Observers

A lifecycle observer is something that is notified about the change in state of some
lifecycle. It finds out about those trigger events and the movement of the lifecycle
from state to state.

A LifecycleObserver is another Java interface, one that mostly serves as a marker,
with no required methods. However, a LifecycleObserver can have one or more
methods marked with an @OnLifecycleEvent annotation, and those methods will be
called when the Lifecycle enters a certain state.

Adding the Lifecycle Components
As with Room, the lifecycle-related libraries are housed in Google’s Maven
repository, and you need to teach Gradle where that is. The convention is to add the
repository URL in the allprojects closure in the project’s root build.gradle file:

allprojects {
repositories {

jcenter()
maven { url 'https://maven.google.com' }

}
}

(from General/Lifecycle/build.gradle)

Then, you need a runtime dependency and an annotation processor, once again akin
to how Room is set up:

dependencies {
compile 'com.android.support:recyclerview-v7:26.0.0'
compile 'android.arch.lifecycle:runtime:1.0.0-alpha8'

LIFECYCLES AND OWNERS

98

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/Lifecycle/build.gradle

annotationProcessor 'android.arch.lifecycle:compiler:1.0.0-alpha8'
}

(from General/Lifecycle/app/build.gradle)

Getting a Lifecycle
Everything dealing with Lifecycle comes down to a LifecycleOwner. You have
several possibilities of where to get one of those.

…From a LifecycleActivity or LifecycleFragment

The pre-release versions of the lifecycle artifacts include LifecycleActivity and
LifecycleFragment classes. These extend FragmentActivity and Fragment from the
Android Support Library, respectively. Hence, if you were already using those base
classes, you can swap in LifecycleActivity and LifecycleFragment and be set up
with access to Lifecycle instances.

However, there are two problems:

1. Google has indicated that these classes will be deprecated when the
Architecture Components ship a 1.0.0 final release

2. Most likely, you are not using FragmentActivity directly

…From an AppCompatActivity

Perhaps you are using the appcompat-v7 artifact. In that case, you are inheriting
from AppCompatActivity instead of FragmentActivity or Activity.

The good news is that sometime after the Architecture Components ship a 1.0.0 final
release, there should be an update to appcompat-v7 that makes AppCompatActivity
a LifecycleOwner.

However, as of the time of this writing, that has not happened yet.

What you can do in the meantime is create your own AppCompatLifecycleActivity:

publicpublic classclass AppCompatLifecycleActivityAppCompatLifecycleActivity extendsextends AppCompatActivity
implementsimplements LifecycleRegistryOwner {
privateprivate LifecycleRegistry registry=newnew LifecycleRegistry(thisthis);

@Override

LIFECYCLES AND OWNERS

99

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/Lifecycle/app/build.gradle

publicpublic LifecycleRegistry getLifecycle() {
returnreturn(registry);

}
}

Lifecycle itself is an abstract class. The concrete implementation of it is
LifecycleRegistry. Normally, you do not need to worry about this detail, as most of
your code will just work with the Lifecycle class. However, here, we need a concrete
implementation, and typically you will use LifecycleRegistry for that.

LifecycleRegistryOwner extends LifecycleOwner. The lifecycle artifact knows to
look for activities and fragments that implement LifecycleRegistryOwner and
knows to forward callbacks like onCreate() and onPause() to the Lifecycle.

Now, you can use the combination of AppCompatLifecycleActivity and
LifecycleFragment until such time as appcompat-v7 is more formally integrated
with the Architecture Components.

Note, though, that this may not work, as is covered in the next section.

…From an Activity or Fragment

Perhaps you are using the classic Activity and Fragment classes. Those will never
directly implement LifecycleOwner, as framework classes cannot depend upon
libraries.

In theory, you will need to have your own Activity and Fragment base classes that
implement LifecycleOwner, akin to the AppCompatLifecycleActivity shown above:

publicpublic classclass SimpleLifecycleActivitySimpleLifecycleActivity extendsextends Activity
implementsimplements LifecycleRegistryOwner {
privateprivate LifecycleRegistry registry=newnew LifecycleRegistry(thisthis);

@Override
publicpublic LifecycleRegistry getLifecycle() {

returnreturn(registry);
}

}

According to the documentation, using LifecycleRegistryOwner on an activity or
fragment will cause the standard Android lifecycle events to be forwarded to the
Lifecycle automatically.

LIFECYCLES AND OWNERS

100

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Unfortunately, this does not work, due to a bug. This means that we need to handle
this in a more complex fashion, outlined in the next section.

…From Anything Else

In principle, you could have other objects that are themselves tied into the activity
and fragment lifecycle. After all, the backport of fragments in the Android Support
Library are just that sort of “other objects”. It so happens that Google takes care of
managing that backport. However, you might find other objects that, for whatever
reason, are similar in concept to the fragments backport and therefore should be
suppliers of lifecycle events.

And, as noted earlier, due to bugs, we have to treat regular activities and fragments
as “other objects”.

In that case, you can implement LifecycleOwner on those classes. However, you will
also need to call handleLifecycleEvent() method on the LifecycleRegistry at
appropriate points.

For example, here is a SimpleLifecycleActivity that handles the standard activity
lifecycle events, forwarding them to the LifecycleRegistry:

packagepackage com.commonsware.android.lifecycle;

importimport android.app.Activityandroid.app.Activity;
importimport android.arch.lifecycle.Lifecycleandroid.arch.lifecycle.Lifecycle;
importimport android.arch.lifecycle.LifecycleOwnerandroid.arch.lifecycle.LifecycleOwner;
importimport android.arch.lifecycle.LifecycleRegistryandroid.arch.lifecycle.LifecycleRegistry;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.annotation.Nullableandroid.support.annotation.Nullable;

publicpublic classclass SimpleLifecycleActivitySimpleLifecycleActivity extendsextends Activity
implementsimplements LifecycleOwner {
privateprivate LifecycleRegistry registry=newnew LifecycleRegistry(thisthis);

@Override
publicpublic Lifecycle getLifecycle() {

returnreturn(registry);
}

@Override
protectedprotected void onCreate(@Nullable Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

LIFECYCLES AND OWNERS

101

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://issuetracker.google.com/issues/62160522

registry.handleLifecycleEvent(Lifecycle.Event.ON_CREATE);
}

@Override
protectedprotected void onStart() {

supersuper.onStart();

registry.handleLifecycleEvent(Lifecycle.Event.ON_START);
}

@Override
protectedprotected void onResume() {

supersuper.onResume();

registry.handleLifecycleEvent(Lifecycle.Event.ON_RESUME);
}

@Override
protectedprotected void onPause() {

supersuper.onPause();

registry.handleLifecycleEvent(Lifecycle.Event.ON_PAUSE);
}

@Override
protectedprotected void onStop() {

supersuper.onStop();

registry.handleLifecycleEvent(Lifecycle.Event.ON_STOP);
}

@Override
protectedprotected void onDestroy() {

supersuper.onDestroy();

registry.handleLifecycleEvent(Lifecycle.Event.ON_DESTROY);
}

}

(from General/Lifecycle/app/src/main/java/com/commonsware/android/lifecycle/SimpleLifecycleActivity.java)

Observing a Lifecycle
To observe the events associated with a Lifecycle, you create a Java class that
implements LifecycleObserver. As noted above, LifecycleObserver is purely a
marker interface — there are no specific methods to override. Instead, you annotate

LIFECYCLES AND OWNERS

102

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/Lifecycle/app/src/main/java/com/commonsware/android/lifecycle/SimpleLifecycleActivity.java

methods with @OnLifecycleEvent, and they will be called when the identified event
occurs.

So, for example, here is an observer that passes all events to a
RecyclerView.Adapter named EventLogAdapter:

staticstatic classclass LObserverLObserver implementsimplements LifecycleObserver {
privateprivate finalfinal EventLogAdapter adapter;

LObserver(EventLogAdapter adapter) {
thisthis.adapter=adapter;

}

@OnLifecycleEvent(Lifecycle.Event.ON_CREATE)
void created() {

adapter.add("ON_CREATE");
}

@OnLifecycleEvent(Lifecycle.Event.ON_START)
void started() {

adapter.add("ON_START");
}

@OnLifecycleEvent(Lifecycle.Event.ON_RESUME)
void resumed() {

adapter.add("ON_RESUME");
}

@OnLifecycleEvent(Lifecycle.Event.ON_PAUSE)
void paused() {

adapter.add("ON_PAUSE");
}

@OnLifecycleEvent(Lifecycle.Event.ON_STOP)
void stopped() {

adapter.add("ON_STOP");
}

@OnLifecycleEvent(Lifecycle.Event.ON_DESTROY)
void destroyed() {

adapter.add("ON_DESTROY");
}

}

(from General/Lifecycle/app/src/main/java/com/commonsware/android/lifecycle/MainActivity.java)

Note:

LIFECYCLES AND OWNERS

103

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/Lifecycle/app/src/main/java/com/commonsware/android/lifecycle/MainActivity.java

• There is also a Lifecycle.Event.ON_ANY event that you can request; this
triggers your method to be called for any lifecycle event… though you have
no way of knowing what event it was

• A single method can only have one @OnLifecycleEvent annotation, and that
annotation accepts only a single Lifecycle.Event value (not a list)

Then, you can register the observer, and it will start being called for the various
events:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

setTitle(getString(R.string.title, hashCode()));

RecyclerView rv=findViewById(R.id.transcript);

adapter=newnew EventLogAdapter(getLastNonConfigurationInstance());
rv.setAdapter(adapter);

getLifecycle().addObserver(newnew LObserver(adapter));
}

(from General/Lifecycle/app/src/main/java/com/commonsware/android/lifecycle/MainActivity.java)

All of this code is from the General/Lifecycle sample project, which shows you
the events in a RecyclerView as they come in. The MainActivity handles
configuration changes via onRetainNonConfigurationInstance(), so you can see
the lifecycle events across a configuration change. Through an overflow menu item,
you can kick off another instance of MainActivity, then press BACK to see the flow
of lifecycle events as the original instance comes and goes from the foreground.

So, What’s the Point of This?
On the surface, this all seems fairly silly. One could just as easily override the
lifecycle methods on MainActivity and log directly to the RecyclerView, bypassing
all this Lifecycle and LifecycleOwner stuff.

Most developers will not be creating their own LifecycleObserver classes, though
anyone can, as the sample app demonstrates. Instead, developers will tend to use
observers created by others. Most notable among those is LiveData from the
Architecture Components, and the subject of the next chapter.

LIFECYCLES AND OWNERS

104

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/Lifecycle/app/src/main/java/com/commonsware/android/lifecycle/MainActivity.java
http://github.com/commonsguy/cw-androidarch/tree/master/General/Lifecycle
http://github.com/commonsguy/cw-androidarch/tree/master/General/Lifecycle

LiveData

Lifecycle, LifecycleOwner, and related classes mostly exist to provide the
foundation for LiveData. LiveData is the next generation of various Android
asynchronous solutions, such as AsyncTask and the Loader framework. LiveData, in
particular, is modeled somewhat after RxJava, a popular reactive programming
library.

All of this is to set up ways for you to be able to observe changes to data without
having to worry as much about activity and fragment lifecycles… though, as it turns
out, you cannot escape them entirely.

Observables Are the New Black
The observer pattern in software design has been around for decades. Yet, it has
caught fire in the past few years, repackaged as “reactive programming”. Reactive
programming visualizes an app as a set of streams of data changes, whether from the
user (e.g., UI widget interactions), from a server (e.g., updates to data from a sync
operation), or from something else (e.g., GPS fixes). Developers set up observers to
respond (“react”) to these data changes and apply updates to the UI.

The centerpiece for reactive programming in Android is RxJava, typically combined
with RxAndroid. RxJava provides the basic framework for observing streams of data
changes, with RxAndroid primarily providing ways to route results of observations to
the main application thread. This book is not going to go into details of how you use
RxJava/RxAndroid in general — for that, see The Busy Coder’s Guide to Android
Development or other books.

One problem with RxJava, though, is that “it is difficult to get your head wrapped
around it”. Reactive programming works great in platforms that implemented

105

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://commonsware.com/Android
https://commonsware.com/Android

reactive programming from the outset. Reactive programming is more difficult to
bolt onto an existing platform, both from a technical standpoint and from a
documentation standpoint. RxJava is the sort of technology that is easy to illustrate
in “hello, world”-level examples but gets difficult to explain for more practical
scenarios. In part, that is because RxJava is extremely flexible, and with great
flexibility comes great need for great documentation… which RxJava historically
lacked.

LiveData is designed to be a much lighter-weight approach to reactive
programming, designed to do one thing (deliver asynchronous data changes
regardless of lifecycle events) and do it reasonably well.

Yet More Terminology
First, let’s review some new and exciting terms that we need to understand in order
to use LiveData.

LiveData

LiveData itself is a source of data, both for a point in time and (via an observer) for
changes to that data over time. Something will create and hand you a LiveData
object, where the work to get that data and update it over time is handled by some
background thread coming from the LiveData supplier.

Observer

In principle, you can call getValue() on a LiveData to get the current value for
whatever stream of data the LiveData is tracking. In practice, this will not be
especially common.

Instead, you will register an Observer with the LiveData, usually via an observe()
method. Your Observer will be called with onChanged() when:

• You start observing and there is already data in the LiveData, and
• When the LiveData finds out about a change in the data

Your onChanged() method is given the data (a Location, a SensorEvent, a Room
entity, whatever) on the main application thread, with an eye towards you using it to
update the UI by one means or another.

LIVEDATA

106

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Active State

If a LiveData was instantiated in a forest, and nobody was there to observe data
changes, does the LiveData really exist?

The answer is: yes, but it hopefully is not consuming any resources.

A LiveData implementation will be called with onActive() when it receives its first
active observer. Here, “active” means that, if the observer is tied to a
LifecycleOwner, the lifecycle is in the started or resumed state. Conversely, the
LiveData will be called with onInactive() once it no longer has any active
observers, either because all observers have been unregistered or none of them are
active, as their lifecycles are all paused, stopped, or destroyed.

The idea is that a LiveData would only start consuming significant system resources
— such as requesting GPS fixes — when there are active observers, releasing those
resources when there are no more active observers. This works in many cases,
though there are some that will require more finesse. For example, given that the
GPS radio takes some time before it starts generating GPS fixes, a LiveData for GPS
might want to wait some amount of time after losing its last active observer before
releasing the GPS radio, in case a new observer pops up quickly, to avoid delays in
getting those GPS fixes.

Implementing LiveData
With that as background, let’s see LiveData in action. The General/LiveSensor
sample project implements LiveData for sensor readings coming from a
SensorManager. We can use this to track the accelerometer, ambient light, and so
on.

However, the technique shown here can be used for lots of different system-level
data sources, such as:

• Other system services (e.g., LocationManager, ClipboardManager)
• System broadcasts, for cases where you want to dynamically register for the

broadcast via registerReceiver()
• Local broadcasts, using LocalBroadcastManager
• Content changes in providers, via a ContentObserver

LIVEDATA

107

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-androidarch/tree/master/General/LiveSensor
http://github.com/commonsguy/cw-androidarch/tree/master/General/LiveSensor

Dependencies

To use Lifecycle and LifecycleOwner, you needed two dependencies: the lifecycle
runtime library and its compiler annotation processor.

For some reason, LiveData is in a third dependency, called extensions:

dependencies {
compile 'com.android.support:recyclerview-v7:26.0.0'
compile 'android.arch.lifecycle:runtime:1.0.0-alpha8'
compile 'android.arch.lifecycle:extensions:1.0.0-alpha8'
annotationProcessor 'android.arch.lifecycle:compiler:1.0.0-alpha8'

}

(from General/LiveSensor/app/build.gradle)

State Transitions

We have a SensorLiveData class that extends the LiveData base class, offering to
support a custom Event static nested class:

packagepackage com.commonsware.android.livedata;

importimport android.arch.lifecycle.LiveDataandroid.arch.lifecycle.LiveData;
importimport android.content.Contextandroid.content.Context;
importimport android.hardware.Sensorandroid.hardware.Sensor;
importimport android.hardware.SensorEventandroid.hardware.SensorEvent;
importimport android.hardware.SensorEventListenerandroid.hardware.SensorEventListener;
importimport android.hardware.SensorManagerandroid.hardware.SensorManager;
importimport java.util.Datejava.util.Date;

classclass SensorLiveDataSensorLiveData extendsextends LiveData<SensorLiveData.Event> {
finalfinal privateprivate SensorManager sensorManager;
privateprivate finalfinal Sensor sensor;
privateprivate finalfinal int delay;

SensorLiveData(Context ctxt, int sensorType, int delay) {
sensorManager=

(SensorManager)ctxt.getApplicationContext()
.getSystemService(Context.SENSOR_SERVICE);

thisthis.sensor=sensorManager.getDefaultSensor(sensorType);
thisthis.delay=delay;

ifif (thisthis.sensor==nullnull) {
throwthrow newnew IllegalStateException("Cannot obtain the requested sensor");

}

LIVEDATA

108

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/LiveSensor/app/build.gradle

}

@Override
protectedprotected void onActive() {

supersuper.onActive();

sensorManager.registerListener(listener, sensor, delay);
}

@Override
protectedprotected void onInactive() {

sensorManager.unregisterListener(listener);

supersuper.onInactive();
}

finalfinal privateprivate SensorEventListener listener=newnew SensorEventListener() {
@Override
publicpublic void onSensorChanged(SensorEvent event) {

setValue(newnew Event(event));
}

@Override
publicpublic void onAccuracyChanged(Sensor sensor, int accuracy) {

// unused
}

};

classclass EventEvent {
finalfinal Date date=newnew Date();
finalfinal float[] values;

Event(SensorEvent event) {
values=newnew float[event.values.length];

System.arraycopy(event.values, 0, values, 0, event.values.length);
}

}
}

(from General/LiveSensor/app/src/main/java/com/commonsware/android/livedata/SensorLiveData.java)

In the constructor, we hold onto configuration details, such as the particular sensor
to monitor and how frequently we should ask for updates. We also obtain an
instance of the SensorManager system service and try to find the actual requested
Sensor, throwing a runtime exception if there is no matching sensor on this device.

LIVEDATA

109

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/LiveSensor/app/src/main/java/com/commonsware/android/livedata/SensorLiveData.java

However, we do not register for sensor events in the constructor. Until we have 1+
active observers, we do not need those events, and monitoring sensor events drains
the battery. So, we postpone registering for events until onActive(), unregistering in
the corresponding onInactive() callback.

Updating the Observers

The SensorEventListener that we use, in its onSensorChanged() method, creates a
new instance of our Event, grabbing data from the SensorEvent. We use our own
Event class for two reasons:

1. SensorEvent objects get recycled, and so it is not safe to hold onto one of
those after the end of onSensorChanged(), so we copy the sensor results
float values into our own object

2. While a SensorEvent has a timestamp, it is a pain to use, and this is a casual
book sample, so we just track our own Date for simplicity

That Event is passed to setValue() on the LiveData, which in turn will pass the
result to observers. Note that setValue() needs to be called on the main application
thread — we will see how to handle events originating on background threads later
in this chapter.

Retaining the LiveData

So, we have a LiveData for sensor readings. We can have an activity that displays
those readings, by having it create a SensorLiveData instance and registering to
observe those events. But now we run into a problem… what do we do with the
SensorLiveData object after that?

One possibility is that we just hold onto it in a field, mostly to ensure that nothing
gets garbage-collected that would interrupt the sensor readings. If we undergo a
configuration change, we just create a new SensorLiveData objects and a fresh
observer. While this is not completely ridiculous for this particular scenario, it is bad
for cases where setting up the LiveData is expensive.

The idea behind LiveData is that it is the unique source of the specific data for the
entire app. In other words, if we had several activities and fragments that all needed
a particular sensor reading, we should set up a single SensorLiveData for all of
them. That suggests using a singleton, and we will see how to do that later in this
chapter. And, in truth, this is going to be the most common answer. However, it does
raise some bits of complexity — in the case of SensorLiveData, there are many

LIVEDATA

110

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

possible sensors, and a few possible delay periods, and so we would need a fairly
sophisticated manager object to reuse or lazily create the appropriate
SensorLiveData for a given client.

In this sample app, we take a middle-ground approach, and use
onRetainNonConfigurationInstance() inside the activity that is going to use the
sensor readings. Since the UI is going to be a RecyclerView of readings, we also need
to hold onto past readings, so we do not lose them when we undergo the
configuration change.

So, we have a State static nested class that holds onto the SensorLiveData and
outstanding readings:

privateprivate staticstatic classclass StateState {
finalfinal ArrayList<SensorLiveData.Event> events=newnew ArrayList<>();
SensorLiveData sensorLiveData;

}

(from General/LiveSensor/app/src/main/java/com/commonsware/android/livedata/MainActivity.java)

In onCreate(), we set up that State if we do not already have one, storing it in a
state field. This includes setting up the SensorLiveData, in this case for the
ambient light sensor:

privateprivate State state;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

RecyclerView rv=findViewById(R.id.transcript);

state=(State)getLastNonConfigurationInstance();

ifif (state==nullnull) {
state=newnew State();
state.sensorLiveData=

newnew SensorLiveData(thisthis, Sensor.TYPE_LIGHT,
SensorManager.SENSOR_DELAY_UI);

}

adapter=newnew EventLogAdapter();
rv.setAdapter(adapter);

LIVEDATA

111

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/LiveSensor/app/src/main/java/com/commonsware/android/livedata/MainActivity.java

state.sensorLiveData.observe(thisthis, newnew Observer<SensorLiveData.Event>() {
@Override
publicpublic void onChanged(@Nullable SensorLiveData.Event event) {

adapter.add(event);
}

});
}

(from General/LiveSensor/app/src/main/java/com/commonsware/android/livedata/MainActivity.java)

We also register our Observer, which will be called with onChanged() with a new
Event as sensor readings come in. Our EventLogAdapter knows how to add() that to
the list of historical readings and update the RecyclerView.

However, the LiveData will automatically deliver the last-received reading to our
observer when we attach a fresh observer after a configuration change. That could
result in onChanged() being given the same Event object as before, one that we
already put into the ArrayList. So, the EventLogAdapter add() method checks that
first, before actually adding it:

void add(SensorLiveData.Event what) {
ifif (!state.events.contains(what)) {

state.events.add(what);
notifyItemInserted(getItemCount());

}
}

(from General/LiveSensor/app/src/main/java/com/commonsware/android/livedata/MainActivity.java)

And we override onRetainNonConfigurationInstance() to return the State
instance, so onCreate() can retrieve it after a configuration change:

@Override
publicpublic Object onRetainNonConfigurationInstance() {

returnreturn(state);
}

(from General/LiveSensor/app/src/main/java/com/commonsware/android/livedata/MainActivity.java)

Other LiveData Examples
Let’s take a look at a few more examples of using LiveData, to explore other facets of
how this can be used.

LIVEDATA

112

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/LiveSensor/app/src/main/java/com/commonsware/android/livedata/MainActivity.java
https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/LiveSensor/app/src/main/java/com/commonsware/android/livedata/MainActivity.java
https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/LiveSensor/app/src/main/java/com/commonsware/android/livedata/MainActivity.java

Event Bus

LocalBroadcastManager implements an in-process event bus, where events are
delivered to you on the main application thread, and where “events” are Intent
objects.

You can accomplish the same thing, with greater flexibility, by means of a LiveData
object, as can be seen in the General/LiveBus sample project.

This sample app is derived from one shown in The Busy Coder’s Guide to Android
Development, where we have AlarmManager triggering a service. In principle, that
service should do some work, which we are skipping here because we are lazy.
However, the fake work is something that the user might care about, and so we want
to let the UI layer know about the event if we happen to be in the foreground.
Otherwise, we want to raise a Notification. In The Busy Coder’s Guide to Android
Development, implementations of this sample are available for a few event buses,
including LocalBroadcastManager and greenrobot’s EventBus.

Here, though, we will use a MutableLiveData singleton:

staticstatic finalfinal MutableLiveData<Intent> BUS=newnew MutableLiveData<>();
privateprivate staticstatic int NOTIFY_ID=1337;
privateprivate Random rng=newnew Random();

publicpublic ScheduledService() {
supersuper("ScheduledService");

}

@Override
protectedprotected void doWakefulWork(Intent intent) {

Intent event=newnew Intent(EventLogFragment.ACTION_EVENT);
long now=Calendar.getInstance().getTimeInMillis();
int random=rng.nextInt();

event.putExtra(EventLogFragment.EXTRA_RANDOM, random);
event.putExtra(EventLogFragment.EXTRA_TIME, now);

ifif (BUS.hasActiveObservers()) {
BUS.postValue(event);

}
elseelse {

NotificationCompat.Builder b=newnew NotificationCompat.Builder(thisthis);
Intent ui=newnew Intent(thisthis, EventDemoActivity.class);

LIVEDATA

113

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-androidarch/tree/master/General/LiveBus
http://github.com/commonsguy/cw-androidarch/tree/master/General/LiveBus
https://commonsware.com/Android
https://commonsware.com/Android

b.setAutoCancel(truetrue).setDefaults(Notification.DEFAULT_SOUND)
.setContentTitle(getString(R.string.notif_title))
.setContentText(Integer.toHexString(random))
.setSmallIcon(android.R.drawable.stat_notify_more)
.setTicker(getString(R.string.notif_title))
.setContentIntent(PendingIntent.getActivity(thisthis, 0, ui, 0));

NotificationManager mgr=
(NotificationManager)getSystemService(NOTIFICATION_SERVICE);

mgr.notify(NOTIFY_ID, b.build());
}

}
}

(from General/LiveBus/app/src/main/java/com/commonsware/android/livedata/bus/ScheduledService.java)

MutableLiveData is a subclass of LiveData, with one key feature: it offers a
postValue() method that works like setValue() but can be called from a
background thread. Here, our events are in the form of Intent objects, the way they
would be for LocalBroadcastManager. However, you could create your own custom
event objects if you prefer, and typically that would be a better idea. In this case, the
sample is demonstrating a quick-and-dirty change from LocalBroadcastManager, so
we are keeping the event objects the same to reduce the number of code changes.

The service, as part of its work, asks the BUS whether there are any active observers,
by means of hasActiveObservers(). If hasActiveObservers() returns true, we use
postValue() to post the event onto our BUS. Otherwise, we raise a Notification, as
our UI is not in the foreground.

(note: this service extends WakefulIntentService, and so the method is
doWakefulWork() instead of the onHandleIntent() that you might typically use with
an IntentService).

Our UI is in the form of a ListFragment. However, ListFragment itself is not tied to
a Lifecycle. So, we have a LifecycleListFragment that provides this capability:

packagepackage com.commonsware.android.livedata.bus;

importimport android.app.ListFragmentandroid.app.ListFragment;
importimport android.arch.lifecycle.Lifecycleandroid.arch.lifecycle.Lifecycle;
importimport android.arch.lifecycle.LifecycleOwnerandroid.arch.lifecycle.LifecycleOwner;
importimport android.arch.lifecycle.LifecycleRegistryandroid.arch.lifecycle.LifecycleRegistry;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.annotation.Nullableandroid.support.annotation.Nullable;

LIVEDATA

114

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/LiveBus/app/src/main/java/com/commonsware/android/livedata/bus/ScheduledService.java
https://github.com/commonsguy/cwac-wakeful
https://github.com/commonsguy/cwac-wakeful

publicpublic classclass LifecycleListFragmentLifecycleListFragment extendsextends ListFragment
implementsimplements LifecycleOwner {
privateprivate LifecycleRegistry registry=newnew LifecycleRegistry(thisthis);

@Override
publicpublic Lifecycle getLifecycle() {

returnreturn(registry);
}

@Override
publicpublic void onCreate(@Nullable Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

registry.handleLifecycleEvent(Lifecycle.Event.ON_CREATE);
}

@Override
publicpublic void onStart() {

supersuper.onStart();

registry.handleLifecycleEvent(Lifecycle.Event.ON_START);
}

@Override
publicpublic void onResume() {

supersuper.onResume();

registry.handleLifecycleEvent(Lifecycle.Event.ON_RESUME);
}

@Override
publicpublic void onPause() {

supersuper.onPause();

registry.handleLifecycleEvent(Lifecycle.Event.ON_PAUSE);
}

@Override
publicpublic void onStop() {

supersuper.onStop();

registry.handleLifecycleEvent(Lifecycle.Event.ON_STOP);
}

@Override
publicpublic void onDestroy() {

supersuper.onDestroy();

LIVEDATA

115

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

registry.handleLifecycleEvent(Lifecycle.Event.ON_DESTROY);
}

}

(from General/LiveBus/app/src/main/java/com/commonsware/android/livedata/bus/LifecycleListFragment.java)

That allows our EventLogFragment to register an observer on the BUS, adding the
events to its ArrayAdapter:

ScheduledService.BUS.observe(thisthis, newnew Observer<Intent>() {
@Override
publicpublic void onChanged(@Nullable Intent intent) {

adapter.add(intent);
}

});

(from General/LiveBus/app/src/main/java/com/commonsware/android/livedata/bus/EventLogFragment.java)

Unlike LocalBroadcastManager, this approach performs no Intent filtering.
However, unlike LocalBroadcastManager, we can have as many MutableLiveData
objects as needed. So, you can create custom buses for different event channels,
instead of using action strings as you might with LocalBroadcastManager.

Room

Having DAO methods in Room return a LiveData is simply a matter of setting them
up that way:

@Query("SELECT * FROM Customer WHERE postalCode IN (:postalCodes) LIMIT :max")
LiveData<List<Customer>> findByPostalCodes(int max, String... postalCodes);

(from General/LiveRoom/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java)

Now, findByPostalCodes() will return a LiveData. Moreover, it will do so
immediately when called, with the actual query being performed on a Room-
supplied background thread. You can arrange to register an observer to find out
when the results are ready. And, by using the same LiveData instance after a
configuration change, you can get the last-loaded results without having to perform
another round of disk I/O.

However, Room has an additional feature: if you make changes to the database
through your DAO, Room will deliver fresh results to any registered observer of your
LiveData. So, for example:

LIVEDATA

116

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/LiveBus/app/src/main/java/com/commonsware/android/livedata/bus/LifecycleListFragment.java
https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/LiveBus/app/src/main/java/com/commonsware/android/livedata/bus/EventLogFragment.java
https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/LiveRoom/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java

• You register an observer on a LiveData, returned by a Room @Query, that
represents a list of your entities

• Shortly thereafter, you get the list of entities as they exist in the database at
present, for you to fill into your RecyclerView (or whatever)

• Later on, as part of processing a request from the user, you invoke an
@Insert method on your DAO to add a new entity to the database

• Your registered observer gets the updated list of entities as they exist in the
database, for you to fill into your RecyclerView (or whatever)

• And so on

In effect, Room attempts to give you ContentObserver capabilities, for your own
database, tied directly into the LiveData system.

Note, though, that these changes are tied in large part to your use of the DAO. For
example, if you want to insert 100 entities, you could:

• Call a single @Insert method that takes a List of those entities, in which
case you will get a single update from the LiveData

• Call a one-entity @Insert method 100 times, in which case you will get 100
updates from the LiveData

Doing things in batch form generally will be more efficient, both from a disk I/O
standpoint and a LiveData-updating standpoint. On the other hand, this means that
a LiveData update might represent several changes, and that may require additional
smarts to handle properly in terms of updating the UI (e.g., use DiffUtil to
efficiently update a RecyclerView).

We will see using LiveData with Room in the next chapter.

Testing LiveData
LiveData works asynchronously, and so your tests have to deal with this. There are
various patterns for handling asynchronous tests. One is to use a CountDownLatch.

The General/LiveRoom sample project has the revised findByPostalCodes()
method shown above, and so we need to modify the instrumentation tests to
match.

The DaoTests class now has two additional fields:

LIVEDATA

117

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-androidarch/tree/master/General/LiveRoom
http://github.com/commonsguy/cw-androidarch/tree/master/General/LiveRoom

1. A CountDownLatch named responseLatch
2. A List of Customer objects, named customers

In setUp(), we initialize the CountDownLatch, set to track one event:

@Before
publicpublic void setUp() {

db=StuffDatabase.create(InstrumentationRegistry.getTargetContext(), truetrue);
store=db.stuffStore();
responseLatch=newnew CountDownLatch(1);

}

(from General/LiveRoom/stuff/src/androidTest/java/com/commonsware/android/room/dao/DaoTests.java)

In the test, we can retrieve the LiveData, register an observer, and have the observer
save the results in customers and countDown() the CountDownLatch:

finalfinal LiveData<List<Customer>>
liveResult=store.findByPostalCodes(10, firstCustomer.postalCode);

liveResult.observeForever(newnew Observer<List<Customer>>() {
@Override
publicpublic void onChanged(@Nullable List<Customer> customers) {

DaoTests.this.customers=customers;
responseLatch.countDown();

}
});

responseLatch.await();

assertEquals(1, customers.size());

(from General/LiveRoom/stuff/src/androidTest/java/com/commonsware/android/room/dao/DaoTests.java)

Instrumentation test methods run on background threads, and onChanged() is
called on the main application thread. So, we block the test thread via await(), to
wait on the disk I/O to complete. At that point, we have our List of Customer
objects for assertions.

LIVEDATA

118

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/LiveRoom/stuff/src/androidTest/java/com/commonsware/android/room/dao/DaoTests.java
https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/LiveRoom/stuff/src/androidTest/java/com/commonsware/android/room/dao/DaoTests.java

ViewModel

Many Android apps are trivial. The smaller the app, the less likely it is that you need
much in the way of a true GUI architecture. Slapping together whatever you want
wherever you want it most likely will suffice. Your average soundboard, flashlight,
front-facing-camera “mirror”, and similar apps just do what they do, and their
developers do not need to worry about the alphabet soup of MVC, MVP, MVVM,
MVI, and so on.

If you are reading this book, you may have an app in mind that is not so trivial.

The more complex the app, the more likely it is that you are going to want to think
more seriously about the GUI architecture. The Architecture Components
contribution to this is the ViewModel, which we will explore in this chapter.

ViewModels, As Originally Envisioned
Microsoft devised the model-view-viewmodel (MVVM) GUI architecture in 2005,
and it has remained generally murky ever since. This is not terribly surprising, as
many of the “alphabet soup” GUI architectures have malleable definitions which
developers can twist and tweak to match what it is that they want to write.

Roughly speaking, in this GUI architecture, the “view model” represents a collection
of data and other state, necessary to render a view, derived from the underlying
models. The view model would be responsible for things like data formatting (e.g.,
converting the model’s long Unix epoch time into something that the user will be
able to read). The view updates the view model, which in turn updates the model at
the appropriate time.

119

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Ideally, the view model knows nothing much about the view, but rather just exposes
data and operations that the view needs.

The Architecture Components ships with a ViewModel class. This class does almost
nothing. This will be an important point, as what little we get from ViewModel can
be implemented in other ways without significant difficulty. But, for now, consider
ViewModel to be a place to hold the data necessary to represent your views. For
example, a ViewModel might hold a list of objects, obtained from Room, that are
used to populate a RecyclerView.

ViewModel Versus…
The objective of ViewModel, in particular, is to be able to survive past configuration
changes.

Of course, we have been dealing with configuration changes for years, before the
Architecture Components were a glimmer in any Google engineer’s eye.

So, when would we use a ViewModel, and when would we use other techniques?

…Saved Instance State

Saved instance state — what you put into the Bundle supplied to
onSaveInstanceState() – survives process termination. A ViewModel does not. So
while both can help deal with configuration changes, only saved instance state can
help with the process termination scenario:

• User is in your app, in an activity
• User navigates to something else (e.g., presses HOME, switches to another

task via the overview screen)
• A few minutes later, Android terminates your process to free up system RAM
• A few minutes after that — but within 30 minutes of the user navigating

away – the user returns to your task
• Android recreates the activity atop your task’s back stack as part of forking a

fresh process for you, and Android hands you your saved instance state
Bundle back

However, the saved instance state Bundle has size limits (should be well under 1MB)
and type limits (only objects that can go into a Parcel).

VIEWMODEL

120

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

As a result:

• Use the ViewModel for holding onto data in your process necessary to be able
to rapidly repopulate the UI after a configuration change

• Use the saved instance state Bundle to hold identifiers and other data that
will help you rebuild the UI after process termination, even if you wind up
having to re-read from disk or the network as part of that work

…Retained Objects

In the end, the ViewModelProviders system supplied by the Architecture
Components is an oddly-written wrapper around retained fragments. As a result,
there is nothing that you can do with a ViewModel that you could not do using
retained objects, whether those are retained fragments or using
onRetainNonConfigurationInstance(). We will see examples of this later in this
chapter.

Mommy, Where Do ViewModels Come From?
You might think that you create a ViewModel via whatever constructor you set up for
it. And, if you are going to manage a ViewModel yourself — via the retained object
pattern described above — then this is perfectly fine.

The Architecture Components expect you to get a ViewModel instance by using
ViewModelProvider. A ViewModelProvider instance is tied to either:

• A FragmentActivity (or a subclass, like AppCompatActivity), or
• A Fragment, from the fragments backport

If you do not have one of those, you cannot use ViewModelProvider.

If you do have one of those, call the static of() method on the
ViewModelProviders class (note the plural) to get a ViewModelProvider (note the
singular) tied to your FragmentActivity or Fragment. This ViewModelProvider is
tied to the logical instance of this activity or fragment, regardless of configuration
changes. So, if the activity is destroyed and recreated as part of a configuration
change, you will get the same ViewModelProvider instance in the new activity as you
had in the old one.

VIEWMODEL

121

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Then, to get a ViewModel, call get() on the ViewModelProvider, passing in the Java
class object for your subclass of ViewModel (e.g., MyViewModel.class). If there
already is an instance of this ViewModel tied to this ViewModelProvider, you get that
instance. Otherwise, a fresh instance will be created for you, from the zero-
argument constructor. If using the zero-argument constructor is not what you want,
you can:

• Create an implementation of the ViewModelProvider.Factory interface,
implementing the create() method to create an instance of your ViewModel
by whatever constructor you want

• Associate an instance of your ViewModelProvider.Factory with the
ViewModelProvider by supplying it as a second parameter to the of()
method on ViewModelProviders

So, in the typical case, you wind up with code like this:

TripRosterViewModel vm=
ViewModelProviders.of(thisthis).get(TripRosterViewModel.class);

(from Trips/ViewModels/app/src/main/java/com/commonsware/android/room/TripsFragment.java)

Here, this inherits from the Fragment backport, and we are retrieving a
TripRosterViewModel to use in that fragment.

We will see this code snippet again in the next section.

ViewModels, Google’s Way
So, let’s take a look at the Trips/ViewModels sample project. This adds a ViewModel
to our app showing a roster of upcoming trips. More specifically, we will use
ViewModelProvider, the way Google envisioned it.

Earlier editions of this sample used Android’s native Activity and Fragment classes.
Those do not work with ViewModelProviders. So, in this sample, MainActivity has
been revised to extend from FragmentActivity and RecyclerViewFragment has been
revised to extend from LifecycleFragment. Using LifecyleFragment allows us to
use LiveData for retrieving our trips from Room. Otherwise, we could just use the
backport Fragment class, as ViewModelProvider has nothing to do with the lifecycle
classes.

VIEWMODEL

122

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/Trips/ViewModels/app/src/main/java/com/commonsware/android/room/TripsFragment.java
http://github.com/commonsguy/cw-androidarch/tree/master/Trips/ViewModels
http://github.com/commonsguy/cw-androidarch/tree/master/Trips/ViewModels

Defining a ViewModel

The idea is that a ViewModel should hold the data necessary to render the UI. In our
case, that is simply a roster of Trip objects, pulled in from Room.

For ViewModelProvider to work, the class must be public, even though your IDE
might suggest otherwise. So, our TripRosterViewModel is public:

packagepackage com.commonsware.android.room;

importimport android.app.Applicationandroid.app.Application;
importimport android.arch.lifecycle.AndroidViewModelandroid.arch.lifecycle.AndroidViewModel;
importimport android.arch.lifecycle.LiveDataandroid.arch.lifecycle.LiveData;
importimport java.util.Listjava.util.List;

publicpublic classclass TripRosterViewModelTripRosterViewModel extendsextends AndroidViewModel {
finalfinal LiveData<List<Trip>> allTrips;

publicpublic TripRosterViewModel(Application app) {
supersuper(app);

allTrips=TripDatabase.get(app).tripStore().selectAllTrips();
}

}

(from Trips/ViewModels/app/src/main/java/com/commonsware/android/room/TripRosterViewModel.java)

Note that TripRosterViewModel extends from AndroidViewModel. AndroidViewModel
itself extends ViewModel. The only difference between the two is the constructor:
ViewModel has a zero-argument constructor, while AndroidViewModel has a one-
argument constructor, supplying the Application instance. In our case, we need the
Application instance to get() our TripDatabase (as Room needs a Context for
this).

TripRosterViewModel, in its constructor, sets up an allTrips field that is a LiveData
of our roster of Trip objects. Since this is LiveData, the actual work will not be done
until we ask it to, by registering an observer to use the results.

Getting a ViewModel

Our TripsFragment needs access to the TripRosterViewModel, in order to be able to
get to the allTrips data and request the roster of Trip objects.

VIEWMODEL

123

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/Trips/ViewModels/app/src/main/java/com/commonsware/android/room/TripRosterViewModel.java

However, now we have a decision to make: is the TripRosterViewModel tied to the
fragment or to the activity?

Since a fragment can get to its hosting activity via getActivity(), a fragment can
choose either scope:

• Pass this into of() to get the ViewModelProvider tied to the fragment, or
• Pass getActivity() into of() to get the ViewModelProvider tied to the

activity

Either is perfectly legitimate. Frequently, it will boil down to who needs the data.
Data that is only needed by a single fragment should be owned by a ViewModel tied
to that fragment. Data needed by multiple fragments, or by a fragment and the
activity, or just by the activity, should be owned by a ViewModel tied to the activity. A
fragment can also elect to do both, using two ViewModel instances, one for its own
data and one that it gets via the activity.

In this case, the only UI is the TripsFragment, so we can say that the
TripRosterViewModel is owned by the fragment and retrieve it as part of our
onViewCreated() work:

TripRosterViewModel vm=
ViewModelProviders.of(thisthis).get(TripRosterViewModel.class);

(from Trips/ViewModels/app/src/main/java/com/commonsware/android/room/TripsFragment.java)

The first time we run through these lines, we will get a fresh TripRosterViewModel
instance. If we undergo a configuration change, when this fragment is recreated, the
new fragment instance will get the same TripRosterViewModel as before.

Using the ViewModel

Given our TripRosterViewModel, our TripsFragment can now get at the roster of
Trip objects, by registering an Observer:

vm.allTrips.observe(thisthis, newnew Observer<List<Trip>>() {
@Override
publicpublic void onChanged(@Nullable List<Trip> trips) {

setAdapter(newnew TripsAdapter(trips, getActivity().getLayoutInflater()));

ifif (trips==nullnull || trips.size()==0) {
finalfinal TripStore store=TripDatabase.get(getActivity()).tripStore();

newnew Thread() {
@Override

VIEWMODEL

124

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/Trips/ViewModels/app/src/main/java/com/commonsware/android/room/TripsFragment.java

publicpublic void run() {
store.insert(newnew Trip("Vacation!", 10080, Priority.MEDIUM, newnew Date()),

newnew Trip("Business Trip", 4320, Priority.OMG, newnew Date()));
}

}.start();
}

}
});

(from Trips/ViewModels/app/src/main/java/com/commonsware/android/room/TripsFragment.java)

A typical app would just have the setAdapter() call, to pass the Trip roster over to
the TripsAdapter, to show the roster in the RecyclerView. In this case, we want to
lazy-create some trips, as otherwise we will have no data. So, if we have no trips, we
insert some in a background thread.

However, there are two issues with that approach. One is the possible race
condition, where the user rotates the screen while the background thread is going
on, and so we fork a second thread. Since this code is not the sort of thing you would
do in a production app, what we have here will suffice for now.

But, if you run the app, you will see that our data shows up in the RecyclerView,
even after a fresh run of the app, when we did not have any data. Yet, our Thread is
not doing anything to refresh the UI. So, the second issue is: how is this working?

The answer is that Room is monitoring our DAO for changes and is automatically
updating the LiveData to reflect those changes, as was mentioned in the chapter on
LiveData.

Getting Rid of the ViewModel

Ideally, you should not have to do anything to explicitly “get rid of” a ViewModel. If
you are using LiveData, it is lifecycle-aware, and so it should clean up itself when
the activity or fragment is destroyed. If you have anything else in the ViewModel that
needs cleanup when the activity or fragment is destroyed, use the lifecycle classes or
LiveData for that.

ViewModels as Simple POJOs
The primary limitation of ViewModelProviders is that it is inextricably tied to
FragmentActivity and the backport of Fragment. If you are using those classes, or
things inheriting from them (e.g., AppCompatActivity), great! If not, you will need
to pursue alternatives.

VIEWMODEL

125

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/Trips/ViewModels/app/src/main/java/com/commonsware/android/room/TripsFragment.java

One alternative is to ignore ViewModel entirely, and implement a view model
yourself as a POJO, as we will explore in the Trips/ViewModelPOJO sample project.
This is a clone of the previous sample, except that we are using a POJO and
onRetainNonConfigurationInstance() rather than ViewModel and
ViewModelProviders.

Since we are not using ViewModelProviders, MainActivity inherits from Activity
and RecyclerViewFragment inherits from the framework’s implementation of
Fragment.

Defining a ViewModel

The ViewModel class itself, from the Architecture Components, mostly serves as a
marker. It adds very little logic. So, modifying TripRosterViewModel to be a POJO
simply involves removing AndroidViewModel:

packagepackage com.commonsware.android.room;

importimport android.app.Applicationandroid.app.Application;
importimport android.arch.lifecycle.LiveDataandroid.arch.lifecycle.LiveData;
importimport java.util.Listjava.util.List;

classclass TripRosterViewModelTripRosterViewModel {
finalfinal LiveData<List<Trip>> allTrips;

TripRosterViewModel(Application app) {
allTrips=TripDatabase.get(app).tripStore().selectAllTrips();

}
}

(from Trips/ViewModelPOJO/app/src/main/java/com/commonsware/android/room/TripRosterViewModel.java)

And, in this case, since we will create our TripRosterViewModel conventionally via
its constructor, it can be package-private, rather than public.

Getting a ViewModel

One downside to the POJO approach is that the simple way of using it as a view
model limits your scope to activities. Fragments do not have a trivial
onRetainNonConfigurationInstance()/getLastNonConfigurationInstance()
implementation the way activities do. It is certainly possible to do something to
retain a per-fragment view model across configuration changes, but it requires more
work (e.g., retained fragments).

VIEWMODEL

126

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-androidarch/tree/master/Trips/ViewModelPOJO
http://github.com/commonsguy/cw-androidarch/tree/master/Trips/ViewModelPOJO
https://github.com/commonsguy/cw-androidarch/tree/v0.2/Trips/ViewModelPOJO/app/src/main/java/com/commonsware/android/room/TripRosterViewModel.java

So, here, we move the TripRosterViewModel management into MainActivity:

packagepackage com.commonsware.android.room;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.annotation.Nullableandroid.support.annotation.Nullable;

publicpublic classclass MainActivityMainActivity extendsextends Activity {
privateprivate TripRosterViewModel viewModel;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

viewModel=(TripRosterViewModel)getLastNonConfigurationInstance();

ifif (viewModel==nullnull) {
viewModel=newnew TripRosterViewModel(getApplication());

}

ifif (getFragmentManager().findFragmentById(android.R.id.content)==nullnull) {
getFragmentManager().beginTransaction()

.add(android.R.id.content,
newnew TripsFragment()).commit();

}
}

@Override
publicpublic Object onRetainNonConfigurationInstance() {

returnreturn(getViewModel());
}

TripRosterViewModel getViewModel() {
returnreturn(viewModel);

}
}

(from Trips/ViewModelPOJO/app/src/main/java/com/commonsware/android/room/MainActivity.java)

onCreate() retrieves the TripRosterViewModel, creating a new instance if we do not
have one. onRetainNonConfigurationInstance() returns that
TripRosterViewModel, so we retain it across configuration changes. And we expose
the TripRosterViewModel to the TripsFragment via a getViewModel() method.

Now, TripsFragment can get the TripRosterViewModel by a simple call on the
hosting activity:

VIEWMODEL

127

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/Trips/ViewModelPOJO/app/src/main/java/com/commonsware/android/room/MainActivity.java

TripRosterViewModel vm=((MainActivity)getActivity()).getViewModel();

(from Trips/ViewModelPOJO/app/src/main/java/com/commonsware/android/room/TripsFragment.java)

Nothing else needs to change:

• We observe() the allTrips LiveData as before
• We still do not need to worry about cleaning up the LiveData when the

activity is destroyed and the TripRosterViewModel is no longer needed

VIEWMODEL

128

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/Trips/ViewModelPOJO/app/src/main/java/com/commonsware/android/room/TripsFragment.java

Other Lifecycle Owners

Activities and fragments are not the only things with lifecycles. The Architecture
Components also support other forms of lifecycle owner:

• Services, and
• What the documentation will refer to as “the process”

ProcessLifecycleOwner
With a name like ProcessLifecycleOwner, you might think that this modeled the
lifecycle of a process. Then, you quickly realize that this makes little sense, as the
only “lifecycle” that a process goes through is creation and termination, and we
cannot get control in the latter event.

Insted, ProcessLifecycleOwner might better be named ForegroundLifecycleOwner.
Whereas LifecycleActivity models the lifecycle of an individual activity,
ProcessLifecycleOwner models the lifecycle of all activities combined:

• ON_CREATE is triggered when the process starts up
• ON_START and ON_RESUME are triggered when an activity goes through those

lifecycle events, and no other activity had been started recently
• ON_PAUSE and ON_STOP are triggered, after a delay, when an activity goes

through those lifecycle events, if another activity is not started and resumed
by this time

• ON_DESTROY is never triggered

The delay period is 700ms (as of 1.0.0-alpha3), so as long as another activity is
started and resumed after a prior activity was paused and stopped within 700ms, the

129

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

process has not undergone a lifecycle change, even though those individual activities
did.

So, imagine a single-activity app:

• ON_CREATE happens right away
• ON_START and ON_RESUME happen shortly thereafter, assuming that the

process is starting because an activity is being displayed
• The user rotates the screen, causing the activity to be destroyed and

recreated
• ON_PAUSE and ON_STOP do not occur, because a new activity was started and

resumed before the ProcessLifecycleOwner delay period elapsed
• ON_START and ON_RESUME do not occur, because we did not move through the

paused and stopped lifecycle states, even though the new activity instance
did

• The user presses HOME, BACK, or otherwise leaves this activity for another
task

• ON_PAUSE and ON_STOP happen after the delay period, since no activity from
this process went through ON_START and ON_RESUME during that time

Note that this comes at a cost: the extensions artifact automatically adds a
<provider> element to your manifest, one that initializes the
ProcessLifecycleOwner… even if your app does not use ProcessLifecycleOwner.
This is simply so ProcessLifecycleOwner code can be invoked as soon as your
process is started.

The General/ProcessLifecycle sample project has a LifecycleApplication that
registers itself as an observer of the singleton instance of ProcessLifecycleOwner
and dumps all the events to LogCat:

packagepackage com.commonsware.android.recyclerview.videolist;

importimport android.app.Applicationandroid.app.Application;
importimport android.arch.lifecycle.Lifecycleandroid.arch.lifecycle.Lifecycle;
importimport android.arch.lifecycle.LifecycleObserverandroid.arch.lifecycle.LifecycleObserver;
importimport android.arch.lifecycle.OnLifecycleEventandroid.arch.lifecycle.OnLifecycleEvent;
importimport android.arch.lifecycle.ProcessLifecycleOwnerandroid.arch.lifecycle.ProcessLifecycleOwner;
importimport android.util.Logandroid.util.Log;

publicpublic classclass LifecycleApplicationLifecycleApplication extendsextends Application
implementsimplements LifecycleObserver {
@Override
publicpublic void onCreate() {

OTHER LIFECYCLE OWNERS

130

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-androidarch/tree/master/General/ProcessLifecycle
http://github.com/commonsguy/cw-androidarch/tree/master/General/ProcessLifecycle

supersuper.onCreate();

ProcessLifecycleOwner.get().getLifecycle().addObserver(thisthis);
}

@OnLifecycleEvent(Lifecycle.Event.ON_CREATE)
publicpublic void created() {

Log.d(getClass().getSimpleName(), "ON_CREATE");
}

@OnLifecycleEvent(Lifecycle.Event.ON_START)
publicpublic void started() {

Log.d(getClass().getSimpleName(), "ON_START");
}

@OnLifecycleEvent(Lifecycle.Event.ON_RESUME)
publicpublic void resumed() {

Log.d(getClass().getSimpleName(), "ON_RESUME");
}

@OnLifecycleEvent(Lifecycle.Event.ON_PAUSE)
publicpublic void paused() {

Log.d(getClass().getSimpleName(), "ON_PAUSE");
}

@OnLifecycleEvent(Lifecycle.Event.ON_STOP)
publicpublic void stopped() {

Log.d(getClass().getSimpleName(), "ON_STOP");
}

@OnLifecycleEvent(Lifecycle.Event.ON_DESTROY)
publicpublic void destroyed() {

Log.d(getClass().getSimpleName(), "ON_DESTROY");
}

}

(from General/ProcessLifecycle/app/src/main/java/com/commonsware/android/recyclerview/videolist/LifecycleApplication.java)

That LifecycleApplication is then registered in the manifest via android:name on
<application>:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest package="com.commonsware.android.recyclerview.videolist"

xmlns:android="http://schemas.android.com/apk/res/android"
android:versionCode="1"
android:versionName="1.0">>

<supports-screens<supports-screens
android:anyDensity="true"

OTHER LIFECYCLE OWNERS

131

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/ProcessLifecycle/app/src/main/java/com/commonsware/android/recyclerview/videolist/LifecycleApplication.java

android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false" />/>

<uses-permission<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />/>

<application<application
android:allowBackup="false"
android:name=".LifecycleApplication"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/Theme.Apptheme">>
<activity<activity android:name=".MainActivity">>

<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN" />/>

<category<category android:name="android.intent.category.LAUNCHER" />/>
</intent-filter></intent-filter>

</activity></activity>
<activity<activity

android:name=".VideoPlayerActivity"
android:configChanges="screenSize|smallestScreenSize|screenLayout|orientation"
android:launchMode="singleTask"
android:supportsPictureInPicture="true"
android:theme="@style/Theme.Apptheme.NoActionBar" />/>

<receiver<receiver android:name=".RemoteActionReceiver" />/>

</application></application>

</manifest></manifest>

(from General/ProcessLifecycle/app/src/main/AndroidManifest.xml)

The app itself is a clone of one from The Busy Coder’s Guide to Android Development.
It consists of two activities. One shows a list of all videos indexed by the MediaStore.
The other plays back a selected video using a VideoView. And, on Android 8.0+
devices, the video player activity will have a FAB that switches that activity into
picture-in-picture mode.

(NOTE: to run this sample, your test device will need 1+ videos)

If you run it, you will see the ON_CREATE, ON_START, and ON_RESUME events logged in
rapid succession. And, if you do not press that enticing FAB, and just use the video
player in normal mode, ON_PAUSE and ON_STOP get invoked at normal times, such as
when the user navigates to some other task (e.g., presses HOME).

The FAB, though, changes things, as it moves the video player to a floating picture-
in-picture (PiP) window.

OTHER LIFECYCLE OWNERS

132

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/ProcessLifecycle/app/src/main/AndroidManifest.xml
https://commonsware.com/Android

If you tap the FAB, and do not touch anything else for a bit, you will see ON_PAUSE,
then ON_RESUME, get logged. This is because:

• The PiP window never has the foreground from an input standpoint, and so
its activity is paused, but not stopped (as it is still visible)

• The underlying activity is started and resumed, though with a few seconds’
delay, for inexplicable reasons

Similarly, if you tap the PiP window, to bring up the controls, you will see ON_PAUSE
logged, as the list-of-videos activity is paused (it no longer has the foreground input)
but the PiP window is not resumed (the input is handled by the system UI, not the
activity). After a few moments of inactivity, that PiP window will return to its regular
state, and ON_RESUME will be logged.

Playing around with the PiP further (e.g., closing it via the X in the corner) allows
you to see how PiP mode ties into activity lifecycles.

LifecycleService
If you have a class that extends Service, you can replace it with LifecycleService
and get a service that is a LifecycleOwner. Four of the six lifecycle events are
honored:

This Lifecycle Event… Is Triggered When…

ON_CREATE the service is created

ON_START when the service is first started or bound to

ON_RESUME unused

ON_PAUSE unused

ON_STOP when the service is destroyed

ON_DESTROY also when the service is destroyed

Of note, LifecycleService does not attempt to model binding/unbinding as a
lifecycle (e.g., calling ON_STOP when the service is unbound and has no more active
bindings).

However, most services do not directly inherit from Service. Instead, they extend
IntentService or JobService or any one of dozens of other specialized service
implementations. Few, if any, of those will extend LifecycleService, as most of
them come from the core framework, which cannot depend on libraries like the
Architecture Components.

OTHER LIFECYCLE OWNERS

133

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Wait… Where Is LifecycleProvider and
LifecycleReceiver?
A ContentProvider has no real “lifecycle”. It is called with onCreate() when the
process starts up… and that’s about it. Similarly, a BroadcastReceiver is called with
onReceive()… and that’s about it.

OTHER LIFECYCLE OWNERS

134

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Intermediate Topics

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

M:N Relations in Room

For 1:1 relations, one entity has a foreign key back to the other entity.

For 1:N relations, one entity has a foreign key back to the other entity. In other
words, 1:1 is simply 1:N for a specific small value of N.

In SQL, implementing M:N relations requires a join table of some form, where the
join table has foreign keys back to the entities being related. Room, using SQL at its
core, does not change this. And since Room does not model relations, but only
foreign keys, to create an M:N relation, you have to create a “join entity” that winds
up creating the associated join table.

In this chapter, we will take a look at how that is accomplished. Along the way, we
will also look at other Room tidbits, such as how to use static classes as entities.

Implementing a Join Entity
The General/RoomMN sample project demonstrates an M:N relation. From earlier
chapters, we have a Customer entity and a Category entity. Previously, those were
unrelated. Now, let’s implement an M:N relation between them, so a Customer can
be a member of zero or more categories, and a Category can have zero or more
customers.

Note that we are retaining the tree structure for Category used previously. For the
purposes of this chapter, we are ignoring that, considering a customer to belong to
a category only via a direct relationship. So for example, if customer Foo belongs to
category Child, which has a parent category Parent, Foo is not a member of Parent.
The tree structure simply organizes categories, without impacting customers.

137

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-androidarch/tree/master/General/RoomMN
http://github.com/commonsguy/cw-androidarch/tree/master/General/RoomMN

Static Entity Classes

Much of the time, your entity classes will be standard, top-level Java classes.
Sometimes, though, you might have some utility class that you would rather have
as a static class, nested inside something else. For example, in the case of a join
entity, perhaps you might want to tuck it inside of one of the entities being joined,
just to reduce the clutter of your namespace.

Fortunately, this works, albeit with a wrinkle.

In the sample project, the Customer class — which itself is an entity — has a static
class named CategoryJoin that will serve as the join entity:

packagepackage com.commonsware.android.room.dao;

importimport android.arch.persistence.room.Embeddedandroid.arch.persistence.room.Embedded;
importimport android.arch.persistence.room.Entityandroid.arch.persistence.room.Entity;
importimport android.arch.persistence.room.ForeignKeyandroid.arch.persistence.room.ForeignKey;
importimport android.arch.persistence.room.Ignoreandroid.arch.persistence.room.Ignore;
importimport android.arch.persistence.room.Indexandroid.arch.persistence.room.Index;
importimport android.arch.persistence.room.PrimaryKeyandroid.arch.persistence.room.PrimaryKey;
importimport java.util.Datejava.util.Date;
importimport java.util.Setjava.util.Set;
importimport java.util.UUIDjava.util.UUID;
importimport staticstatic android.arch.persistence.room.ForeignKey.CASCADE;

@Entity(indices={@Index(value="postalCode", unique=truetrue)})
classclass CustomerCustomer {

@PrimaryKey
publicpublic finalfinal String id;

publicpublic finalfinal String postalCode;
publicpublic finalfinal String displayName;
publicpublic finalfinal Date creationDate;

@Embedded
publicpublic finalfinal LocationColumns officeLocation;

publicpublic finalfinal Set<String> tags;

@Ignore
Customer(String postalCode, String displayName, LocationColumns officeLocation,

Set<String> tags) {
thisthis(UUID.randomUUID().toString(), postalCode, displayName, newnew Date(),

officeLocation, tags);
}

Customer(String id, String postalCode, String displayName, Date creationDate,
LocationColumns officeLocation, Set<String> tags) {

thisthis.id=id;
thisthis.postalCode=postalCode;
thisthis.displayName=displayName;
thisthis.creationDate=creationDate;
thisthis.officeLocation=officeLocation;

M:N RELATIONS IN ROOM

138

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

thisthis.tags=tags;
}

@Entity(
tableName="customer_category_join",
primaryKeys={"categoryId", "customerId"},
foreignKeys={

@ForeignKey(
entity=Category.class,
parentColumns="id",
childColumns="categoryId",
onDelete=CASCADE),

@ForeignKey(
entity=Customer.class,
parentColumns="id",
childColumns="customerId",
onDelete=CASCADE)},

indices={
@Index(value="categoryId"),
@Index(value="customerId")

}
)
publicpublic staticstatic classclass CategoryJoinCategoryJoin {

publicpublic finalfinal String categoryId;
publicpublic finalfinal String customerId;

publicpublic CategoryJoin(String categoryId, String customerId) {
thisthis.categoryId=categoryId;
thisthis.customerId=customerId;

}
}

}

(from General/RoomMN/stuff/src/main/java/com/commonsware/android/room/dao/Customer.java)

Room is perfectly content to work with this class, so long as you also register it with
your RoomDatabase via its @Database annotation:

@Database(
entities={Customer.class, Category.class, Customer.CategoryJoin.class},
version=1

)

(from General/RoomMN/stuff/src/main/java/com/commonsware/android/room/dao/StuffDatabase.java)

However, note that this is a static class. Room will not be able to work with a
non-static nested class, as only instances of the outer class can create instances of
the nested class.

Also, note that the default table name is based on the plain class name. In this case,
the default table name is CategoryJoin. The outer class name (Customer) is not
added into the table name. Normally, this will not be a problem, and you might be
renaming the table anyway. However, where you can get tripped up is if you

M:N RELATIONS IN ROOM

139

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/RoomMN/stuff/src/main/java/com/commonsware/android/room/dao/Customer.java
https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/RoomMN/stuff/src/main/java/com/commonsware/android/room/dao/StuffDatabase.java

decided to have two (or more) classes with the same name, such as having
CategoryJoin inside both Customer and some other entity. Then, you would wind
up with two entity classes both trying to define the same table name by default,
and Room will not like that very much.

Foreign Keys and Indices

Let’s take a closer look at the @Entity annotation on Customer.CategoryJoin:

@Entity(
tableName="customer_category_join",
primaryKeys={"categoryId", "customerId"},
foreignKeys={

@ForeignKey(
entity=Category.class,
parentColumns="id",
childColumns="categoryId",
onDelete=CASCADE),

@ForeignKey(
entity=Customer.class,
parentColumns="id",
childColumns="customerId",
onDelete=CASCADE)},

indices={
@Index(value="categoryId"),
@Index(value="customerId")

}
)

(from General/RoomMN/stuff/src/main/java/com/commonsware/android/room/dao/Customer.java)

Here, we declare four properties.

tableName renames the table to something that is more unique to this situation,
incorporating both “customer” and “category” in the name. That way, if we do wind
up with CategoryJoin elsewhere, we can avoid table name collisions.

primaryKeys is used, instead of @PrimaryKey, because we need a composite key.
The uniqueness is determined by the combination of the IDs of the Customer and
Category, held in customerId and categoryId columns, respectively.

A join entity will need foreign keys back to both entities that it is joining. So, here,
we have two @ForeignKey annotations for the foreignKeys property, connecting to
both Customer and Category by their respective IDs. We also use

M:N RELATIONS IN ROOM

140

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/RoomMN/stuff/src/main/java/com/commonsware/android/room/dao/Customer.java

onDelete=CASCADE, so if the parent entity (Customer or Category) is deleted, we
also delete all join entities associated with that parent.

And, since Room does not automatically add indices for foreign key columns, we
add them ourselves, for each parent entity ID individually, so we can rapidly find all
of the join entity instances for a given Customer or Category.

Implementing DAO Methods
In addition to setting up the join entity, we need to leverage it in our DAO.
Otherwise, the join entity is pointless.

Adding and Removing Relations

In many ORMs, where relations are directly implemented on model objects, you
connect objects by direct manipulation. In our case, a Customer might have
addCategory() and removeCategory() methods, and Category might have
addCustomer() and removeCustomer().

Since Room models foreign keys, not relations, that’s not how we connect a
Customer and a Category. Instead, we do it much the same way as you would with
plain SQL: @insert and @Delete Customer.CategoryJoin instances representing a
particular customer-category connection.

And, to that end, we have suitable DAO methods for this:

@Insert
void insert(Customer.CategoryJoin... joins);

@Delete
void delete(Customer.CategoryJoin... joins);

(from General/RoomMN/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java)

And, to connect a specific Customer instance to a specific Category instance, we set
up the Customer.CategoryJoin instance and insert() it:

tags.add("scuplture");
tags.add("bronze");
tags.add("slow-pay");

finalfinal LocationColumns loc=newnew LocationColumns(40.7047282, -74.0148544);

finalfinal Customer firstCustomer=newnew Customer("10001", "Fearless Girl", loc, tags);

M:N RELATIONS IN ROOM

141

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/RoomMN/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java

tags.remove("slow-pay");
tags.add("large");

finalfinal Customer secondCustomer=newnew Customer("10002", "Charging Bull", loc, tags);

store.insert(firstCustomer, secondCustomer);

finalfinal Category root=newnew Category("Root!");
finalfinal Category child=newnew Category("Child!", root.id);

store.insert(root, child);

finalfinal Customer.CategoryJoin join=
newnew Customer.CategoryJoin(root.id, secondCustomer.id);

store.insert(join);

(from General/RoomMN/stuff/src/androidTest/java/com/commonsware/android/room/dao/DaoTests.java)

Fetching Via the Join

If an ORM offers addCategory() and removeCustomer() methods, presumably that
ORM also offers getCategories() on Customer and getCustomers() on Category,
to identify the members of a relation with a specific entity.

Again, Room does not work that way.

Instead, we crack open our SQL syntax reference and craft an INNER JOIN ourselves,
to use in a @Query method:

@Query("SELECT categories.* FROM categories\n"+
"INNER JOIN customer_category_join ON categories.id=customer_category_join.categoryId\n"+
"WHERE customer_category_join.customerId=:customerId")

List<Category> categoriesForCustomer(String customerId);

@Query("SELECT Customer.* FROM Customer\n"+
"INNER JOIN customer_category_join ON Customer.id=customer_category_join.customerId\n"+
"WHERE customer_category_join.categoryId=:categoryId")

List<Customer> customersForCategory(String categoryId);

(from General/RoomMN/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java)

Here we have methods that return the members of a specific relation, so we can
find the categories for a Customer or the customers for a Category. And the DAO
methods return sensible data types. But, it is our job to set up the SQL.

So, in the case of categoriesForCustomer(), our SQL:

• Retrieves all columns from the categories table…

M:N RELATIONS IN ROOM

142

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/RoomMN/stuff/src/androidTest/java/com/commonsware/android/room/dao/DaoTests.java
https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/RoomMN/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java

• …where we JOIN with customer_category_join based on the IDs…
• …and find all those where the join entity points to a specific customer ID

Where’s That Good Ol’ Object Feel?
By this point, some of you may be wanting to dismiss Room outright, as being too
thin of a wrapper around the SQL. Certainly, Room has, um, room for
improvement.

However, a lot of the pain may come from what you are thinking that entities
represent. Many developers, particularly those using ORMs in other environments,
will think of entities as being model objects.

That’s not the best approach with Room.

Instead, consider entities to be more akin to data transfer objects (DTOs). They are
a means of getting data from point (SQLite) to point (your application code), and
not much more.

For example, pretend that the SQLite database was on a server somewhere, and you
wrapped it in a Web service which you accessed from your Android app via Retrofit
or some similar library. Developers are used to thinking of the POJOs that you
might get back from a REST call to be DTOs, objects that model the Web service
response, not necessarily modeling any business logic within the app.

Room is much the same. The entities are DTOs from the relational data store to
your app, but may or may not line up with how you would want to represent that
data in memory as “real” model objects. So, just as you sometimes convert the
Retrofit response object graph into something more useful, you sometimes convert
the Room response POJOs into something more useful.

Consider the DAO and the entities to be a low-level API, much as you might
consider Retrofit or other REST access layers. If you need a richer object
representation of your data, wrap the DAO and entities in some sort of repository
object, one that knows more about your app’s needs and can perform the
conversions as needed. That repository can also handle details like transactions, to
keep your business logic clean from any details about how the data storage is
accomplished. The ultimate goal would be to replace one repository
implementation (e.g., using Room) with another (e.g., using Realm or Couchbase

M:N RELATIONS IN ROOM

143

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Mobile or some non-SQL solution), without having to change anything related to
the business logic itself.

M:N RELATIONS IN ROOM

144

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

LiveData Transformations

Sometimes, the data that you want is not the data that you get:

• You want to capitalize those names before showing them in a list
• You want to restrict the results to some subset of what you are receiving
• You do not need the data, but rather some calculation made upon batches

of the data, grouped by some key
• And so on

The LiveData system has some limited support for “transformations”, which help
you adapt an existing LiveData into one that changes the data to better suit your
needs. You can also create your own transformations, if desired. In this chapter, we
will explore all of this.

The Bucket Brigade
LiveData is designed to be a simplified form of a reactive framework like RxJava.

Anyone who has looked at RxJava code knows that it has a tendency towards long
chains of calls, to configure a stream of data, and sometimes to modify that stream
along the way.

For example, you will find code like:

Observable<String> observable=Observable
.create(newnew WordSource(getActivity()))
.subscribeOn(Schedulers.io())
.map(s -> (s.toUpperCase()))
.observeOn(AndroidSchedulers.mainThread())
.doOnComplete(() -> {

145

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Toast.makeText(getActivity(), R.string.done, Toast.LENGTH_SHORT)
.show();

});

Here, we:

• Request a roster of words (create(new WordSource(getActivity())))
• Ask to retrieve that roster on a background thread, as it involves disk I/O

(subscribeOn(Schedulers.io()))
• Convert the words to uppercase (map(s -> (s.toUpperCase())))
• Ask to get the results on the main application thread, so we can update our

UI with these words (observeOn(AndroidSchedulers.mainThread()))
• Show a Toast when we are done processing the words (doOnComplete()
...)

(if you are interested in learning more about RxJava, see [The Busy Coder’s Guide to
Android Development])(https://commonsware.com/Android)

In particular, map() is a transformation “operator”, in Rx terms. map() takes an
object from our stream of data (in this case, a word) and transforms it into
something else, which flows downstream to the subsequent chained calls. In this
case, map() transforms a String into a String, where the “transformation” is
converting the input String to uppercase to use as the output String.

RxJava has a dozens of such operators. In contrast, LiveData has two, and we will
implement a third ourselves to see how that is accomplished.

Mapping Data to Data
Both RxJava and LiveData offer a map() transformation. As seen in the preceding
section, a map() converts an item of data from the stream (e.g., a String) to some
other item of data to flow downstream (e.g., an uppercase String).

However, whereas map() is a method on RxJava’s Observable and related classes,
with LiveData, the transformations are held in a separate Transformations class.

For example, suppose we have a DAO method like:

@Query("SELECT * FROM Customer")
LiveData<List<Customer>> allCustomers();

LIVEDATA TRANSFORMATIONS

146

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Here, we are expecting a stream of results. However, Room only supports returning
one item in the stream: a list of Customer objects.

Suppose, though, we do not need the Customer objects, but instead need their IDs.
The simplest and most performant solution would be to have a different DAO
method:

@Query("SELECT id FROM Customer")
LiveData<List<String>> allCustomerIds();

However, that does not use Transformations, and so it is boring. Plus, not every
possible transformation is simply cutting a POJO down to a single field from that
POJO.

The Transformations equivalent would be something like this:

LiveData<List<String>> liveCustomerIds=
Transformations.map(store.allCustomers(),

newnew Function<List<Customer>, List<String>>() {
@Override
publicpublic List<String> apply(List<Customer> customers) {

ArrayList<String> result=newnew ArrayList<>();

forfor (Customer customer : customers) {
result.add(customer.id);

}

returnreturn(result);
}

});

map() takes two parameters: a LiveData of the stream to manipulate, and a
Function that converts items from that stream from one data type to another.

Here is where Room’s insistence on a single-object response becomes a pain. If this
were a stream of Customer objects, our Function could just get the id from the
Customer and return it. But we do not have a stream of Customer objects — we have
a stream of a list of Customer objects. That means we need to return a list of
customer IDs, requiring allocating a new ArrayList and iterating over each
Customer to add its id to that list.

LIVEDATA TRANSFORMATIONS

147

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This would be a little bit cleaner with Java 8 lambda expressions. The proof of this
is left as an exercise for the reader, until sometime after Android Studio 3.0 ships, at
which time this book will be updated to use lambda expressions.

Mapping Data to… LiveData?
So now we have a list of Customer IDs. Suppose that we now want to retrieve the
categories associated with all of the Customer entities. That requires another
database request via our DAO:

@Query("SELECT categories.* FROM categories\n"+
"INNER JOIN customer_category_join ON

categories.id=customer_category_join.categoryId\n"+
"WHERE customer_category_join.customerId IN (:customerIds)")

LiveData<List<Category>> categoriesForCustomers(List<String> customerIds);

And if we are on the main application thread — as is typical when working with
LiveData results — we need the DAO to return another LiveData.

In principle, you could use map() for this. However, for this scenario, there is the
oddly-named switchMap(). This is analogous to the equally-oddly-named
flatMap() of RxJava and says that the objects being created via the mapping are
themselves LiveData. This help the LiveData system keep everything in sync,
particularly across lifecycle events.

So, given the liveCustomerIds from the preceding section, we can get the
categories via:

finalfinal LiveData<List<Category>> liveCategories=
Transformations.switchMap(liveCustomerIds,

newnew Function<List<String>, LiveData<List<Category>>>() {
@Override
publicpublic LiveData<List<Category>> apply(List<String> customerIds) {

returnreturn(store.categoriesForCustomers(customerIds));
}

});

And, if we arrange to observe() that liveCategories object, we will be called with
onChanged() when the list of Category objects is available, after the initial database
I/O to get the customers, then the secondary database I/O to get the categories for
those customers.

LIVEDATA TRANSFORMATIONS

148

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Unfortunately, this does not work, due to a bug in Room.

Writing a Transformation
Another RxJava transformation operator is filter(). This takes a stream of objects
and a function that tests each object and returns true for the ones to be sent
downstream. The ones that test out to false are dropped. Hence, the stream
becomes filtered by whatever rule is encoded in that function.

Transformations does not have a filter() method, but we can write one, to see
what a transformation method looks like.

Earlier in the book, we had the LiveSensor sample, where we had a LiveData
reporting sensor events, specifically the light level. The General/LiveFilter
sample project is a clone of that project, one that introduces a filter, to only report
those readings that fall between 40 and 60 lux.

To that end, we have a LiveTransmogrifiers class that serves as a home for our
transformation methods:

packagepackage com.commonsware.android.livedata;

importimport android.arch.lifecycle.LiveDataandroid.arch.lifecycle.LiveData;
importimport android.arch.lifecycle.MediatorLiveDataandroid.arch.lifecycle.MediatorLiveData;
importimport android.arch.lifecycle.Observerandroid.arch.lifecycle.Observer;
importimport android.support.annotation.MainThreadandroid.support.annotation.MainThread;
importimport android.support.annotation.NonNullandroid.support.annotation.NonNull;
importimport android.support.annotation.Nullableandroid.support.annotation.Nullable;

classclass LiveTransmogrifiersLiveTransmogrifiers {
interfaceinterface ConfirmerConfirmer<T> {

boolean test(T thingy);
}

@MainThread
staticstatic <X> LiveData<X> filter(@NonNull LiveData<X> source,

@NonNull finalfinal Confirmer<X> confirmer) {
finalfinal MediatorLiveData<X> result=newnew MediatorLiveData<>();

result.addSource(source, newnew Observer<X>() {
@Override
publicpublic void onChanged(@Nullable X x) {

ifif (confirmer.test(x)) {
result.setValue(x);

LIVEDATA TRANSFORMATIONS

149

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://issuetracker.google.com/issues/64475205
http://github.com/commonsguy/cw-androidarch/tree/master/General/LiveFilter
http://github.com/commonsguy/cw-androidarch/tree/master/General/LiveFilter

}
}

});

returnreturn(result);
}

}

(from General/LiveFilter/app/src/main/java/com/commonsware/android/livedata/LiveTransmogrifiers.java)

The RxJava filter() operator uses a Predicate as the function for testing an object
to determine if it should be passed or not. Unfortunately, Predicate is part of the
Java 8 classes added in Android 7.0, and so it is unavailable for older devices. So, we
have a Confirmer interface that fills that role. The test() method on a Confirmer
needs to return true for objects that should pass the filter, false otherwise.

The filter() method on LiveTransmogrifiers takes a LiveData of some type and
a Confirmer of that type. It then uses a MediatorLiveData, which is a LiveData
object that can chain onto an existing LiveData and expose the onChanged()
method for outside parties to use. In this case, our onChanged() method uses the
Confirmer to see if the new object passes the test(), and if it does, we call
setValue() on the MediatorLiveData to have that object flow along to anything
that observes that MediatorLiveData. filter() then returns that
MediatorLiveData. The net effect is as if filter() wraps the original LiveData in
another LiveData that applies our filtering rule.

We can now use filter() to limit the readings that we get from the sensor:

finalfinal LiveData<SensorLiveData.Event> filtered=
LiveTransmogrifiers.filter(state.sensorLiveData,
newnew LiveTransmogrifiers.Confirmer<SensorLiveData.Event>() {

@Override
publicpublic boolean test(SensorLiveData.Event event) {

returnreturn(event.values[0]>40 && event.values[0]<60);
}

});

filtered.observe(thisthis, newnew Observer<SensorLiveData.Event>() {
@Override
publicpublic void onChanged(@Nullable SensorLiveData.Event event) {

adapter.add(event);
}

});

(from General/LiveFilter/app/src/main/java/com/commonsware/android/livedata/MainActivity.java)

LIVEDATA TRANSFORMATIONS

150

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/LiveFilter/app/src/main/java/com/commonsware/android/livedata/LiveTransmogrifiers.java
https://github.com/commonsguy/cw-androidarch/tree/v0.2/General/LiveFilter/app/src/main/java/com/commonsware/android/livedata/MainActivity.java

We pass our original SensorLiveData to filter(), along with a Confirmer that sees
if the light level is between 40 and 60. Then, we observe the results of the filter()
call and only add those objects — not every reading from the SensorLiveData — to
the EventLogAdapter.

The net result, if you compare and contrast the output of this sample with the
original, is that while the original reports everything, this new sample only reports
a subset of the data.

Do We Really Want This?
LiveData was not set up to have a vast library of transformations, the way that
RxJava has its vast library of operators. map() and switchMap() are almost
afterthoughts. And while Google may not add many more transformations to the
Transformations class, undoubtedly somebody will create a library with
implementations of filter() and a handful of other RxJava-style operators.

However, those libraries will be limited, because LiveData itself is not as rich a
framework as is RxJava. There is no notion in LiveData of propagating errors, or
indicating that a stream is completed. Some RxJava operators will be difficult or
impossible to implement as a result.

And this is by design.

LiveData is designed to be simple and lifecycle aware. That’s it. If your needs
transcend what LiveData can handle well, consider migrating to RxJava. Conversely,
if LiveData handles everything that you need, you can skip RxJava’s complexity.

LIVEDATA TRANSFORMATIONS

151

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

	Table of Contents
	Preface
	How the Book Is Structured
	Prerequisites
	About the Updates
	What’s New in Version 0.2?
	Warescription
	Book Bug Bounty
	Source Code and Its License
	Creative Commons and the Four-to-Free (42F) Guarantee
	Acknowledgments

	Room Basics
	Wrenching Relations Into Objects
	Room Requirements
	Room Furnishings
	Entities
	DAO
	Database

	Get a Room
	Be Careful with Table Name Prefixes

	Testing Room
	Writing Instrumentation Tests
	Using In-Memory Databases
	Importing Starter Data

	Writing Unit Tests via Mocks

	The Dao of Entities
	Configuring Entities
	Primary Keys
	Auto-Generated Primary Keys
	Composite Primary Keys

	Adding Indexes
	Ignoring Fields
	NOT NULL Fields
	Custom Table and Column Names

	DAOs and Queries
	Adding Parameters
	WHERE Clause
	Other Clauses

	What You Can Return
	Specific Return Types
	Breadth of Results

	Aggregate Functions
	Dynamic Queries

	Other DAO Operations
	Parameters
	Return Values
	Conflict Resolution
	Other Operations

	Transactions and Room
	Threads and Room

	Room and Custom Types
	Type Converters
	Setting Up a Type Converter
	Example: Dates and Times
	Example: Locations
	Example: Simple Collections

	Embedded Types
	Example: Locations
	Simple vs. Prefixed

	Updating the Trip Sample

	Room and Relations
	The Classic ORM Approach
	A History of Threading Mistakes
	The Room Approach
	No Direct Entity References
	Foreign Keys
	Cascades on Updates and Deletes
	Cascades on… Retrievals?

	Plans for Trips
	The Domain Model
	The New Entities
	The Updated DAO and Database

	Self-Referential Relations for Tree Structures
	Using @Relation
	Representing No Relation

	Room and Migrations
	What’s a Migration?
	When Do We Migrate?
	But First, a Word About the Support Database Classes
	…And a Word About Exporting Schemas
	Writing Migrations
	Employing Migrations
	How Room Applies Migrations
	Testing Migrations
	Adding the Artifact
	Adding the Schemas
	Creating and Using a MigrationTestHelper
	Adding the Rule
	Setting Up the Helper
	Creating a Database for a Schema Version
	Testing a Migration

	Migrating Under Protest

	Securing Your Room
	Meet the Players
	SQLCipher for Android
	CWAC-SafeRoom

	Using CWAC-SafeRoom
	Adding the Dependency
	Using CWAC-SafeRoom
	Passphrase Management

	More to Come!

	Lifecycles and Owners
	A Tale of Terminology
	Lifecycle
	Lifecycle Owner
	Lifecycle Observers

	Adding the Lifecycle Components
	Getting a Lifecycle
	…From a LifecycleActivity or LifecycleFragment
	…From an AppCompatActivity
	…From an Activity or Fragment
	…From Anything Else

	Observing a Lifecycle
	So, What’s the Point of This?

	LiveData
	Observables Are the New Black
	Yet More Terminology
	LiveData
	Observer
	Active State

	Implementing LiveData
	Dependencies
	State Transitions
	Updating the Observers
	Retaining the LiveData

	Other LiveData Examples
	Event Bus
	Room

	Testing LiveData

	ViewModel
	ViewModels, As Originally Envisioned
	ViewModel Versus…
	…Saved Instance State
	…Retained Objects

	Mommy, Where Do ViewModels Come From?
	ViewModels, Google’s Way
	Defining a ViewModel
	Getting a ViewModel
	Using the ViewModel
	Getting Rid of the ViewModel

	ViewModels as Simple POJOs
	Defining a ViewModel
	Getting a ViewModel

	Other Lifecycle Owners
	ProcessLifecycleOwner
	LifecycleService
	Wait… Where Is LifecycleProvider and LifecycleReceiver?

	M:N Relations in Room
	Implementing a Join Entity
	Static Entity Classes
	Foreign Keys and Indices

	Implementing DAO Methods
	Adding and Removing Relations
	Fetching Via the Join

	Where’s That Good Ol’ Object Feel?

	LiveData Transformations
	The Bucket Brigade
	Mapping Data to Data
	Mapping Data to… LiveData?
	Writing a Transformation
	Do We Really Want This?

