! Version !
y 0.1

w

WMA ,fr

Android’s

Architecture

Components

Android’s Architecture Components

by Mark L. Murphy

CoMMONSWARE

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Android’s Architecture Components
by Mark L. Murphy

Copyright © 2017 CommonsWare, LLC. All Rights Reserved.
Printed in the United States of America.

Printing History:
July 2017: Version 0.1

The CommonsWare name and logo, “Busy Coder's Guide”, and related trade dress are trademarks of CommonsWare,
LLC.

All other trademarks referenced in this book are trademarks of their respective firms.

The publisher and author(s) assume no responsibility for errors or omissions or for damages resulting from the use of the
information contained herein.

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Table of Contents

Headings formatted in bold-italic have changed since the last version.

* Preface
o How the Book Is Structuredccooceveririeiienienineeeeeieeeeeeas iii
O PrI@QUISILES ...ecovvieiiiriiiriieiiieite ettt ettt ettt s be e s ne e e eas iv
o About the Updatescceveruiririiieierereeteeee e iv
o What’s New in Version 0.17ccccecevererenierienienieneneeeeeeee e iv
© WareSCIIPLIONeeiuiiiiiiiiieiiierite et ete ettt sttt et e s e eaee s e \%
© BOOK BUZ BOUNLY ..ot v
o Source Code and Its LiCenSeccccevererereeierienienereeceeeeee e vi
o Creative Commons and the Four-to-Free (42F) Guarantee vii
+ Room Basics
o Wrenching Relations Into ObjJectscccceceevievinenineriieieieseseeee 1
o RoOm ReqUIrementscccceeeuerviiiriienieniieeeeeeee et 2
o Room FUrnishingscccceceveriririeiieneneceeeese e 3
© Gt @ ROOIM oottt 9
* Testing Room
o Writing Instrumentation TeStSc.ccceeceevierneereeenieneenierieeeeeeeeen 1
o Writing Unit Tests via MOCKSccccceveriiririiieieieneeeeeeeee 15
* The Dao of Entities
o Configuring ENtitiesccccceviriririieiierieresesce et 21
© DAOS and QUETIESccveerviereeiieniienieeieetesreesteeseeeeesreeseeaesseesseeseenns 29
o Other DAO OPerationscceceeeeerierierieresieieiesieseeseeseeeeeeseessenaens 35
o Transactions and ROOMcccceevveeieiiieiiicieceeeee e 38
o Threads and ROOMcccveiiiiirieecieeeeeeee e 38
* Room and Custom Types
0 TYPE CONVETLETS ...eevieieireieieieniesteeteeiteteeestestesteeseeteeestessesseeneenneneens 42
o Embedded TYPES ...cccooeeieieieiireeeeeee e 49
o Updating the Trip Sampleccccocveiieieririnieeeeeeeeee e 52
* Room and Relations
o The Classic ORM ApPProachccccceeererieiiesieneneneeeeeeieieseseens 57
o A History of Threading Mistakesccccceveviririienienenencneeeeenee, 58
o The Room APProachccccecevirieiieiieniereseeeeeeeeeeee e 59
o Plans for TTIPS ...ccceverieieieieieresee et 60
o Self-Referential Relations for Tree Structuresccccecerverveeenene. 68
o Using @Relationcccceciiiiiiiniiiieceeeeeee e 70
o Representing No Relationcccccceveviiiniieieneneneeeceeeeeee 72

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

* Room and Migrations

o What’s @ Migration?ccccooeriririieiienienieneneeteteeesesiesi et 73
o When Do We Migrate?ccccoceeiiiieienenenenieieeesiesiesieeiceee e 74
o But First, a Word About the Support Database Classes 74
> ...And a Word About Exporting Schemascceceveneriiiincncnene. 75
o WIiting MIGIationscccceevieriiiiieniiiinieeieceie ettt 78
o Employing Migrationsc.ccccceceeiriierienenenenieieiesiesiesieecee e 83
o How Room Applies Migrationscceceeeeerieienieneneneneneeeeneeneen 84
o Testing MIGIAtiONSccccueivieriiiinieriiienieeieeete ettt 85
* Securing Your Room
o Meet the Playerscccociiiiiiiininiiieeeee e 91
o Using CWAC-SafeRO0OMcc.ooeriiriiiiiiiniinienieeeeeseeeetee e 92
o More t0 COmEe! ..o 94
+ Lifecycles and Owners
o A Tale of Terminologycccoceveriiiiiiiiinenneeeeee e 97
o Adding the Lifecycle Componentsc..ceceveevenenenencnnienienenene. 98
o Getting a Lifecycle ..o 99
o Observing a Lifecyclecocooeiiiiiiiiiniieeeeeeee 102
o So, What'’s the Point of ThiS?ccccoeeviieiieiiiecieceeee e 104
+ LiveData
o Observables Are the New Blackccccocvviiviiniiniiiniiiieieeceeee, 105
o Yet More Terminologyccccceeririiiieiienenineeeeteeeeeeeee e 106
o Implementing LiveDatac.ccoceeievieiienienininieieeeieeneeee e 107
o Other LiveData EXamplesccccccovieviieniniienieieeieseeseeee e 12
o Testing LiveDatacccccooviiiiiiiiiiiiiiiiiecececceee e 17y
+ ViewModel
> ViewModels, As Originally Envisionedcccccoeeeiiniininnnncncnnes 19
o ViewModel VErSus...cccoceviriririiiiienereetete e 120
o Mommy, Where Do ViewModels Come From?cccceccecveienienene 121
o ViewModels, Google’s Waycccccverenieineneneininenceeeneieeeaens 122
o ViewModels as Simple POJOScccooevininiiniiiieenenceceeeeeee 125
+ Other Lifecycle Owners
o ProcessLifecycleOWnercccocoevminiiieinenenicinenceeeeseeeeene 129
o LifecyCleService ... 133
o Wait... Where Is LifecycleProvider and LifecycleReceiver? 134
i

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Preface

Thanks!

Thanks for your interest in Android app development, the world’s most popular
operating system! And, thanks for your interest in the Android Architecture
Components, released by Google in 2017 to help address common “big-ticket”
problems in Android app development.

And, most of all, thanks for your interest in this book! I sincerely hope you find it
useful!

(OTOH, if you find it completely useless... um, don’t tell anyone, OK?)

How the Book Is Structured

We start off with a look at Room, an object/relational mapping (ORM) library. This
makes it a bit easier to integrate your app with SQLite, the built-in relational
database engine in Android.

We then move into the lifecycle components. These components help you deal with
objects that have lifecycles, particularly activities and services. The LiveData class in
particular gives you a lightweight “reactive” way of consuming data while still
honoring things like configuration changes and the typical activity/fragment
destroy-and-recreate cycle. We will also peek at ViewModel, the Architecture
Components’ way of helping you maintain state across configuration changes.

In future editions of this book, we will then explore more advanced topics related to
the Architecture Components, such as how these components tie into things like
data binding, RxJava/RxAndroid, ContentProvider, and more.

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

PREFACE

Prerequisites

This book is targeted at:
* People who have read the core chapters of the companion volume, The Busy

Coder’s Guide to Android Development, or
* Intermediate Android app developers — those with some experience but not

necessarily “experts” in the field

About the Updates

This book will be updated a few times per year, to reflect new advances with the
Architecture Components.

If you obtained this book through the Warescription, you will be able to download
updates as they become available, for the duration of your subscription period.

If you obtained this book through other channels... um, well, it’s still a really nice
book!

Each release has notations to show what is new or changed compared with the
immediately preceding release:

+ The Table of Contents shows sections with changes in bold-italic font
+ Those sections have changebars on the right to denote specific paragraphs

that are new or modified

And, there is the “What’s New” section, just below this paragraph.

What’s New in Version 0.1?
Everything!

As a result, there are no changebars or other change notations — those will show up
starting with the next book update.

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://commonsware.com/Android
https://commonsware.com/Android

PREFACE

Warescription

If you purchased the Warescription, read on! If you obtained this book from other
channels, feel free to jump ahead.

The Warescription entitles you, for the duration of your subscription, to digital
editions of this book and its updates, in PDF, EPUB, and Kindle (MOBI/KF8)
formats. You also have access to a version of the book as its own Android APK file,
complete with high-speed full-text searching. You also have access to other titles
that CommonsWare publishes during that subscription period, such as the

aforementioned The Busy Coder’s Guide to Android Development.

Each subscriber gets personalized editions of all editions of each title. That way,
your books are never out of date for long, and you can take advantage of new
material as it is made available.

However, you can only download the books while you have an active Warescription.
There is a grace period after your Warescription ends: you can still download the
book until the next book update comes out after your Warescription ends. After
that, you can no longer download the book. Hence, please download your
updates as they come out. You can find out when new releases of this book are
available via:

1. The CommonsBlog
2. The CommonsWare Twitter feed

3. The Warescription newsletter, which you can subscribe to off of your

Warescription page
4. Just check back on the Warescription site every month or two

Subscribers also have access to other benefits, including:
+ “Office hours” — online chats to help you get answers to your Android
application development questions. You will find a calendar for these on
your Warescription page.

A Stack Overflow “bump” service, to get additional attention for a question
that you have posted there that does not have an adequate answer.

Book Bug Bounty

Find a problem in the book? Let CommonsWare know!

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://commonsware.com/Android
https://commonsware.com/blog
http://twitter.com/CommonsWare
https://wares.commonsware.com
https://wares.commonsware.com

PREFACE

Be the first to report a unique concrete problem in the current digital edition, and
CommonsWare will extend your Warescription by six months as a bounty for
helping CommonsWare deliver a better product.

By “concrete” problem, we mean things like:

1. Typographical errors

2. Sample applications that do not work as advertised, in the environment
described in the book

3. Factual errors that cannot be open to interpretation

By “unique”, we mean ones not yet reported. Be sure to check the book’s errata page,
though, to see if your issue has already been reported. One coupon is given per
email containing valid bug reports.

We appreciate hearing about “softer” issues as well, such as:

1. Places where you think we are in error, but where we feel our interpretation
is reasonable

2. Places where you think we could add sample applications, or expand upon
the existing material

3. Samples that do not work due to “shifting sands” of the underlying
environment (e.g., changed APIs with new releases of an SDK)

However, those “softer” issues do not qualify for the formal bounty program.

Questions about the bug bounty, or problems you wish to report for bounty

consideration, should be sent to bounty@commonsware.com.

Source Code and Its License

The source code samples shown in this book are available for download from the
book’s GitHub repository. All of the Android projects are licensed under the Apache
2.0 License, in case you have the desire to reuse any of it.

Copying source code directly from the book, in the PDF editions, works best with
Adobe Reader, though it may also work with other PDF viewers. Some PDF viewers,
for reasons that remain unclear, foul up copying the source code to the clipboard
when it is selected.

Vi

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://commonsware.com/GraphQL/errata
mailto:bounty@commonsware.com
https://github.com/commonsguy/cw-androidarch
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.apache.org/licenses/LICENSE-2.0.html

PREFACE

Creative Commons and the Four-to-Free (42F)
Guarantee

Each CommonsWare book edition will be available for use under the Creative
Commons Attribution-Noncommercial-ShareAlike 3.0 license as of the fourth
anniversary of its publication date, or when 4,000 copies of the edition have been
sold, whichever comes first. That means that, once four years have elapsed (perhaps
sooner!), you can use this prose for non-commercial purposes. That is our Four-to-
Free Guarantee to our readers and the broader community. For the purposes of this
guarantee, new Warescriptions and renewals will be counted as sales of this edition,
starting from the time the edition is published.

This edition of this book will be available under the aforementioned Creative
Commons license on 1 July 2021. Of course, watch the CommonsWare Web site, as
this edition might be relicensed sooner based on sales.

For more details on the Creative Commons Attribution-Noncommercial-ShareAlike
3.0 license, visit the Creative Commons Web site

Note that future editions of this book will become free on later dates, each four years
from the publication of that edition or based on sales of that specific edition.
Releasing one edition under the Creative Commons license does not automatically
release all editions under that license.

vii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Room

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Room Basics

First, let’s spend some time working with Room.

Google describer Room as providing “an abstraction layer over SQLite to allow fluent
database access while harnessing the full power of SQLite.”

In other words, Room aims to make your use of SQLite easier, through a lightweight

annotation-based implementation of an object-relational mapping (ORM) engine.

NOTE: The material in this chapter — and in all the chapters of this book edition —
is based on the alpha3 release of Room and the rest of the Android Architecture
Components. Since this is a preview release, there may be changes in newer versions
that affect you.

Wrenching Relations Into Objects

If you have ever worked with a relational database — like SQLite — from an object-
oriented language — like Java — undoubtedly you have encountered the “object-
relational impedance mismatch”. That is a very fancy way of saying “gosh, it’s a pain
getting stuff into and out of the database”.

In object-oriented programming, we are used to objects holding references to other
objects, forming some sort of object graph. However, traditional SQL-style relational
databases work off of tables of primitive data, using foreign keys and join tables to
express relationships. Figuring out how to get our Java classes to map to relational
tables is aggravating, and it usually results in a lot of boilerplate code.

Traditional Android development uses SQLiteDatabase for interacting with SQLite.
That, in turn, uses Cursor objects to represent the results of queries and

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://en.wikipedia.org/wiki/Object-relational_mapping
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch

Room BAsics

ContentValues objects to represent data to be inserted or updated. While Cursor
and ContentValues are objects, they are fairly generic, much in the way that a
HashMap or ArrayList is generic. In particular, neither Cursor nor ContentValues
has any of our business logic. We have to somehow either wrap that around those
objects or convert between those objects and some of ours.

That latter approach is what object-relational mapping engines, or ORMs, take. A
typical ORM works off of Java code and either generates a suitable database
structure or works with you to identify how the Java classes should map to some
existing table structure (e.g., a legacy one that you are stuck with). The ORM usually
generates some code for you, and supplies a library, which in combination hide
much of the database details from you.

The quintessential Java ORM is Hibernate. However, Hibernate was developed with
server-side Java in mind and is not well-suited for slim platfoms like Android
devices. However, a vast roster of Android ORMs have been created over the years to
try to fill that gap. Some of the more popular ones have been:

+ DBFlow

+ greenDAO
* Ormlite

* Sugar ORM

Room also helps with the object-relational impedance mismatch. It is not as deep of
an ORM as some of the others, as you will be dealing with SQL a fair bit. However,
Room has one huge advantage: it is from Google, and therefore it will be deemed
“official” in the eyes of many developers and middle managers.

While this book is focused on the Architecture Components — and Room is part of
those — you may wish to explore other ORMs if you are interested in using Java

objects but saving the data in SQLite. Room is likely to become popular, but it is far
from the only option.

Room Requirements

To use Room, you need two dependencies in your module’s build.gradle file:

1. The runtime library version, using the standard compile directive
2. An annotation processor, using the annotationProcessor directive

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://hibernate.org/
https://android-arsenal.com/tag/69?sort=created
https://github.com/Raizlabs/DBFlow
https://github.com/greenrobot/greenDAO
https://github.com/j256/ormlite-android
http://satyan.github.io/sugar

Room BAsics

compile "android.arch.persistence.room:runtime:1.0.0-alpha3"
annotationProcessor "android.arch.persistence.room:compiler:1.0.0-alpha3"

(from Trips/RoomBasics/app/build.gradle)

Note that alpha3 of Room has a minSdkVersion requirement of API Level 15 or
higher. If you attempt to build with a lower minSdkVersion, you will get a build error.
If you try to override Room’s minSdkVersion using manifest merger elements, while
the project will build, expect Room to crash horribly.

Room Furnishings

Roughly speaking, your use of Room is divided into three sets of classes:

1. Entities, which are POJOs that model the data you are transferring into and
out of the database

2. The data access object (DAO), that provides the description of the Java API
that you want for working with certain entities

3. The database, which ties together all of the entities and DAOs for a single
SQLite database

If you have used Square’s Retrofit, some of this will seem familiar:

+ The DAO is roughly analogous to your Retrofit interface on which you
declare your Web service API

* Your entities are the POJOs that you are expecting Gson (or whatever) to
create based on the Web service response

In this chapter, we will look at the Trips/RoomBasics sample project. This app is the
first of a linked series of apps that we will examine in this book, as we build a travel
itinerary manager. It will track your upcoming trips in a database and allow you to
add, edit, and remove trips. Right now, though, we are settling for being able to see
some very rudimentary trips get into and out of a database.

Entities

In many ORM systems, the entity (or that system’s equivalent) is a POJO that you
happen to want to store in the database. It usually represents some part of your
overall domain model, so a payroll system might have entities representing
departments, employees, and paychecks.

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/Trips/RoomBasics/app/build.gradle
https://github.com/square/retrofit
http://github.com/commonsguy/cw-android-arch/tree/master/Trips/RoomBasics
http://github.com/commonsguy/cw-android-arch/tree/master/Trips/RoomBasics

Room BAsics

With Room, a better description of entities is that they are POJOs representing:

+ the data that you want to store into the database, and
* a typical unit of a result set that you are trying to retrieve from the database

That difference may sound academic. It starts to come into play a bit more when we
start thinking about relations.

However, it also more closely matches the way Retrofit maps to Web services. With
Retrofit, we are not describing the contents of the Web service’s database. Rather, we
are describing how we want to work with defined Web service endpoints. Those
endpoints have a particular set of content that we can work with, courtesy of
whoever developed the Web service. We are simply mapping those to methods and
POJOs, both for input and output. Room is somewhere in between a Retrofit-style
“we just take what the Web service gives us” approach and a full ORM-style “we
control everything about the database” approach.

Tactically, an entity is a Java class marked with the @Entity annotation. For example,
here is a Trip class that serves as a Room entity:

package com.commonsware.android.room;

import android.arch.persistence.room.Entity;
import android.arch.persistence.room.Ignore;
import android.arch.persistence.room.PrimaryKey;
import java.util.UUID;

@Entity(tableName = "trips")
class Trip {

@PrimaryKey

public final String id;

public final String title;
public final int duration;

@Ignore

Trip(String title, int duration) {
this(UUID.randomUUID().toString(), title, duration);

j

Trip(String id, String title, int duration) {
this.id=id;
this.title=title;
this.duration=duration;

}

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Room BAsics

@Override
public String toString() {
return(title);
}
¥

(from Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/Trip.java)

There is no particular superclass required for entities, and the expectation is that
often they will be simple POJOs, as we see here.

Sometimes, your fields will be marked with annotations describing their roles. In
this example, the id field has the @PrimaryKey annotation, telling Room that this is
the unique identifier for this entity. Room will use that to know how to update and
delete Trip objects by their primary key values.

Similarly, sometimes your methods will be marked with annotations. In this case,
Trip has two constructors: one that generates the id from a UUID, and one that takes
the id as a constructor parameter. Room needs to know which constructor(s) are
eligible for its use; you mark the other constructors with the @Ignore annotation.

For Room to work with a field, it needs to be public or have JavaBean-style getter
and setter methods, so Room can access them. If the fields are final, as they are on
Trip, Room will try to find a constructor to use to populate the fields, as final fields
will lack setters.

We will explore entities in greater detail in an upcoming chapter.

DAO

“Data access object” (or DAO for short) is a fancy way of saying “the API into the
data”. The idea is that you have a DAO that provides methods for the database
operations that you need: queries, inserts, updates, deletes, whatever.

In Room, the DAO is identified by the @ao annotation, applied to either an
abstract class or an interface. The actual concrete implementation will be code-
generated for you by the Room annotation processor.

The primary role of the @Dao-annotated abstract class or interface is to have one
or more methods, with their own Room annotations, identifying what you want to

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/Trip.java

Room BAsics

do with the database and your entities. This serves the same role as the methods
annotated @GET or @POST in Retrofit.

The sample app has a TripStore that is our DAO:

package com.commonsware.android.

import
import
import
import
import
import
import

@Dao

android.arch.
android.arch.
android.arch.
android.arch.
android.arch.
android.arch.

persistence.
persistence.
persistence.
persistence.
persistence.
persistence.

java.util.List;

interface TripStore {

@Query("SELECT * FROM trips

List<Trip> selectAll();

@Query("SELECT * FROM trips

Trip findById(String id);

@Insert

void

insert(Trip...

@Update

void

update(Trip...

@Delete

void

delete(Trip...

trips);

trips);

trips);

room

room.

room
room
room
room
room

'

Dao;

.Delete;

.Insert;
.OnConflictStrategy;
.Query;

.Update;

ORDER BY title")

WHERE id=:id")

(from Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripStore.java)

Besides the @Dao annotation on the TripStore interface, we have five methods, each
with their own annotations. Your four main annotations for these methods are
@Query, @Insert, @Update, and @elete, which map to the corresponding database
operations.

Two TripStore methods — selectAll() and findById() — have the @Query
annotation. Principally, @Query will be used for SQL SELECT statements, where you
put the actual SQL in the annotation itself. To a large extent, any valid SQLite query
can be used here. However, instead of using ? as placeholders for arguments, as we
would in traditional SQLite, you use :-prefixed method parameter names. So, in

Subscribe to updates at https://commonsware.com

Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripStore.java

Room BAsics

findById(), we have a String parameter named id, so we can use :id in the SQL
statement wherever we might have used ? to indicate the value to bind in.

The remaining three methods use the @Insert, @Update, and @Delete annotations,
mapped to methods of the same name. Here, the methods take a varargs of Trip,
meaning that we can insert, update, or delete as many Trip objects as we want
(passing in zero Trip objects works, though that would be rather odd).

If you want custom code on your DAO, beyond the code-generated implementations
of your Room-annotated methods, use an abstract class and mark all the Room-
annotated methods as abstract. If, on the other hand, all you need on the DAO are
the Room-annotated methods, you can use an interface and skip all the abstract
keywords, as we did with Trip.

We will explore the DAO in greater detail in an upcoming chapter.

Database

In addition to entities and DAOs, you will have at least one @Database-annotated
abstract class, extending a RoomDatabase base class. This class knits together the
database file, the entities, and the DAOs.

In the sample project, we have a TripDatabase serving this role:

package com.commonsware.android.room;

import android.arch.persistence.room.Database;
import android.arch.persistence.room.Room;

import android.arch.persistence.room.RoomDatabase;
import android.content.Context;

@Database(entities={Trip.class}, version=1)
abstract class TripDatabase extends RoomDatabase {
abstract TripStore tripStore();

private static final String DB_NAME="trips.db";
private static volatile TripDatabase INSTANCE=null;

synchronized static TripDatabase get(Context ctxt) {

if (INSTANCE==null) {
INSTANCE=create(ctxt, false);

return(INSTANCE) ;

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Room BAsics

static TripDatabase create(Context ctxt, boolean memoryOnly) {
RoomDatabase.Builder<TripDatabase> b;

if (memoryOnly) {
b=Room. inMemoryDatabaseBuilder (ctxt.getApplicationContext(),
TripDatabase.class);

}
else {
b=Room.databaseBuilder(ctxt.getApplicationContext(), TripDatabase.class,
DB_NAME) ;

return(b.build());

(from Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripDatabase.java)

The @Database annotation configures the code generation process, including:

+ Identifying all of the entity classes that you care about in the entities
collection

+ Identifying the schema version of the database (as you see with
SQLiteOpenHelper in conventional Android SQLite development)

@Database(entities={Trip.class}, version=1)

(from Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripDatabase.java)

Here, we are saying that we have just one entity class (Trip), and that this is schema
version 1.

You also need abstract methods for each DAO class that return an instance of that
class:

abstract TripStore tripStore();

(from Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripDatabase.java)

In this app, we have but one DAO (TripStore), so we have an abstract method to
return an instance of TripStore.

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripDatabase.java
https://github.com/commonsguy/cw-androidarch/tree/v0.1/Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripDatabase.java
https://github.com/commonsguy/cw-androidarch/tree/v0.1/Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripDatabase.java

Room BAsics

Extending RoomDatabase, having the @batabase annotation, and having the
abstract method(s) for your DAOs are the requirements. Anything beyond that is
up to you, and some apps may elect to have nothing more here.

In our case, we have a bit more logic.

Get a Room

In this example, the database is a singleton. TripDatabase has a static getter
method, cunningly named get (), that creates our singleton. get(), in turn, calls a
create() method that is responsible for creating our TripDatabase:

static TripDatabase create(Context ctxt, boolean memoryOnly) {
RoomDatabase.Builder<TripDatabase> b;

if (memoryOnly) {
b=Room. inMemoryDatabaseBuilder (ctxt.getApplicationContext(),
TripDatabase.class);

}
else {
b=Room.databaseBuilder(ctxt.getApplicationContext(), TripDatabase.class,
DB_NAME) ;
}

return(b.build());

(from Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripDatabase.java)

To create a TripDatabase, we use a RoomDatabase.Builder, which we get by calling
one of two methods on the Room class:

* databaseBuilder() is what you will normally use

* inMemoryDatabaseBuilder () does what the method name suggests: it
creates an in-memory SQLite database, useful for instrumentation tests
where you do not necessarily need to persist the data for a user

Both of those methods take a Context and the Java Class object for the desired
RoomDatabase subclass. databaseBuilder() also takes the filename of the SQLite
database to use, much as SQLiteOpenHelper does in traditional Android SQLite
development.

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripDatabase.java

Room BAsics

While there are some configuration methods that can be called on the
RoomDatabase.Builder, we skip those here, simply calling build() to build the
TripDatabase. The result is that when we call get (), we get a singleton lazy-
initialized TripDatabase.

From there, we can:
+ Call tripStore() on the TripDatabase to retrieve the TripStore DAO
+ (all methods on the TripStore to query, insert, update, or delete Trip

objects

We will see how to do that in the next chapter, where we look at how to write
instrumentation tests for our Room-generated database code.

10

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Testing Room

Once you have a RoomDatabase and its associated DAO(s) and entities set up, you
should start testing it.

The good news is that testing Room is not dramatically different than is testing
anything else in Android. Room has a few characteristics that make it a bit easier
than some things to test, as it turns out.

Writing Instrumentation Tests

On the whole, writing instrumentation tests for Room — where the tests run on an
Android device or emulator — is unremarkable. You get an instance of your
RoomDatabase subclass and exercise it from there.

So, for example, here is an instrumentation test case class to exercise the
TripDatabase from the preceding chapter:

package com.commonsware.android.room;

import android.support.test.InstrumentationRegistry;
import android.support.test.runner.AndroidJUnit4;
import org.junit.After;

import org.junit.Before;

import org.junit.Test;

import org.junit.runner.RunWith;

import java.util.list;

import static junit.framework.Assert.assertNotNull;
import static junit.framework.Assert.assertTrue;
import static org.junit.Assert.assertEquals;

import static org.junit.Assert.assertNotEquals;

11

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TESTING RooMm

@RunWith(AndroidJUnit4.class)
public class TripTests {
TripDatabase db;
TripStore store;

@Before

public void setUp() {
db=TripDatabase.create(InstrumentationRegistry.getTargetContext(), true);
store=db.tripStore();

}

@After

public void tearDown() {
db.close();

@Test

public void basics() {
assertEquals(0, store.selectAll().size());
final Trip first=new Trip("Foo", 2880);
assertNotNull(first.id);
assertNotEquals(0, first.id.length());
store.insert(first);
assertTrip(store, first);

final Trip updated=new Trip(first.id, "Foo!!!", 1440);

store.update(updated);
assertTrip(store, updated);

store.delete(updated);
assertEquals(0, store.selectAll().size());

private void assertTrip(TripStore store, Trip trip) {
List<Trip> results=store.selectAll();

assertNotNull(results);
assertEquals(1, results.size());
assertTrue(areldentical(trip, results.get(0)));

Trip result=store.findById(trip.id);

assertNotNull(result);
assertTrue(areldentical(trip, result));

12

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TESTING Room

}

private boolean areldentical(Trip one, Trip two) {
return(one.id.equals(two.id) &%
one.title.equals(two.title) &&
one.duration==two.duration);

(from Trips/RoomBasics/app/src/androidTest/java/com/commonsware/android/room/TripTests.java)

Here, we:

* Create an empty database

+ Get the DAO (TripStore)

* Confirm that there are no trips in the database

* Create a Trip object and insert() it into the database, then confirm that the
database was properly inserted

+ Create a new Trip object with the same ID as the first, update() the
database using it, then confirm that the database was properly inserted

* Delete the Trip object, then confirm that the database has no trips once
again

Using In-Memory Databases

When testing a database, though, one of the challenges in in making those tests
hermetic, or self-contained. One test method should not depend upon another test
method, and one test method should not affect the results of another test method
accidentally. This means that we want to start with a known starting point before
each test, and we have to consider how to do that.

One approach — the one taken in the above TripTests class — is to use an in-
memory database. The static create() method on TripDatabase, if you pass true
for the second parameter, creates a TripDatabase backed by memory, not disk:

static TripDatabase create(Context ctxt, boolean memoryOnly) {
RoomDatabase.Builder<TripDatabase> b;

if (memoryOnly) {
b=Room. inMemoryDatabaseBuilder (ctxt.getApplicationContext(),
TripDatabase.class);
b
else {
b=Room.databaseBuilder (ctxt.getApplicationContext(), TripDatabase.class,

13

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/Trips/RoomBasics/app/src/androidTest/java/com/commonsware/android/room/TripTests.java

TESTING Room

DB_NAME) ;
}

return(b.build());
}

(from Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripDatabase.java)

There are two key advantages for using an in-memory database for instrumentation
testing:

1. It is intrinsically self-contained. Once the TripDatabase is closed, its
memory is released, and if separate tests use separate TripDatabase
instances, one will not affect the other.

2. Reading and writing to and from memory is much faster than is reading and
writing to and from disk, so the tests run much faster.

On the other hand, this means that the instrumentation tests are useless for
performance testing, as (presumably) your production app will actually store its
database on disk. You could use Gradle command-line switches, custom build types
and buildConfigField, or other means to decide when tests are run whether they
should use memory or disk.

Importing Starter Data

The one downside to having an empty starter database, such as a fresh in-memory
database, is that you have no data. Eventually, you need some data to test.

That could come from test code, such as what TripTests does. In many cases, this is
a necessary part of testing, to confirm that all of your DAO methods work as
expected.

Alternatives include:

* Loading the data from some neutral format (e.g., JSON) via some utility
method

+ Packaging one or more starter database as assets in the instrumentation
tests (e.g., src/androidTest/assets/), then using ATTACH DATABASE ... and
INSERT INTO ... SELECT FROM ... SQLite code to copy from the starter
database to the database to be used in testing

14

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripDatabase.java

TESTING Room

Writing Unit Tests via Mocks

Let’s look again at the TripStore DAO:

package com.commonsware.android.room;

import android.arch.persistence.room.Dao;

import android.arch.persistence.room.Delete;

import android.arch.persistence.room.Insert;

import android.arch.persistence.room.0OnConflictStrategy;
import android.arch.persistence.room.Query;

import android.arch.persistence.room.Update;

import java.util.List;

@Dao

interface TripStore {
@Query("SELECT * FROM trips ORDER BY title")
List<Trip> selectAll();

@Query("SELECT * FROM trips WHERE id=:id")
Trip findById(String id);

@Insert
void insert(Trip... trips);

@Update
void update(Trip... trips);

@Delete
void delete(Trip... trips);

(from Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripStore.java)

This is a pure interface. More importantly, other than annotations, its API is purely
domain-specific. Everything revolves around our Trip entity and other business
logic (e.g., String values as identifiers).

Room DAOs are designed to be mocked, using a mocking library like Mockito, so
that you can write unit tests (tests that run on your development machine or CI
server) in addition to — or perhaps instead of — instrumentation tests.

The primary advantage of unit tests is execution speed, as they do not have to be run
on Android devices or emulators. On the other hand, setting up mocks can be
tedious.

15

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripStore.java

TESTING RooMm

The RoomBasics project not only has the instrumentation tests shown earlier in this
chapter, but an equivalent unit test in test/, embodied in a TripUnitTests class:

package com.commonsware.android.room;

import org.junit.Before;

import org.junit.Test;

import org.mockito.Matchers;

import org.mockito.Mockito;

import org.mockito.invocation.InvocationOnMock;
import org.mockito.stubbing.Answer;

import java.util.Arraylist;

import java.util.Collections;

import java.util.Comparator;

import java.util.HashMap;

import java.util.List;

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertNotEquals;
import static org.junit.Assert.assertNotNull;
import static org.junit.Assert.assertTrue;
import static org.mockito.Matchers.any;

import static org.mockito.Mockito.doAnswer;

public class TripUnitTests {
private TripStore store;

@Before
public void setUp() {
store=Mockito.mock(TripStore.class);

final HashMap<String, Trip> trips=new HashMap<>();

doAnswer (new Answer () {
@Override
public Object answer(InvocationOnMock invocation) throws Throwable {
ArrayList<Trip> result=new ArraylList<>(trips.values());

Collections.sort(result, new Comparator<Trip>() {
@Override
public int compare(Trip left, Trip right) {
return(left.title.compareTo(right.title));
}
DF

return(result);

3
}).when(store).selectAll();

16

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TESTING RooMm

doAnswer (new Answer () {
@Override
public Object answer(InvocationOnMock invocation) throws Throwable {
String id=(String)invocation.getArguments()[0];

return(trips.get(id));
}
}).when(store).findById(any(String.class));

doAnswer (new Answer () {
@Override
public Object answer(InvocationOnMock invocation) throws Throwable {
for (Object rawTrip : invocation.getArguments()) {
Trip trip=(Trip)rawTrip;

trips.put(trip.id, trip);
b

return(null);

}

}).when(store).insert(Matchers.<Trip>anyVararg());

doAnswer (new Answer () {
@Override
public Object answer(InvocationOnMock invocation) throws Throwable {
for (Object rawTrip : invocation.getArguments()) {
Trip trip=(Trip)rawTrip;

trips.put(trip.id, trip);
b

return(null);

3
}).when(store).update(Matchers.<Trip>anyVararg());

doAnswer (new Answer () {
@Override
public Object answer(InvocationOnMock invocation) throws Throwable {
for (Object rawTrip : invocation.getArguments()) {
Trip trip=(Trip)rawTrip;

trips.remove(trip.id);

}

return(null);

3
}).when(store).delete(Matchers.<Trip>anyVararg());

17

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TESTING RooMm

@Test
public void basics() {
assertEquals(0, store.selectAll().size());

final Trip first=new Trip("Foo", 2880);
assertNotNull(first.id);
assertNotEquals(0, first.id.length());
store.insert(first);

assertTrip(store, first);

final Trip updated=new Trip(first.id, "Foo!!!",6 1440);

store.update(updated);
assertTrip(store, updated);

store.delete(updated);
assertEquals(0, store.selectAll().size());

private void assertTrip(TripStore store, Trip trip) {
List<Trip> results=store.selectAll();

assertNotNull(results);
assertEquals(1, results.size());
assertTrue(areldentical(trip, results.get(0)));

Trip result=store.findById(trip.id);
assertNotNull(result);

assertTrue(areldentical(trip, result));

private boolean areldentical(Trip one, Trip two) {
return(one.id.equals(two.id) &%
one.title.equals(two.title) &&
one.duration==two.duration);

(from Trips/RoomBasics/app/src/test/java/com/commonsware/android/room/TripUnitTests.java)

The basics() test method, and its supporting utility methods, are the same as in the
instrumentation tests. What differs is where the TripStore comes from. In the

18

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/Trips/RoomBasics/app/src/test/java/com/commonsware/android/room/TripUnitTests.java

TESTING Room

instrumentation tests, we created an in-memory TripDatabase and retrieved a
TripStore from it. In the unit tests, we use Mockito to create a mock TripStore (via
Mockito.mock(TripStore.class)), then teach the mock how to respond to its
methods. In this case, we mock a database with a simple HashMap, with a roster of
the trips, keyed by their ID values. Each of the doAnswer () calls mocks a specific
method on the TripStore, down to the details of having selectAl1() return the
trips ordered by title.

Whether this is worth the effort is for you to decide. For many projects,
instrumentation tests will suffice. For larger projects, where the speed difference
between unit tests and instrumentation tests is substantial, it might be worth the
engineering time to create the mocks. While mocking is also useful for scenarios
that are difficult to reproduce, it is unlikely that your DAO will have any of those
scenarios.

19

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Dao of Entities

Two chapters ago, we went through the basic steps for setting up Room:

+ Create and annotate your entity classes

* Create, annotate, and define operator methods on your DAO(s)

* Create a subclass of RoomDatabase to tie the entities and DAO(s) together

* Create an instance of that RoomDatabase at some likely point in time, while
you are safely on a background thread

+ Use the RoomDatabase instance to retrieve your DAO and from there work
with your entities

However, we only scratched the surface of what can be configured on entities and
DAOs. In this chapter — and the subsequent chapters on custom types and relations
— we will explore the rest of the configuration for entities and DAOs.

Many of the code snippets shown in this chapter come from the General/RoomDao
sample project. This contains a library module (stuff) with entity and DAO code
along with instrumentation tests for bits of that code.

Configuring Entities

The only absolute requirements for a Room entity class is that it be annotated with
the @Entity annotation and have a field identified as the primary key, typically by
way of a @PrimaryKey annotation. Anything above and beyond that is optional.

However, there is a fair bit that is “above and beyond that”. Some — though probably
not all — of these features will be of interest in larger apps.

21

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-android-arch/tree/master/General/RoomDao
http://github.com/commonsguy/cw-android-arch/tree/master/General/RoomDao

THE DAO OF ENTITIES

Primary Keys

If you have a single field that is the primary key for your entity, using the
@PrimaryKey annotation is simple and helps you clearly identify that primary key at
a later point.

However, you do have some other options.

Auto-Generated Primary Keys

In SQLite, if you have an INTEGER column identified as the PRIMARY KEY, you can
optionally have SQLite assign unique values for that column, by way of the
AUTOINCREMENT keyword.

In Room, if you have an int or Integer field that is your @PrimaryKey, you can
optionally apply AUTOINCREMENT to the corresponding column by adding
autoGenerate=true to the annotation:

@Entity

public class Constant {
@PrimaryKey(autoGenerate=true)
public int id;
String title;
double value;

@Override
public String toString() {
return(title);
¥
¥

By default, autoGenerate is false. Setting that property to true gives you
AUTOINCREMENT in the generated CREATE TABLE statement:

CREATE TABLE IF NOT EXISTS constants (id INTEGER PRIMARY KEY AUTOINCREMENT, title
TEXT, value REAL)

However, this starts to get complicated in the app. You do not know your primary
key until you insert the entity into a database. That presents “trickle-down”
complications — for example, you cannot make the primary key field final, as then
you cannot create an instance of an entity that is not yet in the database. While you
can try to work around this (e.g., default the id to -1), then you have to keep
checking to see whether you have a valid identifier.

22

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE DAO OF ENTITIES

Most of the samples in this book will use a UUID instead. While these take up much
more room than a simple int, they can be uniquely generated outside of the
database. For your production apps, you will need to decide if the headaches
surrounding database-generated identifiers are worth their benefits.

Composite Primary Keys

In some cases, you may have a composite primary key, made up of two or more
columns in the database. This is particularly true if you are trying to design your
entities around an existing database structure, one that used a composite primary
key for one ofits tables (for whatever reason).

If, logically, those are all part of a single object, you could combine them into a
single field, as we will see in the next chapter. However, it may be that they should
be individual fields in your entity, but they happen to combine to create the primary
key. In that case, you can skip the @PrimaryKey annotation and use the primaryKeys
property of the @Entity.

One scenario for this is data versioning, where we are tracking changes to data over
time, the way a version control system tracks changes to source code and other files
over time. There are several ways of implementing data versioning. One approach
has all versions of the same entity in the same table, with a version code attached to
the “natural” primary key to identify a specific version of that content. In that case,
you could have something like:

@Entity(primaryKeys={"id", "versionCode"})
class VersionedThingy {

public final String id;

public final int versionCode;

VersionedThingy(String id, int versionCode) {
this.id=id;
this.versionCode=versionCode;
}
}

Room will then use the PRIMARY KEY keyword in the CREATE TABLE statement to set
up the composite primary key:

CREATE TABLE IF NOT EXISTS VersionedThingy (id TEXT, versionCode INTEGER, PRIMARY
KEY(id, versionCode))

23

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE DAO OF ENTITIES

Adding Indexes

Your primary key is indexed automatically by SQLite. However, you may wish to set
up other indexes for other columns or collections of columns, to speed up queries.
To do that, use the indices property on @Entity. This property takes a list of @I ndex
annotations, each of which declares an index.

For example, as part of a Customer entity, you might have an address, which might
contain a postalCode. You might be querying directly on postalCode as part of a
search form, and so having an index on that would be useful. To do that, add the
appropriate @Index to indices:

@Entity(indices={@Index("postalCode")})
class Customer {

@PrimaryKey

public final String id;

public final String postalCode;
public final String displayName;

Customer(String id, String postalCode, String displayName) {
this.id=id;
this.postalCode=postalCode;
this.displayName=displayName;
h
b

Room will add the requested index:
CREATE INDEX index_Customer_postalCode ON customer (postalCode)

If you have a composite index, consisting of two or more fields, @Index takes a
comma-delimited list of column names and will generate the composite index.

If the index should also enforce uniqueness — only one entity can have the indexed
value — add unique=true to the @Index. This requires you to assign the column(s)
for the index to the value property, due to the way Java annotations work:

@Entity(indices={@Index(value="postalCode", unique=true)})
class Customer {

@PrimaryKey

public final String id;

public final String postalCode;

24

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE DAO OF ENTITIES

public final String displayName;

Customer (String id, String postalCode, String displayName) {
this.id=id;
this.postalCode=postalCode;
this.displayName=displayName;
}
}

This causes Room to add the UNIQUE keyword to the CREATE INDEX statement:

CREATE UNIQUE INDEX index_Customer_postalCode ON customer (postalCode)
Ignoring Fields

If there are fields in the entity class that should not be persisted, annotate them with
@Ignore:

@Entity(primaryKeys={"id", "versionCode"})
class VersionedThingy {

public final String id;

public final int versionCode;

@Ignore
private String something;

VersionedThingy(String id, int versionCode) {
this.id=id;
this.versionCode=versionCode;

}

That annotation is required. For example, this does not work:

@Entity(primaryKeys={"id", "versionCode"})
class VersionedThingy {

public final String id;

public final int versionCode;

private String something;
VersionedThingy(String id, int versionCode) {

this.id=id;
this.versionCode=versionCode;

25

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE DAO OF ENTITIES

You might think that since the field is private and has no setter, that Room would
ignore it automatically. Room, instead, generates a build error, as it cannot tell if you
want to ignore that field or if you simply forgot to add it properly.

Similarly, transient is insufficient:

@Entity(primaryKeys={"id", "versionCode"})
class VersionedThingy {

public final String id;

public final int versionCode;

public transient String something;

VersionedThingy(String id, int versionCode) {
this.id=id;
this.versionCode=versionCode;
}
b

Since this is a public field, Room will try persisting it, even though you have the
transient keyword in the Java class. You still need to add @Ignore to it.

Note that you can also @Ignore constructors. This may be required to clear up Room
build errors, if the code generator cannot determine what constructor to use:

@Entity(primaryKeys={"id", "versionCode"})
class VersionedThingy {

public final String id;

public final int versionCode;

@Ignore
private String something;

@Ignore

VersionedThingy() {
this(UUID.randomUUID().toString(), 1);

3

VersionedThingy(String id, int versionCode) {
this.id=id;
this.versionCode=versionCode;
}
b

26

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://issuetracker.google.com/issues/62600692
https://issuetracker.google.com/issues/62600692
https://issuetracker.google.com/issues/62600692

THE DAO OF ENTITIES

Custom Table and Column Names

By default, Room will generate names for your tables and columns based off of the
entity class names and field names. In general, it does a respectable job of this, and
so you may just leave them alone. However, you may find that you need to control
these names, particularly if you are trying to match an existing database schema
(e.g., you are migrating an existing Android app to use Room instead of using SQLite
directly). And for table names in particular, setting your own name can simplify
some of the SQL that you have to write for @Query-annotated methods.

To control the table name, use the tableName property on the @Entity attribute, and
give it a valid SQLite table name. For example, while in Java we might want to call
the class VersionedThingy, we might prefer the table to just be thingy:

@Entity(tableName="thingy", primaryKeys={"id", "versionCode"})
class VersionedThingy {

public final String id;

public final int versionCode;

@Ignore
private String something;

@Ignore
VersionedThingy() {
this(UUID.randomUUID().toString(), 1);

}

VersionedThingy(String id, int versionCode) {
this.id=id;
this.versionCode=versionCode;
}
}

To rename a column, add the @ColumnInfo annotation to the field, with a name
property that provides your desired name for the column:

@Entity(tableName="thingy", primaryKeys={"id", "versionCode"})
class VersionedThingy {
public final String id;

@ColumnInfo(name="version_code")
public final int versionCode;

@Ignore
private String something;

27

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE DAO OF ENTITIES

@Ignore
VersionedThingy() {

this(UUID.randomUUID().toString(), 1);

}

VersionedThingy(String id, int versionCode) {

this.id=id;

this.versionCode=versionCode;

Here, we changed the versionCode field’s column to version_code, along with

specifying the table name.

However, this fails. The values in the primaryKeys property are the column names,
not the field names. Since we renamed the column, we need to update primaryKeys

to match:

package com.commonsware.android.

import android.arch.persistence.
import android.arch.persistence.
import android.arch.persistence.
import android.arch.persistence.

import java.util.UUID;

room.

room
room
room
room

dao;

.ColumnInfo;

.Entity;
.Ignore;

.PrimaryKey;

@Entity(tableName="thingy", primaryKeys={"id", "version_code"})

class VersionedThingy {
public final String id;

@ColumnInfo(name="version_code")

public final int versionCode;

@Ignore
private String something;

@Ignore
VersionedThingy() {

this(UUID.randomUUID().toString(), 1);

}

VersionedThingy(String id, int versionCode) {

this.id=id;

this.versionCode=versionCode;

Subscribe to updates at https://commonsware.com

28

Special Creative Commons BY-NC-SA 4.0 License Edition

THE DAO OF ENTITIES

DAOs and Queries

(from General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/VersionedThingy.java)

One popular thing to do with a database is to get data out of it. For that, we add
@Query methods on our DAO.

Those do not have to be especially complicated, as we saw with the TripStore:

package com.commonsware.android.room;

import android.
import android.
import android.
import android.
import android.
import android.

arch
arch
arch
arch
arch
arch

.persistence.
.persistence.
.persistence.
.persistence.
.persistence.
.persistence.

import java.util.List;

@Dao

interface TripStore {

@Query("SELECT * FROM trips

List<Trip> selectAll();

@Query("SELECT * FROM trips

Trip findById(String id);

@Insert

void insert(Trip...

@Update

void update(Trip...

@Delete

void delete(Trip...

trips);

trips);

trips);

room.

room
room
room
room
room

Dao;

.Delete;

.Insert;
.OnConflictStrategy;
.Query;

.Update;

ORDER BY title")

WHERE id=:id")

(from Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripStore.java)

However, SQL queries with SQLite can get remarkably complicated. Room tries to
support a lot of the standard SQL syntax, but Room adds its own complexity, in
terms of trying to decipher how to interpret your @uery method’s arguments and

return type.

Subscribe to updates at https://commonsware.com

29

Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/VersionedThingy.java
https://github.com/commonsguy/cw-androidarch/tree/v0.1/Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripStore.java

THE DAO OF ENTITIES

Adding Parameters

As we saw with findById() on TripStore, you can map method arguments to query
parameters by using : syntax. Put : before the argument name and its value will be
injected into the query:

@Query("SELECT * FROM thingy WHERE id=:id AND version_code=:versionCode")
VersionedThingy findById(String id, int versionCode);

(from General/RoomDao/stuff/src¢/main/java/com/commonsware/android/room/dao/StuffStore.java)

Bear in mind that the rest of the SQL statement is based on the table, not the entity.
Table names and column names will either be the code-generated names or your
overridden names (via tableName and @ColumnInfo).

WHERE Clause

Principally, your method arguments will be injected into your WHERE clause, such as
in the above examples.

Note that Room has special support for IN in a WHERE clause. So, while this works for
a single postalCode:

@Query("SELECT * FROM Customer WHERE postalCode IN (:postalCodes)")
List<Customer> findByPostalCodes(String postalCodes);

...you can also do:

@Query("SELECT * FROM Customer WHERE postalCode IN (:postalCodes)")
List<Customer> findByPostalCodes(List<String> postalCodes);

...0T even:

@Query("SELECT * FROM Customer WHERE postalCode IN (:postalCodes)")
List<Customer> findByPostalCodes(String... postalCodes);

Room will convert the collection argument into a comma-delimited list for use with
the SQL query.

30

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java

THE DAO OF ENTITIES

Other Clauses

If SQLite allows ? placeholders, Room should allow method arguments to be used
instead.

So, for example, you can parameterize a LIMIT clause:

@Query("SELECT * FROM Customer WHERE postalCode IN (:postalCodes) LIMIT :max")
List<Customer> findByPostalCodes(int max, String... postalCodes);

(from General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java)

Here, because Java needs the varargs to be the last parameter, we need to have max
first.

What You Can Return

We have seen that a @Query can return a single entity (e.g., findById() returning a
single Trip) or a collection of entity (e.g., selectAl1l() returning a List of Trip
entities).

While those are simple, Room offers a fair bit more flexibility than that. In
particular, not only does Room support reactive return values, but we can return
objects that are not actually entities.

Specific Return Types

In addition to returning single objects or collections of objects, a Room @Query can
return a good old-fashioned Cursor. This is particularly useful if you are migrating
legacy code that uses CursorAdapter or other Cursor-specific classes. Similarly, if
you are looking to expose part of a Room-defined database via a ContentProvider, it
may be more convenient for you to get your results in the form of a Cursor, so that
you can just return that from the provider’s query() method.

Beyond that, a @Query method can return:
* A Flowable or Publisher from RxJavaz, a popular framework for reactive
programming

+ ALiveData object

We will explore what a LiveData object is later in this book.

31

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java

THE DAO OF ENTITIES

Breadth of Results

For small entities, like Trip, usually we will retrieve all columns in the query.
However, the real rule is: the core return object of the @Query method must be
something that Room knows how to fill in from the columns that you request.

For wider tables with many columns, this is important. For example, perhaps for a
RecyclerView, you only need a couple of columns, but for all entities in the table. In
that case, it might be nice to only retrieve those specific columns. You have two ways
to do that:

1. Have your @Entity support only a subset of columns, allowing the rest to be
null or otherwise tracking the fact that we only retrieved a subset of
columns from the table

2. Return something other than the entity that you have associated with this
table

If you look at your @Dao-annotated interface, you will notice that while methods
might refer to entities, its annotations do not. That is because the DAO is somewhat
independent of the entities. The entities describe the table, but the DAO is not
limited to using those entities. So long as the DAO can fulfill the contract stipulated
by the SQL, the method arguments, and the method return type, Room is perfectly
content.

So, for example, suppose that Customer not only tracks an id and a postalCode, but
also has many other fields, including a displayName:

package com.commonsware.android.room.dao;

import android.arch.persistence.room.Entity;
import android.arch.persistence.room.Ignore;
import android.arch.persistence.room.Index;
import android.arch.persistence.room.PrimaryKey;
import java.util.UUID;

@Entity(indices={@Index(value="postalCode", unique=true)})
class Customer {

@PrimaryKey

public final String id;

public final String postalCode;
public final String displayName;

32

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE DAO OF ENTITIES

@Ignore

Customer (String postalCode, String displayName) {
this(UUID.randomUUID().toString(), postalCode, displayName);

j

Customer (String id, String postalCode, String displayName) {
this.id=id;
this.postalCode=postalCode;
this.displayName=displayName;

}

(from General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/Customer.java)

Perhaps to show a list of customers, we need the displayName (to show in the list)
and the id (to know which specific customer this is). But we do not need the
postalCode or the rest of the fields in the Customer class.

We can still return a Customer:

@Query("SELECT id, displayName FROM Customer WHERE postalCode IN (:postalCodes) LIMIT
‘max")
List<Customer> findByPostalCodes(List<String> postalCodes, int max);

The code that Room generates will simply fill in null for the postalCode, since that
was not one of the returned columns. However, then it is not obvious whether a
given instance of Customer is completely filled in from data in the table (and it is
genuinely missing its postalCode) or whether this is a partially-populated Customer
object.

However, we could also define a dedicated CustomerDisplayTuple class:

package com.commonsware.android.room.dao;

public class CustomerDisplayTuple {
public final String id;
public final String displayName;

public CustomerDisplayTuple(String id, String displayName) {
this.id=id;
this.displayName=displayName;

j

(from General/RoomDao/stuff/sr¢/main/java/com/commonsware/android/room/dao/CustomerDisplayTuple.java)

33

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/Customer.java
https://github.com/commonsguy/cw-androidarch/tree/v0.1/General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/CustomerDisplayTuple.java

THE DAO OF ENTITIES

Then, we can return a List of CustomerDisplayTuple from our DAO:

@Query("SELECT id, displayName FROM Customer WHERE postalCode IN (:postalCodes) LIMIT :max")
List<CustomerDisplayTuple> loadDisplayTuplesByPostalCodes(int max, String... postalCodes);

(from General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java)

This way, we get our subset of data, and we know by class whether we have the full
Customer or just the subset for display purposes.

Note that @ColumnInfo annotations can be used on any class, not just entities. In
particular, if you use @ColumnInfo on a field in an entity, you will need the same
@ColumnInfo on any “tuple”-style classes that represent subsets of data that include
that same field.

Aggregate Functions
A @Query can also return an int, for simple aggregate functions:

@Query("SELECT COUNT(*) FROM Customer")
int getCustomerCount();

(from General/RoomDao/stuff/src¢/main/java/com/commonsware/android/room/dao/StuffStore.java)

If you wish to compute several aggregate functions, create a “tuple”-style class to
hold the values:

package com.commonsware.android.room.dao;
public class CustomerStats {

public final int count;

public final String max;

public CustomerStats(int count, String max) {

this.count=count;
this.max=max;

(from General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/CustomerStats.java)

...and use AS to name the aggregate function “columns” to match the tuple:

@Query("SELECT COUNT(*) AS count, MAX(postalCode) AS max FROM Customer™)
CustomerStats getCustomerStats();

34

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java
https://github.com/commonsguy/cw-androidarch/tree/v0.1/General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java
https://github.com/commonsguy/cw-androidarch/tree/v0.1/General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/CustomerStats.java

THE DAO OF ENTITIES

(from General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java)

Dynamic Queries
Sometimes, you do not know the query at compile time.

One scenario for this is when you want to expose a Room-managed database via a
ContentProvider to third-party apps. You could document that you support a
limited set of options in your provider’s query() method, ones that you can map to
@Query methods on your DAO. Alternatively, you could generate a SQL statement
using SQLiteQueryBuilder that supports what your table offers, but then you need
to somehow execute that statement and get a Cursor back.

For that, RoomDatabase has a query() method that is analogous to rawQuery() on a
SQLiteDatabase. Pass it the SQL statement and an Object array of position
parameters, and RoomDatabase will give you a Cursor back.

Other DAO Operations

To get data out of a database, generally it is useful to put data into it. We have seen
basic @Insert, @Update, and @elete DAO methods on TripStore:

package com.commonsware.android.room;

import android.arch.persistence.room.Dao;

import android.arch.persistence.room.Delete;

import android.arch.persistence.room.Insert;

import android.arch.persistence.room.OnConflictStrategy;
import android.arch.persistence.room.Query;

import android.arch.persistence.room.Update;

import java.util.list;

@Dao

interface TripStore {
@Query("SELECT * FROM trips ORDER BY title")
List<Trip> selectAll();

@Query("SELECT * FROM trips WHERE id=:id")
Trip findById(String id);

@Insert
void insert(Trip... trips);

@Update

35

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java

THE DAO OF ENTITIES

void update(Trip... trips);

@Delete
void delete(Trip... trips);
}

(from Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripStore.java)

Generally speaking, these scenarios are simpler than @Query. The @Insert, @Update,
and @Delete set up simple methods for inserting, updating, or deleting entities
passed to their methods... and that is pretty much it. However, there are a few
additional considerations that we should explore.

Parameters

@Insert, @Update, and @elete work with entities. TripStore uses varargs, so we can
pass zero, one, or several Trip objects, though passing zero objects would be a waste
of time.

However, in addition to varargs, you can have these methods accept:

* A single entity

+ Individual entities as separate parameters (void insert(Trip trip1, Trip
trip2))

« A List of entities

Return Values
Frequently, you just have these methods return void.
However:

+ For @Update and @Delete, you can have them return an int, which will be
the number of rows affected by the update or delete operation

+ For an @Insert method accepting a single entity, you can have it return a
long which will be the ROWID of the entity (and, if you are using an auto-
increment int as your primary key, this will also be that key)

* For an @Insert method accepting multiple entities, you can have it return an
array of long objects or a List of Long objects, being the corresponding
ROWID values for those inserted entities

36

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/Trips/RoomBasics/app/src/main/java/com/commonsware/android/room/TripStore.java

THE DAO OF ENTITIES

Conflict Resolution

@Insert and @Update support an optional onConflict property. This maps to
SQLite’s ON CONFLICT clause and indicates what should happen if there is either a
uniqueness violation (e.g., duplicate primary keys) or a NOT NULL violation when the
insert or update should occur.

The value of onConflict is an OnConflictStrategy value:

Value Meaning
Cancel this statement but preserve prior results in
the transaction and keeps the transaction alive
Like ABORT, but accepts prior changes by this specific
OnConflictStrategy.FAIL statement (e.g., if we fail on the 50th row to be
updated, keep the changes to the preceding 49)
Like FAIL, but continues processing this statement
OnConflictStrategy.IGNORE | (e.g., if we fail on the 50th row out of 100, keep the
changes to the other 99)
For uniqueness violations, deletes other rows that
OnConflictStrategy.REPLACE| would cause the violation before executing this
statement
OnConflictStrategy.ROLLBACK Rolls back the current transaction

OnConflictStrategy.ABORT

The default strategy for @Insert and @Update is ABORT. You might want to consider
changing that to be ROLLBACK, particularly if you start using transactions:

@Insert(onConflict=0OnConflictStrategy.ROLLBACK)
void insert(Trip... trips);

Other Operations

The primary problem with @Insert, @Update, and @Delete is that they need entities.
In part, that is so the DAO method knows what table to work against.

For anything else, use @Query. @Query does not only work with operations that
return result sets, but any SQL that you wish to execute.

So, for example, you could have:

@Query("DELETE FROM Customer")
void nukeCustomersFromOrbit();

37

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://sqlite.org/lang_conflict.html
https://sqlite.org/lang_conflict.html

THE DAO OF ENTITIES

N0) i

@Query("DELETE FROM Customer WHERE id IN (:ids)")
int nukeCertainCustomersFromOrbit(String... ids);

(from General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java)

...or INSERT INTO ... SELECT FROM ... syntax, or pretty much any other
combination that cannot be supported directly by @Insert, @Update, and @elete
annotations directly.

Consider @Insert, @Update, and @elete to be “convenience annotations” for entity-
based operations, where @Query is the backbone for your DAO methods.

Transactions and Room

Many times, we need to wrap a number of SQL statements into a transaction.
RoomDatabase offers the same beginTransaction(), endTransaction(), and
setTransactionSuccessful() methods that you see on SQLiteDatabase, and so you
use the same basic algorithm:

roomDb.beginTransaction();

try {
// bunch of DAO operations here
roomDb.setTransactionSuccessful();

¥
finally {
roomDb.endTransaction();

}

Threads and Room

@Insert, @Update, and @Delete-annotated methods are synchronous, performing
their work on the current thread. Hence, they should only be called from a
background thread.

@Query methods that return entities, int, tuples, etc. directly also are synchronous.
However, @uery methods that return an RxJava type (e.g., Flowable) or a LiveData
are not synchronous. Instead, the real work will be performed on a background
thread.

38

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/General/RoomDao/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java

THE DAO OF ENTITIES

As noted earlier, we will explore what this “LiveData” is later in the book. For now,
take it on faith that it is another piece of the Android Architecture Components, one
that offers an alternative to RxJava for reactive programming

39

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Room and Custom Types

So far, all of our fields have been basic primitives (int, float, etc.) or String. There
is a good reason for that: those are all that Room understands “out of the box”.
Everything else requires some amount of assistance on our part.

Sometimes, a field in an entity will be related to another entity. Those are relations,
and we will consider those in the next chapter.

However, sometimes our preferred Java entity implementation does not map directly
to primitives and String types. For example:

* What do we do with a Java Date or Calendar object? Do we want to store
that as a milliseconds-since-the-Unix-epoch value as a Java long? Do we
want to store a string representation in a standard format, for easier
readability (at the cost of disk space and other issues)?

* What do we do with a Location object? Here, we have two pieces: a latitude
and a longitude. Do we have two columns that combine into one field? Do
we convert the Location to and from a String representation?

* What do we do with collections of strings, such as lists of tags?

* What do we do with enums?

And so on.

In this chapter, we will explore two approaches for handling these things without
creating another entity class: type converters and embedded types.

41

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Room AND CusToM TYPES

Type Converters

Type converters are a pair of methods, annotated with @TypeConverter, that map
the type for a single database column to a type for a Java field. So, for example, we
can:

* Map a Date field to a Long, which can go in a SQLite INTEGER column

* Map a Location field to a String, which can go in a SQLite TEXT column

* Map a collection of String values to a single String (e.g., comma-separated
values), which can go in a SQLite TEXT column

*+ And so forth

However, type converters offer only a 1:1 conversion: a single Java field to and from a
single SQLite column. If you have a single Java field that should map to several
SQLite columns, the @Embedded approach can handle that, as we will see later in this

chapter.
Setting Up a Type Converter

First, define a Java class somewhere. The name, package, superclass, etc. do not
matter.

Next, for each type to be converted, create two public static methods that convert
from one type to the other. So for example, you would have one public static
method that takes a Date and returns a Long (e.g., returning the milliseconds-since-
the-Unix-epoch value), and a counterpart method that takes a Long and returns a
Date. If the converter method is passed null, the proper result is null. Otherwise,
the conversion is whatever you want, so long as the “round trip” works, so that the
output of one converter method, supplied as input to the other converter method,
returns the original value.

Then, each of those methods get the @TypeConverter annotation. The method
names do not matter, so pick a convention that works for you.

Finally, you add a @TypeConverters annotation, listing this and any other type
converter classes, to... something. What the “something” is controls the scope of
where that type converter can be used.

The simple solution is to add @TypeConverters to the RoomDatabase, which means
that anything associated with that database can use those type converters. However,

42

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Room AND CusTom TYPES

sometimes, you may have situations where you want different conversions between
the same pair of types, for whatever reason. In that case, you can put the
@TypeConverters annotations on narrower scopes:

@TypeConverters Location Affected Areas
Entity class all fields in the entity
Entity field that one field in the entity
DAO class all methods in the DAO
DAO method that one method in the DAOQ, for all parameters
DAO method parameter that one parameter on that one method
POJO all fields on the POJO

The General/RoomTypes sample project illustrates the use of type converters. As with
the RoomDao project from the preceding chapter, this project contains a single library
module with an associated instrumentation test case. In fact, it is a clone of the
RoomDao project, just with some type converters.

Example: Dates and Times

A typical way of storing a date/time value in a database is to use the number of
milliseconds since the Unix epoch (i.e., the number of milliseconds since midnight, 1
January 1970). Date has a getTime() method that returns this value.

So, the project has a TypeTransmogrifiers class that contains two methods, each
annotated with @TypeConverter, for converting Date to and from a Long:

@TypeConverter
public static Long fromDate(Date date) {
if (date==null) {
return(null);
}

return(date.getTime());
¥

@TypeConverter
public static Date toDate(Long millisSinceEpoch) {
if (millisSinceEpoch==null) {
return(null);
}

return(new Date(millisSinceEpoch));
}

43

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-android-arch/tree/master/General/RoomTypes
http://github.com/commonsguy/cw-android-arch/tree/master/General/RoomTypes

Room AND CusTom TYPES

(from General/RoomTypes/stuff/src/main/java/com/commonsware/android/room/dao/TypeTransmogrifier.java)

StuffDatabase then has the @TypeConverters annotation, listing
TypeTransmogrifier as the one class that has type conversion methods:

package com.commonsware.android.room.dao;

import android.arch.persistence.room.Database;
import android.arch.persistence.room.Room;

import android.arch.persistence.room.RoomDatabase;
import android.arch.persistence.room.TypeConverters;
import android.content.Context;

@Database(
entities={Customer.class, VersionedThingy.class},
version=1

)

@TypeConverters({TypeTransmogrifier.class})

abstract class StuffDatabase extends RoomDatabase {
abstract StuffStore stuffStore();

private static final String DB_NAME="stuff.db";
private static volatile StuffDatabase INSTANCE=null;

synchronized static StuffDatabase get(Context ctxt) {
if (INSTANCE==null) {
INSTANCE=create(ctxt, false);

return(INSTANCE) ;

static StuffDatabase create(Context ctxt, boolean memoryOnly) {
RoomDatabase.Builder<StuffDatabase> b;

if (memoryOnly) {
b=Room.inMemoryDatabaseBuilder(ctxt.getApplicationContext(),
StuffDatabase.class);
by
else {
b=Room.databaseBuilder(ctxt.getApplicationContext(), StuffDatabase.class,
DB_NAME) ;

return(b.build());

44

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/General/RoomTypes/stuff/src/main/java/com/commonsware/android/room/dao/TypeTransmogrifier.java

Room AND CusToM TYPES

(from General/RoomTypes/stuff/src/main/java/com/commonsware/android/room/dao/StuffDatabase.java)

Now, classes like Customer can use Date fields, which will be stored in INTEGER
columns in the database.

CREATE TABLE IF NOT EXISTS Customer (id TEXT, postalCode TEXT, displayName TEXT,
creationDate INTEGER, PRIMARY KEY(id'))

Example: Locations

A Location object contains a latitude, longitude, and perhaps other values (e.g.,
altitude). If we only care about the latitude and longitude, we could save those in the
database in a single TEXT column, so long as we can determine a good format to use
for that string. If use use Locale.US formatting for the latitude and longitude, so
that the decimal place is denoted by a ., we could use a two-element comma-
separated values list for the string.

That is what these two type converter methods on TypeTransmogrifiers do:

@TypeConverter
public static String fromLocation(Location location) {
if (location==null) {
return(null);

return(String.format(Locale.US, "%f,%f", location.getlLatitude(),
location.getlLongitude()));

@TypeConverter
public static Location tolLocation(String latlon) {
if (latlon==null) {
return(null);

String[] pieces=latlon.split(",");
Location result=new Location("");

result.setlatitude(Double.parseDouble(pieces[0]));
result.setlongitude(Double.parseDouble(pieces[1]));

return(result);

(from General/RoomTypes/stuff/src/main/java/com/commonsware/android/room/dao/TypeTransmogrifier.java)

45

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/General/RoomTypes/stuff/src/main/java/com/commonsware/android/room/dao/StuffDatabase.java
https://github.com/commonsguy/cw-androidarch/tree/v0.1/General/RoomTypes/stuff/src/main/java/com/commonsware/android/room/dao/TypeTransmogrifier.java

Room AND CusToM TYPES

Since TypeTransmogrifiers is registered on the StuffDatabase, a Customer could
have a Location field, which would be mapped to a *'TEXT column in the database:

CREATE TABLE IF NOT EXISTS Customer (id TEXT, postalCode TEXT, displayName TEXT,
creationDate INTEGER, officelLocation TEXT, PRIMARY KEY(id'))

However, the downside of using this approach is that we cannot readily search based
on location. If your location data is not a searchable field, and it merely needs to be
available when you load your entities from the database, using a type converter like
this is fine. Later in this chapter, we will see another approach (@Embedded) that
allows us to store the latitude and longitude as separate columns while still mapping
them to a single POJO in Java.

Example: Simple Collections

TEXT and BLOB columns are very flexible. So long as you can marshal your data into a
String or byte array, you can save that data in TEXT and BLOB columns. As with the
comma-separated values approach in the preceding section, though, columns used
this way are poor for searching.

So, suppose that you have a Set of String values that you want to store, perhaps
representing tags to associate with an entity. One approach is to have a separate Tag
entity and set up a relation. This is the best approach in many cases. But, perhaps
you do not want to do that for some reason.

You can use a type converter, but you need to decide how to represent your data in a
column. If you are certain that the tags will not contain some specific character (e.g.,
a comma), you can use the delimited-list approach demonstrated with locations in
the preceding section. If you need more flexibility than that, you can always use
JSON encoding, as these type converters do:

@TypeConverter
public static String fromStringSet(Set<String> strings) {
if (strings==null) {
return(null);
}

StringWriter result=new StringWriter();
JsonWriter json=new JsonWriter(result);

try {
json.beginArray();

46

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Room AND CusToM TYPES

for (String s : strings) {
json.value(s);

}

json.endArray();
json.close();

b
catch (IOException e) {
Log.e(TAG, "Exception creating JSON", e);

}

return(result.toString());
3

@TypeConverter
public static Set<String> toStringSet(String strings) {
if (strings==null) {
return(null);

}

StringReader reader=new StringReader(strings);
JsonReader json=new JsonReader(reader);
HashSet<String> result=new HashSet<>();

try {
json.beginArray();

while (json.hasNext()) {
result.add(json.nextString());
}

json.endArray();

}
catch (IOException e) {

Log.e(TAG, "Exception parsing JSON", e);
}

return(result);

(from General/RoomTypes/stuff/src/main/java/com/commonsware/android/room/dao/TypeTransmogrifier.java)

Here, we use the JsonReader and JsonWriter classes that have been part of Android
since API Level 11. Alternatively, you could use a third-party JSON library (e.g.,
Gson).

47

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/General/RoomTypes/stuff/src/main/java/com/commonsware/android/room/dao/TypeTransmogrifier.java

Room AND CusToM TYPES

Note that type converter methods cannot throw checked exceptions, as the Room
code generator does not wrap type converter calls in a try/catch block. Here, the
I0Exceptions should never happen, since we are working with strings, not files or
other types of streams. In other cases, though, you may need to wrap the checked
exception in some form of RuntimeException and throw that, to trigger your app’s
unhandled-exception logic, as it is unlikely that you can recover from within a type
converter method.

But, given these type conversion methods, we can now use a Set of String values in
Customer:

package com.commonsware.android.room.dao;

import android.arch.persistence.room.Entity;
import android.arch.persistence.room.Ignore;
import android.arch.persistence.room.Index;
import android.arch.persistence.room.PrimaryKey;
import android.location.Location;

import java.util.Date;

import java.util.HashSet;

import java.util.Set;

import java.util.UUID;

@Entity(indices={@Index(value="postalCode", unique=true)})
class Customer {

@PrimaryKey

public final String id;

public final String postalCode;
public final String displayName;
public final Date creationDate;
public final Location officelocation;
public final Set<String> tags;

@Ignore
Customer (String postalCode, String displayName, Location officelocation,
Set<String> tags) {
this(UUID.randomUUID().toString(), postalCode, displayName, new Date(),
officelocation, tags);

Customer (String id, String postalCode, String displayName, Date creationDate,
Location officelLocation, Set<String> tags) {
this.id=id;
this.postalCode=postalCode;
this.displayName=displayName;

48

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Room AND CusToM TYPES

this.creationDate=creationDate;
this.officelLocation=officelocation;
this.tags=tags;
3
b

(from General/RoomTypes/stuff/src/main/java/com/commonsware/android/room/dao/Customer.java)

...where the tags will be stored in a TEXT column:

CREATE TABLE IF NOT EXISTS Customer (id TEXT, postalCode TEXT, displayName TEXT,
creationDate INTEGER, officelocation TEXT, tags TEXT, PRIMARY KEY(id'))

Embedded Types

With type converters, we are teaching Room how to deal with custom types, but we
are limited to mapping from one field to one column. That field might be complex,
but it still goes into one column in the table.

What happens, though, when we have multiple columns that should combine to
create a single field?

In that case, we can use the @Embedded annotation on some POJO, then use that
POJO as a type in an entity.

Example: Locations

For example, as was noted earlier in this chapter, cramming a location into a single
TEXT field works, but we cannot readily query on the resulting field. If we want to
query for locations near some location in the database, it would be much more
convenient to have the latitude and longitude stored as individual REAL columns.
But, using type converters, we cannot map two columns to one field.

With @Embedded, we can, as we can see in the General/RoomEmbedded sample project.
This is a clone of the RoomTypes project from earlier in this chapter, where we have

changed Customer to have the officeLocation be represented by a LocationColumns
POJO:

package com.commonsware.android.room.dao;

import android.arch.persistence.room.Embedded;
import android.arch.persistence.room.Entity;
import android.arch.persistence.room.Ignore;
import android.arch.persistence.room.Index;

49

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/General/RoomTypes/stuff/src/main/java/com/commonsware/android/room/dao/Customer.java
http://github.com/commonsguy/cw-android-arch/tree/master/General/RoomEmbedded
http://github.com/commonsguy/cw-android-arch/tree/master/General/RoomEmbedded

Room AND CusTom TYPES

import android.arch.persistence.room.PrimaryKey;
import android.location.Location;

import java.util.Date;

import java.util.HashSet;

import java.util.Set;

import java.util.UUID;

@Entity(indices={@Index(value="postalCode", unique=true)})
class Customer {

@PrimaryKey

public final String id;

public final String postalCode;
public final String displayName;
public final Date creationDate;

@Embedded
public final LocationColumns officelocation;

public final Set<String> tags;

@Ignore
Customer (String postalCode, String displayName, LocationColumns officelocation,
Set<String> tags) {
this(UUID.randomUUID().toString(), postalCode, displayName, new Date(),
officeLocation, tags);
}

Customer (String id, String postalCode, String displayName, Date creationDate,
LocationColumns officelLocation, Set<String> tags) {
this.id=id;
this.postalCode=postalCode;
this.displayName=displayName;
this.creationDate=creationDate;
this.officelLocation=officelLocation;
this.tags=tags;

(from General/RoomEmbedded/stuff/src/main/java/com/commonsware/android/room/dao/Customer.java)

The @Embedded annotation tells Room to combine the columns from the annotated
type into the table for this entity. In this case, LocationColumns has two fields, for
latitude and longitude:

package com.commonsware.android.room.dao;

public class LocationColumns {
public final double latitude;
public final double longitude;

public LocationColumns(double latitude, double longitude) {
this.latitude=latitude;
this.longitude=longitude;

50

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/General/RoomEmbedded/stuff/src/main/java/com/commonsware/android/room/dao/Customer.java

Room AND CusToM TYPES

(from General/RoomEmbedded/stuff/src/main/java/com/commonsware/android/room/dao/LocationColumns.java)

LocationColumns itselfis a POJO, not an entity, though you can use @ColumnInfo
annotations if needed to rename the columns associated with the POJO’s fields.

Now, Room will use individual REAL columns for our latitude and longitude:

CREATE TABLE IF NOT EXISTS Customer (id TEXT, postalCode TEXT, displayName TEXT,
creationDate INTEGER, tags TEXT, latitude REAL, longitude REAL, PRIMARY KEY(id))

...and we can query on those:

@Query("SELECT * FROM Customer WHERE ABS(latitude-:1at)<.000001 AND ABS(longitude-:1lon)<.000001")
List<Customer> findCustomersAt(double lat, double lon);

(from General/RoomEmbedded/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java)
Simple vs. Prefixed

What happens if we need two locations, though? Perhaps we need officeLocation
and affiliatelLocation, or something like that.

By default, Room generates column names based on the @Embedded POJO’s field
names, perhaps modified by @ColumnInfo annotations on the POJO. In this case,
though, if we have two LocationInfo fields in the Customer entity, we would wind
up with two latitude and two longitude columns, which neither Room nor SQLite
will support.

To address this, the @mbedded annotation accepts an optional prefix property:

@Embedded(prefix = "office_")
public final LocationColumns officelocation;

The columns for that POJO will have the prefix added:

CREATE TABLE IF NOT EXISTS Customer (id TEXT, postalCode TEXT, displayName TEXT,
creationDate INTEGER, tags TEXT, office_latitude REAL, office_longitude REAL, PRIMARY
KEY(id))

Hence, having two LocationColumns simply means that one or both need to use
distinct prefix values.

51

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/General/RoomEmbedded/stuff/src/main/java/com/commonsware/android/room/dao/LocationColumns.java
https://github.com/commonsguy/cw-androidarch/tree/v0.1/General/RoomEmbedded/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java

Room AND CusToM TYPES

However, bear in mind that this changes the column names, so you will also need to
adjust any @Query method that references those names, so that you use the
appropriate prefix.

Updating the Trip Sample

Back in the chapter on Room basics, we started in on an app to track upcoming
travel. The Trips/RoomConverters sample project extends that app with four new
fields on Trip:

* priority, representing how important the trip is to the user

* startTime, indicating when the trip is to begin

*+ creationTime, indicating when the Trip was first created... somewhere
* updateTime, indicating when the Trip was last changed... somewhere

Those latter two are largely ignored for the moment, though they will become more
important later in the book.

The latter three are all Date fields, and so we need to have some code to support
getting them into and out of our table. So, this project has a TypeTransmogrifier
class, akin to the ones seen above, but right now only with the Date converters:

package com.commonsware.android.room;

import android.arch.persistence.room.TypeConverter;
import java.util.Date;

public class TypeTransmogrifier {
@TypeConverter
public static Long fromDate(Date date) {
if (date==null) {
return(null);

}

return(date.getTime());
3

@TypeConverter
public static Date toDate(Long millisSinceEpoch) {
if (millisSinceEpoch==null) {
return(null);

}

52

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-android-arch/tree/master/Trips/RoomConverters
http://github.com/commonsguy/cw-android-arch/tree/master/Trips/RoomConverters

Room AND CusToM TYPES

return(new Date(millisSinceEpoch));

}

(from Trips/RoomConverters/app/src/main/java/com/commonsware/android/room/TypeTransmogrifier.java)

priority, though, is an enum, as there is a list of valid values:

package com.commonsware.android.room;
import android.arch.persistence.room.TypeConverter;

enum Priority {
LOW(0), MEDIUM(1), HIGH(2), OMG(3);

private final int level;

@TypeConverter
public static Priority fromLevel(Integer level) {
for (Priority p : values()) {
if (p.level==level) {
return(p);

}
return(null);

@TypeConverter
public static Integer fromPriority(Priority p) {
return(p.level);

}

Priority(int level) {
this.level=level;

}

(from Trips/RoomConverters/app/src/main/java/com/commonsware/android/room/Priority.java)

Here, we implement the @TypeConverter methods right on Priority, as there is
little value in having them elsewhere. Note that the enum assigns explicit numeric
values to the priorities (level). That way, we are in control over the mapping
between Priority values and their representation in the database.

Rather than apply these type converters on the TripDatabase (though we could), we
instead apply them on the Trip model:

53

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/Trips/RoomConverters/app/src/main/java/com/commonsware/android/room/TypeTransmogrifier.java
https://github.com/commonsguy/cw-androidarch/tree/v0.1/Trips/RoomConverters/app/src/main/java/com/commonsware/android/room/Priority.java

Room AND CusTom TYPES

package com.commonsware.android.room;

import
import
import
import
import
import

android.arch.persistence.
android.arch.persistence.
android.arch.persistence.
android.arch.persistence.

java.util.Date;
java.util.UUID;

@Entity(tableName = "trips")
@TypeConverters({TypeTransmogrifier.class})
class Trip {

@PrimaryKey

public final String id;

public final String title;
public final int duration;

room.Entity;
room.Ignore;
room.PrimaryKey;
room.TypeConverters;

@TypeConverters({Priority.class})
public final Priority priority;

public final Date startTime;
public final Date creationTime;
public final Date updateTime;

@Ignore
Trip(String title, int duration, Priority priority, Date startTime) {
this(UUID.randomUUID().toString(), title, duration, priority, startTime,

null, null);

Trip(String id, String title, int duration, Priority priority,
Date startTime, Date creationTime, Date updateTime) {
this.id=id;
this.title=title;
this.duration=duration;
this.priority=priority;
this.startTime=startTime;

this.

this.updateTime=updateTime;

@Override
public String toString() {
return(title);

creationTime=creationTime;

54

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Room AND CusToM TYPES

(from Trips/RoomConverters/app/src/main/java/com/commonsware/android/room/Trip.java)

The Priority type converters are applied specific to the priority field, as this
specific conversion is only needed here. The TypeTransmogrifier is registered on
the Trip class, as there are multiple Date fields.

55

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/Trips/RoomConverters/app/src/main/java/com/commonsware/android/room/Trip.java

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Room and Relations

SQLite is a relational database. At some point, Room should support relations.
Right?

Right?!?

WEell, actually, the story is a bit more complicated than that. Yes, Room supports
entities being related to other content in other tables. Room does not support
entities being directly related to other entities, though.

And if that sounds strange, there is “a method to the madness”.

In this chapter, we will explore how you implement relational structures with Room
and why Room has the restrictions that it does.

The Classic ORM Approach

Java ORMs have long supported entities having relations to other entities, though
not every ORM uses the “entity” term.

One Android ORM that does is greenDAO. It allows you to use annotations to
indicate relations, such as:

@Entity

public class Thingy {
@Id private Long id;
private long otherThingyId;

@ToOne(joinProperty="otherThingyId")

57

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://greenrobot.org/greendao

RoOOM AND RELATIONS

private OtherThingy otherThingy;

// other good stuff here
}

@Entity

public class OtherThingy {
@ID private Long id;

b

These annotations result in getOtherThingy() and setOtherThingy() methods to
be synthetically added to Thingy (or, more accurately, to a hidden subclass of
Thingy, but for the purposes of this section, we will ignore that). Which
OtherThingy our Thingy relates to is tied to that otherThingyId field, which is
stored as a column in the table. When you call getOtherThingy(), greenDAO will
query the database to load in the OtherThingy instance, assuming that it has not
been cached already.

That is where the threading problem creeps in.

A History of Threading Mistakes

In Android app development, we are constantly having to fight to keep disk I/O off
of the main application thread. Every millisecond that our code executes on the
main application thread is a millisecond that the main application thread is not
updating our UL Disk [/O — such as queries on complex structures - can easily take
dozens or hundreds of milliseconds, particularly on older or low-end devices. As a
result, we freeze our Ul while that disk I/O is occurring, possibly resulting in visual
“jank” for the user. Our objective is to move as much disk I/O as possible off the
main application thread.

The problem is that the nice encapsulation that we get from object-oriented
programming also encapsulates knowledge of whether disk I/O will be done when
we call a particular method.

Classic use of SQLiteDatabase encounters this with the rawQuery()/query() family
of methods. They return a Cursor. You might think — reasonably - that those
methods execute the SQL query that you request. In truth, they do not. All they do
is create a SQLiteCursor instance that holds onto the query and the
SQLiteDatabase. Later, when you call a method that requires the actual query result
(e.g., getCount(), to get the number of returned rows), then the query is executed
against the database. As a result, all the work that you do to call rawQuery() or

58

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

RoOOM AND RELATIONS

query() on a background thread gets wasted if you do not also do something to
force the query to be executed on that same background thread. Otherwise, you may
wind up with the query being executed on the main application thread, with
impacts on the Ul

greenDAO relations can work the same way. If you retrieve your Thingy on a
background thread, then call getOtherThingy() on the main application thread,
depending on what else has all occurred, getOtherThingy() might need to perform
a database query... which you do not want on the main application thread.

The Room Approach

Room behaves a bit like other annotation-based Android ORMs, but when it comes
to relations, Room departs from norms, in an effort to reduce the likelihood of
threading problems.

No Direct Entity References

Unlike the greenDAO example above, with Room, a Thingy cannot have a field for
an OtherThingy that Room is expected to manage. You could have a field for an
OtherThingy marked as @Ignore, but then you are on your own for dealing with that

field.

The implication of an entity referencing another entity directly is that developers
would expect that when Room retrieves the outer entity, that Room either will
automatically retrieve the inner entity or will retrieve it lazily later on. The former
approach avoids threading issues but runs the risk of loading more data than is
necessary. The latter approach runs the risk of trying to do disk I/O on the main
application thread.

Foreign Keys

This does not mean that you cannot have foreign keys. Room fully supports foreign
key relationships, by way of a @ForeignKey annotation. This sets up the foreign keys
in the appropriate tables... but that’s about it. Room does very little else with these
keys.

59

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

RoOOM AND RELATIONS

Cascades on Updates and Deletes

Part of what you can place on a @ForeignKey annotation are onUpdate and onDelete
properties. These indicate what actions should be taken on this entity when the
parent of the foreign key relationship is updated or deleted. There are five
possibilities, denoted by ForeignKey constants:

C tant
onstaft If the Parent Is Updated or Deleted...
Name
NO_ACTION ...do nothing
CASCADE ...update or delete the child
RESTRICT ...fail the parent’s update or del.ete operation, unless there are no
children
SET_NULL ...set the foreign key value to null
SET_DEFAULT ...set the foreign key value to the column(s) default value

NO_ACTION is the default, though CASCADE will be a popular choice.

Cascades on... Retrievals?
You cannot have an entity automatically retrieve related objects via a @Query.

You can have an arbitrary POJO automatically retrieve related objects via a @Query,
by means of a @Relation annotation.

This seeming inconsistency will be explored later in this chapter.

Plans for Trips

Let’s explore how @ForeignKey works by adding some more entities to the trip-
tracking app, as seen in the Trips/RoomRelations sample project.

The app itself does not make use of these new changes in its fledgling Ul — we will
address that much later in the book. This sample also drops off the mock-database
unit tests. For now, the focus is on adding the necessary Room bits and updating the
instrumentation tests.

60

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-android-arch/tree/master/Trips/RoomRelations
http://github.com/commonsguy/cw-android-arch/tree/master/Trips/RoomRelations

RoOOM AND RELATIONS

The Domain Model

In the beginning, we had just the Trip entity. However, a trip is made up of lots of
pieces, so in this sample, we add two more: flights and lodgings. Not surprisingly,
these come in the form of Flight and Lodging entity classes. A Trip can have zero
or more related Flight instances and zero or more related Lodging instances.

However, many of the pieces of data that we need to track for these things - title,
duration, start time, etc. — are in common. So, we will pull those things into an
abstract base class named Plan, from which Trip, Flight, and Lodging will all
inherit.

The New Entities
As a result, Plan itself is pretty much what Trip used to be:

package com.commonsware.android.room;

import android.arch.persistence.room.Ignore;

import android.arch.persistence.room.PrimaryKey;
import android.arch.persistence.room.TypeConverters;
import java.util.Date;

import java.util.UUID;

abstract class Plan {
@PrimaryKey
public final String id;

public final String title;
public final int duration;

@TypeConverters({Priority.class})
public final Priority priority;

public final Date startTime;
public final Date creationTime;
public final Date updateTime;

@Ignore
Plan(String title, int duration, Priority priority, Date startTime) {
this(UUID.randomUUID().toString(), title, duration, priority, startTime,
null, null);

Plan(String id, String title, int duration, Priority priority,

61

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

RoOOM AND RELATIONS

this.

Date startTime, Date creationTime, Date updateTime) {
this.id=id;
this.title=title;
this.duration=duration;
this.priority=priority;
this.startTime=startTime;

this.updateTime=updateTime;

@Override
public String toString() {
return(title);

creationTime=creationTime;

(from Trips/RoomRelations/app/src/main/java/com/commonsware/android/room/Plan.java)

Note that while we have the Priority TypeConverter registered for the Priority
field, we do not have the TypeTransmogrifier registered on the Plan class, the way
we had it for Trip. That is due to a limitation in Room, whereby class-level
@TypeConverters annotations are not inherited, though field-level ones are.

Instead, the TypeTransmogrifier @TypeConverters annotation appears on our rump
Trip class:

package com.commonsware.android.

import
import
import
import
import
import

android.arch.persistence.
android.arch.persistence.
android.arch.persistence.
android.arch.persistence.

java.util.Date;
java.util.UUID;

@Entity(tableName = "trips")
@TypeConverters({TypeTransmogrifier.class})
class Trip extends Plan {
@Ignore
Trip(String title, int duration, Priority priority, Date startTime) {
super(title, duration, priority, startTime);

}

room

room
room
room
room

i

.Entity;
.Ignore;
.PrimaryKey;
.TypeConverters;

Trip(String id, String title, int duration,
Priority priority, Date startTime, Date creationTime,

Date updateTime) {

super(id, title, duration, priority, startTime, creationTime, updateTime);

Subscribe to updates at https://commonsware.com

62

Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/Trips/RoomRelations/app/src/main/java/com/commonsware/android/room/Plan.java
https://issuetracker.google.com/issues/62859504

RoOOM AND RELATIONS

(from Trips/RoomRelations/app/src¢/main/java/com/commonsware/android/room/Trip.java)

The relations that we are setting up from Trip to Flight and Lodging are 1::N
relations. As such, the parent (Trip) does not need any foreign keys. Those are held
by the children of the relation... such as Lodging:

package com.commonsware.android.

import
import
import
import
import
import
import

android.arch.persistence
android.arch.persistence
android.arch.persistence
android.arch.persistence
android.arch.persistence
java.util.Date;

room

.room
.room
.room
.room
.room

i

.Entity;

.ForeignKey;

.Ignore;
.Index;

.TypeConverters;

static android.arch.persistence.room.ForeignKey.CASCADE;

@Entity(
tableName="1lodgings",
foreignKeys=@ForeignKey (

entity=Trip.class,
parentColumns="1id",
childColumns="tripId",
onDelete=CASCADE),
indices=@Index("tripId"))

@TypeConverters({TypeTransmogrifier.class})

class Lodging extends Plan {
public final String address;
public final String tripId;

@Ignore
Lodging(String title, int duration, Priority priority, Date startTime,
String address, String tripId) {
super(title, duration, priority, startTime);
this.address=address;
this.tripId=tripId;

}

Lodging(String id, String title, int duration,

Priority priority, Date startTime, Date creationTime,

Date updateTime, String address, String tripId) {

super(id, title, duration, priority, startTime, creationTime, updateTime);
this.address=address;
this.tripId=tripId;

Subscribe to updates at https://commonsware.com

63

Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/Trips/RoomRelations/app/src/main/java/com/commonsware/android/room/Trip.java

RoOOM AND RELATIONS

(from Trips/RoomRelations/app/src/main/java/com/commonsware/android/room/Lodging.java)

Here, Lodging also extends from Plan, adding two fields, one to track the address of
the hotel (or whatever) and the tripId of the Trip that contains this Lodging. That
tripId field is then referenced in the @ForeignKey annotation,which:

* Sets up the relation as being with Trip (entity=Trip.class)

* Ties the id column on Trip (parentColumns="id") to the tripId on Lodging
(childColumns="tripId")
* Indicates that if the Trip is deleted, associated Lodging instances should also
be deleted (onDelete=CASCADE)

Lodging also sets up an index on tripId (indices=@Index("tripId")). Querying on
tripId will be fairly common, as we look up the Lodging instances associated with a
given Trip. Hence, typically you will want to set up an index on your foreign keys.

Room will even warn you about this, if you examine the Gradle Console output from
a build.

Flight works similarly:

package com.commonsware.android.

import
import
import
import
import
import
import

android.arch.persistence.
android.arch.persistence.
android.arch.persistence.
android.arch.persistence.
android.arch.persistence.

java.util.Date;

room;

room
room
room
room
room

.Entity;

.ForeignKey;

.Ignore;
.Index;

.TypeConverters;

static android.arch.persistence.room.ForeignKey.CASCADE;

@Entity(
tableName="flights",
foreignKeys=@ForeignKey (

entity=Trip.class,
parentColumns="1id",
childColumns="tripId",
onDelete=CASCADE),
indices=@Index("tripId"))

@TypeConverters({TypeTransmogrifier.class})

class Flight extends Plan {
public final String departingAirport;
public final String arrivingAirport;

Subscribe to updates at https://commonsware.com

64

Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/Trips/RoomRelations/app/src/main/java/com/commonsware/android/room/Lodging.java

RoOOM AND RELATIONS

public final String airlineCode;
public final String flightNumber;
public final String seatNumber;
public final String tripId;

@Ignore
Flight(String title, int duration, Priority priority, Date startTime,
String departingAirport, String arrivingAirport, String airlineCode,
String flightNumber, String seatNumber, String tripId) {
super(title, duration, priority, startTime);
this.departingAirport=departingAirport;
this.arrivingAirport=arrivingAirport;
this.airlineCode=airlineCode;
this.flightNumber=flightNumber;
this.seatNumber=seatNumber ;
this.tripId=tripId;

Flight(String id, String title, int duration,

Priority priority, Date startTime, Date creationTime,
Date updateTime, String departingAirport, String arrivingAirport,
String airlineCode, String flightNumber, String seatNumber,
String tripId) {

super(id, title, duration, priority, startTime, creationTime, updateTime);

this.departingAirport=departingAirport;

this.arrivingAirport=arrivingAirport;

this.airlineCode=airlineCode;

this.flightNumber=flightNumber;

this.seatNumber=seatNumber ;

this.tripId=tripId;

(from Trips/RoomRelations/app/src/main/java/com/commonsware/android/room/Flight.java)
The Updated DAO and Database

Since we added new entities, TripDatabase needs to know about them, via the
entities property on the @Database annotation:

package com.commonsware.android.room;

import android.arch.persistence.room.Database;
import android.arch.persistence.room.Room;

import android.arch.persistence.room.RoomDatabase;
import android.content.Context;

65

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/Trips/RoomRelations/app/src/main/java/com/commonsware/android/room/Flight.java

RoOOM AND RELATIONS

@Database(
entities={Trip.class, Lodging.class, Flight.class},
version=2

)
abstract class TripDatabase extends RoomDatabase {
abstract TripStore tripStore();

private static final String DB_NAME="trips.db";
private static volatile TripDatabase INSTANCE=null;

synchronized static TripDatabase get(Context ctxt) {
if (INSTANCE==null) {
INSTANCE=create(ctxt, false);

return(INSTANCE) ;

static TripDatabase create(Context ctxt, boolean memoryOnly) {
RoomDatabase.Builder<TripDatabase> b;

if (memoryOnly) {
b=Room. inMemoryDatabaseBuilder (ctxt.getApplicationContext(),
TripDatabase.class);

}
else {
b=Room.databaseBuilder(ctxt.getApplicationContext(), TripDatabase.class,
DB_NAME) ;

return(b.build());

(from Trips/RoomRelations/app/src¢/main/java/com/commonsware/android/room/TripDatabase.java)

Note that now we are still on version=2. Ideally, this sort of change would involve
updating an existing database in-place, so as not to disturb any existing data. Room
calls these “migrations”, and they are covered in an upcoming chapter.

TripStore, our DAO, now needs methods for Lodging and Flight as well:

package com.commonsware.android.room;

import android.arch.persistence.room.Dao;
import android.arch.persistence.room.Delete;
import android.arch.persistence.room.Insert;

66

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/Trips/RoomRelations/app/src/main/java/com/commonsware/android/room/TripDatabase.java

RoOOM AND RELATIONS

import android.arch.persistence.room.OnConflictStrategy;
import android.arch.persistence.room.Query;

import android.arch.persistence.room.Update;

import java.util.List;

@Dao
interface TripStore {
/7(—
Trip
*

@Query("SELECT * FROM trips ORDER BY title")
List<Trip> selectAllTrips();

@Query("SELECT * FROM trips WHERE id=:id")
Trip findTripById(String id);

@Insert
void insert(Trip... trips);

@Update
void update(Trip... trips);

@Delete
void delete(Trip... trips);

/7(—
Lodging
&y

@Query("SELECT * FROM lodgings WHERE tripId=:tripId")
List<Lodging> findLodgingsForTrip(String tripId);

@Insert
void insert(Lodging... lodgings);

@Update
void update(Lodging... lodgings);

@Delete
void delete(Lodging... lodgings);

/7(—
Flight
&y

@Query("SELECT * FROM flights WHERE tripId=:tripId")
List<Flight> findFlightsForTrip(String tripId);

67

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

RoOOM AND RELATIONS

@Insert
void insert(Flight... flights);

@Update
void update(Flight... flights);

@Delete
void delete(Flight... flights);

(from Trips/RoomRelations/app/src/main/java/com/commonsware/android/room/TripStore.java)

The Lodging and Flight @Query methods retrieve only those for a particular Trip,
based on the ID. There is nothing stopping us from having other @Query methods
(e.g., searching across all Lodging, regardless of Trip), but these will suffice for now.

We could elect to have separate DAO classes for each entity, or have nested @Dao-
annotated classes inside the entity for these sorts of methods. In those cases,
TripDatabase would have to be augmented with additional abstract methods to
return instances of those classes, mirroring the existing tripStore() method.

Self-Referential Relations for Tree Structures

With care, you can use Room for self-referential relations: an entity having a foreign
key back to itself. This is most commonly seen in tree structures:

+ (Categories having sub-categories
+ Folders having folders and items
+ And so on

The General/RoomTree sample project demonstrates the first of those examples: a
Category entity that has an optional parent Category:

package com.commonsware.android.room.dao;

import android.arch.persistence.room.Entity;

import android.arch.persistence.room.ForeignKey;

import android.arch.persistence.room.Ignore;

import android.arch.persistence.room.Index;

import android.arch.persistence.room.PrimaryKey;

import java.util.UUID;

import static android.arch.persistence.room.ForeignKey.CASCADE;

68

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/Trips/RoomRelations/app/src/main/java/com/commonsware/android/room/TripStore.java
http://github.com/commonsguy/cw-android-arch/tree/master/General/RoomTree
http://github.com/commonsguy/cw-android-arch/tree/master/General/RoomTree

RoOOM AND RELATIONS

@Entity(
tableName="categories",
foreignKeys=@ForeignKey (
entity=Category.class,
parentColumns="1id",
childColumns="parentId",
onDelete=CASCADE),

indices=@Index(value="parentId"))

public class Category {

@PrimaryKey

public final String id;

public final String title;

public final String parentld;

@Ignore

public Category(String title) {
this(title, null);

j

@Ignore

public Category(String title, String parentId) {
this(UUID.randomUUID().toString(), title, parentld);

j

public Category(String id, String title, String parentId) {
this.id=id;
this.title=title;
this.parentId=parentId;

}

(from General/RoomTree/stuff/src/main/java/com/commonsware/android/room/dao/Category.java)

Here, Category has a @ForeignKey that points back to Category as the entity, with
a parentId column holding the id of the parent Category. onDelete is set to
CASCADE, so that when a parent Category is deleted, its children are deleted as well.

Now we can have DAO methods that work with the Category tree:

@Query("SELECT * FROM categories")
List<Category> selectAllCategories();

@Query("SELECT * FROM categories WHERE parentId IS NULL")
Category findRootCategory();

@Query("SELECT * FROM categories WHERE parentId=:parentId")
List<Category> findChildCategories(String parentId);

69

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/General/RoomTree/stuff/src/main/java/com/commonsware/android/room/dao/Category.java

RoOOM AND RELATIONS

@Insert
void insert(Category... categories);
@Delete
void delete(Category... categories);

(from General/RoomTree/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java)

Using @Relation

If you have a POJO class — one that does not directly have the @Entity annotation
— you can use @Relation to automatically retrieve entities related to... something in
the POJO.

For example, in other Android ORMs, one might expect that Category would have
methods, fields, or something to get at the parent Category (where there is one) or
the child Category instances (where there are some). However, that is not supported
by Room and @Entity, but it is supported by separate POJO classes.

To that end, we can set up a CategoryTuple:

package com.commonsware.android.room.dao;

import android.arch.persistence.room.Relation;
import java.util.list;

public class CategoryTuple {
public final String id;
public final String title;
public final String parentld;

public CategoryTuple(String id, String title, String parentId) {
this.id=id;
this.title=title;
this.parentId=parentld;

@Relation(parentColumn="1id", entityColumn="parentId")
public List<Category> children;

@Relation(parentColumn="parentId", entityColumn="1id")
public List<Category> parents;

70

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/General/RoomTree/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java

RoOOM AND RELATIONS

(from General/RoomTree/stuff/src/main/java/com/commonsware/android/room/dao/CategoryTuple.java)

Here, we have two @Relation annotations. These go on fields, not methods, and they
indicate fields that Room should fill in when a @Query returns instances of this
POJO. The field type needs to be a List or Set of the related entity, not the POJO.
Hence, children and parents are lists of Category instances, not CategoryTuple.

The two required properties on @Relation are parentColumn and entityColumn.
entityColumn is the name of a column in the entity’s table; parentColumn is the
name of a field in the POJO representing the parent entity. In this case, the entity for
both is Category, as we are working with a self-referential relation. In the generated
code, Room is going to run a query that finds all objects whose entityColumn has
the value pulled from this POJO’s parentColumn field. More specifically:

+ For the children field, Room will query the categories table to return all
rows where the parentId column equals the id of this CategoryTuple

+ For the parent field, Room will query the categories table to return all rows
where the id column equals the parentId of this CategoryTuple

For a 1:N relation, Room’s restriction on @Relation data types (must be List or Set)
means that both the 1 side and the N side get represented by collection fields... even

though one should only ever have at most one element.

If there are no matching entities (e.g., no parent for the root Category, no children
for a leaf Category), the resulting field is either null or an empty collection.

But now, our DAO methods will not only set up the POJOs but all entities that are
called for by the @Relation fields:

@Query("SELECT * FROM categories WHERE parentId IS NULL")
CategoryTuple findRootCategoryTuple();

@Query("SELECT * FROM categories WHERE parentId=:parentId")
List<CategoryTuple> findChildCategoryTuples(String parentId);

(from General/RoomTree/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java)

However, this involved a lot of copying. CategoryTuple has the same fields as
Category. It would not have to have all of those fields, of course, as a POJO need not
have fields for all columns in the table. But, still, it seems to be a bit wasteful.

Another related approach is to create a “POJO” subclass of the entity... such as this
CategoryShadow:

4l

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/General/RoomTree/stuff/src/main/java/com/commonsware/android/room/dao/CategoryTuple.java
https://issuetracker.google.com/issues/62905145
https://issuetracker.google.com/issues/62905145
https://issuetracker.google.com/issues/62903497
https://issuetracker.google.com/issues/62903497
https://github.com/commonsguy/cw-androidarch/tree/v0.1/General/RoomTree/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java

RoOOM AND RELATIONS

package com.commonsware.android.room.dao;

import android.arch.persistence.room.Relation;
import java.util.list;

public class CategoryShadow extends Category {
public CategoryShadow(String id, String title, String parentId) {
super(id, title, parentId);
j

@Relation(parentColumn="id", entityColumn="parentId")
public List<Category> children;
}

(from General/RoomTree/stuff/src/main/java/com/commonsware/android/room/dao/CategoryShadow.java)

Even though CategoryShadow inherits from Category, and even though Category is
an entity, Room treats CategoryShadow as a POJO, and we can have @Relation fields,
such as the children one shown. If you need most or all of the fields from the entity,
this subclass approach involves less code duplication than does the standalone-
POJO approach.

Representing No Relation

While much of this book will use UUID values for primary keys, plenty of other Room
examples will use int, particularly with autoGenerate set to true, to have SQLite
generate the keys.

However, this does not work well if those keys will be used as foreign key values, in
cases where there may be no value for the relation.

For example, Category uses String for its id (created from a UUID), and we
represented a root category by means of having null for its parentId value. That
works because String fields can be null.

If, however, we used int, we have no way of representing the no-relation scenario.
You cannot assign null to an int field in Java.

Hence, if you want to support the no-relation scenario, your foreign key field needs
to allow for null values. If you want to use auto-generated SQLite identifiers, use
Integer, not int.

72

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/General/RoomTree/stuff/src/main/java/com/commonsware/android/room/dao/CategoryShadow.java

Room and Migrations

When you first ship your app, you think your database schema is beautiful, a true
work of art.

Then, you wake up the next morning and realize that you need to make changes to
that schema.

During initial development — and for silly little book examples — you just go in and
make changes to your entities, and Room will rebuild your database for you.
However, it does so by dropping all of your existing tables, taking all the data with it.
In development, that may not be so bad. In production... well, let’s just say that users
get a little irritated when you lose their data.

And that’s where migrations come into play.

What’s a Migration?

With traditional Android SQLite development, we typically use SQLiteOpenHelper.
This utility class manages a SQLiteDatabase for us and addresses two key problems:

1. What happens when our app first runs on a device — or after the user has
cleared our app’s data — and we have no database at all?

2. What happens when we need to modify the database schema from what it
was to some new structure?

SQLiteOpenHelper would do that by calling onCreate() and onUpgrade() callbacks,
where we could implement the logic to create the tables and adjust them as the
schemas change.

73

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

RoOM AND MIGRATIONS

While onCreate() worked reasonably well, onUpgrade() rapidly grew out of control.
Long-lived apps might have dozens of different schemas, evolving over time.
Because users are not forced to take on app updates, our apps need to be able to
transition from any prior schema to the latest-and-greatest one. This meant that
onUpgrade() would need to identify exactly what bits of code are needed to migrate
the database from the old to the new version, and this could get unwieldy.

Room addresses this somewhat through the Migration class. You create subclasses
of Migration — typically as anonymous inner classes — that handle the conversion
from some older schema to a newer one. You pass a bunch of Migration instances to
Room, representing different pair-wise schema upgrade paths. Room then
determines which one(s) need to be used at any point in time, to update the schema
from whatever is was to whatever it needs to be.

When Do We Migrate?

On our RoomDatabase subclass, we have a @Database annotation. One of the
properties is version. This works like the version code that we would pass into the
SQLiteOpenHelper constructor. It is a monotonically increasing integer, with higher
numbers indicating newer schemas. The version in the code represents the schema
version that this code is expecting.

Once your app ships, any time you change your schema — mostly in the form of
modifying entity classes — you need to increment that version and create a
Migration that knows how to convert from the prior version to this new one.

Note that there is no requirement that you increment the version by 1, though that

is a common convention. If using a date-based format like YYYMMDD (e.g., 20170627)
makes your life easier, you are welcome to do so.

But First, a Word About the Support Database
Classes

So far, this book has portrayed Room as being an ORM-style bridge between your
code and SQLite.

Technically, that is not accurate.

74

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

RoOM AND MIGRATIONS

Part of what we get with Room is a series of classes and interfaces in the
android.support.persistence.db package. These classes come from a separate
artifact (android.arch.persistence.room:support-db) and represent an
abstraction for SQLite-style database access.

We also get implementations of that abstraction, in the form of the “framework”
classes (from android.arch.persistence.room:support-db-impl). Those classes
use the Android standard SQLite environment. Room’s artifacts pull in these
support artifacts by default, and when we use RoomDatabase.Builder to set up our
RoomDatabase, we are using those “framework” classes for the database access.

There are two reasons why this is important.

First, database migrations are largely outside of Room itself. Room is expecting the
database to be set up with the appropriate schema. While a RoomDatabase.Builder
can use Migration objects to migrate the database schema, Room itself is not yet
ready at this point. We wind up using a SupportSQLiteDatabase class for modifying
the schema, where this class is from that abstraction library. So, while most of Room
hides you from most of SQLite-related Java code, migrations are one area where this
stuff becomes more visible.

Second, just because Room uses the device implementation of SQLite by default
does not mean that you have to use it. One of the methods on
RoomDatabase.Builder is openHelperFactory(), where you supply a
SupportSQLiteOpenHelper.Factory to use for working with the database. That, in
turn, can pull in another whole set of implementations of the database abstraction.
For example, you can use this approach to have Room interoperate with SQLCipher
for Android, an encrypted edition of SQLite. A later chapter will explore such a
library.

...And a Word About Exporting Schemas

One of the side-effects of using Room is that you do not write your own schema for
the database. Room generates it, based on your entity definitions. During the
ordinary course of programming, this is perfectly fine and saves you time and effort.

However, when it comes to migrations, now we have a problem. We cannot create
code to migrate from an old to a new schema without knowing what those schemas
are. And while schema information is baked into some code generated by Room’s

75

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

RoOM AND MIGRATIONS

annotation processor, that is only for the current version of your entity classes (and,
hence, your current schema), not for any historical ones.

Fortunately, Room offers something that helps a bit: exported schemas. You can
teach Room’s annotation processor to not only generate Java code but also generate
a JSON document describing the schema. Moreover, it will do that for each schema
version, saving them to version-specific JSON files. If you hold onto these files — for
example, if you save them in version control - you will have a history of your schema
and can use that information to write your migrations.

However, the real reason for those exported schemas is to help with testing your
migrations. As a result, the JSON format is not designed for developers to read.

To set this up, in the defaultConfig closure of your module’s build.gradle file, you
can add the following javaCompileOptions closure:

javaCompileOptions {
annotationProcessorOptions {
arguments = ["room.schemalLocation": "$projectDir/schemas".toString()]

}

(from Trips/RoomMigrations/app/build.gradle)

This teaches Room to save your schemas in a schemas/ directory off of the module
root directory. In principle, you could store them elsewhere by choosing a different
value for the room.schemaLocation argument.

The next time you (re-)build your project, that directory will be created.
Subdirectories with the fully-qualified class names of your RoomDatabase classes will
go inside there, and inside each of those will be a JSON file named after your schema
version (e.g., 1.json):

{
"formatVersion": 1,
"database": {
"version": 1,
"identityHash": "d46bfccddeca286f2948a702a4938d56",
"entities": [
{

"tableName": "trips",

"createSql": "CREATE TABLE IF NOT EXISTS "${TABLE_NAME}" ("id" TEXT, “title’ TEXT, ‘duration’
INTEGER, ‘priority” INTEGER, ‘startTime' INTEGER, ‘creationTime® INTEGER, ‘updateTime® INTEGER, PRIMARY
KEY(id)",

"fields": [

{
"fieldPath": "id",

76

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/Trips/RoomMigrations/app/build.gradle

RoOM AND MIGRATIONS

"columnName": "id",
"affinity": "TEXT"

Yo

{
"fieldPath": "title",
"columnName": "title",
"affinity": "TEXT"

Yo

{
"fieldPath": "duration",
"columnName": "duration",
"affinity": "INTEGER"

Yo

{
"fieldPath": "priority",
"columnName": "priority",
"affinity": "INTEGER"

Yo

{
"fieldPath": "startTime",
"columnName": "startTime",
"affinity": "INTEGER"

Yo

{
"fieldPath": "creationTime",
"columnName": "creationTime",
"affinity": "INTEGER"

Yo

{
"fieldPath": "updateTime",
"columnName": "updateTime",
"affinity": "INTEGER"

}

1y
"primaryKey": {
"columnNames": [
nidn
e
"autoGenerate": false
Y,
"indices": [1],
"foreignKeys": []
}
1y
"setupQueries": [

"CREATE TABLE IF NOT EXISTS room_master_table (id INTEGER PRIMARY KEY,identity_hash TEXT)",
"INSERT OR REPLACE INTO room_master_table (id,identity_hash) VALUES(42,

\"d46bfccddeca286f2948a702a4938d56\")"
1
b
b

(from Trips/RoomMigrations/app/schemas/com.commonsware.android.room.TripDatabase/1.json)

The JSON properties that will matter to you will be the createSql ones. There are
ones that create your tables and others that create your indexes.

Subscribe to updates at https://commonsware.com

77

Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/Trips/RoomMigrations/app/schemas/com.commonsware.android.room.TripDatabase/1.json

RoOM AND MIGRATIONS

Writing Migrations

A Migration itself has only one required method: migrate(). You are given a
SupportSQLiteDatabase, which resembles a SQLiteDatabase and allows you to
execute SQL statements to modify the schema as needed.

The Migration constructor takes two parameters: the old schema version number
and the new schema version number. Hence, the recommended pattern is to use
anonymous inner classes, where you can provide the migrate() method to use for
migrating the schema between that particular pair of schema versions.

To determine what needs to be done, you need to examine that schema JSON and
determine what is different between the old and the new. Someday, we may get
some tools to help with this. For now, you are largely stuck “eyeballing” the SQL. You
can then craft the ALTER TABLE or other statements necessary to change the schema,
much as you might have done in onUpgrade() of a SQLiteOpenHelper.

For example, the Trips/RoomMigrations sample project has a FROM_1_TO_2
migration:

static final Migration FROM_1_TO_2=new Migration(1,2) {
@0verride
public void migrate(SupportSQLiteDatabase db) {
db.execSQL("CREATE TABLE IF NOT EXISTS “lodgings™ (" id® TEXT, “title’ TEXT, “duration’ INTEGER,
‘priority’ INTEGER, “startTime® INTEGER, ‘creationTime® INTEGER, ‘updateTime' INTEGER, “address’ TEXT,
“tripId® TEXT, PRIMARY KEY('id'), FOREIGN KEY(tripId") REFERENCES “trips (id’) ON UPDATE NO ACTION ON
DELETE CASCADE)");
db.execSQL("CREATE INDEX “index_lodgings_tripId® ON “lodgings’ (tripId)");
db.execSQL("CREATE TABLE IF NOT EXISTS “flights®™ ('id® TEXT, “title® TEXT, ‘duration” INTEGER,
‘priority’ INTEGER, “startTime® INTEGER, ‘creationTime® INTEGER, ‘updateTime' INTEGER, ‘departingAirport’
TEXT, “arrivingAirport’ TEXT, “airlineCode” TEXT, “flightNumber™ TEXT, ‘seatNumber® TEXT, “tripId’ TEXT,
PRIMARY KEY('id'), FOREIGN KEY(tripId") REFERENCES “trips (id’) ON UPDATE NO ACTION ON DELETE CASCADE
)"
db.execSQL("CREATE INDEX ‘index_flights_tripId® ON “flights™ (tripId)");
}
}

(from Trips/RoomMigrations/app/src/main/java/com/commonsware/android/room/Migrations.java)

Here, we create two tables and two indexes in migrate(). The SQL is mostly copied
from the 2. json file, representing the schema for version 2:

{
"formatVersion": 1,
"database": {
"version": 2,
"identityHash": "9a2d4a50ce264f5683cOba7e72dbbae9",
"entities": [

78

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-android-arch/tree/master/Trips/RoomMigrations
http://github.com/commonsguy/cw-android-arch/tree/master/Trips/RoomMigrations
https://github.com/commonsguy/cw-androidarch/tree/v0.1/Trips/RoomMigrations/app/src/main/java/com/commonsware/android/room/Migrations.java

RoOM AND MIGRATIONS

{

"tableName": "trips",

"createSql": "CREATE TABLE IF NOT EXISTS “${TABLE_NAME} ("id" TEXT, “title’ TEXT, “duration’
‘creationTime® INTEGER, ‘updateTime® INTEGER, PRIMARY

INTEGER, ‘“priority’ INTEGER, “startTime' INTEGER,
KEY(id)",
"fields": [
{
"fieldPath": "id",
"columnName": "id",
"affinity": "TEXT"

Y

{
"fieldPath": "title",
"columnName": "title",
"affinity": "TEXT"

Y

{
"fieldPath": "duration",
"columnName": "duration",
"affinity": "INTEGER"

Y

{
"fieldPath": "priority",
"columnName": "priority",
"affinity": "INTEGER"

Y

{
"fieldPath": "startTime",
"columnName": "startTime",
"affinity": "INTEGER"

Y

{
"fieldPath": "creationTime",
"columnName": "creationTime",
"affinity": "INTEGER"

Y

{
"fieldPath": "updateTime",
"columnName": "updateTime",
"affinity": "INTEGER"

}

1,
"primaryKey": {
"columnNames": [
widn
1,
"autoGenerate": false
Yo
"indices": [],
"foreignKeys": []
}
{
"tableName": "lodgings",

"createSql": "CREATE TABLE IF NOT EXISTS “${TABLE_NAME} ("id’ TEXT, “title’ TEXT, ‘duration’
‘creationTime’™ INTEGER, ‘updateTime® INTEGER, ‘“address’
TEXT, “tripId® TEXT, PRIMARY KEY(id'), FOREIGN KEY(tripId’) REFERENCES “trips’(id’) ON UPDATE NO ACTION

INTEGER, “priority” INTEGER, ‘startTime’ INTEGER,

ON DELETE CASCADE)",
"fields": [
{
"fieldPath": "id",

Subscribe to updates at https://commonsware.com

79

Special Creative Commons BY-NC-SA 4.0 License Edition

RoOM AND MIGRATIONS

"columnName": "id",
"affinity": "TEXT"

Yo

{
"fieldPath": "title",
"columnName": "title",
"affinity": "TEXT"

Yo

{
"fieldPath": "duration",
"columnName": "duration",
"affinity": "INTEGER"

Yo

{
"fieldPath": "priority",
"columnName": "priority",
"affinity": "INTEGER"

Yo

{
"fieldPath": "startTime",
"columnName": "startTime",
"affinity": "INTEGER"

Yo

{
"fieldPath": "creationTime",
"columnName": "creationTime",
"affinity": "INTEGER"

Yo

{
"fieldPath": "updateTime",
"columnName": "updateTime",
"affinity": "INTEGER"

Yo

{
"fieldPath": "address",
"columnName": "address",
"affinity": "TEXT"

Yo

{
"fieldPath": "tripId",
"columnName": "tripId",
"affinity": "TEXT"

}

1,
"primaryKey": {
"columnNames": [
nidn
1,
"autoGenerate": false

Y,
"indices": [
{
"name": "index_lodgings_tripId",
"unique": false,
"columnNames": [
"tripId"
s
"createSql": "CREATE INDEX ‘index_lodgings_tripId"® ON “${TABLE_NAME} ' (tripId’)"
+

80

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

RoOM AND MIGRATIONS

"foreignKeys": [

{
"table": "trips",
"onDelete": "CASCADE",
"onUpdate": "NO ACTION",
"columns": [
"tripId"
s
"referencedColumns": [
widn
]
}
1
Fo

{

"tableName": "flights",

"createSql": "CREATE TABLE IF NOT EXISTS “${TABLE_NAME} (id’ TEXT, “title’ TEXT, ‘duration’
INTEGER, “priority’ INTEGER, “startTime' INTEGER, ‘creationTime ™ INTEGER, ‘updateTime® INTEGER,
‘departingAirport” TEXT, ‘arrivingAirport” TEXT, ‘airlineCode’ TEXT, “flightNumber® TEXT, ‘seatNumber"®
TEXT, “tripId® TEXT, PRIMARY KEY(id'), FOREIGN KEY(tripId') REFERENCES “trips”(id’) ON UPDATE NO ACTION
ON DELETE CASCADE)",

"fields": [

{
"fieldPath": "id",
"columnName": "id",
"affinity": "TEXT"

Yo

{
"fieldPath": "title",
"columnName": "title",
"affinity": "TEXT"

Yo

{
"fieldPath": "duration",
"columnName": "duration",
"affinity": "INTEGER"

Yo

{
"fieldPath": "priority",
"columnName": "priority",
"affinity": "INTEGER"

Yo

{
"fieldPath": "startTime",
"columnName": "startTime",
"affinity": "INTEGER"

Yo

{
"fieldPath": "creationTime",
"columnName": "creationTime",
"affinity": "INTEGER"

Yo

{
"fieldPath": "updateTime",
"columnName": "updateTime",
"affinity": "INTEGER"

Yo

{

"fieldPath": "departingAirport",
"columnName": "departingAirport",

81

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

RoOM AND MIGRATIONS

"affinity": "TEXT"

Yo

{
"fieldPath": "arrivingAirport",
"columnName": "arrivingAirport",
"affinity": "TEXT"

Yo

{
"fieldPath": "airlineCode",
"columnName": "airlineCode",
"affinity": "TEXT"

Yo

{
"fieldPath": "flightNumber",
"columnName": "flightNumber",
"affinity": "TEXT"

Yo

{
"fieldPath": "seatNumber",
"columnName": "seatNumber",
"affinity": "TEXT"

Yo

{
"fieldPath": "tripId",
"columnName": "tripId",
"affinity": "TEXT"

}

s
"primaryKey": {
"columnNames": [
wig"
s
"autoGenerate": false

"createSql": "CREATE INDEX ‘index_flights_tripId® ON “${TABLE_NAME} (tripId’)"

Fo
"indices": [
{
"name": "index_flights_tripId",
"unique": false,
"columnNames": [
"tripId"
s
}
1y
"foreignKeys": [
{
"table": "trips",
"onDelete": "CASCADE",
"onUpdate": "NO ACTION",
"columns": [
"tripId"
s
"referencedColumns": [
widn
1
}

}
1y
"setupQueries": [

Subscribe to updates at https://commonsware.com

82

Special Creative Commons BY-NC-SA 4.0 License Edition

RoOM AND MIGRATIONS

"CREATE TABLE IF NOT EXISTS room_master_table (id INTEGER PRIMARY KEY,identity_hash TEXT)",
"INSERT OR REPLACE INTO room_master_table (id,identity_hash) VALUES(42,
\"9a2d4a50ce264f5683c0ba7e72dbbaed\")"
1
}
}

(from Trips/RoomMigrations/app/schemas/com.commonsware.android.room.TripDatabase/2.json)

In the JSON, the createSql properties have the table name as a template-style
macro (${TABLE_NAME}), which you will need to replace with the actual table name.
The backticks are supported in SQLite as they are in MySQL, and since they cause
no harm here, usually it is simpler just to leave them in there.

Employing Migrations

Simply creating a Migration as a static field somewhere is necessary but not
sufficient to have Room know about performing the migration. Instead, you need to
use the addMigrations() method on RoomDatabase.Builder to teach Room about
your Migration objects. addMigrations() accepts a varargs, and so you can pass in
one or several Migration objects as needed.

package com.commonsware.android.room;

import android.arch.persistence.room.Database;
import android.arch.persistence.room.Room;

import android.arch.persistence.room.RoomDatabase;
import android.content.Context;

@Database(
entities={Trip.class, Lodging.class, Flight.class},
version=2

)

abstract class TripDatabase extends RoomDatabase {
abstract TripStore tripStore();

private static final String DB_NAME="trips.db";
private static volatile TripDatabase INSTANCE=null;

synchronized static TripDatabase get(Context ctxt) {

if (INSTANCE==null) {
INSTANCE=create(ctxt, false);

return(INSTANCE) ;

83

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/Trips/RoomMigrations/app/schemas/com.commonsware.android.room.TripDatabase/2.json

RoOM AND MIGRATIONS

static TripDatabase create(Context ctxt, boolean memoryOnly) {
return(create(ctxt, DB_NAME, memoryOnly));
}

static TripDatabase create(Context ctxt, String name, boolean memoryOnly) {
RoomDatabase.Builder<TripDatabase> b;

if (memoryOnly) {
b=Room. inMemoryDatabaseBuilder (ctxt.getApplicationContext(),
TripDatabase.class);

}
else {
b=Room.databaseBuilder(ctxt.getApplicationContext(), TripDatabase.class,
name) ;

}

return(b.addMigrations(Migrations.FROM_1_TO_2).build());

(from Trips/RoomMigrations/app/src/main/java/com/commonsware/android/room/TripDatabase.java)

Here, we teach the RoomDatabase.Builder about the FROM_1_TO_2 Migration. In this
sample project, the migrations are implemented in a separate Migrations class,
though you are welcome to have them directly in your RoomDatabase class or
wherever makes sense for you.

How Room Applies Migrations

When you create your RoomDatabase instance via the Migration-enhanced Builder,
Room will use SQLiteOpenHelper semantics to see if the schema version in the
existing database is older than the schema version that you declared in your
@Database annotation. If it is, Room will try to find a suitable Migration to use,
falling back to dropping all of your tables and rebuilding them from scratch, as
happens during ordinary development.

Much of the time, the schema will jump from one version to the next. If you are
using a simple numbering scheme starting at 1, the schema will then move to 2, then
3, then 4, and so on, for a given device. Hence, your primary Migration objects will
be ones that implement these incremental migrations.

However, it may be that for some device you need to skip a schema version, such as
moving from version 1 to version 3. Room is smart enough to find a chain of

84

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/Trips/RoomMigrations/app/src/main/java/com/commonsware/android/room/TripDatabase.java

RoOM AND MIGRATIONS

Migration objects to use, and so if you have Migration objects for each incremental
schema change, Room can handle any combination of changes. For example, to go
from 1 to 3, Room might first use your (1,2) migration, then the (2,3) migration.

Sometimes, though, this can lead to unnecessary work. Suppose in schema version 2,
you created a bunch of new tables and stuff... then reverted those changes in schema
version 3. By using the incremental migrations, Room will create those tables and
then turn around and drop them right away.

However, all else being equal, Room will try to use the shortest possible chain.
Hence, you can create additional Migration objects where appropriate to streamline
particular upgrades. You could create a (1,3) migration that bypasses the obsolete
schema version 2, for example. This is optional but may prove useful from time to
time.

Testing Migrations

It would be nice if your migrations worked. Users, in particular, appreciate working
code... or, perhaps more correctly, get rather angry with non-working code.

Hence, you might want to test the migrations.

This gets a bit tricky, though. The code-generated Room classes are expecting the
latest-and-greatest schema version, so you cannot use your DAO for testing older
schemas. Besides, RoomDatabase.Builder wants to set up your database with that
latest-and-greatest schema automatically.

Fortunately, Room ships with some testing code to help you test your schemas in
isolation... though you bypass most of Room to do that.

Adding the Artifact

This testing code is in a separate android.arch.persistence.room:testing artifact,
one that you can add via androidTestCompile to put in your instrumentation tests
but leave out of your production code:

dependencies {
compile "com.android.support:recyclerview-v7:25.3.1"
compile "android.arch.persistence.room:runtime:1.0.0-alpha3"
annotationProcessor "android.arch.persistence.room:compiler:1.0.0-alpha3"
androidTestCompile "com.android.support:support-annotations:25.3.1"

85

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

RoOM AND MIGRATIONS

androidTestCompile 'com.android.support.test:rules:0.5'
androidTestCompile "android.arch.persistence.room:testing:1.0.0-alpha3"

b
(from Trips/RoomMigrations/app/build.gradle)

Adding the Schemas

Remember those exported schemas? While we used them for helping us write the
migrations, their primary use is for this testing support code.

By default, those schemas are stored outside of anything that goes into your app.
After all, you do not need those JSON files cluttering up your production builds.
However, this also means that those schemas are not available to your test code, by
default.

However, we can fix that, by adding those schemas to the assets/ used in the
androidTest source set, by having this closure in your android closure of your
module’s build.gradle file:

sourceSets {
androidTest.assets.srcDirs += files("$projectDir/schemas".toString())

b
(from Trips/RoomMigrations/app/build.gradle)

Here, "$projectDir/schemas".toString() is the same value that we used for the
room.schemalLocation annotation processor argument. This snippet tells Gradle to
include the contents of that schemas/ directory as part of our assets/.

The result is that our instrumentation test APK will have those directories named
after our RoomDatabase classes (e.g.,
com.commonsware.android.room.TripDatabase/) in the root of assets/. If you have
code that uses assets/, make sure that you are taking steps to ignore these extra
directories.

Creating and Using a MigrationTestHelper

The testing support comes in the form of a MigrationTestHelper that you can
employ in your instrumentation tests.

86

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/Trips/RoomMigrations/app/build.gradle
https://github.com/commonsguy/cw-androidarch/tree/v0.1/Trips/RoomMigrations/app/build.gradle

RoOM AND MIGRATIONS

Adding the Rule

MigrationTestHelper is a JUnit4 rule, which you add to your test case class via the
@Rule annotation:

@Rule
public MigrationTestHelper helper;

(from Trips/RoomMigrations/app/src/androidTest/java/com/commonsware/android/room/MigrationTests.java)
Setting Up the Helper

You then need to create an instance of the MigrationTestHelper, such asin a
@Before-annotated method:

@Before
public void setUp() {
helper=new MigrationTestHelper(InstrumentationRegistry.getInstrumentation(),
TripDatabase.class.getCanonicalName(),
new FrameworkSQLiteOpenHelperFactory());

(from Trips/RoomMigrations/app/src/androidTest/java/com/commonsware/android/room/MigrationTests.java)

MigrationTestHelper takes three parameters, all of which are a bit unusual.

First, it takes an Instrumentation object. We use those in our test code, but it is rare
that we pass them as a parameter. You get your Instrumentation usually by calling
getInstrumentation() on the InstrumentationRegistry.

Next, it takes what appears to be the fully-qualified class name of the RoomDatabase
whose migrations we wish to test. Technically speaking, this is actually the relative
path, inside of assets/, where the schema JSON files are for this particular
RoomDatabase. Given the above configuration, each database’s schemas are put into a
directory named after the fully-qualified class name of the RoomDatabase, which is
why this works. However, if you change the configuration to put the schemas
somewhere else in assets/, you would need to modify this parameter to match.

The third parameter is a SupportSQLiteOpenHelper.Factory object, representing
the “database driver” for the SQLite engine that you wish to use. In this sample app,
we are using the default implementation, and so we are not configuring the
RoomDatabase.Builder with a SupportSQLiteOpenHelper.Factory. Unfortunately,

MigrationTestHelper lacks that default configuration, at least at the moment. So,

87

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/Trips/RoomMigrations/app/src/androidTest/java/com/commonsware/android/room/MigrationTests.java
https://github.com/commonsguy/cw-androidarch/tree/v0.1/Trips/RoomMigrations/app/src/androidTest/java/com/commonsware/android/room/MigrationTests.java
https://issuetracker.google.com/issues/63130998
https://issuetracker.google.com/issues/63130998

RoOM AND MIGRATIONS

we have to “just know” that Room will use this magic
FrameworkSQLiteOpenHelperFactory class by default.

Creating a Database for a Schema Version

There are two main methods on MigrationTestHelper that we will use in testing.
One is createDatabase(). This creates the database, as a specific database file, for a
specific schema version... including any of our historical ones found in those schema
JSON files. Here, we ask the helper to create a database named DB_NAME for schema
version 1:

SupportSQLiteDatabase db=helper.createDatabase(DB_NAME, 1);

(from Trips/RoomMigrations/app/src/androidTest/java/com/commonsware/android/room/MigrationTests.java)

That SupportSQLiteDatabase object has an API reminiscent of a trimmed-down
SQLiteDatabase. query() replaces rawQuery() and is used for executing arbitrary
SQL SELECT statements. We also have execSQL(), insert(), update(), and
delete(), for other operations.

As part of testing a migration, you will need to add some sample data to the
database, using whatever schema you asked to be used, so that you can confirm that
the migration worked as expected and did not wreck the existing data. This code will
not be very Room-ish, but more like classic SQLite Android programming:

SupportSQLiteDatabase db=helper.createDatabase(DB_NAME, 1);
db.execSQL("INSERT INTO trips (title) VALUES (NULL)");

final Cursor firstResults=db.query("SELECT COUNT(*) FROM trips");
assertEquals(1, firstResults.getCount());
firstResults.moveToFirst();

assertEquals(1, firstResults.getInt(0));

firstResults.close();
db.close();

(from Trips/RoomMigrations/app/src/androidTest/java/com/commonsware/android/room/MigrationTests.java)

88

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/Trips/RoomMigrations/app/src/androidTest/java/com/commonsware/android/room/MigrationTests.java
https://github.com/commonsguy/cw-androidarch/tree/v0.1/Trips/RoomMigrations/app/src/androidTest/java/com/commonsware/android/room/MigrationTests.java

RoOM AND MIGRATIONS

Testing a Migration

The other method of note on MigrationTestHelper is
runMigrationsAndvalidate(). After you have set up a database in its starting
conditions via createDatabase() and CRUD operations,
runMigrationsAndvValidate() will migrate that database from its original schema
version to the one that you specify:

db=helper.runMigrationsAndValidate(DB_NAME, 2, true,
Migrations.BROKEN_1_TO_2);

(from Trips/RoomMigrations/app/src/androidTest/java/com/commonsware/android/room/MigrationTests.java)

You need to supply the same database name (DB_NAME), a higher schema version (2),
and the specific Migration that you want to use (Migration.FROM_1_T0_2).

Not only does this method perform the migration, but it validates the resulting
schema against what the entities have set up for that schema version, based on the
schema JSON files. If there is something wrong — your migration forgot a newly-
added column, for example — your test will fail with an assertion violation. The
true parameter shown above determines whether this schema validation will
checked for un-dropped tables. true means that if you have unnecessary tables in
the database, the test fails; false means that unnecessary tables are fine and will be
ignored.

However, all MigrationTestHelper can do is confirm that you set up the new
schema properly. It cannot determine whether the data is any good after the
migration. That you would need to test yourself. In many cases, there is little to test,
particularly if you are just setting up empty tables as we are doing in this migration.
However, if you had a complex table change, perhaps requiring a temp table and
statements like INSERT INTO ... SELECT FROM ..., you could write test code that
confirms the data is OK. However, you cannot use the Room DAO for this either;
instead, you will use the SupportSQLiteDatabase and work with the tables “the old-
fashioned way”, using query() and Cursor and such.

89

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/Trips/RoomMigrations/app/src/androidTest/java/com/commonsware/android/room/MigrationTests.java

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Securing Your Room

Room, by default, works with the device’s stock copy of SQLite. This is fine, as far as
it goes. However, from a security standpoint, SQLite stores its data unencrypted.
Many apps should be considering encrypting their data “at rest”, when it is stored in
a database, to protect their users.

Fortunately, as noted in the last chapter, Room supports a pluggable SQLite
implementation, and so we can plug in a SQLite edition that supports encryption,
such as SQLCipher for Android. This chapter will outline how to do this.

Meet the Players

There are two pieces to the encrypted-database puzzle: a SQLite implementation
with encryption capability, and the “glue code” that allows Room to work with that
SQLite implementation.

SQLCipher for Android

Since SQLite is public domain, it is easy for people to grab the source code and hack
on it. SQLite also offers an extension system, making it relatively easy for developers
to add functionality with a minimal number of changes to SQLite’s core code. As a
result, a few encryption options for SQLite have been published.

One of these is SQLCipher, whose development is overseen by Zetitec. This offers
transparent AES-256 encryption of everything in the database: data, schema, etc.

With the help of the Guardian Project, Zetitec released SQLCipher for Android. This
combines a pre-compiled version of SQLite with Java classes that mimic an old

edition of Android’s native SQLite classes (e.g., SQLiteOpenHelper). SQLCipher for

91

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://www.zetetic.net/sqlcipher
https://www.zetetic.net
https://www.zetetic.net/sqlcipher/sqlcipher-for-android/

SECURING YOUR Room

Android is open source, and if you can live with the increase in app size due to the
native binaries, it is an effective solution.

However, it knows nothing about Room.

CWAC-SafeRoom

To fill that gap, the author of this book has released CWAC-SafeRoom. This is an
implementation of Room’s pluggable database API to bridge between Room and
SQLCipher for Android. Using SQLCipher for Android then becomes mostly a
matter of a single method call on the RoomDatabase.Builder to use the CWAC-
SafeRoom code — everything else works as normal.

That being said, at the time of this writing, the latest release of Room is
1.0.0-alpha3, and CWAC-SafeRoom is 0.0. 1. These are early days for both libraries,
and so changes may occur either at the Room or the CWAC-SafeRoom level.

Using CWAC-SafeRoom

Fortunately, using CWAC-SafeRoom is fairly straightforward, at least in terms of the
Java code.

The fact that SQLCipher for Android makes use of native libraries will make your
APK substantially larger, though using ABI filters and splits can help manage that.
However, those concerns would be the same for any use of SQLCipher for Android
and are not unique to CWAC-SafeRoom.

Adding the Dependency

As with all the CWAC libraries, you get CWAC-SafeRoom from the CWAC artifact
repository:

repositories {
maven {
url "https://s3.amazonaws.com/repo.commonsware.com"
e
e

(or use http://repo.commonsware.com if you cannot use SSL for your builds, for
some scary reason)

92

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-saferoom/

SECURING YOUR Room

Then, it is merely a matter of adding a dependency on the
com.commonsware.cwac: saferoom artifact. At the time of this writing, the artifact is
only available as a 0.0. 1 release:

compile 'com.commonsware.cwac:saferoom:0.0.1"'

Using CWAC-SafeRoom

When you use Room, you use Room.databaseBuilder () or
Room.inMemoryDatabaseBuilder () to get a RoomDatabase.Builder. After
configuring that object, you call build() to get an instance of your custom subclass
of RoomDatabase, whichever one that you supplied as a Java class object to the
Room.databaseBuilder () or Room.inMemoryDatabaseBuilder () method.

To use SafeRoom, on the RoomDatabase.Builder, before calling build():

* Create an instance of com.commonsware.cwac.saferoom.SafeHelperFactory,
passing in the passphrase to use

 Pass that SafeHelperFactory to the RoomDatabase.Builder via the
openHelperFactory() method

// EditText passphraseField;
SafeHelperFactory factory=SafeHelperFactory.fromUser(passphraseField.getText());

StuffDatabase db=Room.databaseBuilder(ctxt, StuffDatabase.class, DB_NAME)
.openHelperFactory(f)
.build();

Passphrase Management

A cardinal rule of passphrases in Java is: do not hold them in String objects. You
have no means of clearing those from memory, as a String is an immutable value.

The SafeHelperFactory constructor takes a char array for the passphrase. If you are
getting the passphrase from the user via an EditText widget, use the fromUser ()
factory method instead, supplying the Editable that you get from getText() on the
EditText.

SafeRoom will zero out the char array once the database is opened. If you use
fromUser (), SafeRoom will also clear the contents of the Editable.

93

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

SECURING YOUR Room

More to Come!

More material on CWAC-SafeRoom and the use of SQLCipher for Android will be
added to this book in the future, as Room, CWAC-SafeRoom, and this book all

mature.

94

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Lifecycle Components and
ViewModels

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Lifecycles and Owners

Programmers, in any environment, often encounter one or more topics that inspire
the five stages of grief. It might be related to threads, to security, to Ul
implementation (e.g., how to deal with resizeable windows).

Android developers experience this sort of grief on all those topics.

Another one that triggers this sort of grief is the concept of lifecycles. On the
surface, the concept seems unremarkable: objects are in use for a time and then
become discarded, and along the way we receive callbacks regarding their state.
However, dealing with the ramifications of those lifecycles — such as handling
configuration changes, like screen rotation — vex even seasoned Android
developers.

Part of the Architecture Components is a series of classes designed to help you deal
with lifecycles in a more consistent fashion.

A Tale of Terminology

The Architecture Components have very specific definitions for certain terms, and
these definitions affect the classes that we wind up using.

Lifecycle

A lifecycle is a series of states that an object can be in. Hence, a trivial lifecycle
simply has “alive” and “dead” or similar states.

The eponymous Lifecycle class, however, models a specific lifecycle, that of
activities and fragments.

97

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://en.wikipedia.org/wiki/K%C3%BCbler-Ross_model

LIFECYCLES AND OWNERS

Lifecycle Owner

A lifecycle owner is simply something that goes through a lifecycle. If the lifecycle is
the state, the lifecycle owner is what has the trigger events for navigating through
the state machine.

A LifecycleOwner is a Java interface, with a getLifecycle() method, that returns
the Lifecycle for a given owner. As we will see, various classes already implement
LifecycleOwner, and adding it to something else is not especially difficult.

Lifecycle Observers

A lifecycle observer is something that is notified about the change in state of some
lifecycle. It finds out about those trigger events and the movement of the lifecycle
from state to state.

A LifecycleObserver is another Java interface, one that mostly serves as a marker,
with no required methods. However, a LifecycleObserver can have one or more
methods marked with an @0nLifecycleEvent annotation, and those methods will be
called when the Lifecycle enters a certain state.

Adding the Lifecycle Components

As with Room, the lifecycle-related libraries are housed in Google’s Maven
repository, and you need to teach Gradle where that is. The convention is to add the
repository URL in the allprojects closure in the project’s root build.gradle file:

allprojects {
repositories {
jcenter()
maven { url 'https://maven.google.com' }

(from General/Lifecycle/build.gradle)

Then, you need a runtime dependency and an annotation processor, once again akin
to how Room is set up:

dependencies {
compile 'com.android.support:recyclerview-v7:25.3.1"
compile 'android.arch.lifecycle:runtime:1.0.0-alpha3"’

98

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/General/Lifecycle/build.gradle

LIFECYCLES AND OWNERS

annotationProcessor 'android.arch.lifecycle:compiler:1.0.0-alpha3"’
(from General/Lifecycle/app/build.gradle)

Getting a Lifecycle

Everything dealing with Lifecycle comes down to a LifecycleOwner. You have
several possibilities of where to get one of those.

...From a LifecycleActivity or LifecycleFragment

The pre-release versions of the lifecycle artifacts include LifecycleActivity and
LifecycleFragment classes. These extend FragmentActivity and Fragment from the
Android Support Library, respectively. Hence, if you were already using those base
classes, you can swap in LifecycleActivity and LifecycleFragment and be set up
with access to Lifecycle instances.

However, there are two problems:

1. Google has indicated that these classes will be deprecated when the
Architecture Components ship a 1.0.0 final release
2. Most likely, you are not using FragmentActivity directly

...From an AppCompatActivity

Perhaps you are using the appcompat-v7 artifact. In that case, you are inheriting
from AppCompatActivity instead of FragmentActivity or Activity.

The good news is that sometime after the Architecture Components ship a 1.0.0 final
release, there should be an update to appcompat-v7 that makes AppCompatActivity
aLifecycleOwner.

However, as of the time of this writing, that has not happened yet.
What you can do in the meantime is create your own AppCompatLifecycleActivity:

public class AppCompatLifecycleActivity extends AppCompatActivity
implements LifecycleRegistryOwner {
private LifecycleRegistry registry=new LifecycleRegistry(this);

@Override

99

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/General/Lifecycle/app/build.gradle

LIFECYCLES AND OWNERS

public LifecycleRegistry getLifecycle() {
return(registry);
j
b

Lifecycle itself is an abstract class. The concrete implementation of it is
LifecycleRegistry. Normally, you do not need to worry about this detail, as most of
your code will just work with the Lifecycle class. However, here, we need a concrete
implementation, and typically you will use LifecycleRegistry for that.

LifecycleRegistryOwner extends LifecycleOwner. The lifecycle artifact knows to
look for activities and fragments that implement LifecycleRegistryOwner and
knows to forward callbacks like onCreate() and onPause() to the Lifecycle.

Now, you can use the combination of AppCompatLifecycleActivity and
LifecycleFragment until such time as appcompat-v7 is more formally integrated
with the Architecture Components.

Note, though, that this may not work, as is covered in the next section.

...From an Activity or Fragment

Perhaps you are using the classic Activity and Fragment classes. Those will never
directly implement LifecycleOwner, as framework classes cannot depend upon
libraries.

In theory, you will need to have your own Activity and Fragment base classes that
implement LifecycleOwner, akin to the AppCompatLifecycleActivity shown above:

public class SimplelLifecycleActivity extends Activity
implements LifecycleRegistryOwner {
private LifecycleRegistry registry=new LifecycleRegistry(this);

@Override
public LifecycleRegistry getlLifecycle() {
return(registry);
j
b

According to the documentation, using LifecycleRegistryOwner on an activity or
fragment will cause the standard Android lifecycle events to be forwarded to the
Lifecycle automatically.

100

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

LIFECYCLES AND OWNERS

Unfortunately, this does not work, due to a bug. This means that we need to handle
this in a more complex fashion, outlined in the next section.

...From Anything Else

In principle, you could have other objects that are themselves tied into the activity
and fragment lifecycle. After all, the backport of fragments in the Android Support
Library are just that sort of “other objects”. It so happens that Google takes care of
managing that backport. However, you might find other objects that, for whatever
reason, are similar in concept to the fragments backport and therefore should be
suppliers of lifecycle events.

And, as noted earlier, due to bugs, we have to treat regular activities and fragments
as “other objects”.

In that case, you can implement LifecycleOwner on those classes. However, you will
also need to call handleLifecycleEvent() method on the LifecycleRegistry at
appropriate points.

For example, here is a SimpleLifecycleActivity that handles the standard activity
lifecycle events, forwarding them to the LifecycleRegistry:

package com.commonsware.android.lifecycle;

import android.app.Activity;

import android.arch.lifecycle.Lifecycle;

import android.arch.lifecycle.LifecycleOwner;
import android.arch.lifecycle.LifecycleRegistry;
import android.os.Bundle;

import android.support.annotation.Nullable;

public class SimplelLifecycleActivity extends Activity
implements LifecycleOwner {
private LifecycleRegistry registry=new LifecycleRegistry(this);

@Override

public Lifecycle getlLifecycle() {
return(registry);

j

@Override
protected void onCreate(@Nullable Bundle savedInstanceState) {
super .onCreate(savedInstanceState);

101

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://issuetracker.google.com/issues/62160522

LIFECYCLES AND OWNERS

registry.handlelLifecycleEvent(Lifecycle.Event.ON_CREATE);
}

@Override
protected void onStart() {
super.onStart();

registry.handlelLifecycleEvent(Lifecycle.Event.ON_START);
}

@Override
protected void onResume() {
super.onResume();

registry.handlelLifecycleEvent(Lifecycle.Event.ON_RESUME);
}

@Override
protected void onPause() {
super.onPause();

registry.handleLifecycleEvent(Lifecycle.Event.ON_PAUSE);
}

@Override
protected void onStop() {
super.onStop();

registry.handleLifecycleEvent(Lifecycle.Event.ON_STOP);
i3

@Override
protected void onDestroy() {
super.onDestroy();
registry.handleLifecycleEvent(Lifecycle.Event.ON_DESTROY);
}

(from General/Lifecycle/app/src/main/java/com/commonsware/android/lifecycle/SimpleLifecycleActivity.java)

Observing a Lifecycle

To observe the events associated with a Lifecycle, you create a Java class that
implements LifecycleObserver. As noted above, LifecycleObserver is purely a
marker interface — there are no specific methods to override. Instead, you annotate

102

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/General/Lifecycle/app/src/main/java/com/commonsware/android/lifecycle/SimpleLifecycleActivity.java

LIFECYCLES AND OWNERS

methods with @onLifecycleEvent, and they will be called when the identified event
occurs.

So, for example, here is an observer that passes all events to a
RecyclerView.Adapter named EventLogAdapter:

static class LObserver implements LifecycleObserver {
private final EventlLogAdapter adapter;

LObserver(EventLogAdapter adapter) {
this.adapter=adapter;
¥

@onLifecycleEvent(Lifecycle.Event.ON_CREATE)
void created() {

adapter.add("ON_CREATE");
b

@onLifecycleEvent(Lifecycle.Event.ON_START)
void started() {

adapter.add("ON_START");
b

@onLifecycleEvent(Lifecycle.Event.ON_RESUME)
void resumed() {

adapter.add("ON_RESUME");
b

@onLifecycleEvent(Lifecycle.Event.ON_PAUSE)
void paused() {
adapter.add("ON_PAUSE");

}

@onLifecycleEvent(Lifecycle.Event.ON_STOP)
void stopped() {
adapter.add("ON_STOP");

b
@onLifecycleEvent(Lifecycle.Event.ON_DESTROY)
void destroyed() {

adapter.add("ON_DESTROY");
}

(from General/Lifecycle/app/src/main/java/com/commonsware/android/lifecycle/MainActivity.java)

Note:

103

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/General/Lifecycle/app/src/main/java/com/commonsware/android/lifecycle/MainActivity.java

LIFECYCLES AND OWNERS

* There is also a Lifecycle.Event.ON_ANY event that you can request; this
triggers your method to be called for any lifecycle event... though you have
no way of knowing what event it was

* A single method can only have one @0nLifecycleEvent annotation, and that
annotation accepts only a single Lifecycle.Event value (not a list)

Then, you can register the observer, and it will start being called for the various
events:

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
setTitle(getString(R.string.title, hashCode()));

RecyclerView rv=(RecyclerView)findViewById(R.id.transcript);

adapter=new EventLogAdapter(getLastNonConfigurationInstance());
rv.setAdapter(adapter);

getLifecycle().addObserver(new LObserver(adapter));

(from General/Lifecycle/app/src/main/java/com/commonsware/android/lifecycle/MainActivity.java)

All of this code is from the General/Lifecycle sample project, which shows you the
events in a RecyclerView as they come in. The MainActivity handles configuration
changes via onRetainNonConfigurationInstance(), so you can see the lifecycle
events across a configuration change. Through an overflow menu item, you can kick
off another instance of MainActivity, then press BACK to see the flow of lifecycle
events as the original instance comes and goes from the foreground.

So, What’s the Point of This?

On the surface, this all seems fairly silly. One could just as easily override the
lifecycle methods on MainActivity and log directly to the RecyclerView, bypassing
all this Lifecycle and LifecycleOwner stuff.

Most developers will not be creating their own LifecycleObserver classes, though
anyone can, as the sample app demonstrates. Instead, developers will tend to use
observers created by others. Most notable among those is LiveData from the
Architecture Components, and the subject of the next chapter.

104

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/General/Lifecycle/app/src/main/java/com/commonsware/android/lifecycle/MainActivity.java
http://github.com/commonsguy/cw-android-arch/tree/master/General/Lifecycle
http://github.com/commonsguy/cw-android-arch/tree/master/General/Lifecycle

LiveData

Lifecycle, LifecycleOwner, and related classes mostly exist to provide the
foundation for LiveData. LiveData is the next generation of various Android
asynchronous solutions, such as AsyncTask and the Loader framework. LiveData, in
particular, is modeled somewhat after RxJava, a popular reactive programming
library.

All of this is to set up ways for you to be able to observe changes to data without
having to worry as much about activity and fragment lifecycles... though, as it turns
out, you cannot escape them entirely.

Observables Are the New Black

The observer pattern in software design has been around for decades. Yet, it has
caught fire in the past few years, repackaged as “reactive programming”. Reactive
programming visualizes an app as a set of streams of data changes, whether from the
user (e.g., Ul widget interactions), from a server (e.g., updates to data from a sync
operation), or from something else (e.g., GPS fixes). Developers set up observers to
respond (“react”) to these data changes and apply updates to the UL

The centerpiece for reactive programming in Android is RxJava, typically combined
with RxAndroid. RxJava provides the basic framework for observing streams of data
changes, with RxAndroid primarily providing ways to route results of observations to
the main application thread. This book is not going to go into details of how you use
RxJava/RxAndroid in general — for that, see The Busy Coder’s Guide to Android
Development or other books.

One problem with RxJava, though, is that “it is difficult to get your head wrapped
around it”. Reactive programming works great in platforms that implemented

105

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://commonsware.com/Android
https://commonsware.com/Android

LIVEDATA

reactive programming from the outset. Reactive programming is more difficult to
bolt onto an existing platform, both from a technical standpoint and from a
documentation standpoint. RxJava is the sort of technology that is easy to illustrate
in “hello, world”-level examples but gets difficult to explain for more practical
scenarios. In part, that is because RxJava is extremely flexible, and with great
flexibility comes great need for great documentation... which RxJava historically
lacked.

LiveData is designed to be a much lighter-weight approach to reactive
programming, designed to do one thing (deliver asynchronous data changes
regardless of lifecycle events) and do it reasonably well.

Yet More Terminology

First, let’s review some new and exciting terms that we need to understand in order
to use LiveData.

LiveData

LiveData itselfis a source of data, both for a point in time and (via an observer) for
changes to that data over time. Something will create and hand you a LiveData
object, where the work to get that data and update it over time is handled by some
background thread coming from the LiveData supplier.

Observer

In principle, you can call getValue() on a LiveData to get the current value for
whatever stream of data the LiveData is tracking. In practice, this will not be
especially common.

Instead, you will register an Observer with the LiveData, usually via an observe()
method. Your Observer will be called with onChanged() when:

* You start observing and there is already data in the LiveData, and
* When the LiveData finds out about a change in the data

Your onChanged() method is given the data (a Location, a SensorEvent, a Room
entity, whatever) on the main application thread, with an eye towards you using it to
update the Ul by one means or another.

106

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

LIVEDATA

Active State

If a LiveData was instantiated in a forest, and nobody was there to observe data
changes, does the LiveData really exist?

The answer is: yes, but it hopefully is not consuming any resources.

A LiveData implementation will be called with onActive() when it receives its first
active observer. Here, “active” means that, if the observer is tied to a
LifecycleOwner, the lifecycle is in the started or resumed state. Conversely, the
LiveData will be called with onInactive() once it no longer has any active
observers, either because all observers have been unregistered or none of them are
active, as their lifecycles are all paused, stopped, or destroyed.

The idea is that a LiveData would only start consuming significant system resources
— such as requesting GPS fixes — when there are active observers, releasing those
resources when there are no more active observers. This works in many cases,
though there are some that will require more finesse. For example, given that the
GPS radio takes some time before it starts generating GPS fixes, a LiveData for GPS
might want to wait some amount of time after losing its last active observer before
releasing the GPS radio, in case a new observer pops up quickly, to avoid delays in
getting those GPS fixes.

Implementing LiveData

With that as background, let’s see LiveData in action. The General/LiveSensor
sample project implements LiveData for sensor readings coming from a
SensorManager. We can use this to track the accelerometer, ambient light, and so on.

However, the technique shown here can be used for lots of different system-level
data sources, such as:

* Other system services (e.g., LocationManager, ClipboardManager)

+ System broadcasts, for cases where you want to dynamically register for the
broadcast via registerReceiver ()

* Local broadcasts, using LocalBroadcastManager

+ Content changes in providers, via a ContentObserver

107

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-android-arch/tree/master/General/LiveSensor
http://github.com/commonsguy/cw-android-arch/tree/master/General/LiveSensor

LIVEDATA

Dependencies

To use Lifecycle and LifecycleOwner, you needed two dependencies: the lifecycle
runtime library and its compiler annotation processor.

For some reason, LiveData is in a third dependency, called extensions:

dependencies {
compile 'com.android.support:recyclerview-v7:25.3.1"
compile 'android.arch.lifecycle:runtime:1.0.0-alpha3’
compile 'android.arch.lifecycle:extensions:1.0.0-alpha3’
annotationProcessor 'android.arch.lifecycle:compiler:1.0.0-alpha3"’

(from General/LiveSensor/app/build.gradle)
State Transitions

We have a SensorLiveData class that extends the LiveData base class, offering to
support a custom Event static nested class:

package com.commonsware.android.livedata;

import android.arch.lifecycle.LiveData;
import android.content.Context;

import android.hardware.Sensor;

import android.hardware.SensorEvent;

import android.hardware.SensorEventListener;
import android.hardware.SensorManager;
import java.util.Date;

class SensorlLiveData extends LiveData<SensorlLiveData.Event> {
final private SensorManager sensorManager;
private final Sensor sensor;
private final int delay;

SensorlLiveData(Context ctxt, int sensorType, int delay) {
sensorManager=
(SensorManager)ctxt.getApplicationContext()
.getSystemService(Context.SENSOR_SERVICE);
this.sensor=sensorManager.getDefaultSensor(sensorType);
this.delay=delay;

if (this.sensor==null) {
throw new IllegalStateException("Cannot obtain the requested sensor");

}

108

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/General/LiveSensor/app/build.gradle

LIVEDATA

@Override
protected void onActive() {
super.onActive();

sensorManager.registerListener(listener, sensor, delay);

}

@Override
protected void onInactive() {
sensorManager.unregisterListener(listener);

super.onlnactive();

}

final private SensorEventListener listener=new SensorEventListener() {
@0verride
public void onSensorChanged(SensorEvent event) {
setValue(new Event(event));

@0override
public void onAccuracyChanged(Sensor sensor, int accuracy) {
// unused

}
iE

class Event {
final Date date=new Date();
final float[] values;

Event(SensorEvent event) {
values=new float[event.values.length];

System.arraycopy(event.values, 0, values, 0, event.values.length);

}

(from General/LiveSensor/app/src/main/java/com/commonsware/android/livedata/SensorLiveData.java)

In the constructor, we hold onto configuration details, such as the particular sensor
to monitor and how frequently we should ask for updates. We also obtain an
instance of the SensorManager system service and try to find the actual requested
Sensor, throwing a runtime exception if there is no matching sensor on this device.

109

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/General/LiveSensor/app/src/main/java/com/commonsware/android/livedata/SensorLiveData.java

LIVEDATA

However, we do not register for sensor events in the constructor. Until we have 1+
active observers, we do not need those events, and monitoring sensor events drains
the battery. So, we postpone registering for events until onActive(), unregistering in
the corresponding onInactive() callback.

Updating the Observers

The SensorEventListener that we use, in its onSensorChanged() method, creates a
new instance of our Event, grabbing data from the SensorEvent. We use our own
Event class for two reasons:

1. SensorEvent objects get recycled, and so it is not safe to hold onto one of
those after the end of onSensorChanged(), so we copy the sensor results
float values into our own object

2. While a SensorEvent has a timestamp, it is a pain to use, and this is a casual
book sample, so we just track our own Date for simplicity

That Event is passed to setValue() on the LiveData, which in turn will pass the
result to observers. Note that setValue() needs to be called on the main application
thread — we will see how to handle events originating on background threads later

in this chapter.

Retaining the LiveData

So, we have a LiveData for sensor readings. We can have an activity that displays
those readings, by having it create a SensorLiveData instance and registering to
observe those events. But now we run into a problem... what do we do with the
SensorLiveData object after that?

One possibility is that we just hold onto it in a field, mostly to ensure that nothing
gets garbage-collected that would interrupt the sensor readings. If we undergo a
configuration change, we just create a new SensorLiveData objects and a fresh
observer. While this is not completely ridiculous for this particular scenario, it is bad
for cases where setting up the LiveData is expensive.

The idea behind LiveData is that it is the unique source of the specific data for the
entire app. In other words, if we had several activities and fragments that all needed
a particular sensor reading, we should set up a single SensorLiveData for all of
them. That suggests using a singleton, and we will see how to do that later in this
chapter. And, in truth, this is going to be the most common answer. However, it does
raise some bits of complexity — in the case of SensorLiveData, there are many

110

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

LIVEDATA

possible sensors, and a few possible delay periods, and so we would need a fairly
sophisticated manager object to reuse or lazily create the appropriate
SensorlLiveData for a given client.

In this sample app, we take a middle-ground approach, and use
onRetainNonConfigurationInstance() inside the activity that is going to use the
sensor readings. Since the Ul is going to be a RecyclerView of readings, we also need
to hold onto past readings, so we do not lose them when we undergo the
configuration change.

So, we have a State static nested class that holds onto the SensorLiveData and
outstanding readings:

private static class State {
final ArraylList<SensorLiveData.Event> events=new ArraylList<>();
SensorLiveData sensorlLiveData;

(from General/LiveSensor/app/src/main/java/com/commonsware/android/livedata/MainActivity.java)

In onCreate(), we set up that State if we do not already have one, storing it in a
state field. This includes setting up the SensorLiveData, in this case for the
ambient light sensor:

public class MainActivity extends SimpleLifecycleActivity {
private EventLogAdapter adapter;
private State state;

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

RecyclerView rv=(RecyclerView)findViewById(R.id.transcript);
state=(State)getLastNonConfigurationInstance();
if (state==null) {

state=new State();

state.sensorLiveData=

new SensorlLiveData(this, Sensor.TYPE LIGHT,
SensorManager .SENSOR_DELAY_UTI);

adapter=new EventLogAdapter();

111

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/General/LiveSensor/app/src/main/java/com/commonsware/android/livedata/MainActivity.java

LIVEDATA

rv.setAdapter(adapter);

state.sensorlLiveData.observe(this, new Observer<SensorlLiveData.Event>() {
@Override
public void onChanged(@Nullable SensorLiveData.Event event) {
adapter.add(event);
3
DF

(from General/LiveSensor/app/src/main/java/com/commonsware/android/livedata/MainActivity.java)

We also register our Observer, which will be called with onChanged() with a new
Event as sensor readings come in. Our EventLogAdapter knows how to add() that to
the list of historical readings and update the RecyclerView.

However, the LiveData will automatically deliver the last-received reading to our
observer when we attach a fresh observer after a configuration change. That could
result in onChanged() being given the same Event object as before, one that we
already put into the ArrayList. So, the EventLogAdapter add() method checks that
first, before actually adding it:

void add(SensorlLiveData.Event what) {
if (!state.events.contains(what)) {
state.events.add(what);
notifyItemInserted(getItemCount());
}

(from General/LiveSensor/app/src¢/main/java/com/commonsware/android/livedata/MainActivity.java)

And we override onRetainNonConfigurationInstance() to return the State
instance, so onCreate() can retrieve it after a configuration change:

@Override
public Object onRetainNonConfigurationInstance() {
return(state);

Other LiveData Examples

Let’s take a look at a few more examples of using LiveData, to explore other facets of
how this can be used.

112

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/General/LiveSensor/app/src/main/java/com/commonsware/android/livedata/MainActivity.java
https://github.com/commonsguy/cw-androidarch/tree/v0.1/General/LiveSensor/app/src/main/java/com/commonsware/android/livedata/MainActivity.java
https://github.com/commonsguy/cw-androidarch/tree/v0.1/General/LiveSensor/app/src/main/java/com/commonsware/android/livedata/MainActivity.java

LIVEDATA

Event Bus

LocalBroadcastManager implements an in-process event bus, where events are
delivered to you on the main application thread, and where “events” are Intent
objects.

You can accomplish the same thing, with greater flexibility, by means of a LiveData
object, as can be seen in the General/LiveBus sample project.

This sample app is derived from one shown in The Busy Coder’s Guide to Android
Development, where we have AlarmManager triggering a service. In principle, that
service should do some work, which we are skipping here because we are lazy.
However, the fake work is something that the user might care about, and so we want
to let the UI layer know about the event if we happen to be in the foreground.
Otherwise, we want to raise a Notification. In The Busy Coder’s Guide to Android
Development, implementations of this sample are available for a few event buses,
including LocalBroadcastManager and greenrobot’s EventBus.

Here, though, we will use a MutableLiveData singleton:

static final MutablelLiveData<Intent> BUS=new MutablelLiveData<>();
private static int NOTIFY_ID=1337;
private Random rng=new Random();

public ScheduledService() {
super ("ScheduledService");

}

@Override

protected void doWakefulWork(Intent intent) {
Intent event=new Intent(EventLogFragment.ACTION_EVENT);
long now=Calendar.getInstance().getTimeInMillis();
int random=rng.nextInt();

event.putExtra(EventLogFragment.EXTRA_RANDOM, random);
event.putExtra(EventLogFragment.EXTRA_TIME, now);

if (BUS.hasActiveObservers()) {
BUS.postValue(event);

b2

else {
NotificationCompat.Builder b=new NotificationCompat.Builder(this);
Intent ui=new Intent(this, EventDemoActivity.class);

113

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-android-arch/tree/master/General/LiveBus
http://github.com/commonsguy/cw-android-arch/tree/master/General/LiveBus
https://commonsware.com/Android
https://commonsware.com/Android

LIVEDATA

b.setAutoCancel(true).setDefaults(Notification.DEFAULT_SOUND)
.setContentTitle(getString(R.string.notif_title))
.setContentText(Integer.toHexString(random))
.setSmallIcon(android.R.drawable.stat_notify_more)
.setTicker(getString(R.string.notif_title))
.setContentIntent(PendingIntent.getActivity(this, 0, ui, 0));

NotificationManager mgr=
(NotificationManager)getSystemService(NOTIFICATION_SERVICE);

mgr.notify(NOTIFY_ID, b.build());
b
3
b

(from General/LiveBus/app/src/main/java/com/commonsware/android/livedata/bus/ScheduledService.java)

MutablelLiveData is a subclass of LiveData, with one key feature: it offers a
postValue() method that works like setValue() but can be called from a
background thread. Here, our events are in the form of Intent objects, the way they
would be for LocalBroadcastManager. However, you could create your own custom
event objects if you prefer, and typically that would be a better idea. In this case, the
sample is demonstrating a quick-and-dirty change from LocalBroadcastManager, so
we are keeping the event objects the same to reduce the number of code changes.

The service, as part of its work, asks the BUS whether there are any active observers,
by means of hasActiveObservers(). If hasActiveObservers() returns true, we use
postValue() to post the event onto our BUS. Otherwise, we raise a Notification, as
our Ul is not in the foreground.

(note: this service extends WakefulIntentService, and so the method is
dowakefulWork() instead of the onHandleIntent() that you might typically use with
an IntentService).

Our Ul is in the form of a ListFragment. However, ListFragment itself is not tied to
a Lifecycle. So, we have a LifecycleListFragment that provides this capability:

package com.commonsware.android.livedata.bus;

import android.app.ListFragment;

import android.arch.lifecycle.Lifecycle;

import android.arch.lifecycle.LifecycleOwner;
import android.arch.lifecycle.LifecycleRegistry;
import android.os.Bundle;

import android.support.annotation.Nullable;

114

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/General/LiveBus/app/src/main/java/com/commonsware/android/livedata/bus/ScheduledService.java
https://github.com/commonsguy/cwac-wakeful
https://github.com/commonsguy/cwac-wakeful

LIVEDATA

public class LifecycleListFragment extends ListFragment
implements LifecycleOwner {
private LifecycleRegistry registry=new LifecycleRegistry(this);

@Override
public Lifecycle getlLifecycle() {
return(registry);

}

@Override
public void onCreate(@Nullable Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

registry.handlelLifecycleEvent(Lifecycle.Event.ON_CREATE);
}

@0verride
public void onStart() {
super.onStart();

registry.handlelLifecycleEvent(Lifecycle.Event.ON_START);
}

@Override
public void onResume() {
super.onResume();

registry.handlelLifecycleEvent(Lifecycle.Event.ON_RESUME);
}

@0verride
public void onPause() {
super.onPause();

registry.handleLifecycleEvent(Lifecycle.Event.ON_PAUSE);
}

@0verride
public void onStop() {
super.onStop();

registry.handleLifecycleEvent(Lifecycle.Event.ON_STOP);
}

@0verride
public void onDestroy() {
super.onDestroy();

115

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

LIVEDATA

registry.handleLifecycleEvent(Lifecycle.Event.ON_DESTROY);
}

(from General/LiveBus/app/src/main/java/com/commonsware/android/livedata/bus/LifecycleListFragment.java)

That allows our EventLogFragment to register an observer on the BUS, adding the
events to its ArrayAdapter:

ScheduledService.BUS.observe(this, new Observer<Intent>() {
@Override
public void onChanged(@Nullable Intent intent) {
adapter.add(intent);
}
b5

(from General/LiveBus/app/src/main/java/com/commonsware/android/livedata/bus/EventLogFragment.java)
Unlike LocalBroadcastManager, this approach performs no Intent filtering.
However, unlike LocalBroadcastManager, we can have as many MutablelLiveData

objects as needed. So, you can create custom buses for different event channels,
instead of using action strings as you might with LocalBroadcastManager.

Room

Having DAO methods in Room return a LiveData is simply a matter of setting them
up that way:

@Query("SELECT * FROM Customer WHERE postalCode IN (:postalCodes) LIMIT :max")
LiveData<List<Customer>> findByPostalCodes(int max, String... postalCodes);

(from General/LiveRoom/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java)

Now, findByPostalCodes() will return a LiveData. Moreover, it will do so
immediately when called, with the actual query being performed on a Room-
supplied background thread. You can arrange to register an observer to find out
when the results are ready. And, by using the same LiveData instance after a
configuration change, you can get the last-loaded results without having to perform
another round of disk I/O.

However, Room has an additional feature: if you make changes to the database
through your DAO, Room will deliver fresh results to any registered observer of your
LiveData. So, for example:

116

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/General/LiveBus/app/src/main/java/com/commonsware/android/livedata/bus/LifecycleListFragment.java
https://github.com/commonsguy/cw-androidarch/tree/v0.1/General/LiveBus/app/src/main/java/com/commonsware/android/livedata/bus/EventLogFragment.java
https://github.com/commonsguy/cw-androidarch/tree/v0.1/General/LiveRoom/stuff/src/main/java/com/commonsware/android/room/dao/StuffStore.java

LIVEDATA

* You register an observer on a LiveData, returned by a Room @Query, that
represents a list of your entities

+ Shortly thereafter, you get the list of entities as they exist in the database at
present, for you to fill into your RecyclerView (or whatever)

+ Later on, as part of processing a request from the user, you invoke an
@Insert method on your DAO to add a new entity to the database

* Your registered observer gets the updated list of entities as they exist in the
database, for you to fill into your RecyclerView (or whatever)

* And so on

In effect, Room attempts to give you ContentObserver capabilities, for your own
database, tied directly into the LiveData system.

Note, though, that these changes are tied in large part to your use of the DAO. For
example, if you want to insert 100 entities, you could:

+ Call a single @Insert method that takes a List of those entities, in which
case you will get a single update from the LiveData

+ Call a one-entity @Insert method 100 times, in which case you will get 100
updates from the LiveData

Doing things in batch form generally will be more efficient, both from a disk [/O
standpoint and a LiveData-updating standpoint. On the other hand, this means that
a LiveData update might represent several changes, and that may require additional
smarts to handle properly in terms of updating the UI (e.g., use DiffUtil to
efficiently update a RecyclerView).

We will see using LiveData with Room in the next chapter.

Testing LiveData

LiveData works asynchronously, and so your tests have to deal with this. There are
various patterns for handling asynchronous tests. One is to use a CountDownLatch.

The General/LiveRoom sample project has the revised findByPostalCodes()
method shown above, and so we need to modify the instrumentation tests to match.

The DaoTests class now has two additional fields:

1. A CountDownLatch named responselatch

117

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-android-arch/tree/master/General/LiveRoom
http://github.com/commonsguy/cw-android-arch/tree/master/General/LiveRoom

LIVEDATA

2. AList of Customer objects, named customers
In setUp(), we initialize the CountDownLatch, set to track one event:

@Before

public void setUp() {
db=StuffDatabase.create(InstrumentationRegistry.getTargetContext(), true);
store=db.stuffStore();
responselLatch=new CountDownLatch(1);

}

(from General/LiveRoom/stuff/src/androidTest/java/com/commonsware/android/room/dao/DaoTests.java)

In the test, we can retrieve the LiveData, register an observer, and have the observer
save the results in customers and countDown() the CountDownlLatch:

final LiveData<List<Customer>>
liveResult=store.findByPostalCodes(10, firstCustomer.postalCode);

liveResult.observeForever (new Observer<List<Customer>>() {
@Override
public void onChanged(@Nullable List<Customer> customers) {
DaoTests.this.customers=customers;
responselLatch.countDown();
}
)

responselLatch.await();

assertEquals(1, customers.size());

(from General/LiveRoom/stuff/src/androidTest/java/com/commonsware/android/room/dao/DaoTests.java)

Instrumentation test methods run on background threads, and onChanged() is
called on the main application thread. So, we block the test thread via await(), to
wait on the disk I/O to complete. At that point, we have our List of Customer
objects for assertions.

118

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/General/LiveRoom/stuff/src/androidTest/java/com/commonsware/android/room/dao/DaoTests.java
https://github.com/commonsguy/cw-androidarch/tree/v0.1/General/LiveRoom/stuff/src/androidTest/java/com/commonsware/android/room/dao/DaoTests.java

ViewModel

Many Android apps are trivial. The smaller the app, the less likely it is that you need
much in the way of a true GUI architecture. Slapping together whatever you want
wherever you want it most likely will suffice. Your average soundboard, flashlight,
front-facing-camera “mirror”, and similar apps just do what they do, and their
developers do not need to worry about the alphabet soup of MVC, MVP, MVVM,
MVI, and so on.

If you are reading this book, you may have an app in mind that is not so trivial.

The more complex the app, the more likely it is that you are going to want to think
more seriously about the GUI architecture. The Architecture Components
contribution to this is the ViewModel, which we will explore in this chapter.

ViewModels, As Originally Envisioned

Microsoft devised the model-view-viewmodel (MVVM) GUI architecture in 2005,
and it has remained generally murky ever since. This is not terribly surprising, as
many of the “alphabet soup” GUI architectures have malleable definitions which

developers can twist and tweak to match what it is that they want to write.

Roughly speaking, in this GUI architecture, the “view model” represents a collection
of data and other state, necessary to render a view, derived from the underlying
models. The view model would be responsible for things like data formatting (e.g.,
converting the model’s 1long Unix epoch time into something that the user will be
able to read). The view updates the view model, which in turn updates the model at
the appropriate time.

119

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

VIEWMODEL

Ideally, the view model knows nothing much about the view, but rather just exposes
data and operations that the view needs.

The Architecture Components ships with a ViewModel class. This class does almost
nothing. This will be an important point, as what little we get from ViewModel can
be implemented in other ways without significant difficulty. But, for now, consider
ViewModel to be a place to hold the data necessary to represent your views. For
example, a ViewModel might hold a list of objects, obtained from Room, that are
used to populate a RecyclerView.

ViewModel Versus...

The objective of ViewModel, in particular, is to be able to survive past configuration
changes.

Of course, we have been dealing with configuration changes for years, before the
Architecture Components were a glimmer in any Google engineer’s eye.

So, when would we use a ViewModel, and when would we use other techniques?

...Saved Instance State

Saved instance state — what you put into the Bundle supplied to
onSavelInstanceState() — survives process termination. A ViewModel does not. So
while both can help deal with configuration changes, only saved instance state can
help with the process termination scenario:

 User is in your app, in an activity

+ User navigates to something else (e.g., presses HOME, switches to another
task via the overview screen)

+ A few minutes later, Android terminates your process to free up system RAM

+ A few minutes after that — but within 30 minutes of the user navigating
away - the user returns to your task

+ Android recreates the activity atop your task’s back stack as part of forking a
fresh process for you, and Android hands you your saved instance state
Bundle back

However, the saved instance state Bundle has size limits (should be well under iMB)
and type limits (only objects that can go into a Parcel).

120

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

VIEWMODEL

As a result:

* Use the ViewModel for holding onto data in your process necessary to be able
to rapidly repopulate the Ul after a configuration change

+ Use the saved instance state Bundle to hold identifiers and other data that
will help you rebuild the Ul after process termination, even if you wind up
having to re-read from disk or the network as part of that work

...Retained Objects

In the end, the ViewModelProviders system supplied by the Architecture
Components is an oddly-written wrapper around retained fragments. As a result,
there is nothing that you can do with a ViewModel that you could not do using
retained objects, whether those are retained fragments or using
onRetainNonConfigurationInstance(). We will see examples of this later in this

chapter.

Mommy, Where Do ViewModels Come From?

You might think that you create a ViewModel via whatever constructor you set up for
it. And, if you are going to manage a ViewModel yourself — via the retained object
pattern described above — then this is perfectly fine.

The Architecture Components expect you to get a ViewModel instance by using
ViewModelProvider. A ViewModelProvider instance is tied to either:

* A FragmentActivity (or a subclass, like AppCompatActivity), or
* A Fragment, from the fragments backport

If you do not have one of those, you cannot use ViewModelProvider.

If you do have one of those, call the static of () method on the
ViewModelProviders class (note the plural) to get a ViewModelProvider (note the
singular) tied to your FragmentActivity or Fragment. This ViewModelProvider is
tied to the logical instance of this activity or fragment, regardless of configuration
changes. So, if the activity is destroyed and recreated as part of a configuration
change, you will get the same ViewModelProvider instance in the new activity as you
had in the old one.

121

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

VIEWMODEL

Then, to get a ViewModel, call get() on the ViewModelProvider, passing in the Java
class object for your subclass of ViewModel (e.g., MyViewModel. class). If there
already is an instance of this ViewModel tied to this ViewModelProvider, you get that
instance. Otherwise, a fresh instance will be created for you, from the zero-
argument constructor. If using the zero-argument constructor is not what you want,
you can:

* Create an implementation of the ViewModelProvider.Factory interface,
implementing the create() method to create an instance of your ViewModel
by whatever constructor you want

* Associate an instance of your ViewModelProvider.Factory with the
ViewModelProvider by supplying it as a second parameter to the of ()
method on ViewModelProviders

So, in the typical case, you wind up with code like this:

TripRosterViewModel vm=
ViewModelProviders.of(this).get(TripRosterViewModel.class);

(from Trips/ViewModels/app/src/main/java/com/commonsware/android/room/TripsFragment.java)

Here, this inherits from the Fragment backport, and we are retrieving a
TripRosterViewModel to use in that fragment.

We will see this code snippet again in the next section.

ViewModels, Google’s Way

So, let’s take a look at the Trips/ViewModels sample project. This adds a ViewModel
to our app showing a roster of upcoming trips. More specifically, we will use
ViewModelProvider, the way Google envisioned it.

Earlier editions of this sample used Android’s native Activity and Fragment classes.
Those do not work with ViewModelProviders. So, in this sample, MainActivity has
been revised to extend from FragmentActivity and RecyclerViewFragment has been
revised to extend from LifecycleFragment. Using LifecyleFragment allows us to
use LiveData for retrieving our trips from Room. Otherwise, we could just use the
backport Fragment class, as ViewModelProvider has nothing to do with the lifecycle
classes.

122

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/Trips/ViewModels/app/src/main/java/com/commonsware/android/room/TripsFragment.java
http://github.com/commonsguy/cw-android-arch/tree/master/Trips/ViewModels
http://github.com/commonsguy/cw-android-arch/tree/master/Trips/ViewModels

VIEWMODEL

Defining a ViewModel

The idea is that a ViewModel should hold the data necessary to render the UL In our
case, that is simply a roster of Trip objects, pulled in from Room.

For ViewModelProvider to work, the class must be public, even though your IDE
might suggest otherwise. So, our TripRosterViewModel is public:

package com.commonsware.android.room;

import android.app.Application;

import android.arch.lifecycle.AndroidViewModel;
import android.arch.lifecycle.LiveData;

import java.util.List;

public class TripRosterViewModel extends AndroidViewModel {
final LiveData<List<Trip>> allTrips;

public TripRosterViewModel(Application app) {
super(app);

allTrips=TripDatabase.get(app).tripStore().selectAllTrips();

}
}

(from Trips/ViewModels/app/src/main/java/com/commonsware/android/room/TripRosterViewModel.java)

Note that TripRosterViewModel extends from AndroidViewModel. AndroidViewModel
itself extends ViewModel. The only difference between the two is the constructor:
ViewModel has a zero-argument constructor, while AndroidviewModel has a one-
argument constructor, supplying the Application instance. In our case, we need the
Application instance to get() our TripDatabase (as Room needs a Context for
this).

TripRosterViewModel, in its constructor, sets up an allTrips field that is a LiveData

of our roster of Trip objects. Since this is LiveData, the actual work will not be done
until we ask it to, by registering an observer to use the results.

Getting a ViewModel

Our TripsFragment needs access to the TripRosterViewModel, in order to be able to
get to the allTrips data and request the roster of Trip objects.

123

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/Trips/ViewModels/app/src/main/java/com/commonsware/android/room/TripRosterViewModel.java

VIEWMODEL

However, now we have a decision to make: is the TripRosterViewModel tied to the
fragment or to the activity?

Since a fragment can get to its hosting activity via getActivity(), a fragment can
choose either scope:

+ Pass this into of () to get the ViewModelProvider tied to the fragment, or
+ Pass getActivity() into of () to get the ViewModelProvider tied to the
activity

Either is perfectly legitimate. Frequently, it will boil down to who needs the data.
Data that is only needed by a single fragment should be owned by a ViewModel tied
to that fragment. Data needed by multiple fragments, or by a fragment and the
activity, or just by the activity, should be owned by a ViewModel tied to the activity. A
fragment can also elect to do both, using two ViewModel instances, one for its own
data and one that it gets via the activity.

In this case, the only Ul is the TripsFragment, so we can say that the
TripRosterViewModel is owned by the fragment and retrieve it as part of our
onViewCreated() work:

TripRosterViewModel vm=
ViewModelProviders.of(this).get(TripRosterViewModel.class);

(from Trips/ViewModels/app/src/main/java/com/commonsware/android/room/TripsFragment.java)

The first time we run through these lines, we will get a fresh TripRosterViewModel
instance. If we undergo a configuration change, when this fragment is recreated, the
new fragment instance will get the same TripRosterViewModel as before.

Using the ViewModel

Given our TripRosterViewModel, our TripsFragment can now get at the roster of
Trip objects, by registering an Observer:

vm.allTrips.observe(this, new Observer<List<Trip>>() {
@0verride
public void onChanged(@Nullable List<Trip> trips) {
setAdapter(new TripsAdapter(trips, getActivity().getlLayoutInflater()));

if (trips==null || trips.size()==0) {
final TripStore store=TripDatabase.get(getActivity()).tripStore();

new Thread() {
@0verride

124

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/Trips/ViewModels/app/src/main/java/com/commonsware/android/room/TripsFragment.java

VIEWMODEL

public void run() {
store.insert(new Trip("Vacation!", 10080, Priority.MEDIUM, new Date()),
new Trip("Business Trip", 4320, Priority.OMG, new Date()));

}
}.start();
}
}
b

(from Trips/ViewModels/app/src/main/java/com/commonsware/android/room/TripsFragment.java)

A typical app would just have the setAdapter () call, to pass the Trip roster over to
the TripsAdapter, to show the roster in the RecyclerView. In this case, we want to
lazy-create some trips, as otherwise we will have no data. So, if we have no trips, we
insert some in a background thread.

However, there are two issues with that approach. One is the possible race
condition, where the user rotates the screen while the background thread is going
on, and so we fork a second thread. Since this code is not the sort of thing you would
do in a production app, what we have here will suffice for now.

But, if you run the app, you will see that our data shows up in the RecyclerView,
even after a fresh run of the app, when we did not have any data. Yet, our Thread is
not doing anything to refresh the UI. So, the second issue is: how is this working?

The answer is that Room is monitoring our DAO for changes and is automatically
updating the LiveData to reflect those changes, as was mentioned in the chapter on
LiveData.

Getting Rid of the ViewModel

Ideally, you should not have to do anything to explicitly “get rid of” a ViewModel. If
you are using LiveData, it is lifecycle-aware, and so it should clean up itself when
the activity or fragment is destroyed. If you have anything else in the ViewModel that
needs cleanup when the activity or fragment is destroyed, use the lifecycle classes or
LiveData for that.

ViewModels as Simple POJOs

The primary limitation of ViewModelProviders is that it is inextricably tied to
FragmentActivity and the backport of Fragment. If you are using those classes, or
things inheriting from them (e.g., AppCompatActivity), great! If not, you will need
to pursue alternatives.

125

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/Trips/ViewModels/app/src/main/java/com/commonsware/android/room/TripsFragment.java

VIEWMODEL

One alternative is to ignore ViewModel entirely, and implement a view model
yourself as a POJO, as we will explore in the Trips/ViewModelP0JO sample project.
This is a clone of the previous sample, except that we are using a POJO and
onRetainNonConfigurationInstance() rather than ViewModel and
ViewModelProviders.

Since we are not using ViewModelProviders, MainActivity inherits from Activity
and RecyclerViewFragment inherits from the framework’s implementation of
Fragment.

Defining a ViewModel

The ViewModel class itself, from the Architecture Components, mostly serves as a
marker. It adds very little logic. So, modifying TripRosterViewModel to be a POJO
simply involves removing AndroidViewModel:

package com.commonsware.android.room;

import android.app.Application;
import android.arch.lifecycle.LiveData;
import java.util.list;

class TripRosterViewModel {
final LiveData<List<Trip>> allTrips;

TripRosterViewModel(Application app) {
allTrips=TripDatabase.get(app).tripStore().selectAllTrips();
j
b

(from Trips/ViewModelPOJO/app/src/main/java/com/commonsware/android/room/TripRosterViewModel.java)

And, in this case, since we will create our TripRosterViewModel conventionally via
its constructor, it can be package-private, rather than public.

Getting a ViewModel

One downside to the POJO approach is that the simple way of using it as a view
model limits your scope to activities. Fragments do not have a trivial
onRetainNonConfigurationInstance()/getLastNonConfigurationInstance()
implementation the way activities do. It is certainly possible to do something to
retain a per-fragment view model across configuration changes, but it requires more
work (e.g., retained fragments).

126

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-android-arch/tree/master/Trips/ViewModelPOJO
http://github.com/commonsguy/cw-android-arch/tree/master/Trips/ViewModelPOJO
https://github.com/commonsguy/cw-androidarch/tree/v0.1/Trips/ViewModelPOJO/app/src/main/java/com/commonsware/android/room/TripRosterViewModel.java

VIEWMODEL

So, here, we move the TripRosterViewModel management into MainActivity:

package com.commonsware.android.room;

import android.app.Activity;
import android.os.Bundle;
import android.support.annotation.Nullable;

public class MainActivity extends Activity {
private TripRosterViewModel viewModel;

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

viewModel=(TripRosterViewModel)getLastNonConfigurationInstance();

if (viewModel==null) {
viewModel=new TripRosterViewModel(getApplication());
b

if (getFragmentManager().findFragmentById(android.R.id.content)==null) {
getFragmentManager () .beginTransaction()
.add(android.R.id.content,
new TripsFragment()).commit();

@0verride

public Object onRetainNonConfigurationInstance() {
return(getViewModel());

}

TripRosterViewModel getViewModel() {
return(viewModel);

}

(from Trips/ViewModelPOJO/app/src¢/main/java/com/commonsware/android/room/MainActivity.java)

onCreate() retrieves the TripRosterViewModel, creating a new instance if we do not
have one. onRetainNonConfigurationInstance() returns that
TripRosterViewModel, so we retain it across configuration changes. And we expose
the TripRosterViewModel to the TripsFragment via a getViewModel () method.

Now, TripsFragment can get the TripRosterViewModel by a simple call on the
hosting activity:

127

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/Trips/ViewModelPOJO/app/src/main/java/com/commonsware/android/room/MainActivity.java

VIEWMODEL

TripRosterViewModel vm=((MainActivity)getActivity()).getViewModel();

(from Trips/ViewModelPOJO/app/src¢/main/java/com/commonsware/android/room/TripsFragment.java)

Nothing else needs to change:

* We observe() the allTrips LiveData as before
+ We still do not need to worry about cleaning up the LiveData when the
activity is destroyed and the TripRosterViewModel is no longer needed

128

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/Trips/ViewModelPOJO/app/src/main/java/com/commonsware/android/room/TripsFragment.java

Other Lifecycle Owners

Activities and fragments are not the only things with lifecycles. The Architecture
Components also support other forms of lifecycle owner:

» Services, and
* What the documentation will refer to as “the process”

ProcessLifecycleOwner

With a name like ProcessLifecycleOwner, you might think that this modeled the
lifecycle of a process. Then, you quickly realize that this makes little sense, as the
only “lifecycle” that a process goes through is creation and termination, and we
cannot get control in the latter event.

Insted, ProcessLifecycleOwner might better be named ForegroundLifecycleOwner.
Whereas LifecycleActivity models the lifecycle of an individual activity,
ProcessLifecycleOwner models the lifecycle of all activities combined:

* ON_CREATE is triggered when the process starts up

* ON_START and ON_RESUME are triggered when an activity goes through those
lifecycle events, and no other activity had been started recently

* ON_PAUSE and ON_STOP are triggered, after a delay, when an activity goes
through those lifecycle events, if another activity is not started and resumed
by this time

* ON_DESTROY is never triggered

The delay period is 7ooms (as of 1.0.0-alpha3), so as long as another activity is
started and resumed after a prior activity was paused and stopped within 7ooms, the

129

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OTHER LIFECYCLE OWNERS

process has not undergone a lifecycle change, even though those individual activities
did.

So, imagine a single-activity app:

* ON_CREATE happens right away

* ON_START and ON_RESUME happen shortly thereafter, assuming that the
process is starting because an activity is being displayed

+ The user rotates the screen, causing the activity to be destroyed and
recreated

* ON_PAUSE and ON_STOP do not occur, because a new activity was started and
resumed before the ProcessLifecycleOwner delay period elapsed

* ON_START and ON_RESUME do not occur, because we did not move through the
paused and stopped lifecycle states, even though the new activity instance
did

* The user presses HOME, BACK, or otherwise leaves this activity for another
task

* ON_PAUSE and ON_STOP happen after the delay period, since no activity from
this process went through ON_START and ON_RESUME during that time

Note that this comes at a cost: the extensions artifact automatically adds a
<provider> element to your manifest, one that initializes the
ProcessLifecycleOwner... even if if your app does not use ProcessLifecycleOwner.
This is simply so ProcessLifecycleOwner code can be invoked as soon as your
process is started.

The General/ProcessLifecycle sample project has a LifecycleApplication that
registers itself as an observer of the singleton instance of ProcessLifecycleOwner
and dumps all the events to LogCat:

package com.commonsware.android.recyclerview.videolist;

import android.app.Application;

import android.arch.lifecycle.Lifecycle;

import android.arch.lifecycle.LifecycleObserver;
import android.arch.lifecycle.OnLifecycleEvent;
import android.arch.lifecycle.ProcessLifecycleOwner;
import android.util.Log;

public class LifecycleApplication extends Application
implements LifecycleObserver {
@0verride
public void onCreate() {

130

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-android-arch/tree/master/General/ProcessLifecycle
http://github.com/commonsguy/cw-android-arch/tree/master/General/ProcessLifecycle

OTHER LIFECYCLE OWNERS

super.onCreate();

ProcessLifecycleOwner.get().getlLifecycle().addObserver(this);
3

@onLifecycleEvent(Lifecycle.Event.ON_CREATE)
public void created() {

Log.d(getClass().getSimpleName(), "ON_CREATE");
}

@onLifecycleEvent(Lifecycle.Event.ON_START)
public void started() {

Log.d(getClass().getSimpleName(), "ON_START");
}

@onLifecycleEvent(Lifecycle.Event.ON_RESUME)
public void resumed() {

Log.d(getClass().getSimpleName(), "ON_RESUME");
}

@onLifecycleEvent(Lifecycle.Event.ON_PAUSE)
public void paused() {

Log.d(getClass().getSimpleName(), "ON_PAUSE");
}

@onLifecycleEvent(Lifecycle.Event.ON_STOP)
public void stopped() {

Log.d(getClass().getSimpleName(), "ON_STOP");
}

@onLifecycleEvent(Lifecycle.Event.ON_DESTROY)
public void destroyed() {

Log.d(getClass().getSimpleName(), "ON_DESTROY");
}

(from General/ProcessLifecycle/app/src/main/java/com/commonsware/android/recyclerview/videolist/LifecycleApplication.java)

That LifecycleApplication is then registered in the manifest via android:name on
<application>:

<?xml version="1.0" encoding="utf-8"?>

<manifest package="com.commonsware.android.recyclerview.videolist"
xmlns:android="http://schemas.android.com/apk/res/android"
android:versionCode="1"
android:versionName="1.0">

<supports-screens
android:anyDensity="true"

131

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/General/ProcessLifecycle/app/src/main/java/com/commonsware/android/recyclerview/videolist/LifecycleApplication.java

OTHER LIFECYCLE OWNERS

android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false" />

<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />

<application
android:allowBackup="false"
android:name=".LifecycleApplication"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/Theme.Apptheme">
<activity android:name=".MainActivity">
<intent-filter>
<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

<activity
android:name=".VideoPlayerActivity"
android:configChanges="screenSize|smallestScreenSize|screenLayout|orientation”
android:launchMode="singleTask"
android:supportsPictureInPicture="true"
android:theme="@style/Theme.Apptheme.NoActionBar" />

<receiver android:name=".RemoteActionReceiver" />
</application>

</manifest>

(from General/ProcessLifecycle/app/src/main/AndroidManifest.xml)

The app itself is a clone of one from The Busy Coder’s Guide to Android Development.
It consists of two activities. One shows a list of all videos indexed by the MediaStore.

The other plays back a selected video using a VideoView. And, on Android 8.0+
devices, the video player activity will have a FAB that switches that activity into
picture-in-picture mode.

(NOTE: to run this sample, your test device will need 1+ videos)

If you run it, you will see the ON_CREATE, ON_START, and ON_RESUME events logged in
rapid succession. And, if you do not press that enticing FAB, and just use the video

player in normal mode, ON_PAUSE and ON_STOP get invoked at normal times, such as
when the user navigates to some other task (e.g., presses HOME).

The FAB, though, changes things, as it moves the video player to a floating picture-
in-picture (PiP) window.

132

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-androidarch/tree/v0.1/General/ProcessLifecycle/app/src/main/AndroidManifest.xml
https://commonsware.com/Android

OTHER LIFECYCLE OWNERS

If you tap the FAB, and do not touch anything else for a bit, you will see ON_PAUSE,
then ON_RESUME, get logged. This is because:

+ The PiP window never has the foreground from an input standpoint, and so
its activity is paused, but not stopped (as it is still visible)

+ The underlying activity is started and resumed, though with a few seconds’
delay, for inexplicable reasons

Similarly, if you tap the PiP window, to bring up the controls, you will see ON_PAUSE
logged, as the list-of-videos activity is paused (it no longer has the foreground input)
but the PiP window is not resumed (the input is handled by the system U, not the
activity). After a few moments of inactivity, that PiP window will return to its regular
state, and ON_RESUME will be logged.

Playing around with the PiP further (e.g., closing it via the X in the corner) allows
you to see how PiP mode ties into activity lifecycles.

LifecycleService

If you have a class that extends Service, you can replace it with LifecycleService
and get a service that is a LifecycleOwner. Four of the six lifecycle events are
honored:

Is Triggered When...
ON_CREATE the service is created
ON_START when the service is first started or bound to
ON_RESUME unused
ON_PAUSE unused
ON_STOP when the service is destroyed
ON_DESTROY also when the service is destroyed

Of note, LifecycleService does not attempt to model binding/unbinding as a
lifecycle (e.g., calling ON_STOP when the service is unbound and has no more active
bindings).

However, most services do not directly inherit from Service. Instead, they extend
IntentService or JobService or any one of dozens of other specialized service
implementations. Few, if any, of those will extend LifecycleService, as most of
them come from the core framework, which cannot depend on libraries like the
Architecture Components.

133

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OTHER LIFECYCLE OWNERS

Wait... Where Is LifecycleProvider and
LifecycleReceiver?

A ContentProvider has no real “lifecycle”. It is called with onCreate() when the
process starts up... and that’s about it. Similarly, a BroadcastReceiver is called with
onReceive()... and that’s about it.

As a result, the Architecture Components do not have lifecycle-aware editions of
those components.

134

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

	Table of Contents
	Preface
	How the Book Is Structured
	Prerequisites
	About the Updates
	What’s New in Version 0.1?
	Warescription
	Book Bug Bounty
	Source Code and Its License
	Creative Commons and the Four-to-Free (42F) Guarantee

	Room Basics
	Wrenching Relations Into Objects
	Room Requirements
	Room Furnishings
	Entities
	DAO
	Database

	Get a Room

	Testing Room
	Writing Instrumentation Tests
	Using In-Memory Databases
	Importing Starter Data

	Writing Unit Tests via Mocks

	The Dao of Entities
	Configuring Entities
	Primary Keys
	Auto-Generated Primary Keys
	Composite Primary Keys

	Adding Indexes
	Ignoring Fields
	Custom Table and Column Names

	DAOs and Queries
	Adding Parameters
	WHERE Clause
	Other Clauses

	What You Can Return
	Specific Return Types
	Breadth of Results

	Aggregate Functions
	Dynamic Queries

	Other DAO Operations
	Parameters
	Return Values
	Conflict Resolution
	Other Operations

	Transactions and Room
	Threads and Room

	Room and Custom Types
	Type Converters
	Setting Up a Type Converter
	Example: Dates and Times
	Example: Locations
	Example: Simple Collections

	Embedded Types
	Example: Locations
	Simple vs. Prefixed

	Updating the Trip Sample

	Room and Relations
	The Classic ORM Approach
	A History of Threading Mistakes
	The Room Approach
	No Direct Entity References
	Foreign Keys
	Cascades on Updates and Deletes
	Cascades on… Retrievals?

	Plans for Trips
	The Domain Model
	The New Entities
	The Updated DAO and Database

	Self-Referential Relations for Tree Structures
	Using @Relation
	Representing No Relation

	Room and Migrations
	What’s a Migration?
	When Do We Migrate?
	But First, a Word About the Support Database Classes
	…And a Word About Exporting Schemas
	Writing Migrations
	Employing Migrations
	How Room Applies Migrations
	Testing Migrations
	Adding the Artifact
	Adding the Schemas
	Creating and Using a MigrationTestHelper
	Adding the Rule
	Setting Up the Helper
	Creating a Database for a Schema Version
	Testing a Migration

	Securing Your Room
	Meet the Players
	SQLCipher for Android
	CWAC-SafeRoom

	Using CWAC-SafeRoom
	Adding the Dependency
	Using CWAC-SafeRoom
	Passphrase Management

	More to Come!

	Lifecycles and Owners
	A Tale of Terminology
	Lifecycle
	Lifecycle Owner
	Lifecycle Observers

	Adding the Lifecycle Components
	Getting a Lifecycle
	…From a LifecycleActivity or LifecycleFragment
	…From an AppCompatActivity
	…From an Activity or Fragment
	…From Anything Else

	Observing a Lifecycle
	So, What’s the Point of This?

	LiveData
	Observables Are the New Black
	Yet More Terminology
	LiveData
	Observer
	Active State

	Implementing LiveData
	Dependencies
	State Transitions
	Updating the Observers
	Retaining the LiveData

	Other LiveData Examples
	Event Bus
	Room

	Testing LiveData

	ViewModel
	ViewModels, As Originally Envisioned
	ViewModel Versus…
	…Saved Instance State
	…Retained Objects

	Mommy, Where Do ViewModels Come From?
	ViewModels, Google’s Way
	Defining a ViewModel
	Getting a ViewModel
	Using the ViewModel
	Getting Rid of the ViewModel

	ViewModels as Simple POJOs
	Defining a ViewModel
	Getting a ViewModel

	Other Lifecycle Owners
	ProcessLifecycleOwner
	LifecycleService
	Wait… Where Is LifecycleProvider and LifecycleReceiver?

