
�� � ���� ���	

��
����
	������
�����
��� ������ �� � �
� !"#$%#� &!'()

*������+,-./001234536789:21;:5<=>.?@A

The Busy Coder's Guide to Android
Development

by Mark L. Murphy

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Busy Coder's Guide to Android Development
by Mark L. Murphy

Copyright © 2008-2011 CommonsWare, LLC. All Rights Reserved.
Printed in the United States of America.

CommonsWare books may be purchased in printed (bulk) or digital form for educational or
business use. For more information, contact direct@commonsware.com.

Printing History:
Mar 2011:Version 3.6 ISBN: 978-0-9816780-0-9

The CommonsWare name and logo, “Busy Coder's Guide”, and related trade dress are
trademarks of CommonsWare, LLC.

All other trademarks referenced in this book are trademarks of their respective firms.

The publisher and author(s) assume no responsibility for errors or omissions or for damages
resulting from the use of the information contained herein.

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Table of Contents

Welcome to the Warescription!..xxiii

Preface...xxv

Welcome to the Book!..xxv

Warescription..xxv

Book Bug Bounty...xxvi

Source Code And Its License...xxvii

Creative Commons and the Four-to-Free (42F) Guarantee...............xxviii

Acknowledgments...xxix

The Big Picture...1

What Androids Are Made Of...3

Activities...3

Services...4

Content Providers..4

Intents...4

Stuff At Your Disposal..5

Storage...5

Network...5

Multimedia...5

GPS..5

iii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Phone Services..6

The Big Picture...Of This Book..6

How To Get Started...7

Step #1: Java...7

Install the JDK..7

Learn Java...8

Step #2: Install the Android SDK..9

Install the Base Tools...9

Install the SDKs and Add-Ons..9

Step #3: Install the ADT for Eclipse...13

Step #4: Install Apache Ant..15

Step #5: Set Up the Emulator...16

Step #6: Set Up the Device...23

Windows...24

OS X and Linux...25

Your First Android Project..27

Step #1: Create the New Project...27

Eclipse...27

Command Line..31

Step #2: Build, Install, and Run the Application in Your Emulator or

Device..32

Eclipse..32

Command Line...33

Examining Your First Project..37

Project Structure...37

Root Contents...37

The Sweat Off Your Brow..38

iv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

And Now, The Rest of the Story..39

What You Get Out Of It..40

Inside Your Manifest..40

In The Beginning, There Was the Root, And It Was Good...............41

An Application For Your Application...42

A Bit About Eclipse..45

What the ADT Gives You...45

Coping with Eclipse..46

How to Import a Non-Eclipse Project..46

How to Get To DDMS...51

How to Create an Emulator...53

How to Run a Project...54

How Not to Run Your Project...55

Alternative IDEs..55

More on the Tools..56

IDEs...And This Book...57

Enhancing Your First Project..59

Supporting Multiple Screens...59

Specifying Versions..60

Rewriting Your First Project...65

The Activity...65

Dissecting the Activity...66

Building and Running the Activity...68

About the Remaining Examples..69

Using XML-Based Layouts...71

What Is an XML-Based Layout?...71

Why Use XML-Based Layouts?..72

v

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

OK, So What Does It Look Like?...73

What's With the @ Signs?...74

And We Attach These to the Java...How?..74

The Rest of the Story..75

Employing Basic Widgets..79

Assigning Labels...79

Button, Button, Who's Got the Button?...80

Fleeting Images...81

Fields of Green. Or Other Colors..83

Just Another Box to Check...85

Turn the Radio Up..88

It's Quite a View...90

Padding...90

Other Useful Properties..90

Useful Methods...91

Colors...91

Working with Containers..93

Thinking Linearly...94

Concepts and Properties...94

Example...97

The Box Model..102

All Things Are Relative...104

Concepts and Properties..104

Example...107

Overlap..109

Tabula Rasa...111

Concepts and Properties...112

vi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Example..114

Scrollwork...115

The Input Method Framework..119

Keyboards, Hard and Soft...119

Tailored To Your Needs..120

Tell Android Where It Can Go...124

Fitting In...127

Jane, Stop This Crazy Thing!..128

Using Selection Widgets...131

Adapting to the Circumstances...131

Using ArrayAdapter..132

Lists of Naughty and Nice...133

Selection Modes..135

Spin Control...137

Grid Your Lions (Or Something Like That...)..141

Fields: Now With 35% Less Typing!...145

Galleries, Give Or Take The Art...149

Getting Fancy With Lists..151

Getting To First Base..151

A Dynamic Presentation...154

Inflating Rows Ourselves..156

A Sidebar About Inflation..156

And Now, Back To Our Story..158

Better. Stronger. Faster...159

Using convertView..159

Using the Holder Pattern..161

Interactive Rows..164

vii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers..171

Pick and Choose...171

Time Keeps Flowing Like a River...176

Seeking Resolution..178

Putting It On My Tab..179

The Pieces..180

Wiring It Together..181

Adding Them Up..184

Flipping Them Off...188

Getting In Somebody's Drawer..193

Other Good Stuff...197

Embedding the WebKit Browser...199

A Browser, Writ Small..199

Loading It Up..202

Navigating the Waters..203

Entertaining the Client..204

Settings, Preferences, and Options (Oh, My!).......................................206

Applying Menus...209

Flavors of Menu..209

Menus of Options..210

Menus in Context..212

Taking a Peek...213

Yet More Inflation...218

Menu XML Structure..219

Menu Options and XML..219

Inflating the Menu..221

In the Land of Menus and Honey..223

viii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Showing Pop-Up Messages..225

Raising Toasts..225

Alert! Alert!..226

Checking Them Out...227

Handling Activity Lifecycle Events..231

Schroedinger's Activity..231

Life, Death, and Your Activity...232

onCreate() and onDestroy()..232

onStart(), onRestart(), and onStop()..233

onPause() and onResume()...234

The Grace of State...234

Handling Rotation...237

A Philosophy of Destruction..237

It's All The Same, Just Different..238

Picking and Viewing a Contact...240

Saving Your State...242

Now With More Savings!...245

DIY Rotation...247

...But Google Does Not Recommend This..250

Forcing the Issue..251

Making Sense of it All...253

Dealing with Threads...255

The Main Application Thread..255

Making Progress with ProgressBars..257

Getting Through the Handlers..258

Messages...258

Runnables...262

ix

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Where, Oh Where Has My UI Thread Gone?..262

Asyncing Feeling...262

The Theory..263

AsyncTask, Generics, and Varargs..264

The Stages of AsyncTask...264

A Sample Task..265

Threads and Rotation...270

Manual Activity Association..271

Flow of Events..274

Why This Works...275

And Now, The Caveats...276

Creating Intent Filters...277

What's Your Intent?...278

Pieces of Intents...278

Intent Routing..279

Stating Your Intent(ions)...280

Narrow Receivers..282

The Pause Caveat..283

Launching Activities and Sub-Activities...285

Peers and Subs..286

Start 'Em Up..286

Make an Intent...286

Make the Call..287

Tabbed Browsing, Sort Of..291

Working with Resources...297

The Resource Lineup..297

String Theory..298

x

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Plain Strings..298

String Formats..299

Styled Text..300

Styled Text and Formats..300

Got the Picture?..304

XML: The Resource Way...306

Miscellaneous Values...309

Dimensions...309

Colors...310

Arrays..311

Different Strokes for Different Folks...312

RTL Languages: Going Both Ways...317

Defining and Using Styles..319

Styles: DIY DRY...319

Elements of Style...321

Where to Apply a Style..322

The Available Attributes..322

Inheriting a Style..323

The Possible Values..324

Themes: Would a Style By Any Other Name...325

Handling Multiple Screen Sizes..327

Taking the Default..328

Whole in One..329

Don't Think About Positions, Think About Rules...........................330

Consider Physical Dimensions...331

Avoid "Real" Pixels..331

Choose Scalable Drawables...332

xi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Tailor Made, Just For You (And You, And You, And...).........................332

<supports-screens>...333

Resources and Resource Sets...334

Finding Your Size..335

Ain't Nothing Like the Real Thing..336

Density Differs..336

Adjusting the Density...337

Ruthlessly Exploiting the Situation...338

Replace Menus with Buttons...339

Replace Tabs with a Simple Activity...339

Consolidate Multiple Activities..340

Example: EU4You...340

The First Cut..341

Fixing the Fonts..347

Fixing the Icons..350

Using the Space..350

What If It Is Not a Browser?..353

Introducing the Honeycomb UI..357

Why Honeycomb?..357

What the User Sees...358

The Holographic Theme..363

Dealing with the Rest of the Devices..364

Using the Action Bar..367

Enabling the Action Bar...367

Promoting Menu Items to the Action Bar..368

Responding to the Logo...369

Adding Custom Views to the Action Bar..370

xii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Defining the Layout...370

Putting the Layout in the "Menu"...372

Getting Control of User Input...373

Don't Forget the Phones!..375

Fragments...377

Introducing Fragments...377

The Problem...378

The Fragments Solution..378

The Android Compatibility Library..380

Creating Fragment Classes...381

General Fragments..381

ListFragment...383

Other Fragment Base Classes..388

Fragments, Layouts, Activities, and Multiple Screen Sizes...................389

EU4You...390

DetailsActivity..395

Fragments and Configuration Changes..396

Designing for Fragments..397

Handling Platform Changes...399

Things That Make You Go "Boom"...399

View Hierarchy..400

Changing Resources..400

Handling API Changes..401

Minimum, Maximum, Target, and Build Versions..........................401

Detecting the Version..404

Wrapping the API..404

Patterns for Honeycomb..407

xiii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Action Bar...407

Writing Tablet-Only Apps..409

Accessing Files..413

You And The Horse You Rode In On...413

Readin' 'n Writin'...417

External Storage: Giant Economy-Size Space...421

Where to Write..422

When to Write..422

StrictMode: Avoiding Janky Code...423

Setting up Strict Mode...424

Seeing It In Action...424

Development Only, Please!...425

Conditionally Being Strict...425

Linux Filesystems: You Sync, You Win...428

Using Preferences..431

Getting What You Want...431

Stating Your Preference..432

Introducing PreferenceActivity...433

Letting Users Have Their Say..434

Adding a Wee Bit O' Structure..439

The Kind Of Pop-Ups You Like...442

Preferences via Fragments...446

The Honeycomb Way..447

Adding Backwards Compatibility...452

Managing and Accessing Local Databases...455

A Quick SQLite Primer..457

Start at the Beginning...457

xiv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Setting the Table...461

Makin' Data...462

What Goes Around, Comes Around...463

Raw Queries..463

Regular Queries...464

Using Cursors...465

Custom CursorAdapters..466

Making Your Own Cursors..467

Flash: Sounds Faster Than It Is...467

Data, Data, Everywhere...468

Leveraging Java Libraries...471

Ants and Jars..471

The Outer Limits..472

Following the Script...473

Reviewing the Script...478

Communicating via the Internet..481

REST and Relaxation...481

HTTP Operations via Apache HttpClient..482

Parsing Responses..484

Stuff To Consider...486

AndroidHttpClient...487

Leveraging Internet-Aware Android Components................................488

Downloading Files...488

Continuing Our Escape From Janky Code...500

Services: The Theory..503

Why Services?...503

Setting Up a Service...504

xv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Service Class..504

Lifecycle Methods..505

Manifest Entry..505

Communicating To Services..506

Sending Commands with startService()..506

Binding with bindService()...508

Communicating From Services...509

Callback/Listener Objects...509

Broadcast Intents..510

Pending Results..511

Messenger...511

Notifications..512

Basic Service Patterns..513

The Downloader..513

The Design...514

The Service Implementation..514

Using the Service...517

The Music Player...518

The Design...519

The Service Implementation..519

Using the Service...521

The Web Service Interface...522

The Design..523

The Rotation Challenge...523

The Service Implementation...524

Using the Service..529

xvi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Alerting Users Via Notifications..537

Notification Configuration...537

Hardware Notifications...538

Icons..539

Notifications in Action...540

Staying in the Foreground...545

FakePlayer, Redux..546

Notifications and Honeycomb..548

Requesting and Requiring Permissions...553

Mother, May I?..554

Halt! Who Goes There?..555

Enforcing Permissions via the Manifest...556

Enforcing Permissions Elsewhere...557

May I See Your Documents?..557

New Permissions in Old Applications..558

Permissions: Up Front Or Not At All..558

Accessing Location-Based Services...563

Location Providers: They Know Where You're Hiding.........................564

Finding Yourself...564

On the Move...566

Are We There Yet? Are We There Yet? Are We There Yet?.................568

Testing...Testing...569

Mapping with MapView and MapActivity...571

Terms, Not of Endearment...571

Piling On..572

The Key To It All...572

The Bare Bones...574

xvii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Optional Maps..576

Exercising Your Control...576

Zoom..577

Center..577

Layers Upon Layers..578

Overlay Classes...578

Drawing the ItemizedOverlay...578

Handling Screen Taps..580

My, Myself, and MyLocationOverlay...581

Rugged Terrain...582

Maps and Fragments..584

Limit Yourself to Android 3.0...584

Use onCreateView() and onActivityCreated().................................585

Host the Fragment in a MapActivity..586

Handling Telephone Calls..589

Report To The Manager...590

You Make the Call!...590

No, Really, You Make the Call!..593

Fonts...595

Love The One You're With..595

Here a Glyph, There a Glyph...599

More Development Tools..601

Hierarchy Viewer: How Deep Is Your Code?..601

DDMS: Under Android's Hood...606

Logging...608

File Push and Pull..609

Screenshots...610

xviii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Location Updates...611

Placing Calls and Messages..612

Memory Management..616

adb: Like DDMS, With More Typing...617

The Role of Alternative Environments...621

In the Beginning, There Was Java...622

...And It Was OK...622

Bucking the Trend..623

Support, Structure..624

Caveat Developer..624

HTML5..627

Offline Applications...627

What Does It Mean?..627

How Do You Use It?..628

Web Storage..634

What Does It Mean?..635

How Do You Use It?...636

Web SQL Database..637

Going To Production..638

Testing...638

Signing and Distribution...638

Updates...639

Issues You May Encounter...639

Android Device Versions...639

Screen Sizes and Densities..640

Limited Platform Integration..640

Performance and Battery...641

xix

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Look and Feel...642

Distribution..642

HTML5 and Alternative Android Browsers..643

Firefox Mobile..643

Opera Mobile..643

Dolphin Browser HD 4.0...643

HTML5: The Baseline...643

PhoneGap...645

What Is PhoneGap?..645

What Do You Write In?...645

What Features Do You Get?...646

What Do Apps Look Like?..647

How Does Distribution Work?...647

What About Other Platforms?...648

Using PhoneGap...648

Installation...649

Creating and Installing Your Project..649

PhoneGap/Build...650

PhoneGap and the Checklist Sample..654

Sticking to the Standards..654

Adding PhoneGap APIs...657

Issues You May Encounter..660

Security...660

Screen Sizes and Densities...661

Look and Feel...662

For More Information..663

xx

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Other Alternative Environments..665

Rhodes...665

Flash, Flex, and AIR...666

JRuby and Ruboto..666

MonoDroid...667

App Inventor...667

Titanium Mobile..669

Other JVM Compiled Languages..670

Dealing With Devices..673

This App Contains Explicit... Instructions..673

Implied Feature Requests..675

A Guaranteed Market...676

Other Stuff That Varies..677

Bugs, Bugs, Bugs...678

Device Testing..678

Where Do We Go From Here?...681

Questions. Sometimes, With Answers..681

Heading to the Source...682

Getting Your News Fix...683

xxi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Welcome to the Warescription!

We hope you enjoy this ebook and its updates – subscribe to the
Warescription newsletter on the Warescription site to learn when new
editions of this book, or other books, are available.

All editions of CommonsWare titles, print and ebook, follow a software-
style numbering system. Major releases (1.0, 2.0, etc.) are available in both
print and ebook; minor releases (0.1, 0.9, etc.) are available in ebook form
for Warescription subscribers only. Releases ending in .9 are "release
candidates" for the next major release, lacking perhaps an index but
otherwise being complete.

Each Warescription ebook is licensed for the exclusive use of its subscriber
and is tagged with the subscriber's name. We ask that you not distribute
these books. If you work for a firm and wish to have several employees have
access, enterprise Warescriptions are available. Just contact us at
enterprise@commonsware.com.

Also, bear in mind that eventually this edition of this title will be released
under a Creative Commons license – more on this in the preface.

Remember that the CommonsWare Web site has errata and resources (e.g.,
source code) for each of our titles. Just visit the Web page for the book you
are interested in and follow the links.

You can search through the PDF using most PDF readers (e.g., Adobe
Reader). If you wish to search all of the CommonsWare books at once, and

xxiii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

mailto:enterprise@commonsware.com
http://wares.commonsware.com/

your operating system does not support that directly, you can always
combine the PDFs into one, using tools like PDF Split-And-Merge or the
Linux command pdftk *.pdf cat output combined.pdf.

xxiv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.pdfsam.org/

Preface

Welcome to the Book!

Thanks!

Thanks for your interest in developing applications for Android!
Increasingly, people will access Internet-based services using so-called
"non-traditional" means, such as mobile devices. The more we do in that
space now, the more that people will help invest in that space to make it
easier to build more powerful mobile applications in the future. Android is
new – Android-powered devices appeared on the scene first in late 2008 –
but it likely will rapidly grow in importance due to the size and scope of the
Open Handset Alliance.

And, most of all, thanks for your interest in this book! I sincerely hope you
find it useful and at least occasionally entertaining.

Warescription

This book will be published both in print and in digital (ebook) form. The
ebook versions of all CommonsWare titles are available via an annual
subscription – the Warescription.

The Warescription entitles you, for the duration of your subscription, to
ebook forms of all CommonsWare titles, not just the one you are reading.

xxv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Presently, CommonsWare offers PDF and Kindle; other ebook formats will
be added based on interest and the openness of the format.

Each subscriber gets personalized editions of all editions of each title: both
those mirroring printed editions and in-between updates that are only
available in ebook form. That way, your ebooks are never out of date for
long, and you can take advantage of new material as it is made available
instead of having to wait for a whole new print edition. For example, when
new releases of the Android SDK are made available, this book will be
quickly updated to be accurate with changes in the APIs.

From time to time, subscribers will also receive access to subscriber-only
online material, both short articles and not-yet-published new titles.

Also, if you own a print copy of a CommonsWare book, and it is in good
clean condition with no marks or stickers, you can exchange that copy for a
discount off the Warescription price.

If you are interested in a Warescription, visit the Warescription section of
the CommonsWare Web site.

You can find out when new releases of this book are available via:

• The cw-android Google Group, which is also a great place to ask
questions about the book and its examples

• The commonsguy Twitter feed

• The Warescription newsletter, which you can subscribe to off of
your Warescription page

Book Bug Bounty

Find a problem in one of our books? Let us know!

Be the first to report a unique concrete problem in the current digital
edition, and we'll give you a coupon for a six-month Warescription as a
bounty for helping us deliver a better product. You can use that coupon to
get a new Warescription, renew an existing Warescription, or give the

xxvi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://wares.commonsware.com/
http://twitter.com/commonsguy
http://groups.google.com/group/cw-android
http://commonsware.com/warescription.html

coupon to a friend, colleague, or some random person you meet on the
subway.

By "concrete" problem, we mean things like:

• Typographical errors

• Sample applications that do not work as advertised, in the
environment described in the book

• Factual errors that cannot be open to interpretation

By "unique", we mean ones not yet reported. Each book has an errata page
on the CommonsWare Web site; most known problems will be listed there.
One coupon is given per email containing valid bug reports.

We appreciate hearing about "softer" issues as well, such as:

• Places where you think we are in error, but where we feel our
interpretation is reasonable

• Places where you think we could add sample applications, or
expand upon the existing material

• Samples that do not work due to "shifting sands" of the underlying
environment (e.g., changed APIs with new releases of an SDK)

However, those "softer" issues do not qualify for the formal bounty
program.

Be sure to check the book's errata page, though, to see if your issue has
already been reported.

Questions about the bug bounty, or problems you wish to report for bounty
consideration, should be sent to bounty@commonsware.com.

Source Code And Its License

The source code samples shown in this book are available for download
from the book's GitHub repository. All of the Android projects are licensed
under the Apache 2.0 License, in case you have the desire to reuse any of it.

xxvii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.apache.org/licenses/LICENSE-2.0.html
http://github.com/commonsguy/cw-android
mailto:bounty@commonsware.com
http://commonsware.com/Android/errata

If you wish to use the source code from the CommonsWare Web site, bear
in mind a few things:

1. The projects are set up to be built by Ant, not by Eclipse. If you wish
to use the code with Eclipse, you will need to create a suitable
Android Eclipse project and import the code and other assets.

2. You should delete build.xml, then run android update project
-p ... (where ... is the path to a project of interest) on those
projects you wish to use, so the build files are updated for your
Android SDK version.

Creative Commons and the Four-to-Free
(42F) Guarantee

Each CommonsWare book edition will be available for use under the
Creative Commons Attribution-Noncommercial-ShareAlike 3.0 license as of
the fourth anniversary of its publication date, or when 4,000 copies of the
edition have been sold, whichever comes first. That means that, once four
years have elapsed (perhaps sooner!), you can use this prose for non-
commercial purposes. That is our Four-to-Free Guarantee to our readers
and the broader community. For the purposes of this guarantee, new
Warescriptions and renewals will be counted as sales of this edition,
starting from the time the edition is published.

This edition of this book will be available under the aforementioned
Creative Commons license on 1 March 2015. Of course, watch the
CommonsWare Web site, as this edition might be relicensed sooner based
on sales.

For more details on the Creative Commons Attribution-Noncommercial-
ShareAlike 3.0 license, visit the Creative Commons Web site.

Note that future editions of this book will become free on later dates, each
four years from the publication of that edition or based on sales of that
specific edition. Releasing one edition under the Creative Commons license
does not automatically release all editions under that license.

xxviii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://creativecommons.org/licenses/by-nc-sa/3.0/

Acknowledgments

I would like to thank the Android team, not only for putting out a good
product, but for invaluable assistance on the Android Google Groups.

Some of the icons used in the sample code were provided by the Nuvola
icon set.

xxix

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.icon-king.com/?p=15

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PART I – Core Concepts

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 1

The Big Picture

Android is everywhere. Phones. Tablets. TVs and set-top boxes powered by
Google TV. Soon, Android will be in cars and all sort of other places as well.

However, the general theme of Android devices will be smaller screens
and/or no hardware keyboard. And, by the numbers, Android will probably
be most associated with smartphones for the foreseeable future.

For developers, this has benefits and drawbacks.

On the plus side, Android-style smartphones are sexy. Offering Internet
services over mobile devices dates back to the mid-1990's and the Handheld
Device Markup Language (HDML). However, only in recent years have
phones capable of Internet access taken off. Now, thanks to trends like text
messaging and to products like Apple's iPhone, phones that can serve as
Internet access devices are rapidly gaining popularity. So, working on
Android applications gives you experience with an interesting technology
(Android) in a fast-moving market segment (Internet-enabled phones),
which is always a good thing.

The problem comes when you actually have to program the darn things.

Anyone with experience in programming for PDAs or phones has felt the
pain of phones simply being small in all sorts of dimensions:

1

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Big Picture

• Screens are small (you will not get comments like, "is that a 24-inch
LCD in your pocket, or...?")

• Keyboards, if they exist, are small

• Pointing devices, if they exist, are annoying (as anyone who has lost
their stylus will tell you) or inexact (large fingers and "multi-touch"
LCDs can sometimes be...problematic)

• CPU speed and memory are tight compared to desktops and servers
you may be used to

• And so on

Moreover, applications running on a phone have to deal with the fact that
they're on a phone.

People with mobile phones tend to get very irritated when those phones do
not work. Similarly, those same people will get irritated at you if your
program "breaks" their phones:

• ...by tying up the CPU such that calls can't be received

• ...by not working properly with the rest of the phone's OS, such that
your application does not quietly fade to the background when a
call comes in or needs to be placed

• ...by crashing the phone's operating system, such as by leaking
memory like a sieve

Hence, developing programs for a phone is a different experience than
developing desktop applications, Web sites, or back-end server processes.
You wind up with different-looking tools, different-behaving frameworks,
and "different than you are used to" limitations on what you can do with
your program.

What Android tries to do is meet you halfway:

• You get a commonly-used programming language (Java) with some
commonly used libraries (e.g., some Apache Commons APIs), with
support for tools you may be used to (Eclipse)

2

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Big Picture

• You get a fairly rigid and uncommon framework in which your
programs need to run so they can be "good citizens" on the phone
and not interfere with other programs or the operation of the phone
itself

As you might expect, much of this book deals with that framework and how
you write programs that work within its confines and take advantage of its
capabilities.

What Androids Are Made Of

When you write a desktop application, you are "master of your own
domain". You launch your main window and any child windows – like
dialog boxes – that are needed. From your standpoint, you are your own
world, leveraging features supported by the operating system, but largely
ignorant of any other program that may be running on the computer at the
same time. If you do interact with other programs, it is typically through an
API, such as using JDBC (or frameworks atop it) to communicate with
MySQL or another database.

Android has similar concepts, but packaged differently, and structured to
make phones more crash-resistant.

Activities

The building block of the user interface is the activity. You can think of an
activity as being the Android analogue for the window or dialog in a
desktop application, or the page in a classic Web app. Android is designed
to support lots of cheap activities, so you can allow users to keep clicking to
bring up new activities and tapping the BACK button to back up, just like
they do in a Web browser.

3

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Big Picture

Services

Activities are short-lived and can be shut down at any time. Services, on the
other hand, are designed to keep running, if needed, independent of any
activity. You might use a service for checking for updates to an RSS feed, or
to play back music even if the controlling activity is no longer operating.
You will also use services for scheduled tasks ("cron jobs") and for exposing
custom APIs to other applications on the device, though those are relatively
advanced capabilities.

Content Providers

Content providers provide a level of abstraction for any data stored on the
device that is accessible by multiple applications. The Android
development model encourages you to make your own data available to
other applications, as well as your own – building a content provider lets
you do that, while maintaining complete control over how your data gets
accessed.

Intents

Intents are system messages, running around the inside of the device,
notifying applications of various events, from hardware state changes (e.g.,
an SD card was inserted), to incoming data (e.g., an SMS message arrived),
to application events (e.g., your activity was launched from the device's
main menu). Not only can you respond to an Intent, but you can create
your own, to launch other activities, or to let you know when specific
situations arise (e.g., raise such-and-so Intent when the user gets within 100
meters of this-and-such location).

4

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Big Picture

Stuff At Your Disposal

Storage

You can package data files with your application, for things that do not
change, such as icons or help files. You also can carve out a small bit of
space on the device itself, for databases or files containing user-entered or
retrieved data needed by your application. And, if the user supplies bulk
storage, like an SD card, you can read and write files on there as needed.

Network

Android devices will generally be Internet-ready, through one
communications medium or another. You can take advantage of the
Internet access at any level you wish, from raw Java sockets all the way up
to a built-in WebKit-based Web browser widget you can embed in your
application.

Multimedia

Android devices have the ability to play back and record audio and video.
While the specifics may vary from device to device, you can query the
device to learn its capabilities and then take advantage of the multimedia
capabilities as you see fit, whether that is to play back music, take pictures
with the camera, or use the microphone for audio note-taking.

GPS

Android devices will frequently have access to location providers, such as
GPS, that can tell your applications where the device is on the face of the
Earth. In turn, you can display maps or otherwise take advantage of the
location data, such as tracking a device's movements if the device has been
stolen.

5

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Big Picture

Phone Services

And, of course, Android devices are typically phones, allowing your
software to initiate calls, send and receive SMS messages, and everything
else you expect from a modern bit of telephony technology.

The Big Picture...Of This Book

Here is what's coming in the rest of this book:

The next two chapters are designed to get you going quickly with the
Android environment, through a series of step-by-step, tutorial-style
instructions for setting up the tools you need, creating your first project,
and getting that first project running on the Android emulator.

The three chapters that follow try to explain a bit more about what just
happened in those first two chapters. We examine the Android project that
we created, talk a bit more about Eclipse, and discuss some things we could
add to the project to help it run on more devices and such.

The bulk of the book is exploring various capabilities of the Android APIs –
how to create components like activities, how to access the Internet and
local databases, how to get your location and show it on a map, and so
forth.

6

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 2

How To Get Started

Without further ado, let us get you set up with the pieces and parts
necessary to build an Android app.

NOTE: the instructions presented here are accurate as of the time of this
writing. However, the tools change rapidly, and so these instructions may
be out of date by the time you read this. Please refer to the Android
Developers Web site for current instructions, using this as a base guideline
of what to expect.

Step #1: Java

When you write Android applications, you typically write them in Java
source code. That Java source code is then turned into the stuff that
Android actually runs (Dalvik bytecode in an APK file).

Hence, the first thing you need to do is get set up with a Java development
environment and be ready to start writing Java classes.

Install the JDK

You need to obtain and install the official Sun/Oracle Java SE SDK (JDK).
You can obtain this from the Oracle Java Web site for Windows and Linux,
and presumably from Apple for OS X. The plain JDK (sans any "bundles")

7

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.oracle.com/technetwork/java/index.html
http://developer.android.com/
http://developer.android.com/

How To Get Started

should suffice. Follow the instructions supplied by Oracle or Apple for
installing it on your machine. At the time of this writing, Android supports
Java 5 and Java 6, the latter being the now-current edition.

Alternative Java Compilers

In principle, you are supposed to use the official Sun/Oracle Java SE SDK.
In practice, it appears that OpenJDK also works, at least on Ubuntu.
However, the further removed you get from the official Sun/Oracle
implementation, the less likely it is that it will work. For example, the GNU
Compiler for Java (GCJ) may not work with Android.

Learn Java

This book, like most books and documentation on Android, assumes that
you have basic Java programming experience. If you lack this, you really
should consider spending a bit of time on Java fundamentals, before you
dive into Android. Otherwise, you may find the experience to be
frustrating.

If you are in need of a crash course in Java to get involved in Android
development, here are the concepts you need to succeed, presented in no
particular order:

• Language fundamentals (flow control, etc.)

• Classes and objects

• Methods and data members

• Public, private, and protected

• Static and instance scope

• Exceptions

• Threads and concurrency control

• Collections

• Generics

8

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

How To Get Started

• File I/O

• Reflection

• Interfaces

Step #2: Install the Android SDK

The Android SDK gives you all the tools you need to create and test
Android applications. It comes in two parts: the base tools, plus version-
specific SDKs and related add-ons.

Install the Base Tools

The Android developer tools can be found on the Android Developers Web
site. Download the ZIP file appropriate for your platform and unZIP it in
some likely spot – there is no specific path that is required. Windows users
also have the option of running a self-installing EXE file.

Install the SDKs and Add-Ons

Inside the tools/ directory of your Android SDK installation from the
previous step, you will see an android batch file or shell script. If you run
that, you will be presented with the Android SDK and AVD Manager:

9

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html

How To Get Started

Figure 1. Android SDK and AVD Manager

At this point, while you have some of the build tools, you lack the Java files
necessary to compile an Android application. You also lack a few additional
build tools, plus the files necessary to run an Android emulator.

To address this, click on the Available Packages option on the left. This
brings up a tree:

Figure 2. Android SDK and AVD Manager Available Packages

10

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

How To Get Started

Open the Android Repository branch of the tree. After a short pause, you
will see a screen similar to this:

Figure 3. Android SDK and AVD Manager Available Android Packages

You will want to check the following items:

• "SDK Platform" for all Android SDK releases you want to test
against

• "Documentation for Android SDK" for the latest Android SDK
release

• "Samples for SDK" for the latest Android SDK release, and perhaps
for older releases if you wish

Then, open the Third-Party Add-Ons branch of the tree. After a short
pause, you will see a screen similar to this:

11

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

How To Get Started

Figure 4. Android SDK and AVD Manager Available Third-Party Add-Ons

Fold open the "Google Inc. add-ons" branch, which will display something
like this:

Figure 5. Android SDK and AVD Manager Available Google Add-Ons

Most likely, you will want to check the "Google APIs by Google Inc." items
that match up with the SDK versions you selected in the Android
Repository branch. The "Google APIs" include support for Google Maps,
both from your code and in the Android emulator.

12

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

How To Get Started

When you have checked all of the items you want to download, click the
Install Selected button, which brings up a license confirmation dialog:

Figure 6. Android SDK and AVD Manger Installing Packages

Review and accept the licenses, then click the Install button. At this point,
this is a fine time to go get lunch. Or, perhaps dinner. Unless you have a
substantial Internet connection, downloading all of this data and
unpacking it will take a fair bit of time.

When the download is complete, you can close up the SDK and AVD
Manager if you wish, though we will use it to set up the emulator in a later
step of this chapter.

Step #3: Install the ADT for Eclipse

If you will not be using Eclipse for your Android development, you can skip
to the next section.

If you have not yet installed Eclipse, you will need to do that first. Eclipse
can be downloaded from the Eclipse Web site. The "Eclipse IDE for Java
Developers" package will work fine.

13

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.eclipse.org/downloads/

How To Get Started

Next, you need to install the Android Developer Tools (ADT) plug-in. To do
this, go to Help | Install New Software... in the Eclipse main menu. Then,
click the Add button to add a new source of plug-ins. Give it some name
(e.g., Android) and supply the following URL: https://dl-
ssl.google.com/android/eclipse/. That should trigger Eclipse to download
the roster of plug-ins available from that site:

Figure 7. Eclipse ADT plug-in installation

Check the checkbox to the left of "Developer Tools" and click the Next
button. Follow the rest of the wizard to review the tools to be downloaded
and their respective license agreements. When the Finish button is
enabled, click it, and Eclipse will download and install the plug-ins. When
done, Eclipse will ask to restart – please let it.

Then, you need to teach ADT where your Android SDK installation is from
the preceding section. To do this, choose Window | Preferences from the

14

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

How To Get Started

Eclipse main menu (or the equivalent Preferences option for OS X). Click
on the Android entry in the list on the left:

Figure 8. Eclipse ADT configuration

Then, click the Browse... button to find the directory where you installed
the SDK. After choosing it, click Apply on the Preferences window, and you
should see the Android SDK versions you installed previously. Then, click
OK, and the ADT will be ready for use.

Step #4: Install Apache Ant

If you will be doing all of your development from Eclipse, you can skip to
the next section.

If you wish to develop using command-line build tools, you will need to
install Apache Ant. You may have this already from previous Java
development work, as it is fairly common in Java projects. However, you

15

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

How To Get Started

will need Ant version 1.8.1, so double-check your current copy (e.g., ant
-version) to ensure you are on the proper edition.

If you do not have Ant, you can obtain it from the Apache Ant Web site.
They have full installation instructions in the Ant manual, but the basic
steps are:

1. Unpack the ZIP archive wherever it may make sense on your
machine

2. Add a JAVA_HOME environment variable, pointing to where your JDK
is installed, if you do not have one already

3. Add an ANT_HOME environment variable, pointing to the directory
where you unpacked Ant in the first step above

4. Add $JAVA_HOME/bin and $ANT_HOME/bin to your PATH

5. Run ant -version to confirm that Ant is installed properly

Step #5: Set Up the Emulator

The Android tools include an emulator, a piece of software that pretends to
be an Android device. This is very useful for development – not only does it
mean you can get started on Android without a device, but the emulator
can help test device configurations that you do not own.

The Android emulator can emulate one or several Android devices. Each
configuration you want is stored in an "Android Virtual Device", or AVD.
The SDK and AVD Manager, which you used to download the SDK
components earlier in this chapter, is where you create these AVDs.

If you do not have the SDK and AVD Manager running, you can run it via
the android command from your SDK's tools/ directory, or via Window |
SDK and AVD Manager from Eclipse. It starts up on a screen listing the
AVDs you have available – initially, the list will be empty:

16

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://ant.apache.org/manual/installlist.html
http://ant.apache.org/bindownload.cgi

How To Get Started

Figure 9. Android SDK and AVD Manager

Click the New... button to create a new AVD file. This brings up a dialog
where you can configure what this AVD should look and work like:

Figure 10. Adding a New AVD

17

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

How To Get Started

You need to provide the following:

• A name for the AVD. Since the name goes into files on your
development machine, you will be limited by filename conventions
for your operating system (e.g., no backslashes on Windows).

• The Android version you want the emulator to run (a.k.a., the
"target"). Choose one of the SDKs you installed via the drop-down
list. Note that in addition to "pure" Android environments, you will
have options based on the third-party add-ons you selected. For
example, you probably have some options for setting up AVDs
containing the Google APIs, and you will need such an AVD for
testing an application that uses Google Maps.

• Details about the SD card the emulator should emulate. Since
Android devices invariably have some form of "external storage",
you probably want to set up an SD card, by supplying a size in the
associated field. However, since a file will be created on your
development machine of whatever size you specify for the card, you
probably do not want to create a 2GB emulated SD card. 32MB is a
nice starting point, though you can go larger if needed.

• The "skin" or resolution the emulator should run in. The skin
options you have will depend upon what target you chose. The skins
let you choose a typical Android screen resolution (e.g., WVGA800
for 800x480). You can also manually specify a resolution when you
want to test a non-standard configuration.

You can skip the "Hardware" section for now, as changing those settings is
usually only required for advanced configurations.

The resulting dialog might look something like this:

18

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

How To Get Started

Figure 11. Adding a New AVD (continued)

Click the Create AVD button, and your AVD stub will be created.

To start the emulator, highlight it in the list and click Start... You can skip
the launch options for now and just click Launch. The first time you launch
a new AVD, it will take a long time to start up. The second and subsequent
times you start the AVD, it will come up a bit faster, and usually you only
need to start it up once per day (e.g., when you start development). You do
not need to stop and restart the emulator every time you want to test your
application, in most cases.

The emulator will go through a few startup phases, first with a plain-text
"ANDROID" label:

19

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

How To Get Started

Figure 12. Android emulator, initial startup segment

...then a graphical Android logo:

20

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

How To Get Started

Figure 13. Android emulator, secondary startup segment

before eventually landing at the home screen (the first time you run the
AVD, shown below) or the keyguard:

21

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

How To Get Started

Figure 14. Android home screen

If you get the keyguard (shown below), press the MENU button, or slide the
green lock on the screen to the right, to get to the emulator's home screen:

22

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

How To Get Started

Figure 15. Android keyguard

Step #6: Set Up the Device

You do not need an Android device to get started in Android application
development. Having one is a good idea before you try to ship an
application (e.g., upload it to the Android Market). And, perhaps you
already have a device – maybe that is what is spurring your interest in
developing for Android.

The first step to make your device ready for use with development is to go
into the Settings application on the device. From there, choose
Applications, then Development. That should give you a set of checkboxes
of development-related options to consider:

23

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

How To Get Started

Figure 16. Android device development settings

Generally, you will want to enable USB debugging, so you can use your
device with the Android build tools. You can leave the other settings alone
for now if you wish, though you may find the "Stay awake" option to be
handy, as it saves you from having to unlock your phone all of the time
while it is plugged into USB.

Next, you need to get your development machine set up to talk to your
device. That process varies by the operating system of your development
machine, as is covered in the following sections.

Windows

When you first plug in your Android device, Windows will attempt to find a
driver for it. It is possible that, by virtue of other software you have
installed, that the driver is ready for use. If it finds a driver, you are
probably ready to go.

24

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

How To Get Started

If the driver is not found, here are some options for getting one.

Windows Update

Some versions of Windows (e.g., Vista) will prompt you to search Windows
Update for drivers. This is certainly worth a shot, though not every device
will have supplied its driver to Microsoft.

Standard Android Driver

In your Android SDK installation, you will find a google-usb_driver
directory, containing a generic Windows driver for Android devices. You
can try pointing the driver wizard at this directory to see if it thinks this
driver is suitable for your device.

Manufacturer-Supplied Driver

If you still do not have a driver, search the CD that came with the device (if
any) or search the Web site of the device manufacturer. Motorola, for
example, has drivers available for all of their devices in one spot for
download.

OS X and Linux

Odds are decent that simply plugging in your device will "just work". You
can see if Android recognizes your device via running adb devices in a shell
(e.g., OS X Terminal), where adb is in your platform-tools/ directory of your
SDK. If you get output similar to the following, Android detected your
device:

List of devices attached
HT9CPP809576 device

If you are running Ubuntu (or perhaps other Linux variants), and this
command did not work, you may need to add some udev rules. For example,

25

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://developer.motorola.com/docstools/USB_Drivers/

How To Get Started

here is a 51-android.rules file that will handle the devices from a handful of
manufacturers:

SUBSYSTEM=="usb", SYSFS{idVendor}=="0bb4", MODE="0666"
SUBSYSTEM=="usb", SYSFS{idVendor}=="22b8", MODE="0666"
SUBSYSTEM=="usb", SYSFS{idVendor}=="18d1", MODE="0666"
SUBSYSTEMS=="usb", ATTRS{idVendor}=="18d1", ATTRS{idProduct}=="0c01",
MODE="0666", OWNER="[me]"
SUBSYSTEM=="usb", SYSFS{idVendor}=="19d2", SYSFS{idProduct}=="1354", MODE="0666"
SUBSYSTEM=="usb", SYSFS{idVendor}=="04e8", SYSFS{idProduct}=="681c", MODE="0666"

Drop that in your /etc/udev/rules.d directory on Ubuntu, then either
reboot the computer or otherwise reload the udev rules (e.g., sudo service
udev reload). Then, unplug and re-plug in the device and see if it is
detected.

26

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 3

Your First Android Project

Now that you have the Android SDK, it is time to make your first Android
project. The good news is that this requires zero lines of code – Android's
tools create a "Hello, world!" application for you as part of creating a new
project. All you need to do is build it, install it, and see it come up on your
emulator or device.

Step #1: Create the New Project

Android's tools can create a complete skeleton project for you, with
everything you need for a complete (albeit very trivial) Android application.
The only real difference comes from whether you are using Eclipse or the
command line.

Eclipse

From the Eclipse main menu, choose File | New | Project..., and this will
bring up a list of project types to choose from. Fold open the Android
option and click on Android Project:

27

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Your First Android Project

Figure 17. Eclipse New Project Wizard

Press Next to advance the wizard to the main Android project page:

28

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Your First Android Project

Figure 18. Eclipse New Project Wizard, Android Project

Fill in the following:

• The name of the project (e.g., Now)

• The Android SDK you wish to compile against (e.g., Google APIs for
Android 2.3.3)

• The name of the Java package in which this project goes (e.g.,
com.commonsware.android.skeleton)

29

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Your First Android Project

• The name of the initial activity to create (e.g., Now)

Figure 19. Eclipse New Project Wizard, Android Project (continued)

At this point, clicking Finish will create your Eclipse project.

30

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Your First Android Project

Command Line

Here is a sample command that creates an Android project from the
command line:

android create project --target "Google Inc.:Google APIs:7" --path Skeleton/Now
--activity Now --package com.commonsware.android.skeleton

This will create an application skeleton for you, complete with everything
you need to build your first Android application: Java source code, build
instructions, etc. However, you are probably going to need to customize
this somewhat. Here are what those command-line switches mean:

• --target indicates what version of Android you are "targeting" in
terms of your build process. You need to supply the ID of a target
that is installed on your development machine, one you
downloaded via the SDK and AVD Manager. You can find out what
targets are available via the android list targets command.
Typically, your build process will target the newest version of
Android that you have available.

• --path indicates where you want the project files to be generated.
Android will create a directory if the one you name does not exist.
For example, in the command shown above, a Skeleton/Now/
directory will be created (or used if it exists) underneath the current
working directory, and the project files will be stored there.

• --activity indicates the Java class name of your first activity for this
project. Do not include a package name, and the name has to meet
Java class naming conventions.

• --package indicates the Java package in which your first activity will
be located. This package also uniquely identifies your project on any
device on which you install it, and this package also needs to be
unique on the Android Market if you plan on distributing your
application there. Hence, typically, you construct your package
based on a domain name you own (e.g.,
com.commonsware.android.skeleton), to reduce the odds of an
accidental package name collision with somebody else.

31

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Your First Android Project

For your development machine, you will need to pick a suitable target, and
you may wish to change the path. The activity and package you can leave
alone for now.

Step #2: Build, Install, and Run the
Application in Your Emulator or Device

Having a project is nice and all, but it would be even better if we could
build and run it, whether on the Android emulator or your Android device.
Once again, the process differs somewhat depending on whether you are
using Eclipse or not.

Eclipse

With your project selected in the Package Explorer pane, click the green
"play" button in the Eclipse toolbar to run your project. The first time you
do this, you will have to go through a few steps to set up a "run
configuration", so Eclipse knows what you want to do.

First, in the "Run As" list, choose "Android Application":

Figure 20. Eclipse "Run As" List

32

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Your First Android Project

If you have more than one emulator AVD or device available, you will then
get an option to choose which you wish to run the application on.
Otherwise, if you do not have a device plugged in, the emulator will start up
with the AVD you created earlier. Then, Eclipse will install the application
on your device or emulator and start it up.

Command Line

For developers not using Eclipse, in your terminal, change into the
Skeleton/Now directory, then run the following command:

ant clean install

The Ant-based build should emit a list of steps involved in the installation
process, which look like this:

Buildfile: /home/some-balding-guy/projects/Skeleton/Now/build.xml
 [setup] Android SDK Tools Revision 8
 [setup] Project Target: Google APIs
 [setup] Vendor: Google Inc.
 [setup] Platform Version: 2.1-update1
 [setup] API level: 7
 [setup]
 [setup] ------------------
 [setup] Resolving library dependencies:
 [setup] No library dependencies.
 [setup]
 [setup] ------------------
 [setup]
 [setup] WARNING: No minSdkVersion value set. Application will install on all
Android versions.
 [setup]
 [setup] Importing rules file: tools/ant/main_rules.xml

clean:
 [delete] Deleting directory /home/some-balding-guy/projects/Skeleton/Now/bin

-debug-obfuscation-check:

-set-debug-mode:

-compile-tested-if-test:

-dirs:
 [echo] Creating output directories if needed...
 [mkdir] Created dir: /home/some-balding-guy/projects/Skeleton/Now/bin

33

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Your First Android Project

 [mkdir] Created dir: /home/some-balding-guy/projects/Skeleton/Now/gen
 [mkdir] Created dir: /home/some-balding-guy/projects/Skeleton/Now/bin/classes

-pre-build:

-resource-src:
 [echo] Generating R.java / Manifest.java from the resources...

-aidl:
 [echo] Compiling aidl files into Java classes...

-pre-compile:

compile:
 [javac] /opt/android-sdk-linux/tools/ant/main_rules.xml:361: warning:
'includeantruntime' was not set, defaulting to build.sysclasspath=last; set to
false for repeatable builds
 [javac] Compiling 2 source files to /home/some-balding-
guy/projects/Skeleton/Now/bin/classes

-post-compile:

-obfuscate:

-dex:
 [echo] Converting compiled files and external libraries into /home/some-
balding-guy/projects/Skeleton/Now/bin/classes.dex...

-package-resources:
 [echo] Packaging resources
 [aapt] Creating full resource package...

-package-debug-sign:
[apkbuilder] Creating Now-debug-unaligned.apk and signing it with a debug key...

debug:
 [echo] Running zip align on final apk...
 [echo] Debug Package: /home/some-balding-guy/projects/Skeleton/Now/bin/Now-
debug.apk

BUILD SUCCESSFUL
Total time: 4 seconds

Note the BUILD SUCCESSFUL at the bottom – that is how you know the
application compiled successfully.

When you have a clean build, in your emulator or device, open up the
application launcher, typically found at the bottom of the home screen:

34

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Your First Android Project

Figure 21. Android emulator application launcher

Notice there is an icon for your Now application. Click on it to open it and
see your first activity in action. To leave the application and return to the
launcher, press the "BACK button", located to the right of the [MENU]
button, and looks like an arrow pointing to the left.

35

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 4

Examining Your First Project

The previous chapter stepped you through creating a stub project. Now, let
us take a peek at what is inside of this project, so you understand what
Android gives you at the outset and what the roles are for the various
directories and files.

Project Structure

The Android build system is organized around a specific directory tree
structure for your Android project, much like any other Java project. The
specifics, though, are fairly unique to Android – the Android build tools do
a few extra things to prepare the actual application that will run on the
device or emulator. Here's a quick primer on the project structure, to help
you make sense of it all, particularly for the sample code referenced in this
book.

Root Contents

When you create a new Android project (e.g., via android create project),
you get several items in the project's root directory, including:

• AndroidManifest.xml, which is an XML file describing the application
being built and what components – activities, services, etc. – are
being supplied by that application

• bin/, which holds the application once it is compiled

37

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Examining Your First Project

• libs/, which holds any third-party Java JARs your application
requires

• res/, which holds "resources", such as icons, GUI layouts, and the
like, that get packaged with the compiled Java in the application

• src/, which holds the Java source code for the application

In addition to the files and directories shown above, you may find any of
the following in Android projects:

• assets/, which hold other static files you wish packaged with the
application for deployment onto the device

• gen/, where Android's build tools will place source code that they
generate

• build.xml and *.properties, which are used as part of the Ant-based
command-line build process, if you are not using Eclipse

• proguard.cfg, which is used for integration with ProGuard for
obfuscating your Android code

The Sweat Off Your Brow

When you created the project (e.g., via android create project), you
supplied the fully-qualified class name of the "main" activity for the
application (e.g., com.commonsware.android.SomeDemo). You will then find that
your project's src/ tree already has the namespace directory tree in place,
plus a stub Activity subclass representing your main activity (e.g.,
src/com/commonsware/android/SomeDemo.java). You are welcome to modify
this file and add others to the src/ tree as needed to implement your
application.

The first time you compile the project (e.g., via ant), out in the "main"
activity's namespace directory, the Android build chain will create R.java.
This contains a number of constants tied to the various resources you
placed out in the res/ directory tree. You should not modify R.java yourself,
letting the Android tools handle it for you. You will see throughout many of

38

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://proguard.sourceforge.net/

Examining Your First Project

the samples where we reference things in R.java (e.g., referring to a layout's
identifier via R.layout.main).

And Now, The Rest of the Story

You will also find that your project has a res/ directory tree. This holds
"resources" – static files that are packaged along with your application,
either in their original form or, occasionally, in a preprocessed form. Some
of the subdirectories you will find or create under res/ include:

• res/drawable/ for images (PNG, JPEG, etc.)

• res/layout/ for XML-based UI layout specifications

• res/menu/ for XML-based menu specifications

• res/raw/ for general-purpose files (e.g,. an audio clip, a CSV file of
account information)

• res/values/ for strings, dimensions, and the like

• res/xml/ for other general-purpose XML files you wish to ship

Some of the directory names may have suffixes, like res/drawable-hdpi/.
This indicates that the directory of resources should only be used in certain
circumstances – in this case, the drawable resources should only be used on
devices with high-density screens.

We will cover all of these, and more, in later chapters of this book.

In your initial project, you will find:

• res/drawable-hdpi/icon.png, res/drawable-ldpi/icon.png, and
res/drawable-mdpi/icon.png, which are three renditions of a
placeholder icon for your application for high-, low-, and medium-
density screens, respectively

• res/layout/main.xml, which contains an XML file that describes the
very simple layout of your user interface

39

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Examining Your First Project

• res/values/strings.xml, which contains externalized strings, notably
the placeholder name of your application

What You Get Out Of It

When you compile your project (via ant or the IDE), the results go into the
bin/ directory under your project root. Specifically:

• bin/classes/ holds the compiled Java classes

• bin/classes.dex holds the executable created from those compiled
Java classes

• bin/yourapp.ap_ holds your application's resources, packaged as a
ZIP file (where yourapp is the name of your application)

• bin/yourapp-*.apk is the actual Android application (where * varies)

The .apk file is a ZIP archive containing the .dex file, the compiled edition
of your resources (resources.arsc), any un-compiled resources (such as
what you put in res/raw/) and the AndroidManifest.xml file. If you build a
debug version of the application – which is the default – you will have
yourapp-debug.apk and yourapp-debug-aligned.apk as two versions of your
APK. The latter has been optimized with the zipalign utility to make it run
faster.

Inside Your Manifest

The foundation for any Android application is the manifest file:
AndroidManifest.xml in the root of your project. Here is where you declare
what is inside your application – the activities, the services, and so on. You
also indicate how these pieces attach themselves to the overall Android
system; for example, you indicate which activity (or activities) should
appear on the device's main menu (a.k.a., launcher).

When you create your application, you will get a starter manifest generated
for you. For a simple application, offering a single activity and nothing else,
the auto-generated manifest will probably work out fine, or perhaps require

40

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Examining Your First Project

a few minor modifications. On the other end of the spectrum, the manifest
file for the Android API demo suite is over 1,000 lines long. Your production
Android applications will probably fall somewhere in the middle.

In The Beginning, There Was the Root, And It Was
Good

The root of all manifest files is, not surprisingly, a manifest element:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.search">
...
</manifest>

Note the namespace declaration. Curiously, the generated manifests only
apply it on the attributes, not the elements (e.g., manifest, not
android:manifest). However, that pattern works, so unless Android changes,
stick with their pattern.

The biggest piece of information you need to supply on the manifest
element is the package attribute (also curiously not-namespaced). Here, you
can provide the name of the Java package that will be considered the "base"
of your application. Then, everywhere else in the manifest file that needs a
class name, you can just substitute a leading dot as shorthand for the
package. For example, if you needed to refer to
com.commonsware.android.search.Snicklefritz in this manifest shown above,
you could just use .Snicklefritz, since com.commonsware.android.search is
defined as the application's package.

As noted in the previous chapter, your package also is a unique identifier
for your application. A device can only have one application installed with a
given package, and the Android Market will only list one project with a
given package.

Your manifest also specifies android:versionName and android:versionCode
attributes. These represent the versions of your application. The
android:versionName value is what the user will see in the Applications list in

41

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Examining Your First Project

their Settings application. Also, the version name is used by the Android
Market listing, if you are distributing your application that way. The version
name can be any string value you want. The android:versionCode, on the
other hand, must be an integer, and newer versions must have higher
version codes than do older versions. Android and the Android Market will
compare the version code of a new APK to the version code of an installed
application to determine if the new APK is indeed an update. The typical
approach is to start the version code at 1 and increment it with each
production release of your application, though you can choose another
convention if you wish.

An Application For Your Application

In your initial project's manifest, the only child of the <manifest> element is
an <application> element. The children of the <application> element
represent the core of the manifest file.

One attribute of the <application> element that you may need in select
circumstances is the android:debuggable attribute. This needs to be set to
true if you are installing the application on an actual device and you are
using Eclipse (or another debugger) and if your device precludes debugging
without this flag. For example, the Nexus One requires android:debuggable
= "true", according to some reports.

By default, when you create a new Android project, you get a single
<activity> element inside the <application> element:

<?xml version="1.0"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.skeleton">
 <application>
 <activity android:name=".Now" android:label="Now">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>
</manifest>

42

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Examining Your First Project

This element supplies android:name for the class implementing the activity,
android:label for the display name of the activity, and (frequently) an
<intent-filter> child element describing under what conditions this
activity will be displayed. The stock <activity> element sets up your activity
to appear in the launcher, so users can choose to run it. As we'll see later in
this book, you can have several activities in one project, if you so choose.

43

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 5

A Bit About Eclipse

Eclipse is an extremely popular IDE, particularly for Java development. It is
also designed to be extensible via an add-in system. To top it off, Eclipse is
open source. That combination made it an ideal choice of IDE to get
attention from the core Android developer team.

Specifically, to go alongside the Android SDK, Google has published some
add-ins for the Eclipse environment. Primary among these is the Android
Developer Tools (ADT) add-in, which gives the core of Eclipse awareness of
Android.

What the ADT Gives You

The ADT add-in, in essence, takes regular Eclipse operations and extends
them to work with Android projects. For example, with Eclipse, you get:

• New project wizards to create regular Android projects, Android
test projects, etc.

• The ability to run an Android project just like you might run a
regular Java application – via the green Run button in the toolbar –
despite the fact that this really involves pushing the Android
application over to an emulator or device, possibly even starting up
the emulator if it is not running

• Tooltip support for Android classes and methods

• And so on

45

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Bit About Eclipse

In addition, the latest version of the ADT provides you with preliminary
support for drag-and-drop GUI editing. While this book will focus on the
XML files that Eclipse will generate, Eclipse now lets you assemble those
XML files by dragging UI components around on the screen, adjusting
properties as you go. Drag-and-drop GUI editing is fairly new, and so there
may be a few rough edges for a while as the community and Google identify
the problems and limitations with the current implementation.

Coping with Eclipse

Eclipse is a powerful tool. Like many powerful tools, Eclipse is sometimes
confounding. Determining how to solve some specific development
problem can be a challenge, exacerbated by the new-ness of Android itself.

This section offers some tips for handling some common issues in using
Eclipse with Android.

How to Import a Non-Eclipse Project

Not all Android projects ship with Eclipse project files, such as the sample
projects associated with this book. However, these can still be easily added
to your Eclipse workspace, if you wish. Here is how to do it!

First, choose File > New > Project... from the Eclipse main menu:

46

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Bit About Eclipse

Figure 22. File menu in Eclipse

Then, choose Android > Android Project from the tree of available project
types:

47

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Bit About Eclipse

Figure 23. New project wizard in Eclipse

Note: if you do not see this option, you have not installed the Android
Developer Tools.

Then, in the next page of the project creation wizard, choose the "Create
project from existing source" radio button, click the [Browse...] button, and
open the directory containing your project's AndroidManifest.xml file. This
will populate most of the rest of this screen, though you may need to also
specify a build target from the table:

48

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Bit About Eclipse

Figure 24. Android project wizard in Eclipse

Then, click [Finish]. This will return you to Eclipse, with the imported
project in your workspace:

49

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Bit About Eclipse

Figure 25. Android project tree in Eclipse

Next, right-click over the project name, and choose Build Path > Configure
Build Path from the context menu:

Figure 26. Project context menu in Eclipse

50

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Bit About Eclipse

This brings up the build path portion of the project properties window:

Figure 27. Project properties window in Eclipse

If the Android JAR is not checked (see the Android 2.2 entry in the above
image), check it, then close the properties window. At this point, your
project should be ready for use.

How to Get To DDMS

Many times, you will be told to take a look at something in DDMS, such as
the LogCat tab to examine Java stack traces. In Eclipse, DDMS is a
perspective. To open this perspective in your workspace, choose Window >
Open Perspective > Other... from the main menu:

51

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Bit About Eclipse

Figure 28. Perspective menu in Eclipse

Then, in the list of perspectives, choose DDMS:

52

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Bit About Eclipse

Figure 29. Perspective roster in Eclipse

This will add the DDMS perspective to your workspace and open it in your
Eclipse IDE.

DDMS is covered in greater detail in a later chapter of this book.

How to Create an Emulator

By default, your Eclipse environment has no Android emulators set up. You
will need one before you can run your project successfully.

To do this, first choose Window > Android SDK and AVD Manager from the
main menu:

53

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Bit About Eclipse

Figure 30. Android AVD Manager menu option in Eclipse

That brings up the same window as you can get by running android from
the command line.

How to Run a Project

Given that you have an AVD defined, or that you have a device set up for
debugging and connected to your development machine, you can run your
project in the emulator.

First, click the Run toolbar button, or choose Project > Run from the main
menu. This will bring up the "Run As" dialog the first time you run the
project:

54

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Bit About Eclipse

Figure 31. Android AVD Manager menu option in Eclipse

Choose Android Application and click OK. If you have more than one AVD
or device available, you will be presented with a window where you choose
the desired target environment. Then, the emulator will start up to run
your application. Note that you will need to unlock the lock screen on the
emulator (or device) if it is locked.

How Not to Run Your Project

When you go to run your project, be sure to not have an XML file be the
active tab in the editor. Attempting to "run" this will result in a .out file
being created in whatever directory the XML file lives in (e.g.,
res/layout/main.xml.out). To recover, simply delete the offending .out file
and try running again, this time with a Java file as the active tab.

Alternative IDEs

If you really like Eclipse and the ADT, you may want to consider
MOTODEV Studio for Android. This is another set of add-ins for Eclipse,

55

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://developer.motorola.com/docstools/motodevstudio/

A Bit About Eclipse

augmenting the ADT and offering a number of other Android-related
development features, including:

• More wizards for helping you create Android classes

• Integrated SQLite browsing, so you can manipulate a SQLite
database in your emulator right from your IDE

• More validators to check for common bugs, and a library of code
snippets to have fewer bugs at the outset

• Assistance with translating your application to multiple languages

• And much more

While MOTODEV Studio for Android is published by Motorola, you can
use it to build applications for all Android devices, not only those
manufactured by Motorola themselves.

Other IDEs are slowly getting their equivalents of the ADT, albeit with
minimal assistance from Google. For example, IntelliJ's IDEA has a module
for Android – originally commercial, it is part of the open source
community edition of IDEA as of version 10.

And, of course, you do not need to use an IDE at all. While this may sound
sacrilegious to some, IDEs are not the only way to build applications. Much
of what is accomplished via the ADT can be accomplished through
command-line equivalents, meaning a shell and an editor is all you truly
need. For example, the author of this book does not presently use an IDE
and has no intention of adopting Eclipse any time soon.

More on the Tools

More coverage of DDMS, Hierarchy View, and other tools can be found
later in this book.

56

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Bit About Eclipse

IDEs...And This Book

You are welcome to use Eclipse as you work through this book. You are
welcome to use another IDE if you wish. You are even welcome to skip the
IDE outright and just use an editor.

This book is focused on demonstrating Android capabilities and the APIs
for exploiting those capabilities. It is not aimed at teaching the use of any
one IDE. As such, the sample code shown should work in any IDE,
particularly if you follow the instructions for importing non-Eclipse
projects into Eclipse supplied above.

57

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 6

Enhancing Your First Project

The AndroidManifest.xml file that Android generated for your first project
gets the job done. However, for a production application, you may wish to
consider adding a few attributes and elements, such as those described in
this chapter.

Supporting Multiple Screens

Android devices come with a wide range of screen sizes, from 2.8" tiny
smartphones to 46" Google TVs. Android divides these into four buckets,
based on physical size and the distance at which they are usually viewed:

• Small (under 3")

• Normal (3" to around 4.5")

• Large (4.5" to around 10")

• Extra-large (over 10")

By default, your application will not support small screens, will support
normal screens, and may support large and extra-large screens via some
automated conversion code built into Android.

To truly support all the screen sizes you want, you should consider adding a
<supports-screens> element. This enumerates the screen sizes you have
explicit support for. For example, if you want to support small screens, you

59

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Enhancing Your First Project

will need the <supports-screens> element. Similarly, if you are providing
custom UI support for large or extra-large screens, you will want to have
the <supports-screens> element. So, while the starting manifest file works,
handling multiple screen sizes is something you will want to think about.

Much more information about providing solid support for all screen sizes
can be found later in this book.

Specifying Versions

As was noted in the previous chapter, your manifest already contains some
version information, about your own application's version. However, you
probably want to add a <uses-sdk> element as a child of the <manifest>
element to your AndroidManifest.xml file, to specify what versions of
Android you are supporting. By default, your application is assumed to
support every Android version from 1.0 to the current 3.0 and onward to
any version in the future. Most likely, that is not what you want.

The most important attribute for your <uses-sdk> element is
android:minSdkVersion. This indicates what is the oldest version of Android
you are testing with your application. The value of the attribute is an
integer representing the Android SDK version:

• Android 1.0 = 1

• Android 1.1 = 2

• Android 1.5 = 3

• Android 1.6 = 4

• Android 2.0 = 5

• Android 2.0.1 = 6

• Android 2.1 = 7

• Android 2.2 = 8

• Android 2.3 = 9

• Android 2.3.3 = 10

60

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Enhancing Your First Project

• Android 3.0 = 11

So, if you are only testing your application on Android 2.1 and newer
versions of Android, you would set your android:minSdkVersion to be 7.

You may also wish to specify an android:targetSdkVersion attribute. This
indicates what version of Android you are thinking of as you are writing
your code. If your application is run on a newer version of Android,
Android may do some things to try to improve compatibility of your code
with respect to changes made in the newer Android. So, right now, you
might specify android:targetSdkVersion="10", indicating you are writing
your application with Android 2.3.3 in mind – if your app someday is run on
an Android 3.0 device, Android may take some extra steps to make sure
your 2.3.3-centric code runs correctly on the 3.0 device. In particular, to get
the new "Honeycomb" look-and-feel when running on an Android 3.0 (or
higher) tablet, you need to specify a target SDK version of 11 – this will be
covered in more detail later in the book.

61

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PART II – Activities

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 7

Rewriting Your First Project

The project you created in a previous chapter was just the default files
generated by the Android build tools – you did not write any Java code
yourself. In this chapter, we will modify that project to have a somewhat
more interactive sample. Along the way, we will examine the basic Java
code that makes up an Android activity.

NOTE: The instructions in this chapter assume you followed the original
instructions in terms of the names of packages and files. If you used
different names back then, you will need to adjust the following steps to
match.

The Activity

Your project's src/ directory contains the standard Java-style tree of
directories based upon the Java package you chose when you created the
project (e.g., com.commonsware.android results in
src/com/commonsware/android/). Inside the innermost directory you should
find a pre-generated source file named Now.java, which is where your first
activity will go.

Open Now.java in your editor and paste in the following code:

package com.commonsware.android.skeleton;

import android.app.Activity;

65

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Rewriting Your First Project

import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import java.util.Date;

public class Now extends Activity implements View.OnClickListener {
 Button btn;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 btn=new Button(this);
 btn.setOnClickListener(this);
 updateTime();
 setContentView(btn);
 }

 public void onClick(View view) {
 updateTime();
 }

 private void updateTime() {
 btn.setText(new Date().toString());
 }
}

Or, if you download the source files off the Web site, you can just use the
Skeleton/Now project directly.

Dissecting the Activity

Let's examine this Java code piece by piece:

package com.commonsware.android.skeleton;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import java.util.Date;

The package declaration needs to be the same as the one you used when
creating the project. And, like any other Java project, you need to import
any classes you reference. Most of the Android-specific classes are in the
android package.

66

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/Android/

Rewriting Your First Project

Remember that not every Java SE class is available to Android programs!
Visit the Android class reference to see what is and is not available.

public class Now extends Activity implements View.OnClickListener {
 Button btn;

Activities are public classes, inheriting from the android.app.Activity base
class. In this case, the activity holds a button (btn). Since, for simplicity, we
want to trap all button clicks just within the activity itself, we also have the
activity class implement OnClickListener.

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 btn=new Button(this);
 btn.setOnClickListener(this);
 updateTime();
 setContentView(btn);
}

The onCreate() method is invoked when the activity is started. The first
thing you should do is chain upward to the superclass, so the stock Android
activity initialization can be done.

In our implementation, we then create the button instance (new
Button(this)), tell it to send all button clicks to the activity instance itself
(via setOnClickListener()), call a private updateTime() method (see below),
and then set the activity's content view to be the button itself (via
setContentView()).

We will discuss that magical Bundle icicle in a later chapter. For the
moment, consider it an opaque handle that all activities receive upon
creation.

public void onClick(View view) {
 updateTime();
}

In Swing, a JButton click raises an ActionEvent, which is passed to the
ActionListener configured for the button. In Android, a button click causes

67

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://code.google.com/android/reference/packages.html

Rewriting Your First Project

onClick() to be invoked in the OnClickListener instance configured for the
button. The listener is provided the view that triggered the click (in this
case, the button). All we do here is call that private updateTime() method:

private void updateTime() {
 btn.setText(new Date().toString());
}

When we open the activity (onCreate()) or when the button is clicked
(onClick()), we update the button's label to be the current time via
setText(), which functions much the same as the JButton equivalent.

Building and Running the Activity

To build the activity, either use your IDE's built-in Android packaging tool,
or run ant clean install in the base directory of your project, as was
described in a previous chapter. Then, run the activity – it should be
automatically launched for you if you are using Eclipse, else find the
activity in the home screen launcher. You should see an activity akin to:

Figure 32. The Now demonstration activity

68

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Rewriting Your First Project

Clicking the button – in other words, pretty much anywhere on the phone's
screen – will update the time shown in the button's label.

Note that the label is centered horizontally and vertically, as those are the
default styles applied to button captions. We can control that formatting,
which will be covered in a later chapter.

After you are done gazing at the awesomeness of Advanced Push-Button
Technology™, you can click the back button on the emulator to return to
the launcher.

About the Remaining Examples

The chapters so far have given you some steps to work through yourself. If
you like that style of learning, you may wish to read Android Programming
Tutorials, by the author of this book. That book contains over 40 tutorials
with step-by-step instructions, so you can learn by doing. If you obtained
this book on the Warescription plan, you already have access to Android
Programming Tutorials – just download that book and go!

The rest of the chapters in this book present existing sample code, which
you can download if you wish. You are also welcome to key or paste in the
sample code from the book, though that is not the expectation.

69

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/warescription
http://commonsware.com/AndTutorials
http://commonsware.com/AndTutorials

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 8

Using XML-Based Layouts

While it is technically possible to create and attach widgets to our activity
purely through Java code, the way we did in the preceding chapter, the
more common approach is to use an XML-based layout file. Dynamic
instantiation of widgets is reserved for more complicated scenarios, where
the widgets are not known at compile-time (e.g., populating a column of
radio buttons based on data retrieved off the Internet).

With that in mind, it's time to break out the XML and learn how to lay out
Android activity views that way.

What Is an XML-Based Layout?

As the name suggests, an XML-based layout is a specification of widgets'
relationships to each other – and to containers – encoded in XML format.
Specifically, Android considers XML-based layouts to be resources, and as
such layout files are stored in the res/layout directory inside your Android
project.

Each XML file contains a tree of elements specifying a layout of widgets and
containers that make up one View. The attributes of the XML elements are
properties, describing how a widget should look or how a container should
behave. For example, if a Button element has an attribute value of
android:textStyle = "bold", that means that the text appearing on the face
of the button should be rendered in a boldface font style.

71

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using XML-Based Layouts

Android's SDK ships with a tool (aapt) which uses the layouts. This tool
should be automatically invoked by your Android tool chain (e.g., Eclipse,
Ant's build.xml). Of particular importance to you as a developer is that aapt
generates the R.java source file within your project's gen/ directory,
allowing you to access layouts and widgets within those layouts directly
from your Java code, as will be demonstrated later in this chapter.

Why Use XML-Based Layouts?

Most everything you do using XML layout files can be achieved through
Java code. For example, you could use setTypeface() to have a button
render its text in bold, instead of using a property in an XML layout. Since
XML layouts are yet another file for you to keep track of, we need good
reasons for using such files.

Perhaps the biggest reason is to assist in the creation of tools for view
definition, such as a GUI builder in an IDE like Eclipse or a dedicated
Android GUI designer like DroidDraw. Such GUI builders could, in
principle, generate Java code instead of XML. The challenge is re-reading
the definition in to support edits – that is far simpler if the data is in a
structured format like XML than in a programming language. Moreover,
keeping the generated bits separated out from hand-written code makes it
less likely that somebody's custom-crafted source will get clobbered by
accident when the generated bits get re-generated. XML forms a nice
middle ground between something that is easy for tool-writers to use and
easy for programmers to work with by hand as needed.

Also, XML as a GUI definition format is becoming more commonplace.
Microsoft's XAML, Adobe's Flex, Google's GWT, and Mozilla's XUL all take
a similar approach to that of Android: put layout details in an XML file and
put programming smarts in source files (e.g., Javascript for XUL). Many
less-well-known GUI frameworks, such as ZK, also use XML for view
definition. While "following the herd" is not necessarily the best policy, it
does have the advantage of helping to ease the transition into Android from
any other XML-centered view description language.

72

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.zkoss.org/
http://www.mozilla.org/projects/xul/
http://www.adobe.com/products/flex/
http://windowssdk.msdn.microsoft.com/en-us/library/ms752059.aspx
http://droiddraw.org/

Using XML-Based Layouts

OK, So What Does It Look Like?

Here is the Button from the previous chapter's sample application,
converted into an XML layout file, found in the Layouts/NowRedux sample
project:

<?xml version="1.0" encoding="utf-8"?>
<Button xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/button"
 android:text=""
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"/>

The class name of the widget – Button – forms the name of the XML
element. Since Button is an Android-supplied widget, we can just use the
bare class name. If you create your own widgets as subclasses of
android.view.View, you would need to provide a full package declaration as
well (e.g., com.commonsware.android.MyWidget).

The root element needs to declare the Android XML namespace:

xmlns:android="http://schemas.android.com/apk/res/android"

All other elements will be children of the root and will inherit that
namespace declaration.

Because we want to reference this button from our Java code, we need to
give it an identifier via the android:id attribute. We will cover this concept
in greater detail later in this chapter.

The remaining attributes are properties of this Button instance:

• android:text indicates the initial text to be displayed on the button
face (in this case, an empty string)

• android:layout_width and android:layout_height tell Android to have
the button's width and height fill the "parent", in this case the entire
screen – these attributes will be covered in greater detail in a later
chapter

73

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using XML-Based Layouts

Since this single widget is the only content in our activity's view, we only
need this single element. Complex views will require a whole tree of
elements, representing the widgets and containers that control their
positioning. All the remaining chapters of this book will use the XML layout
form whenever practical, so there are dozens of other examples of more
complex layouts for you to peruse.

What's With the @ Signs?

Many widgets and containers only need to appear in the XML layout file
and do not need to be referenced in your Java code. For example, a static
label (TextView) frequently only needs to be in the layout file to indicate
where it should appear. These sorts of elements in the XML file do not need
to have the android:id attribute to give them a name.

Anything you do want to use in your Java source, though, needs an
android:id.

The convention is to use @+id/... as the id value, where the ... represents
your locally-unique name for the widget in question, for the first
occurrence of a given id value in your layout file. The second and
subsequent occurrences in the same layout file should drop the + sign – a
feature we will use in an upcoming chapter. In the XML layout example in
the preceding section, @+id/button is the identifier for the Button widget.

Android provides a few special android:id values, of the form
@android:id/... – we will see some of these in various chapters of this book.

And We Attach These to the Java...How?

Given that you have painstakingly set up the widgets and containers for
your view in an XML layout file named main.xml stored in res/layout, all you
need is one statement in your activity's onCreate() callback to use that
layout:

setContentView(R.layout.main);

74

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using XML-Based Layouts

This is the same setContentView() we used earlier, passing it an instance of a
View subclass (in that case, a Button). The Android-built View, constructed
from our layout, is accessed from that code-generated R class. All of the
layouts are accessible under R.layout, keyed by the base name of the layout
file – res/layout/main.xml results in R.layout.main.

To access our identified widgets, use findViewById(), passing it the numeric
identifier of the widget in question. That numeric identifier was generated
by Android in the R class as R.id.something (where something is the specific
widget you are seeking). Those widgets are simply subclasses of View, just
like the Button instance we created in the previous chapter.

The Rest of the Story

In the original Now demo, the button's face would show the current time,
which would reflect when the button was last pushed (or when the activity
was first shown, if the button had not yet been pushed).

Most of that logic still works, even in this revised demo (NowRedux).
However, rather than instantiating the Button in our activity's onCreate()
callback, we can reference the one from the XML layout:

package com.commonsware.android.layouts;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import java.util.Date;

public class NowRedux extends Activity
 implements View.OnClickListener {
 Button btn;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 setContentView(R.layout.main);

 btn=(Button)findViewById(R.id.button);
 btn.setOnClickListener(this);
 updateTime();

75

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using XML-Based Layouts

 }

 public void onClick(View view) {
 updateTime();
 }

 private void updateTime() {
 btn.setText(new Date().toString());
 }
}

The first difference is that rather than setting the content view to be a view
we created in Java code, we set it to reference the XML layout
(setContentView(R.layout.main)). The R.java source file will be updated
when we rebuild this project to include a reference to our layout file (stored
as main.xml in our project's res/layout directory).

The other difference is that we need to get our hands on our Button
instance, for which we use the findViewById() call. Since we identified our
button as @+id/button, we can reference the button's identifier as
R.id.button. Now, with the Button instance in hand, we can set the callback
and set the label as needed.

The results look the same as with the original Now demo:

76

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using XML-Based Layouts

Figure 33. The NowRedux sample activity

77

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 9

Employing Basic Widgets

Every GUI toolkit has some basic widgets: fields, labels, buttons, etc.
Android's toolkit is no different in scope, and the basic widgets will provide
a good introduction as to how widgets work in Android activities.

Assigning Labels

The simplest widget is the label, referred to in Android as a TextView. Like
in most GUI toolkits, labels are bits of text not editable directly by users.
Typically, they are used to identify adjacent widgets (e.g., a "Name:" label
before a field where one fills in a name).

In Java, you can create a label by creating a TextView instance. More
commonly, though, you will create labels in XML layout files by adding a
TextView element to the layout, with an android:text property to set the
value of the label itself. If you need to swap labels based on certain criteria,
such as internationalization, you may wish to use a string resource
reference in the XML instead, as will be described later in this book.

TextView has numerous other properties of relevance for labels, such as:

• android:typeface to set the typeface to use for the label (e.g.,
monospace)

• android:textStyle to indicate that the typeface should be made bold
(bold), italic (italic), or bold and italic (bold_italic)

79

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

• android:textColor to set the color of the label's text, in RGB hex
format (e.g., #FF0000 for red)

For example, in the Basic/Label project, you will find the following layout
file:

<?xml version="1.0" encoding="utf-8"?>
<TextView xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="You were expecting something profound?"
 />

Just that layout alone, with the stub Java source provided by Android's
project builder (e.g., android create project), gives you:

Figure 34. The LabelDemo sample application

Button, Button, Who's Got the Button?

We've already seen the use of the Button widget in the previous two
chapters. As it turns out, Button is a subclass of TextView, so everything

80

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

discussed in the preceding section in terms of formatting the face of the
button still holds.

However, Android 1.6 added a new feature for the declaration of the "on-
click" listener for a Button. In addition to the classic approach of defining
some object (such as the activity) as implementing the
View.OnClickListener interface, you can now take a somewhat simpler
approach:

• Define some method on your Activity that holds the button that
takes a single View parameter, has a void return value, and is public

• In your layout XML, on the Button element, include the
android:onClick attribute with the name of the method you defined
in the previous step

For example, we might have a method on our Activity that looks like:

public void someMethod(View theButton) {
 // do something useful here
}

Then, we could use this XML declaration for the Button itself, including
android:onClick:

<Button
 android:onClick="someMethod"
 ...
/>

This is enough for Android to "wire together" the Button with the click
handler.

Fleeting Images

Android has two widgets to help you embed images in your activities:
ImageView and ImageButton. As the names suggest, they are image-based
analogues to TextView and Button, respectively.

81

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

Each widget takes an android:src attribute (in an XML layout) to specify
what picture to use. These usually reference a drawable resource, described
in greater detail in the chapter on resources.

ImageButton, a subclass of ImageView, mixes in the standard Button behaviors,
for responding to clicks and whatnot.

For example, take a peek at the main.xml layout from the Basic/ImageView
sample project:

<?xml version="1.0" encoding="utf-8"?>
<ImageView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/icon"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:adjustViewBounds="true"
 android:src="@drawable/molecule"
 />

The result, just using the code-generated activity, is simply the image:

Figure 35. The ImageViewDemo sample application

82

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

Fields of Green. Or Other Colors.

Along with buttons and labels, fields are the third "anchor" of most GUI
toolkits. In Android, they are implemented via the EditText widget, which
is a subclass of the TextView used for labels.

Along with the standard TextView properties (e.g., android:textStyle),
EditText has many others that will be useful for you in constructing fields,
including:

• android:autoText, to control if the field should provide automatic
spelling assistance

• android:capitalize, to control if the field should automatically
capitalize the first letter of entered text (e.g., first name, city)

• android:digits, to configure the field to accept only certain digits

• android:singleLine, to control if the field is for single-line input or
multiple-line input (e.g., does <Enter> move you to the next widget
or add a newline?)

Most of those are also available from the new android:inputType attribute,
added in Android 1.5 as part of adding "soft keyboards" to Android – this
will be discussed in an upcoming chapter.

For example, from the Basic/Field project, here is an XML layout file
showing an EditText:

<?xml version="1.0" encoding="utf-8"?>
<EditText xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/field"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:singleLine="false"
 />

Note that android:singleLine is false, so users will be able to enter in several
lines of text.

83

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

For this project, the FieldDemo.java file populates the input field with some
prose:

package com.commonsware.android.field;

import android.app.Activity;
import android.os.Bundle;
import android.widget.EditText;

public class FieldDemo extends Activity {
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 EditText fld=(EditText)findViewById(R.id.field);
 fld.setText("Licensed under the Apache License, Version 2.0 " +
 "(the \"License\"); you may not use this file " +
 "except in compliance with the License. You may " +
 "obtain a copy of the License at " +
 "http://www.apache.org/licenses/LICENSE-2.0");
 }
}

The result, once built and installed into the emulator, is:

Figure 36. The FieldDemo sample application

84

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

Another flavor of field is one that offers auto-completion, to help users
supply a value without typing in the whole text. That is provided in
Android as the AutoCompleteTextView widget, discussed in greater detail later
in this book.

Just Another Box to Check

The classic checkbox has two states: checked and unchecked. Clicking the
checkbox toggles between those states to indicate a choice (e.g., "Add rush
delivery to my order").

In Android, there is a CheckBox widget to meet this need. It has TextView as
an ancestor, so you can use TextView properties like android:textColor to
format the widget.

Within Java, you can invoke:

• isChecked() to determine if the checkbox has been checked

• setChecked() to force the checkbox into a checked or unchecked
state

• toggle() to toggle the checkbox as if the user checked it

Also, you can register a listener object (in this case, an instance of
OnCheckedChangeListener) to be notified when the state of the checkbox
changes.

For example, from the Basic/CheckBox project, here is a simple checkbox
layout:

<?xml version="1.0" encoding="utf-8"?>
<CheckBox xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/check"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="This checkbox is: unchecked" />

85

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

The corresponding CheckBoxDemo.java retrieves and configures the behavior
of the checkbox:

public class CheckBoxDemo extends Activity
 implements CompoundButton.OnCheckedChangeListener {
 CheckBox cb;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 cb=(CheckBox)findViewById(R.id.check);
 cb.setOnCheckedChangeListener(this);
 }

 public void onCheckedChanged(CompoundButton buttonView,
 boolean isChecked) {
 if (isChecked) {
 cb.setText("This checkbox is: checked");
 }
 else {
 cb.setText("This checkbox is: unchecked");
 }
 }
}

Note that the activity serves as its own listener for checkbox state changes
since it implements the OnCheckedChangeListener interface (via
cb.setOnCheckedChangeListener(this)). The callback for the listener is
onCheckedChanged(), which receives the checkbox whose state has changed
and what the new state is. In this case, we update the text of the checkbox
to reflect what the actual box contains.

The result? Clicking the checkbox immediately updates its text, as shown
below:

86

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

Figure 37. The CheckBoxDemo sample application, with the checkbox
unchecked

Figure 38. The same application, now with the checkbox checked

87

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

Turn the Radio Up

As with other implementations of radio buttons in other toolkits, Android's
radio buttons are two-state, like checkboxes, but can be grouped such that
only one radio button in the group can be checked at any time.

Like CheckBox, RadioButton inherits from CompoundButton, which in turn
inherits from TextView. Hence, all the standard TextView properties for font
face, style, color, etc. are available for controlling the look of radio buttons.
Similarly, you can call isChecked() on a RadioButton to see if it is selected,
toggle() to select it, and so on, like you can with a CheckBox.

Most times, you will want to put your RadioButton widgets inside of a
RadioGroup. The RadioGroup indicates a set of radio buttons whose state is
tied, meaning only one button out of the group can be selected at any time.
If you assign an android:id to your RadioGroup in your XML layout, you can
access the group from your Java code and invoke:

• check() to check a specific radio button via its ID (e.g.,
group.check(R.id.radio1))

• clearCheck() to clear all radio buttons, so none in the group are
checked

• getCheckedRadioButtonId() to get the ID of the currently-checked
radio button (or -1 if none are checked)

Note that the mutual-exclusion feature of RadioGroup only applies to
RadioButton widgets that are immediate children of the RadioGroup. You
cannot have other containers – discussed in the next chapter – between the
RadioGroup and its RadioButton widgets.

For example, from the Basic/RadioButton sample application, here is an
XML layout showing a RadioGroup wrapping a set of RadioButton widgets:

<?xml version="1.0" encoding="utf-8"?>
<RadioGroup
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"

88

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

 android:layout_height="fill_parent"
 >
 <RadioButton android:id="@+id/radio1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Rock" />

 <RadioButton android:id="@+id/radio2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Scissors" />

 <RadioButton android:id="@+id/radio3"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Paper" />
</RadioGroup>

Using the stock Android-generated Java for the project and this layout, you
get:

Figure 39. The RadioButtonDemo sample application

Note that the radio button group is initially set to be completely unchecked
at the outset. To preset one of the radio buttons to be checked, use either
setChecked() on the RadioButton or check() on the RadioGroup from within
your onCreate() callback in your activity.

89

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

It's Quite a View

All widgets, including the ones shown above, extend View, and as such give
all widgets an array of useful properties and methods beyond those already
described.

Padding

Widgets have a minimum size, one that may be influenced by what is
inside of them. So, for example, a Button will expand to accommodate the
size of its caption. You can control this size using padding. Adding padding
will increase the space between the contents (e.g., the caption of a Button)
and the edges of the widget.

Padding can be set once in XML for all four sides (android:padding) or on a
per-side basis (android:paddingLeft, etc.). Padding can also be set in Java via
the setPadding() method.

The value of any of these is a dimension – a combination of a unit of
measure and a count. So, 5px is 5 pixels, 10dip is 10 density-independent
pixels, or 2mm is 2 millimeters. We will examine dimension in greater detail
in an upcoming chapter.

Other Useful Properties

In addition to those presented in this chapter and in the next chapter, some
of the properties on View most likely to be used include:

• android:visibility, which controls whether the widget is initially
visible

• android:nextFocusDown, android:nextFocusLeft,
android:nextFocusRight, and android:nextFocusUp, which control the
focus order if the user uses the D-pad, trackball, or similar pointing
device

90

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

• android:contentDescription, which is roughly equivalent to the alt
attribute on an HTML tag, and is used by accessibility tools to
help people who cannot see the screen navigate the application

Useful Methods

You can toggle whether or not a widget is enabled via setEnabled() and see
if it is enabled via isEnabled(). One common use pattern for this is to
disable some widgets based on a CheckBox or RadioButton selection.

You can give a widget focus via requestFocus() and see if it is focused via
isFocused(). You might use this in concert with disabling widgets as
mentioned above, to ensure the proper widget has the focus once your
disabling operation is complete.

To help navigate the tree of widgets and containers that make up an
activity's overall view, you can use:

• getParent() to find the parent widget or container

• findViewById() to find a child widget with a certain ID

• getRootView() to get the root of the tree (e.g., what you provided to
the activity via setContentView())

Colors

There are two types of color attributes in Android widgets. Some, like
android:background, take a single color (or a graphic image to serve as the
background). Others, like android:textColor on TextView (and subclasses)
can take a ColorStateList, including via the Java setter (in this case,
setTextColor()).

A ColorStateList allows you to specify different colors for different
conditions. For example, when you get to selection widgets in an upcoming
chapter, you will see how a TextView has a different text color when it is the
selected item in a list compared to when it is in the list but not selected.
This is handled via the default ColorStateList associated with TextView.

91

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

If you wish to change the color of a TextView widget in Java code, you have
two main choices:

1. Use ColorStateList.valueOf(), which returns a ColorStateList in
which all states are considered to have the same color, which you
supply as the parameter to the valueOf() method. This is the Java
equivalent of the android:textColor approach, to make the TextView
always a specific color regardless of circumstances.

2. Create a ColorStateList with different values for different states,
either via the constructor or via an XML drawable resource, a
concept discussed in a later chapter

92

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 10

Working with Containers

Containers pour a collection of widgets (and possibly child containers) into
specific structures you like. If you want a form with labels on the left and
fields on the right, you will need a container. If you want OK and Cancel
buttons to be beneath the rest of the form, next to one another, and flush
to right side of the screen, you will need a container. Just from a pure XML
perspective, if you have multiple widgets (beyond RadioButton widgets in a
RadioGroup), you will need a container just to have a root element to place
the widgets inside.

Most GUI toolkits have some notion of layout management, frequently
organized into containers. In Java/Swing, for example, you have layout
managers like BoxLayout and containers that use them (e.g., Box). Some
toolkits stick strictly to the box model, such as XUL and Flex, figuring that
any desired layout can be achieved through the right combination of nested
boxes.

Android, through LinearLayout, also offers a "box" model, but in addition
supports a range of containers providing different layout rules. In this
chapter, we will look at three commonly-used containers: LinearLayout (the
box model), RelativeLayout (a rule-based model), and TableLayout (the grid
model), along with ScrollView, a container designed to assist with
implementing scrolling containers.

93

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

Thinking Linearly

As noted above, LinearLayout is a box model – widgets or child containers
are lined up in a column or row, one after the next. This works similarly to
FlowLayout in Java/Swing, vbox and hbox in Flex and XUL, etc.

Flex and XUL use the box as their primary unit of layout. If you want, you
can use LinearLayout in much the same way, eschewing some of the other
containers. Getting the visual representation you want is mostly a matter of
identifying where boxes should nest and what properties those boxes
should have, such as alignment vis-à-vis other boxes.

Concepts and Properties

To configure a LinearLayout, you have five main areas of control besides the
container's contents: the orientation, the fill model, the weight, the gravity,
and the padding.

Orientation

Orientation indicates whether the LinearLayout represents a row or a
column. Just add the android:orientation property to your LinearLayout
element in your XML layout, setting the value to be horizontal for a row or
vertical for a column.

The orientation can be modified at runtime by invoking setOrientation()
on the LinearLayout, supplying it either HORIZONTAL or VERTICAL.

Fill Model

Let's imagine a row of widgets, such as a pair of radio buttons. These
widgets have a "natural" size based on their text. Their combined sizes
probably do not exactly match the width of the Android device's screen –
particularly since screens come in various sizes. We then have the issue of
what to do with the remaining space.

94

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

All widgets inside a LinearLayout must supply android:layout_width and
android:layout_height properties to help address this issue. These
properties' values have three flavors:

• You can provide a specific dimension, such as 125dip to indicate the
widget should take up exactly a certain size

• You can provide wrap_content, which means the widget should fill
up its natural space, unless that is too big, in which case Android
can use word-wrap as needed to make it fit

• You can provide fill_parent, which means the widget should fill up
all available space in its enclosing container, after all other widgets
are taken care of

The latter two flavors are the most common, as they are independent of
screen size, allowing Android to adjust your view to fit the available space.

NOTE: In API level 8 (Android 2.2), fill_parent was renamed to
match_parent, for unknown reasons. You can still use fill_parent, as it will
be supported for the foreseeable future. However, at such point in time as
you are only supporting API level 8 or higher (e.g.,
android:minSdkVersion="8" in your manifest), you should probably switch
over to match_parent.

Weight

But, what happens if we have two widgets that should split the available
free space? For example, suppose we have two multi-line fields in a column,
and we want them to take up the remaining space in the column after all
other widgets have been allocated their space.

To make this work, in addition to setting android:layout_width (for rows) or
android:layout_height (for columns) to fill_parent, you must also set
android:layout_weight. This property indicates what proportion of the free
space should go to that widget. If you set android:layout_weight to be the
same non-zero value for a pair of widgets (e.g., 1), the free space will be
split evenly between them. If you set it to be 1 for one widget and 2 for

95

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

another widget, the second widget will use up twice the free space that the
first widget does. And so on.

The weight for a widget is zero by default.

Another pattern for using weights is if you want to allocate sizes on a
percentage basis. To use this technique for, say, a horizontal layout:

• Set all the android:layout_width values to be 0 for the widgets in the
layout

• Set the android:layout_weight values to be the desired percentage
size for each widget in the layout

• Make sure all those weights add up to 100

Gravity

By default, everything in a LinearLayout is left- and top-aligned. So, if you
create a row of widgets via a horizontal LinearLayout, the row will start flush
on the left side of the screen.

If that is not what you want, you need to specify a gravity. Using
android:layout_gravity on a widget (or calling setGravity() at runtime on
the widget's Java object), you can tell the widget and its container how to
align it vis-à-vis the screen.

For a column of widgets, common gravity values are left,
center_horizontal, and right for left-aligned, centered, and right-aligned
widgets respectively.

For a row of widgets, the default is for them to be aligned so their texts are
aligned on the baseline (the invisible line that letters seem to "sit on"),
though you may wish to specify a gravity of center_vertical to center the
widgets along the row's vertical midpoint.

96

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

Margins

By default, widgets are tightly packed, one next to the other. You can
control this via the use of margins, a concept that is reminiscent of the
padding described in a previous chapter.

The difference between padding and margins comes in terms of the
background. Widgets with a transparent background – like the default look
of a TextView – padding and margins have similar visual effect, increasing
the space between the widget and adjacent widgets. However, widgets with
a non-transparent background – like a Button – padding is considered
inside the background while margins are outside. In other words, adding
padding will increase the space between the contents (e.g., the caption of a
Button) and the edges, while adding margin increases the empty space
between the edges and adjacent widgets.

Margins can be set in XML, either on a per-side basis (e.g.,
android:layout_marginTop) or on all sides via android:layout_margin. Once
again, the value of any of these is a dimension – a combination of a unit of
measure and a count, such as 5px for 5 pixels.

Example

Let's look at an example (Containers/Linear) that shows LinearLayout
properties set both in the XML layout file and at runtime.

Here is the layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <RadioGroup android:id="@+id/orientation"
 android:orientation="horizontal"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:padding="5dip">

97

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

 <RadioButton
 android:id="@+id/horizontal"
 android:text="horizontal" />
 <RadioButton
 android:id="@+id/vertical"
 android:text="vertical" />
 </RadioGroup>
 <RadioGroup android:id="@+id/gravity"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:padding="5dip">
 <RadioButton
 android:id="@+id/left"
 android:text="left" />
 <RadioButton
 android:id="@+id/center"
 android:text="center" />
 <RadioButton
 android:id="@+id/right"
 android:text="right" />
 </RadioGroup>
</LinearLayout>

Note that we have a LinearLayout wrapping two RadioGroup sets. RadioGroup
is a subclass of LinearLayout, so our example demonstrates nested boxes as
if they were all LinearLayout containers.

The top RadioGroup sets up a row (android:orientation = "horizontal") of
RadioButton widgets. The RadioGroup has 5dip of padding on all sides,
separating it from the other RadioGroup, where dip stands for density-
independent pixels (think of them as ordinary pixels for now – we will get
into the distinction later in the book). The width and height are both set to
wrap_content, so the radio buttons will only take up the space that they
need.

The bottom RadioGroup is a column (android:orientation = "vertical") of
three RadioButton widgets. Again, we have 5dip of padding on all sides and a
"natural" height (android:layout_height = "wrap_content"). However, we
have set android:layout_width to be fill_parent, meaning the column of
radio buttons "claims" the entire width of the screen.

To adjust these settings at runtime based on user input, we need some Java
code:

98

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

package com.commonsware.android.linear;

import android.app.Activity;
import android.os.Bundle;
import android.view.Gravity;
import android.text.TextWatcher;
import android.widget.LinearLayout;
import android.widget.RadioGroup;
import android.widget.EditText;

public class LinearLayoutDemo extends Activity
 implements RadioGroup.OnCheckedChangeListener {
 RadioGroup orientation;
 RadioGroup gravity;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 orientation=(RadioGroup)findViewById(R.id.orientation);
 orientation.setOnCheckedChangeListener(this);
 gravity=(RadioGroup)findViewById(R.id.gravity);
 gravity.setOnCheckedChangeListener(this);
 }

 public void onCheckedChanged(RadioGroup group, int checkedId) {
 switch (checkedId) {
 case R.id.horizontal:
 orientation.setOrientation(LinearLayout.HORIZONTAL);
 break;

 case R.id.vertical:
 orientation.setOrientation(LinearLayout.VERTICAL);
 break;

 case R.id.left:
 gravity.setGravity(Gravity.LEFT);
 break;

 case R.id.center:
 gravity.setGravity(Gravity.CENTER_HORIZONTAL);
 break;

 case R.id.right:
 gravity.setGravity(Gravity.RIGHT);
 break;
 }
 }
}

In onCreate(), we look up our two RadioGroup containers and register a
listener on each, so we are notified when the radio buttons change state

99

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

(setOnCheckedChangeListener(this)). Since the activity implements
OnCheckedChangeListener, the activity itself is the listener.

In onCheckedChanged() (the callback for the listener), we see which
RadioButton had a state change. Based on the clicked-upon item, we adjust
either the orientation of the first LinearLayout or the gravity of the second
LinearLayout.

Here is the result when it is first launched inside the emulator:

Figure 40. The LinearLayoutDemo sample application, as initially launched

If we toggle on the "vertical" radio button, the top RadioGroup adjusts to
match:

100

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

Figure 41. The same application, with the vertical radio button selected

If we toggle the "center" or "right" radio buttons, the bottom RadioGroup
adjusts to match:

Figure 42. The same application, with the vertical and center radio buttons
selected

101

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

Figure 43. The same application, with the vertical and right radio buttons
selected

The Box Model

As noted earlier in this chapter, some GUI frameworks treat everything as
boxes – what Android calls LinearLayout containers. In Flex and XUL, for
example, you create boxes and indicate how big they should be, as a
percentage of the available space, then you put widgets in the boxes. A
similar pattern exists in Android for LinearLayout, as is demonstrated in the
Containers\LinearPercent project.

Here, we have a layout XML file that contains a vertical LinearLayout
wrapping three Button widgets:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <Button
 android:text="Fifty Percent"
 android:layout_width="fill_parent"

102

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

 android:layout_height="0dip"
 android:layout_weight="50"
 />
 <Button
 android:text="Thirty Percent"
 android:layout_width="fill_parent"
 android:layout_height="0dip"
 android:layout_weight="30"
 />
 <Button
 android:text="Twenty Percent"
 android:layout_width="fill_parent"
 android:layout_height="0dip"
 android:layout_weight="20"
 />
</LinearLayout>

Each of the three widgets will take up a certain percentage of the vertical
space for the LinearLayout. Since the LinearLayout is set to fill the screen,
this means that the three widgets will divide up the screen based upon their
requested percentages.

To request a percentage, each Button:

• Sets its android:layout_height to be 0dip (note: we use height here
because it is a vertical LinearLayout we are sub-dividing)

• Sets its android:layout_weight to be the desired percentage (e.g.,
android:layout_weight="50")

So long as the weights sum to 100, as they do in this case, you will get your
desired breakdown by percentage:

103

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

Figure 44. A LinearLayout split among three Buttons by percentage

All Things Are Relative

RelativeLayout, as the name suggests, lays out widgets based upon their
relationship to other widgets in the container and the parent container. You
can place Widget X below and to the left of Widget Y, or have Widget Z's
bottom edge align with the bottom of the container, and so on.

This is reminiscent of James Elliot's RelativeLayout for use with Java/Swing.

Concepts and Properties

To make all this work, we need ways to reference other widgets within an
XML layout file, plus ways to indicate the relative positions of those
widgets.

104

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.onjava.com/pub/a/onjava/2002/09/18/relativelayout.html

Working with Containers

Positions Relative to Container

The easiest relations to set up are tying a widget's position to that of its
container:

• android:layout_alignParentTop says the widget's top should align
with the top of the container

• android:layout_alignParentBottom says the widget's bottom should
align with the bottom of the container

• android:layout_alignParentLeft says the widget's left side should
align with the left side of the container

• android:layout_alignParentRight says the widget's right side should
align with the right side of the container

• android:layout_centerHorizontal says the widget should be
positioned horizontally at the center of the container

• android:layout_centerVertical says the widget should be positioned
vertically at the center of the container

• android:layout_centerInParent says the widget should be positioned
both horizontally and vertically at the center of the container

All of these properties take a simple boolean value (true or false).

Note that the padding of the widget is taken into account when performing
these various alignments. The alignments are based on the widget's overall
cell (combination of its natural space plus the padding).

Relative Notation in Properties

The remaining properties of relevance to RelativeLayout take as a value the
identity of a widget in the container. To do this:

1. Put identifiers (android:id attributes) on all elements that you will
need to address

2. Reference other widgets using the same identifier value

105

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

The first occurrence of an id value should have the plus sign
(@+id/widget_a); the second and subsequent times that id value is used in
the layout file should drop the plus sign (@id/widget_a). This allows the
build tools to better help you catch typos in your widget id values – if you
do not have a plus sign for a widget id value that has not been seen before,
that will be caught at compile time.

For example, if Widget A is identified as @+id/widget_a, Widget B can refer
to Widget A in one of its own properties via the identifier @id/widget_a.

Positions Relative to Other Widgets

There are four properties that control position of a widget vis a vis other
widgets:

• android:layout_above indicates that the widget should be placed
above the widget referenced in the property

• android:layout_below indicates that the widget should be placed
below the widget referenced in the property

• android:layout_toLeftOf indicates that the widget should be placed
to the left of the widget referenced in the property

• android:layout_toRightOf indicates that the widget should be placed
to the right of the widget referenced in the property

Beyond those four, there are five additional properties that can control one
widget's alignment relative to another:

• android:layout_alignTop indicates that the widget's top should be
aligned with the top of the widget referenced in the property

• android:layout_alignBottom indicates that the widget's bottom
should be aligned with the bottom of the widget referenced in the
property

• android:layout_alignLeft indicates that the widget's left should be
aligned with the left of the widget referenced in the property

106

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

• android:layout_alignRight indicates that the widget's right should
be aligned with the right of the widget referenced in the property

• android:layout_alignBaseline indicates that the baselines of the two
widgets should be aligned (where the "baseline" is that invisible line
that text appears to sit on)

The last one is useful for aligning labels and fields so that the text appears
"natural". Since fields have a box around them and labels do not,
android:layout_alignTop would align the top of the field's box with the top
of the label, which will cause the text of the label to be higher on-screen
than the text entered into the field.

So, if we want Widget B to be positioned to the right of Widget A, in the
XML element for Widget B, we need to include android:layout_toRightOf =
"@id/widget_a" (assuming @id/widget_a is the identity of Widget A).

Order of Evaluation

It used to be that Android would use a single pass to process
RelativeLayout-defined rules. That meant you could not reference a widget
(e.g., via android:layout_above) until it had been declared in the XML. This
made defining some layouts a bit complicated. Starting in Android 1.6,
Android uses two passes to process the rules, so you can now safely have
forward references to as-yet-undefined widgets.

Example

With all that in mind, let's examine a typical "form" with a field, a label,
plus a pair of buttons labeled "OK" and "Cancel".

Here is the XML layout, pulled from the Containers/Relative sample
project:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"

107

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 <TextView android:id="@+id/label"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="URL:"
 android:layout_alignBaseline="@+id/entry"
 android:layout_alignParentLeft="true"/>
 <EditText
 android:id="@id/entry"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_toRightOf="@id/label"
 android:layout_alignParentTop="true"/>
 <Button
 android:id="@+id/ok"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/entry"
 android:layout_alignRight="@id/entry"
 android:text="OK" />
 <Button
 android:id="@+id/cancel"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_toLeftOf="@id/ok"
 android:layout_alignTop="@id/ok"
 android:text="Cancel" />
</RelativeLayout>

First, we open up the RelativeLayout. In this case, we want to use the full
width of the screen (android:layout_width = "fill_parent") and only as
much height as we need (android:layout_height = "wrap_content").

Next, we define the label as a TextView. We indicate that we want its left
edge aligned with the left edge of the RelativeLayout
(android:layout_alignParentLeft="true") and that we want its baseline
aligned with the baseline of the yet-to-be-defined EditText. Since the
EditText has not been declared yet, we use the + sign in the ID
(android:layout_alignBaseline="@+id/entry").

After that, we add in the field as an EditText. We want the field to be to the
right of the label, have the field be aligned with the top of the
RelativeLayout, and for the field to take up the rest of this "row" in the
layout. Those are handled by three properties:

• android:layout_toRightOf = "@id/label"

108

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

• android:layout_alignParentTop = "true"

• android:layout_width = "fill_parent"

Then, the OK button is set to be below the field (android:layout_below =
"@id/entry") and have its right side align with the right side of the field
(android:layout_alignRight = "@id/entry"). The Cancel button is set to be
to the left of the OK button (android:layout_toLeft = "@id/ok") and have its
top aligned with the OK button (android:layout_alignTop = "@id/ok").

With no changes to the auto-generated Java code, the emulator gives us:

Figure 45. The RelativeLayoutDemo sample application

Overlap

RelativeLayout also has a feature that LinearLayout lacks – the ability to
have widgets overlap one another. Later children of a RelativeLayout are
"higher in the Z axis" than are earlier children, meaning that later children
will overlap earlier children if they are set up to occupy the same space in
the layout.

109

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

This will be clearer with an example. Here is a layout, from
Containers/RelativeOverlap, with a RelativeLayout holding two Button
widgets:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <Button
 android:text="I AM BIG"
 android:textSize="120dip"
 android:textStyle="bold"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 />
 <Button
 android:text="I am small"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerInParent="true"
 />
</RelativeLayout>

The first Button is set to fill the screen. The second Button is set to be
centered inside the parent, but only take up as much space as is needed for
its caption. Hence, the second Button will appear to "float" over the first
Button:

110

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

Figure 46. The RelativeOverlap sample application

Both Button widgets can still be clicked, though clicking on the smaller
Button does not also click the bigger Button. Your clicks will be handled by
the widget on top in the case of an overlap like this.

Tabula Rasa

If you like HTML tables, spreadsheet grids, and the like, you will like
Android's TableLayout – it allows you to position your widgets in a grid to
your specifications. You control the number of rows and columns, which
columns might shrink or stretch to accommodate their contents, and so on.

TableLayout works in conjunction with TableRow. TableLayout controls the
overall behavior of the container, with the widgets themselves poured into
one or more TableRow containers, one per row in the grid.

111

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

Concepts and Properties

For all this to work, we need to figure out how widgets work with rows and
columns, plus how to handle widgets that live outside of rows.

Putting Cells in Rows

Rows are declared by you, the developer, by putting widgets as children of a
TableRow inside the overall TableLayout. You, therefore, control directly how
many rows appear in the table.

The number of columns are determined by Android; you control the
number of columns in an indirect fashion.

First, there will be at least one column per widget in your longest row. So if
you have three rows, one with two widgets, one with three widgets, and one
with four widgets, there will be at least four columns.

However, a widget can take up more than one column by including the
android:layout_span property, indicating the number of columns the widget
spans. This is akin to the colspan attribute one finds in table cells in HTML:

<TableRow>
 <TextView android:text="URL:" />
 <EditText
 android:id="@+id/entry"
 android:layout_span="3"/>
</TableRow>

In the above XML layout fragment, the field spans three columns.

Ordinarily, widgets are put into the first available column. In the above
fragment, the label would go in the first column (column 0, as columns are
counted starting from 0), and the field would go into a spanned set of three
columns (columns 1 through 3). However, you can put a widget into a
different column via the android:layout_column property, specifying the 0-
based column the widget belongs to:

112

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

<TableRow>
 <Button
 android:id="@+id/cancel"
 android:layout_column="2"
 android:text="Cancel" />
 <Button android:id="@+id/ok" android:text="OK" />
</TableRow>

In the preceding XML layout fragment, the Cancel button goes in the third
column (column 2). The OK button then goes into the next available
column, which is the fourth column.

Non-Row Children of TableLayout

Normally, TableLayout contains only TableRow elements as immediate
children. However, it is possible to put other widgets in between rows. For
those widgets, TableLayout behaves a bit like LinearLayout with vertical
orientation. The widgets automatically have their width set to fill_parent,
so they will fill the same space that the longest row does.

One pattern for this is to use a plain View as a divider (e.g., <View
android:layout_height = "2dip" android:background = "#0000FF" /> as a
two-pixel-high blue bar across the width of the table).

Stretch, Shrink, and Collapse

By default, each column will be sized according to the "natural" size of the
widest widget in that column (taking spanned columns into account).
Sometimes, though, that does not work out very well, and you need more
control over column behavior.

You can place an android:stretchColumns property on the TableLayout. The
value should be a single column number (again, 0-based) or a comma-
delimited list of column numbers. Those columns will be stretched to take
up any available space yet on the row. This helps if your content is narrower
than the available space.

113

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

Conversely, you can place a android:shrinkColumns property on the
TableLayout. Again, this should be a single column number or a comma-
delimited list of column numbers. The columns listed in this property will
try to word-wrap their contents to reduce the effective width of the column
– by default, widgets are not word-wrapped. This helps if you have columns
with potentially wordy content that might cause some columns to be
pushed off the right side of the screen.

You can also leverage an android:collapseColumns property on the
TableLayout, again with a column number or comma-delimited list of
column numbers. These columns will start out "collapsed", meaning they
will be part of the table information but will be invisible. Programmatically,
you can collapse and un-collapse columns by calling setColumnCollapsed()
on the TableLayout. You might use this to allow users to control which
columns are of importance to them and should be shown versus which ones
are less important and can be hidden.

You can also control stretching and shrinking at runtime via
setColumnStretchable() and setColumnShrinkable().

Example

The XML layout fragments shown above, when combined, give us a
TableLayout rendition of the "form" we created for RelativeLayout, with the
addition of a divider line between the label/field and the two buttons
(found in the Containers/Table demo):

<?xml version="1.0" encoding="utf-8"?>
<TableLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:stretchColumns="1">
 <TableRow>
 <TextView
 android:text="URL:" />
 <EditText android:id="@+id/entry"
 android:layout_span="3"/>
 </TableRow>
 <View
 android:layout_height="2dip"

114

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

 android:background="#0000FF" />
 <TableRow>
 <Button android:id="@+id/cancel"
 android:layout_column="2"
 android:text="Cancel" />
 <Button android:id="@+id/ok"
 android:text="OK" />
 </TableRow>
</TableLayout>

When compiled against the generated Java code and run on the emulator,
we get:

Figure 47. The TableLayoutDemo sample application

Scrollwork

Phone screens tend to be small, which requires developers to use some
tricks to present a lot of information in the limited available space. One
trick for doing this is to use scrolling, so only part of the information is
visible at one time, the rest available via scrolling up or down.

ScrollView is a container that provides scrolling for its contents. You can
take a layout that might be too big for some screens, wrap it in a ScrollView,

115

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

and still use your existing layout logic. It just so happens that the user can
only see part of your layout at one time, the rest available via scrolling.

For example, here is a ScrollView used in an XML layout file (from the
Containers/Scroll demo):

<?xml version="1.0" encoding="utf-8"?>
<ScrollView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 <TableLayout
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:stretchColumns="0">
 <TableRow>
 <View
 android:layout_height="80dip"
 android:background="#000000"/>
 <TextView android:text="#000000"
 android:paddingLeft="4dip"
 android:layout_gravity="center_vertical" />
 </TableRow>
 <TableRow>
 <View
 android:layout_height="80dip"
 android:background="#440000" />
 <TextView android:text="#440000"
 android:paddingLeft="4dip"
 android:layout_gravity="center_vertical" />
 </TableRow>
 <TableRow>
 <View
 android:layout_height="80dip"
 android:background="#884400" />
 <TextView android:text="#884400"
 android:paddingLeft="4dip"
 android:layout_gravity="center_vertical" />
 </TableRow>
 <TableRow>
 <View
 android:layout_height="80dip"
 android:background="#aa8844" />
 <TextView android:text="#aa8844"
 android:paddingLeft="4dip"
 android:layout_gravity="center_vertical" />
 </TableRow>
 <TableRow>
 <View
 android:layout_height="80dip"
 android:background="#ffaa88" />

116

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

 <TextView android:text="#ffaa88"
 android:paddingLeft="4dip"
 android:layout_gravity="center_vertical" />
 </TableRow>
 <TableRow>
 <View
 android:layout_height="80dip"
 android:background="#ffffaa" />
 <TextView android:text="#ffffaa"
 android:paddingLeft="4dip"
 android:layout_gravity="center_vertical" />
 </TableRow>
 <TableRow>
 <View
 android:layout_height="80dip"
 android:background="#ffffff" />
 <TextView android:text="#ffffff"
 android:paddingLeft="4dip"
 android:layout_gravity="center_vertical" />
 </TableRow>
 </TableLayout>
</ScrollView>

Without the ScrollView, the table would take up at least 560 pixels (7 rows
at 80 pixels each, based on the View declarations). There may be some
devices with screens capable of showing that much information, but many
will be smaller. The ScrollView lets us keep the table as-is, but only present
part of it at a time.

On the stock Android emulator, when the activity is first viewed, you see:

117

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

Figure 48. The ScrollViewDemo sample application

Notice how only five rows and part of the sixth are visible. By pressing the
up/down buttons on the directional pad, you can scroll up and down to see
the remaining rows. Also note how the right side of the content gets
clipped by the scrollbar – be sure to put some padding on that side or
otherwise ensure your own content does not get clipped in that fashion.

Android 1.5 introduced HorizontalScrollView, which works like ScrollView...
just horizontally. This would be good for forms that might be too wide
rather than too tall. Note that neither ScrollView nor HorizontalScrollView
will give you bi-directional scrolling – you have to choose vertical or
horizontal.

Also, note that you cannot put scrollable items into a ScrollView. For
example, a ListView widget – which we will see in an upcoming chapter –
already knows how to scroll. You do not need to put a ListView in a
ScrollView, and if you were to try, it would not work very well.

118

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 11

The Input Method Framework

Android 1.5 introduced the input method framework (IMF), which is
commonly referred to as "soft keyboards". However, the "soft keyboard"
term is not necessarily accurate, as IMF could be used for handwriting
recognition or other means of accepting text input via the screen.

Keyboards, Hard and Soft

Some Android devices have a hardware keyboard that is visible some of the
time (when it is slid out). A few Android devices have a hardware keyboard
that is always visible (so-called "bar" or "slab" phones). Most Android
devices, though, have no hardware keyboard at all.

The IMF handles all of these scenarios. In short, if there is no hardware
keyboard, an input method editor (IME) will be available to the user when
they tap on an enabled EditText.

This requires no code changes to your application...if the default
functionality of the IME is what you want. Fortunately, Android is fairly
smart about guessing what you want, so it may be you can just test with the
IME but otherwise make no specific code changes.

Of course, the keyboard may not quite behave how you would like. For
example, in the Basic/Field sample project, the FieldDemo activity has the
IME overlaying the multiple-line EditText:

119

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Input Method Framework

Figure 49. The input method editor, as seen in the FieldDemo sample
application

It would be nice to have more control over how this appears, and for other
behavior of the IME. Fortunately, the framework as a whole gives you many
options for this, as is described over the bulk of this chapter.

Tailored To Your Needs

Android 1.1 and earlier offered many attributes on EditText widgets to
control their style of input, such as android:password to indicate a field
should be for password entry (shrouding the password keystrokes from
prying eyes). Starting in Android 1.5, with the IMF, many of these have been
combined into a single android:inputType attribute.

The android:inputType attribute takes a class plus modifiers, in a pipe-
delimited list (where | is the pipe character). The class generally describes
what the user is allowed to input, and this determines the basic set of keys
available on the soft keyboard. The available classes are:

• text (the default)

• number

120

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Input Method Framework

• phone

• datetime

• date

• time

Many of these classes offer one or more modifiers, to further refine what
the user will be entering. To help explain those, take a look at the
res/layout/main.xml file from the InputMethod/IMEDemo1 project:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:stretchColumns="1"
 >
 <TableRow>
 <TextView
 android:text="No special rules:"
 />
 <EditText
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Email address:"
 />
 <EditText
 android:inputType="text|textEmailAddress"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Signed decimal number:"
 />
 <EditText
 android:inputType="number|numberSigned|numberDecimal"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Date:"
 />
 <EditText
 android:inputType="date"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Multi-line text:"
 />

121

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Input Method Framework

 <EditText
 android:inputType="text|textMultiLine|textAutoCorrect"
 android:minLines="3"
 android:gravity="top"
 />
 </TableRow>
</TableLayout>

Here, you will see a TableLayout containing five rows, each demonstrating a
slightly different flavor of EditText:

1. One has no attributes at all on the EditText, meaning you get a plain
text entry field

2. One has android:inputType = "text|textEmailAddress", meaning it is
text entry, but specifically seeks an email address

3. One allows for signed decimal numeric input, via android:inputType
= "number|numberSigned|numberDecimal"

4. One is set up to allow for data entry of a date (android:inputType =
"date")

5. The last allows for multi-line input with auto-correction of probable
spelling errors (android:inputType = "text|textMultiLine|

textAutoCorrect")

The class and modifiers tailor the keyboard. So, a plain text entry field
results in a plain soft keyboard:

122

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Input Method Framework

Figure 50. A standard input method editor (a.k.a., soft keyboard)

An email address field might put the @ symbol on the soft keyboard, at the
cost of a smaller spacebar:

Figure 51. The input method editor for email addresses

123

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Input Method Framework

Note, though, that this behavior is specific to the input method editor.
Some editors might put an @ sign on the primary keyboard for an email
field. Some might put a ".com" button on the primary keyboard. Some
might not react at all. It is up to the implementation of the input method
editor – all you can do is supply the hint.

Numbers and dates restrict the keys to numeric keys, plus a set of symbols
that may or may not be valid on a given field:

Figure 52. The input method editor for signed decimal numbers

And so on.

By choosing the appropriate android:inputType, you can give the user a soft
keyboard that best suits what it is they should be entering.

Tell Android Where It Can Go

You may have noticed a subtle difference between the first and second
input method editors, beyond the addition of the @ key. If you look in the

124

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Input Method Framework

lower-right corner of the soft keyboard, the second field's editor has a
"Next" button, while the first field's editor has a newline button.

This points out two things:

1. EditText widgets are multi-line by default if you do not specify
android:inputType

2. You can control what goes on with that lower-right-hand button,
called the accessory button

By default, on an EditText where you have specified android:inputType, the
accessory button will be "Next", moving you to the next EditText in
sequence, or "Done", if you are on the last EditText on the screen. You can
manually stipulate what the accessory button will be labeled via the
android:imeOptions attribute. For example, in the res/layout/main.xml from
InputMethod/IMEDemo2, you will see an augmented version of the previous
example, where two input fields specify what their accessory button should
look like:

<?xml version="1.0" encoding="utf-8"?>
<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
>
 <TableLayout
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:stretchColumns="1"
 >
 <TableRow>
 <TextView
 android:text="No special rules:"
 />
 <EditText
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Email address:"
 />
 <EditText
 android:inputType="text|textEmailAddress"
 android:imeOptions="actionSend"
 />
 </TableRow>
 <TableRow>

125

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Input Method Framework

 <TextView
 android:text="Signed decimal number:"
 />
 <EditText
 android:inputType="number|numberSigned|numberDecimal"
 android:imeOptions="actionDone"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Date:"
 />
 <EditText
 android:inputType="date"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Multi-line text:"
 />
 <EditText
 android:inputType="text|textMultiLine|textAutoCorrect"
 android:minLines="3"
 android:gravity="top"
 />
 </TableRow>
 </TableLayout>
</ScrollView>

Here, we attach a "Send" action to the accessory button for the email
address (android:imeOptions = "actionSend"), and the "Done" action on the
middle field (android:imeOptions = "actionDone").

By default, "Next" will move the focus to the next EditText and "Done" will
close up the input method editor. However, for those, or for any other ones
like "Send", you can use setOnEditorActionListener() on EditText
(technically, on the TextView superclass) to get control when the accessory
button is clicked or the user presses the <Enter> key. You are provided with
a flag indicating the desired action (e.g., IME_ACTION_SEND), and you can then
do something to handle that request (e.g., send an email to the supplied
email address).

126

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Input Method Framework

Fitting In

You will notice that the IMEDemo2 layout shown above has another difference
from its IMEDemo1 predecessor: the use of a ScrollView container wrapping
the TableLayout. This ties into another level of control you have over the
input method editors: what happens to your activity's own layout when the
input method editor appears?

There are three possibilities, depending on circumstances:

• Android can "pan" your activity, effectively sliding the whole layout
up to accommodate the input method editor, or overlaying your
layout, depending on whether the EditText being edited is at the top
or bottom. This has the effect of hiding some portion of your UI.

• Android can resize your activity, effectively causing it to shrink to a
smaller screen dimension, allowing the input method editor to sit
below the activity itself. This is great when the layout can readily be
shrunk (e.g., it is dominated by a list or multi-line input field that
does not need the whole screen to be functional).

• In landscape mode, Android may display the input method editor
full-screen, obscuring your entire activity. This allows for a bigger
keyboard and generally easier data entry.

Android controls the full-screen option purely on its own. And, by default,
Android will choose between pan and resize modes depending on what
your layout looks like. If you want to specifically choose between pan and
resize, you can do so via an android:windowSoftInputMode attribute on the
<activity> element in your AndroidManifest.xml file. For example, here is
the manifest from IMEDemo2:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.imf.two" android:versionCode="1"
android:versionName="1.0">
 <application android:label="@string/app_name" android:icon="@drawable/cw">
 <activity android:name=".IMEDemo2" android:label="@string/app_name"
android:windowSoftInputMode="adjustResize">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>

127

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Input Method Framework

 </intent-filter>
 </activity>
 </application>
 <supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

Because we specified resize, Android will shrink our layout to
accommodate the input method editor. With the ScrollView in place, this
means the scroll bar will appear as needed:

Figure 53. The shrunken, scrollable layout

Jane, Stop This Crazy Thing!

Sometimes, you need the input method editor to just go away. For example,
if you make the action button be "Search", the user tapping that button will
not automatically hide the editor.

To hide the editor, you will need to make a call to the InputMethodManager, a
system service that controls these input method editors:

128

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Input Method Framework

InputMethodManager
mgr=(InputMethodManager)getSystemService(INPUT_METHOD_SERVICE);

mgr.hideSoftInputFromWindow(fld.getWindowToken(), 0);

(where fld is the EditText whose input method editor you want to hide)

This will always close the input method editor. However, bear in mind that
there are two ways for a user to have opened that input method editor in
the first place:

1. If their device does not have a hardware keyboard exposed, and
they tap on the EditText, the input method editor should appear

2. If they previously dismissed the editor, or if they are using the
editor for a widget that does not normally pop one up (e.g.,
ListView), and they long-tap on the MENU button, the input
method editor should appear

If you only want to close the input method editor for the first scenario, but
not the second, use InputMethodManager.HIDE_IMPLICIT_ONLY as a flag for the
second parameter to your call to hideSoftInputFromWindow(), instead of the 0
shown in the previous example.

129

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 12

Using Selection Widgets

Back in the chapter on input method editors, you saw how fields could have
constraints placed upon them to limit possible input, such as numeric-only
or phone-number-only. These sorts of constraints help users "get it right"
when entering information, particularly on a mobile device with cramped
keyboards.

Of course, the ultimate in constrained input is to select a choice from a set
of items, such as the radio buttons seen earlier. Classic UI toolkits have
listboxes, comboboxes, drop-down lists, and the like for that very purpose.
Android has many of the same sorts of widgets, plus others of particular
interest for mobile devices (e.g., the Gallery for examining saved photos).

Moreover, Android offers a flexible framework for determining what
choices are available in these widgets. Specifically, Android offers a
framework of data adapters that provide a common interface to selection
lists ranging from static arrays to database contents. Selection views –
widgets for presenting lists of choices – are handed an adapter to supply the
actual choices.

Adapting to the Circumstances

In the abstract, adapters provide a common interface to multiple disparate
APIs. More specifically, in Android's case, adapters provide a common
interface to the data model behind a selection-style widget, such as a

131

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

listbox. This use of Java interfaces is fairly common (e.g., Java/Swing's
model adapters for JTable), and Java is far from the only environment
offering this sort of abstraction (e.g., Flex's XML data-binding framework
accepts XML inlined as static data or retrieved from the Internet).

Android's adapters are responsible for providing the roster of data for a
selection widget plus converting individual elements of data into specific
views to be displayed inside the selection widget. The latter facet of the
adapter system may sound a little odd, but in reality it is not that different
from other GUI toolkits' ways of overriding default display behavior. For
example, in Java/Swing, if you want a JList-backed listbox to actually be a
checklist (where individual rows are a checkbox plus label, and clicks adjust
the state of the checkbox), you inevitably wind up calling setCellRenderer()
to supply your own ListCellRenderer, which in turn converts strings for the
list into JCheckBox-plus-JLabel composite widgets.

Using ArrayAdapter

The easiest adapter to use is ArrayAdapter – all you need to do is wrap one of
these around a Java array or java.util.List instance, and you have a fully-
functioning adapter:

String[] items={"this", "is", "a",
 "really", "silly", "list"};
new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1, items);

One flavor of the ArrayAdapter constructor takes three parameters:

• The Context to use (typically this will be your activity instance)

• The resource ID of a view to use (such as a built-in system resource
ID, as shown above)

• The actual array or list of items to show

By default, the ArrayAdapter will invoke toString() on the objects in the list
and wrap each of those strings in the view designated by the supplied
resource. android.R.layout.simple_list_item_1 simply turns those strings

132

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

into TextView objects. Those TextView widgets, in turn, will be shown in the
list or spinner or whatever widget uses this ArrayAdapter. If you want to see
what android.R.layout.simple_list_item_1 looks like, you can find a copy of
it in your SDK installation – just search for simple_list_item_1.xml.

We will see in a later chapter how to subclass an Adapter and override row
creation, to give you greater control over how rows appear.

Lists of Naughty and Nice

The classic listbox widget in Android is known as ListView. Include one of
these in your layout, invoke setAdapter() to supply your data and child
views, and attach a listener via setOnItemSelectedListener() to find out
when the selection has changed. With that, you have a fully-functioning
listbox.

However, if your activity is dominated by a single list, you might well
consider creating your activity as a subclass of ListActivity, rather than the
regular Activity base class. If your main view is just the list, you do not
even need to supply a layout – ListActivity will construct a full-screen list
for you. If you do want to customize the layout, you can, so long as you
identify your ListView as @android:id/list, so ListActivity knows which
widget is the main list for the activity.

For example, here is a layout pulled from the Selection/List sample project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >
 <TextView
 android:id="@+id/selection"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"/>
 <ListView
 android:id="@android:id/list"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:drawSelectorOnTop="false"

133

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

 />
</LinearLayout>

It is just a list with a label on top to show the current selection.

The Java code to configure the list and connect the list with the label is:

public class ListViewDemo extends ListActivity {
 private TextView selection;
 private static final String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue", "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 setListAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 items));
 selection=(TextView)findViewById(R.id.selection);
 }

 public void onListItemClick(ListView parent, View v, int position,
 long id) {
 selection.setText(items[position]);
 }
}

With ListActivity, you can set the list adapter via setListAdapter() – in this
case, providing an ArrayAdapter wrapping an array of nonsense strings. To
find out when the list selection changes, override onListItemClick() and
take appropriate steps based on the supplied child view and position (in
this case, updating the label with the text for that position).

The results?

134

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

Figure 54. The ListViewDemo sample application

The second parameter to our ArrayAdapter –
android.R.layout.simple_list_item_1 – controls what the rows look like.
The value used in the preceding example provides the standard Android list
row: big font, lots of padding, white text.

Selection Modes

By default, ListView is set up simply to collect clicks on list entries.
Sometimes, though, you want a list that tracks a user's selection, or possibly
multiple selections. ListView can handle that as well, but it requires a few
changes.

First, you will need to call setChoiceMode() on the ListView in Java code to
set the choice mode, supplying either CHOICE_MODE_SINGLE or
CHOICE_MODE_MULTIPLE as the value. You can get your ListView from a
ListActivity via getListView(). You can also declare this via the
android:choiceMode attribute in your layout XML.

135

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

Then, rather than use android.R.layout.simple_list_item_1 as the layout for
the list rows in your ArrayAdapter constructor, you will need to use either
android.R.layout.simple_list_item_single_choice or
android.R.layout.simple_list_item_multiple_choice for single-choice or
multiple-choice lists, respectively.

For example, here is an activity layout from the Selection/Checklist sample
project:

<?xml version="1.0" encoding="utf-8"?>
<ListView
xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@android:id/list"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:drawSelectorOnTop="false"
 android:choiceMode="multipleChoice"
/>

It is a full-screen ListView, with the android:choiceMode="multipleChoice"
attribute to indicate that we want multiple choice support.

Our activity just uses a standard ArrayAdapter on our list of nonsense words,
but uses android.R.layout.simple_list_item_multiple_choice as the row
layout:

package com.commonsware.android.checklist;

import android.os.Bundle;
import android.app.ListActivity;
import android.widget.ArrayAdapter;
import android.widget.ListView;

public class ChecklistDemo extends ListActivity {
 private static final String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue", "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 setListAdapter(new ArrayAdapter<String>(this,

136

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

 android.R.layout.simple_list_item_multiple_choice,
 items));
 }
}

What the user sees is the list of words with checkboxes down the right
edge:

Figure 55. Multiple-select mode

If we wanted, we could call methods like getCheckedItemPositions() on our
ListView to find out which items the user checked, or setItemChecked() if we
wanted to check (or un-check) a specific entry ourselves.

Spin Control

In Android, the Spinner is the equivalent of the drop-down selector you
might find in other toolkits (e.g., JComboBox in Java/Swing). Pressing the
center button on the D-pad pops up a selection dialog for the user to
choose an item from. You basically get the ability to select from a list

137

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

without taking up all the screen space of a ListView, at the cost of an extra
click or screen tap to make a change.

As with ListView, you provide the adapter for data and child views via
setAdapter() and hook in a listener object for selections via
setOnItemSelectedListener().

If you want to tailor the view used when displaying the drop-down
perspective, you need to configure the adapter, not the Spinner widget. Use
the setDropDownViewResource() method to supply the resource ID of the view
to use.

For example, culled from the Selection/Spinner sample project, here is an
XML layout for a simple view with a Spinner:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TextView
 android:id="@+id/selection"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 <Spinner android:id="@+id/spinner"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:drawSelectorOnTop="true"
 />
</LinearLayout>

This is the same view as shown in the previous section, just with a Spinner
instead of a ListView. The Spinner property android:drawSelectorOnTop
controls whether the arrows are drawn on the selector button on the right
side of the Spinner UI.

To populate and use the Spinner, we need some Java code:

138

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

public class SpinnerDemo extends Activity
 implements AdapterView.OnItemSelectedListener {
 private TextView selection;
 private static final String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue", "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 selection=(TextView)findViewById(R.id.selection);

 Spinner spin=(Spinner)findViewById(R.id.spinner);
 spin.setOnItemSelectedListener(this);

 ArrayAdapter<String> aa=new ArrayAdapter<String>(this,
 android.R.layout.simple_spinner_item,
 items);

 aa.setDropDownViewResource(
 android.R.layout.simple_spinner_dropdown_item);
 spin.setAdapter(aa);
 }

 public void onItemSelected(AdapterView<?> parent,
 View v, int position, long id) {
 selection.setText(items[position]);
 }

 public void onNothingSelected(AdapterView<?> parent) {
 selection.setText("");
 }
}

Here, we attach the activity itself as the selection listener
(spin.setOnItemSelectedListener(this)). This works because the activity
implements the OnItemSelectedListener interface. We configure the adapter
not only with the list of fake words, but also with a specific resource to use
for the drop-down view (via aa.setDropDownViewResource()). Also note the
use of android.R.layout.simple_spinner_item as the built-in View for showing
items in the spinner itself. Finally, we implement the callbacks required by
OnItemSelectedListener to adjust the selection label based on user input.

What we get is:

139

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

Figure 56. The SpinnerDemo sample application, as initially launched

Figure 57. The same application, with the spinner drop-down list displayed

140

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

Grid Your Lions (Or Something Like That...)

As the name suggests, GridView gives you a two-dimensional grid of items to
choose from. You have moderate control over the number and size of the
columns; the number of rows is dynamically determined based on the
number of items the supplied adapter says are available for viewing.

There are a few properties which, when combined, determine the number
of columns and their sizes:

• android:numColumns spells out how many columns there are, or, if
you supply a value of auto_fit, Android will compute the number of
columns based on available space and the properties listed below.

• android:verticalSpacing and android:horizontalSpacing indicate
how much whitespace there should be between items in the grid.

• android:columnWidth indicates how many pixels wide each column
should be.

• android:stretchMode indicates, for grids with auto_fit for
android:numColumns, what should happen for any available space not
taken up by columns or spacing – this should be columnWidth to have
the columns take up available space or spacingWidth to have the
whitespace between columns absorb extra space.

Otherwise, the GridView works much like any other selection widget – use
setAdapter() to provide the data and child views, invoke
setOnItemSelectedListener() to register a selection listener, etc.

For example, here is an XML layout from the Selection/Grid sample project,
showing a GridView configuration:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TextView
 android:id="@+id/selection"

141

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 <GridView
 android:id="@+id/grid"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:verticalSpacing="40dip"
 android:horizontalSpacing="5dip"
 android:numColumns="auto_fit"
 android:columnWidth="100dip"
 android:stretchMode="columnWidth"
 android:gravity="center"
 />
</LinearLayout>

For this grid, we take up the entire screen except for what our selection
label requires. The number of columns is computed by Android
(android:numColumns = "auto_fit") based on our horizontal spacing
(android:horizontalSpacing = "5dip") and columns width
(android:columnWidth = "100dip"), with the columns absorbing any "slop"
width left over (android:stretchMode = "columnWidth").

The Java code to configure the GridView is:

package com.commonsware.android.grid;

import android.app.Activity;
import android.content.Context;
import android.os.Bundle;
import android.view.View;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.GridView;
import android.widget.TextView;

public class GridDemo extends Activity
 implements AdapterView.OnItemSelectedListener {
 private TextView selection;
 private static final String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue", "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

142

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

 setContentView(R.layout.main);
 selection=(TextView)findViewById(R.id.selection);

 GridView g=(GridView) findViewById(R.id.grid);
 g.setAdapter(new ArrayAdapter<String>(this,
 R.layout.cell,
 items));
 g.setOnItemSelectedListener(this);
 }

 public void onItemSelected(AdapterView<?> parent, View v,
 int position, long id) {
 selection.setText(items[position]);
 }

 public void onNothingSelected(AdapterView<?> parent) {
 selection.setText("");
 }
}

The grid cells are defined by a separate res/layout/cell.xml file, referenced
in our ArrayAdapter as R.layout.cell:

<?xml version="1.0" encoding="utf-8"?>
<TextView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="14dip"
/>

With the vertical spacing from the XML layout (android:verticalSpacing =
"40dip"), the grid overflows the boundaries of the emulator's screen:

143

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

Figure 58. The GridDemo sample application, as initially launched

Figure 59. The same application, scrolled to the bottom of the grid

144

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

Fields: Now With 35% Less Typing!

The AutoCompleteTextView is sort of a hybrid between the EditText (field)
and the Spinner. With auto-completion, as the user types, the text is treated
as a prefix filter, comparing the entered text as a prefix against a list of
candidates. Matches are shown in a selection list that folds down from the
field. The user can either type out an entry (e.g., something not in the list)
or choose an entry from the list to be the value of the field.

AutoCompleteTextView subclasses EditText, so you can configure all the
standard look-and-feel aspects, such as font face and color.

In addition, AutoCompleteTextView has a android:completionThreshold
property, to indicate the minimum number of characters a user must enter
before the list filtering begins.

You can give AutoCompleteTextView an adapter containing the list of
candidate values via setAdapter(). However, since the user could type
something not in the list, AutoCompleteTextView does not support selection
listeners. Instead, you can register a TextWatcher, like you can with any
EditText, to be notified when the text changes. These events will occur
either because of manual typing or from a selection from the drop-down
list.

Below we have a familiar-looking XML layout, this time containing an
AutoCompleteTextView (pulled from the Selection/AutoComplete sample
application):

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TextView
 android:id="@+id/selection"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />

145

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

 <AutoCompleteTextView android:id="@+id/edit"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:completionThreshold="3"/>
</LinearLayout>

The corresponding Java code is:

package com.commonsware.android.auto;

import android.app.Activity;
import android.os.Bundle;
import android.text.Editable;
import android.text.TextWatcher;
import android.view.View;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.AutoCompleteTextView;
import android.widget.TextView;

public class AutoCompleteDemo extends Activity
 implements TextWatcher {
 private TextView selection;
 private AutoCompleteTextView edit;
 private static final String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue", "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 selection=(TextView)findViewById(R.id.selection);
 edit=(AutoCompleteTextView)findViewById(R.id.edit);
 edit.addTextChangedListener(this);

 edit.setAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_dropdown_item_1line,
 items));
 }

 public void onTextChanged(CharSequence s, int start, int before,
 int count) {
 selection.setText(edit.getText());
 }

 public void beforeTextChanged(CharSequence s, int start,
 int count, int after) {
 // needed for interface, but not used
 }

146

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

 public void afterTextChanged(Editable s) {
 // needed for interface, but not used
 }
}

This time, our activity implements TextWatcher, which means our callbacks
are onTextChanged(), beforeTextChanged(), and afterTextChanged(). In this
case, we are only interested in the former, and we update the selection label
to match the AutoCompleteTextView's current contents.

Here we have the results:

Figure 60. The AutoCompleteDemo sample application, as initially launched

147

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

Figure 61. The same application, after a few matching letters were entered,
showing the auto-complete drop-down

Figure 62. The same application, after the auto-complete value was selected

148

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

Galleries, Give Or Take The Art

The Gallery widget is not one ordinarily found in GUI toolkits. It is, in
effect, a horizontally-laid-out listbox. One choice follows the next across
the horizontal plane, with the currently-selected item highlighted. On an
Android device, one rotates through the options through the left and right
D-pad buttons.

Compared to the ListView, the Gallery takes up less screen space while still
showing multiple choices at one time (assuming they are short enough).
Compared to the Spinner, the Gallery always shows more than one choice at
a time.

The quintessential example use for the Gallery is image preview – given a
collection of photos or icons, the Gallery lets people preview the pictures in
the process of choosing one.

Code-wise, the Gallery works much like a Spinner or GridView. In your XML
layout, you have a few properties at your disposal:

• android:spacing controls the number of pixels between entries in
the list

• android:spinnerSelector controls what is used to indicate a selection
– this can either be a reference to a Drawable (see the resources
chapter) or an RGB value in #AARRGGBB or similar notation

• android:drawSelectorOnTop indicates if the selection bar (or Drawable)
should be drawn before (false) or after (true) drawing the selected
child – if you choose true, be sure that your selector has sufficient
transparency to show the child through the selector, otherwise
users will not be able to read the selection

149

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 13

Getting Fancy With Lists

The humble ListView is one of the most important widgets in all of
Android, simply because it is used so frequently. Whether choosing a
contact to call or an email message to forward or an ebook to read, ListView
widgets are employed in a wide range of activities.

Of course, it would be nice if they were more than just plain text.

The good news is that they can be as fancy as you want, within the
limitations of a mobile device's screen, of course. However, making them
fancy takes some work and some features of Android that we will cover in
this chapter.

Getting To First Base

The classic Android ListView is a plain list of text — solid but uninspiring.
This is because all we have handed to the ListView is a bunch of words in an
array, and told Android to use a simple built-in layout for pouring those
words into a list.

However, you can have a list whose rows are made up of icons, or icons and
text, or checkboxes and text, or whatever you want. It is merely a matter of
supplying enough data to the adapter and helping the adapter to create a
richer set of View objects for each row.

151

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

For example, suppose you want a ListView whose entries are made up of an
icon, followed by some text. You could construct a layout for the row that
looks like this, found in res/layout/row.xml in the FancyLists/Static sample
project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal"
>
 <ImageView
 android:id="@+id/icon"
 android:padding="2dip"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:src="@drawable/ok"
 />
 <TextView
 android:id="@+id/label"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="40sp"
 />
</LinearLayout>

This layout uses a LinearLayout to set up a row, with the icon on the left and
the text (in a nice big font) on the right.

By default, though, Android has no idea that you want to use this layout
with your ListView. To make the connection, you need to supply your
Adapter with the resource ID of the custom layout shown above:

public class StaticDemo extends ListActivity {
 private TextView selection;
 private static final String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue", "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 setListAdapter(new ArrayAdapter<String>(this,
 R.layout.row, R.id.label,

152

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

 items));
 selection=(TextView)findViewById(R.id.selection);
 }

 public void onListItemClick(ListView parent, View v,
 int position, long id) {
 selection.setText(items[position]);
 }
}

This follows the general structure for the previous ListView sample.

The key in this example is that you have told ArrayAdapter that you want to
use your custom layout (R.layout.row) and that the TextView where the
word should go is known as R.id.label within that custom layout.
Remember: to reference a layout (row.xml), use R.layout as a prefix on the
base name of the layout XML file (R.layout.row).

The result is a ListView with icons down the left side. In particular, all the
icons are the same:

Figure 63. The StaticDemo application

153

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

A Dynamic Presentation

This technique – supplying an alternate layout to use for rows – handles
simple cases very nicely.

However, what happens when we want the icon to change based on the row
data? For example, perhaps we want to use one icon for small words and a
different icon for large words.

In the case of ArrayAdapter, you will need to extend it, creating your own
custom subclass (e.g., IconicAdapter) that incorporates your business logic.
In particular, it will need to override getView().

The getView() method of an Adapter is what an AdapterView (like ListView or
Spinner) calls when it needs the View associated with a given piece of data
the Adapter is managing. In the case of an ArrayAdapter, getView() is called
as needed for each position in the array – "get me the View for the first row",
"get me the View for the second row", etc.

For example, let us rework the above code to use getView(), so we can have
different icons for different rows – in this case, one icon for short words and
one for long words (from the FancyLists/Dynamic sample project):

public class DynamicDemo extends ListActivity {
 TextView selection;
 private static final String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue", "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 setListAdapter(new IconicAdapter());
 selection=(TextView)findViewById(R.id.selection);
 }

 public void onListItemClick(ListView parent, View v,
 int position, long id) {

154

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

 selection.setText(items[position]);
 }

 class IconicAdapter extends ArrayAdapter<String> {
 IconicAdapter() {
 super(DynamicDemo.this, R.layout.row, R.id.label, items);
 }

 public View getView(int position, View convertView,
 ViewGroup parent) {
 View row=super.getView(position, convertView, parent);
 ImageView icon=(ImageView)row.findViewById(R.id.icon);

 if (items[position].length()>4) {
 icon.setImageResource(R.drawable.delete);
 }
 else {
 icon.setImageResource(R.drawable.ok);
 }

 return(row);
 }
 }
}

Our IconicAdapter – an inner class of the activity – has two methods. First,
it has the constructor, which just passes to ArrayAdapter the same data we
used in the ArrayAdapter constructor in StaticDemo. Second, it has our
getView() implementation, which does two things:

1. It chains to the superclass' implementation of getView(), which
returns to us an instance of our row View, as prepared by
ArrayAdapter. In particular, our word has already been put into the
TextView, since ArrayAdapter does that normally.

2. It finds our ImageView and applies a business rule to set which icon
should be used, referencing one of two drawable resources
(R.drawable.ok and R.drawable.delete).

This gives us:

155

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

Figure 64. The DynamicDemo application

Inflating Rows Ourselves

The solution shown in this version of the DynamicDemo works fine. However,
there will be times when ArrayAdapter cannot even be used for setting up
the basics of our row. For example, it is possible to have a ListView where
the rows are materially different, such as category headers interspersed
among "regular" rows. In that case, we may need to do all of the work
ourselves, starting with inflating our rows.

A Sidebar About Inflation

In this case, “inflation” means the act of converting an XML layout
specification into the actual tree of View objects the XML represents. This is
undoubtedly a tedious bit of code: take an element, create an instance of
the specified View class, walk the attributes, convert those into property
setter calls, iterate over all child elements, lather, rinse, repeat.

156

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

The good news is that the fine folk on the Android team wrapped all that
up into a class called LayoutInflater that we can use ourselves. When it
comes to fancy lists, for example, we will want to inflate Views for each row
shown in the list, so we can use the convenient shorthand of the XML
layout to describe what the rows are supposed to look like.

For example, let us look at a slightly different implementation of the
DynamicDemo class, from the FancyLists/DynamicEx project:

public class DynamicDemo extends ListActivity {
 TextView selection;
 private static final String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue", "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 setListAdapter(new IconicAdapter());
 selection=(TextView)findViewById(R.id.selection);
 }

 public void onListItemClick(ListView parent, View v,
 int position, long id) {
 selection.setText(items[position]);
 }

 class IconicAdapter extends ArrayAdapter<String> {
 IconicAdapter() {
 super(DynamicDemo.this, R.layout.row, items);
 }

 public View getView(int position, View convertView,
 ViewGroup parent) {
 LayoutInflater inflater=getLayoutInflater();
 View row=inflater.inflate(R.layout.row, parent, false);
 TextView label=(TextView)row.findViewById(R.id.label);

 label.setText(items[position]);

 ImageView icon=(ImageView)row.findViewById(R.id.icon);

 if (items[position].length()>4) {
 icon.setImageResource(R.drawable.delete);
 }
 else {

157

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

 icon.setImageResource(R.drawable.ok);
 }

 return(row);
 }
 }
}

Here we inflate our R.layout.row layout by use of a LayoutInflater object,
obtained from our Activity via getLayoutInflater(). This gives us a View
object back which, in reality, is our LinearLayout with an ImageView and a
TextView, just as R.layout.row specifies. However, rather than having to
create all those objects ourselves and wire them together, the XML and
LayoutInflater handle the "heavy lifting" for us.

And Now, Back To Our Story

So we have used LayoutInflater to give us a View representing the row. This
row is "empty", since the static layout file has no idea what actual data goes
into the row. It is our job to customize and populate the row as we see fit
before returning it. So, we:

• Fill in the text label into our label widget, using the word at the
supplied position

• See if the word is longer than four characters and, if so, we find our
ImageView icon widget and replace the stock resource with a
different one

The user sees nothing different – we have simply changed how those rows
are being created.

Obviously, this was a fairly contrived example, but you can see where this
technique could be used to customize rows based on any sort of criteria.

158

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

Better. Stronger. Faster.

The getView() implementation shown in the FancyLists/DynamicEx project
works, but is inefficient. Every time the user scrolls, we have to create a
bunch of new View objects to accommodate the newly-shown rows.

This is bad.

It might be bad for the immediate user experience, if the list appears to be
sluggish. More likely, though, it will be bad due to battery usage – every bit
of CPU that is used eats up the battery. This is compounded by the extra
work the garbage collector needs to do to get rid of all those extra objects
you create. So the less efficient your code, the more quickly the phone's
battery will be drained, and the less happy the user will be.

And you want happy users, right?

So, let us take a look at a few tricks to make your fancy ListView widgets
more efficient.

Using convertView

The getView() method receives, as one of its parameters, a View named, by
convention, convertView. Sometimes, convertView will be null. In those
cases, you have to create a new row View from scratch (e.g., via inflation),
just as we did before.

However, if convertView is not null, then it is actually one of your
previously-created View objects! This will happen primarily when the user
scrolls the ListView – as new rows appear, Android will attempt to recycle
the views of the rows that scrolled off the other end of the list, to save you
having to rebuild them from scratch.

Assuming that each of your rows has the same basic structure, you can use
findViewById() to get at the individual widgets that make up your row and

159

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

change their contents, then return convertView from getView(), rather than
create a whole new row.

For example, here is the getView() implementation from last time, now
optimized via convertView (from the FancyLists/Recycling project):

public class RecyclingDemo extends ListActivity {
 private TextView selection;
 private static final String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue", "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 setListAdapter(new IconicAdapter());
 selection=(TextView)findViewById(R.id.selection);
 }

 public void onListItemClick(ListView parent, View v,
 int position, long id) {
 selection.setText(items[position]);
 }

 class IconicAdapter extends ArrayAdapter<String> {
 IconicAdapter() {
 super(RecyclingDemo.this, R.layout.row, items);
 }

 public View getView(int position, View convertView,
 ViewGroup parent) {
 View row=convertView;

 if (row==null) {
 LayoutInflater inflater=getLayoutInflater();

 row=inflater.inflate(R.layout.row, parent, false);
 }

 TextView label=(TextView)row.findViewById(R.id.label);

 label.setText(items[position]);

 ImageView icon=(ImageView)row.findViewById(R.id.icon);

 if (items[position].length()>4) {
 icon.setImageResource(R.drawable.delete);

160

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

 }
 else {
 icon.setImageResource(R.drawable.ok);
 }

 return(row);
 }
 }
}

Here, we check to see if the convertView is null and, if so, we then inflate our
row – but if it is not-null, we just reuse it. The work to fill in the contents
(icon image, text) is the same in either case. The advantage is that we avoid
the potentially-expensive inflation step. In fact, according to statistics cited
by Google at the 2010 Google I|O conference, a ListView that uses a
recycling ListAdapter will perform 150% faster than one that does not. In
fact, for complex rows, that might understate the benefit.

Not only is this faster, but it uses much less memory. Each widget or
container – in other words, each subclass of View – holds onto up to 2KB of
data, not counting things like images in ImageView widgets. Each of our
rows, therefore, might be as big as 6KB. For our list of 25 nonsense words,
consuming as much as 150KB for a non-recycling list (25 rows at 6KB each)
would be inefficient but not a huge problem. A list of 1,000 nonsense
words, though, consuming as much as 6MB of RAM, would be a much
bigger issue. Bear in mind that your application may only have 16MB of Java
heap memory to work with. Recycling allows us to handle arbitrary list
lengths with only as much View memory consumed as is needed for the
rows visible on screen.

Note that row recycling is only an issue if we are creating the rows ourself.
If we let ArrayAdapter create the rows, by leveraging its implementation of
getView() as shown in the FancyLists/Dynamic project, then it deals with the
recycling.

Using the Holder Pattern

Another somewhat expensive operation we do a lot with fancy views is call
findViewById(). This dives into our inflated row and pulls out widgets by

161

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

their assigned identifiers, so we can customize the widget contents (e.g.,
change the text of a TextView, change the icon in an ImageView). Since
findViewById() can find widgets anywhere in the tree of children of the
row's root View, this could take a fair number of instructions to execute,
particularly if we keep having to re-find widgets we had found once before.

In some GUI toolkits, this problem is avoided by having the composite View
objects, like our rows, be declared totally in program code (in this case,
Java). Then, accessing individual widgets is merely the matter of calling a
getter or accessing a field. And you can certainly do that with Android, but
the code gets rather verbose. What would be nice is a way where we can
still use the layout XML yet cache our row's key child widgets so we only
have to find them once.

That's where the holder pattern comes into play, in a class we'll call
ViewHolder.

All View objects have getTag() and setTag() methods. These allow you to
associate an arbitrary object with the widget. What the holder pattern does
is use that "tag" to hold an object that, in turn, holds each of the child
widgets of interest. By attaching that holder to the row View, every time we
use the row, we already have access to the child widgets we care about,
without having to call findViewById() again.

So, let’s take a look at one of these holder classes (taken from the
FancyLists/ViewHolder sample project):

package com.commonsware.android.fancylists.five;

import android.view.View;
import android.widget.ImageView;

class ViewHolder {
 ImageView icon=null;

 ViewHolder(View base) {
 this.icon=(ImageView)base.findViewById(R.id.icon);
 }
}

162

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

ViewHolder holds onto the child widgets, initialized via findViewById() in its
constructor. The widgets are simply package-protected data members,
accessible from other classes in this project...such as a ViewHolderDemo
activity. In this case, we are only holding onto one widget – the icon – since
we will let ArrayAdapter handle our label for us.

Using ViewHolder is a matter of creating an instance whenever we inflate a
row and attaching said instance to the row View via setTag(), as shown in
this rewrite of getView(), found in ViewHolderDemo:

public View getView(int position, View convertView,
 ViewGroup parent) {
 View row=super.getView(position, convertView, parent);
 ViewHolder holder=(ViewHolder)row.getTag();

 if (holder==null) {
 holder=new ViewHolder(row);
 row.setTag(holder);
 }

 if (getModel(position).length()>4) {
 holder.icon.setImageResource(R.drawable.delete);
 }
 else {
 holder.icon.setImageResource(R.drawable.ok);
 }

 return(row);
}

Here, we go back to allowing ArrayAdapter to handle our row inflation and
recycling for us. If the call to getTag() on the row returns null, we know we
need to create a new ViewHolder, which we then attach to the row via
setTag() for later reuse. Then, accessing the child widgets is merely a
matter of accessing the data members on the holder. The first time the
ListView is displayed, all new rows need to be inflated, and we wind up
creating a ViewHolder for each. As the user scrolls, rows get recycled, and we
can reuse their corresponding ViewHolder widget caches.

Using a holder helps performance, but the effect is not as dramatic.
Whereas recycling can give you a 150% performance improvement, adding
in a holder increases the improvement to 175%. Hence, while you may wish
to implement recycling up front when you create your adapter, adding in a

163

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

holder might be something you deal with later, when you are working
specifically on performance tuning.

In this particular case, we certainly could simplify all of this, by skipping
ViewHolder and using getTag() and setTag() with the ImageView directly. This
example is written as it is to demonstrate how to handle a more complex
scenario, where you might have several widgets that would need to be
cached via the holder pattern.

Interactive Rows

Lists with pretty icons next to them are all fine and well. But, can we create
ListView widgets whose rows contain interactive child widgets instead of
just passive widgets like TextView and ImageView? For example, there is a
RatingBar widget that allows users to assign a rating by clicking on a set of
star icons. Could we combine the RatingBar with text in order to allow
people to scroll a list of, say, songs and rate them right inside the list?

There is good news and bad news.

The good news is that interactive widgets in rows work just fine. The bad
news is that it is a little tricky, specifically when it comes to taking action
when the interactive widget's state changes (e.g., a value is typed into a
field). We need to store that state somewhere, since our RatingBar widget
will be recycled when the ListView is scrolled. We need to be able to set the
RatingBar state based upon the actual word we are viewing as the RatingBar
is recycled, and we need to save the state when it changes so it can be
restored when this particular row is scrolled back into view.

What makes this interesting is that, by default, the RatingBar has absolutely
no idea what item in the ArrayAdapter it represents. After all, the RatingBar
is just a widget, used in a row of a ListView. We need to teach the rows
which item in the ArrayAdapter they are currently displaying, so when their
RatingBar is checked, they know which item's state to modify.

164

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

So, let's see how this is done, using the activity in the FancyLists/RateList
sample project. We will use the same basic classes as our previous demo –
we are showing a list of nonsense words, which you can then rate. In
addition, words given a top rating are put in all caps:

package com.commonsware.android.fancylists.six;

import android.app.Activity;
import android.os.Bundle;
import android.app.ListActivity;
import android.view.View;
import android.view.ViewGroup;
import android.view.LayoutInflater;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.RatingBar;
import android.widget.LinearLayout;
import android.widget.ListView;
import android.widget.TextView;
import java.util.ArrayList;

public class RateListDemo extends ListActivity {
 private static final String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue", "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 ArrayList<RowModel> list=new ArrayList<RowModel>();

 for (String s : items) {
 list.add(new RowModel(s));
 }

 setListAdapter(new RatingAdapter(list));
 }

 private RowModel getModel(int position) {
 return(((RatingAdapter)getListAdapter()).getItem(position));
 }

 class RatingAdapter extends ArrayAdapter<RowModel> {
 RatingAdapter(ArrayList<RowModel> list) {
 super(RateListDemo.this, R.layout.row, R.id.label, list);
 }

 public View getView(int position, View convertView,

165

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

 ViewGroup parent) {
 View row=super.getView(position, convertView, parent);
 ViewHolder holder=(ViewHolder)row.getTag();

 if (holder==null) {
 holder=new ViewHolder(row);
 row.setTag(holder);

 RatingBar.OnRatingBarChangeListener l=
 new RatingBar.OnRatingBarChangeListener() {
 public void onRatingChanged(RatingBar ratingBar,
 float rating,
 boolean fromTouch) {
 Integer myPosition=(Integer)ratingBar.getTag();
 RowModel model=getModel(myPosition);

 model.rating=rating;

 LinearLayout parent=(LinearLayout)ratingBar.getParent();
 TextView label=(TextView)parent.findViewById(R.id.label);

 label.setText(model.toString());
 }
 };

 holder.rate.setOnRatingBarChangeListener(l);
 }

 RowModel model=getModel(position);

 holder.rate.setTag(new Integer(position));
 holder.rate.setRating(model.rating);

 return(row);
 }
 }

 class RowModel {
 String label;
 float rating=2.0f;

 RowModel(String label) {
 this.label=label;
 }

 public String toString() {
 if (rating>=3.0) {
 return(label.toUpperCase());
 }

 return(label);
 }
 }
}

166

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

Here is what is different in this activity and getView() implementation than
before:

1. While we are still using String[] items as the list of nonsense words,
rather than pour that String array straight into an ArrayAdapter, we
turn it into a list of RowModel objects. RowModel is the mutable model:
it holds the nonsense word plus the current checked state. In a real
system, these might be objects populated from a database, and the
properties would have more business meaning.

2. Utility methods like onListItemClick() had to be updated to reflect
the change from a pure-String model to use a RowModel.

3. The ArrayAdapter subclass (RatingAdapter), in getView(), lets
ArrayAdapter inflate and recycle the row, then checks to see if we
have a ViewHolder in the row's tag. If not, we create a new ViewHolder
and associate it with the row. For the row's RatingBar, we add an
anonymous onRatingChanged() listener that looks at the row's tag
(getTag()) and converts that into an Integer, representing the
position within the ArrayAdapter that this row is displaying. Using
that, the rating bar can get the actual RowModel for the row and
update the model based upon the new state of the rating bar. It also
updates the text adjacent to the RatingBar when checked to match
the rating bar state.

4. We always make sure that the RatingBar has the proper contents
and has a tag (via setTag()) pointing to the position in the adapter
the row is displaying.

The row layout is very simple: just a RatingBar and a TextView inside a
LinearLayout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal"
>
 <RatingBar
 android:id="@+id/rate"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:numStars="3"

167

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

 android:stepSize="1"
 android:rating="2" />
 <TextView
 android:id="@+id/label"
 android:padding="2dip"
 android:textSize="18sp"
 android:layout_gravity="left|center_vertical"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"/>
</LinearLayout>

The ViewHolder is similarly simple, just extracting the RatingBar out of the
row View for caching purposes:

package com.commonsware.android.fancylists.six;

import android.view.View;
import android.widget.RatingBar;

class ViewHolder {
 RatingBar rate=null;

 ViewHolder(View base) {
 this.rate=(RatingBar)base.findViewById(R.id.rate);
 }
}

And the result is what you would expect, visually:

168

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

Figure 65. The RateListDemo application, as initially launched

This includes the toggled rating bars turning their words into all caps:

Figure 66. The same application, showing a top-rated word

169

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 14

Still More Widgets and
Containers

This book has covered a number of widgets and containers so far. This
chapter is the last that focuses exclusively on widgets and containers,
covering a number of popular options, from date and time widgets to tabs.
After this chapter, we will still introduce the occasional new widget, but in
the context of some other topic, such as introducing the ProgressBar in the
chapter on threads.

Pick and Choose

With limited-input devices like phones, having widgets and dialogs that are
aware of the type of stuff somebody is supposed to be entering is very
helpful. It minimizes keystrokes and screen taps, plus reduces the chance of
making some sort of error (e.g., entering a letter someplace where only
numbers are expected).

As shown previously, EditText has content-aware flavors for entering in
numbers, phone numbers, etc. Android also supports widgets (DatePicker,
TimePicker) and dialogs (DatePickerDialog, TimePickerDialog) for helping
users enter dates and times.

The DatePicker and DatePickerDialog allow you to set the starting date for
the selection, in the form of a year, month, and day of month value. Note

171

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

that the month runs from 0 for January through 11 for December. Most
importantly, both let you provide a callback object (OnDateChangedListener
or OnDateSetListener) where you are informed of a new date selected by the
user. It is up to you to store that date someplace, particularly if you are
using the dialog, since there is no other way for you to get at the chosen
date later on.

Similarly, TimePicker and TimePickerDialog let you:

• set the initial time the user can adjust, in the form of an hour (0
through 23) and a minute (0 through 59)

• indicate if the selection should be in 12-hour mode with an AM/PM
toggle, or in 24-hour mode (what in the US is thought of as
"military time" and much of the rest of the world is thought of as
"the way times are supposed to be")

• provide a callback object (OnTimeChangedListener or
OnTimeSetListener) to be notified of when the user has chosen a new
time, which is supplied to you in the form of an hour and minute

For example, from the Fancy/Chrono sample project, here's a trivial layout
containing a label and two buttons – the buttons will pop up the dialog
flavors of the date and time pickers:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TextView android:id="@+id/dateAndTime"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 <Button android:id="@+id/dateBtn"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Set the Date"
 android:onClick="chooseDate"
 />
 <Button android:id="@+id/timeBtn"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"

172

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

 android:text="Set the Time"
 android:onClick="chooseTime"
 />
</LinearLayout>

The more interesting stuff comes in the Java source:

package com.commonsware.android.chrono;

import android.app.Activity;
import android.os.Bundle;
import android.app.DatePickerDialog;
import android.app.TimePickerDialog;
import android.view.View;
import android.widget.DatePicker;
import android.widget.TimePicker;
import android.widget.TextView;
import java.text.DateFormat;
import java.util.Calendar;

public class ChronoDemo extends Activity {
 DateFormat fmtDateAndTime=DateFormat.getDateTimeInstance();
 TextView dateAndTimeLabel;
 Calendar dateAndTime=Calendar.getInstance();

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 dateAndTimeLabel=(TextView)findViewById(R.id.dateAndTime);

 updateLabel();
 }

 public void chooseDate(View v) {
 new DatePickerDialog(ChronoDemo.this, d,
 dateAndTime.get(Calendar.YEAR),
 dateAndTime.get(Calendar.MONTH),
 dateAndTime.get(Calendar.DAY_OF_MONTH))
 .show();
 }

 public void chooseTime(View v) {
 new TimePickerDialog(ChronoDemo.this, t,
 dateAndTime.get(Calendar.HOUR_OF_DAY),
 dateAndTime.get(Calendar.MINUTE),
 true)
 .show();
 }

 private void updateLabel() {
 dateAndTimeLabel.setText(fmtDateAndTime

173

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

 .format(dateAndTime.getTime()));
 }

 DatePickerDialog.OnDateSetListener d=new DatePickerDialog.OnDateSetListener()
{
 public void onDateSet(DatePicker view, int year, int monthOfYear,
 int dayOfMonth) {
 dateAndTime.set(Calendar.YEAR, year);
 dateAndTime.set(Calendar.MONTH, monthOfYear);
 dateAndTime.set(Calendar.DAY_OF_MONTH, dayOfMonth);
 updateLabel();
 }
 };

 TimePickerDialog.OnTimeSetListener t=new TimePickerDialog.OnTimeSetListener()
{
 public void onTimeSet(TimePicker view, int hourOfDay,
 int minute) {
 dateAndTime.set(Calendar.HOUR_OF_DAY, hourOfDay);
 dateAndTime.set(Calendar.MINUTE, minute);
 updateLabel();
 }
 };
}

The "model" for this activity is just a Calendar instance, initially set to be the
current date and time. We pour it into the view via a DateFormat formatter.
In the updateLabel() method, we take the current Calendar, format it, and
put it in the TextView.

Each button has a corresponding method that will get control when the
user clicks it (chooseDate() and chooseTime()). When the button is clicked,
either a DatePickerDialog or a TimePickerDialog is shown. In the case of the
DatePickerDialog, we give it a OnDateSetListener callback that updates the
Calendar with the new date (year, month, day of month). We also give the
dialog the last-selected date, getting the values out of the Calendar. In the
case of the TimePickerDialog, it gets a OnTimeSetListener callback to update
the time portion of the Calendar, the last-selected time, and a true
indicating we want 24-hour mode on the time selector.

With all this wired together, the resulting activity looks like this:

174

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

Figure 67. The ChronoDemo sample application, as initially launched

Figure 68. The same application, showing the date picker dialog

175

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

Figure 69. The same application, showing the time picker dialog

Time Keeps Flowing Like a River

If you want to display the time, rather than have users enter the time, you
may wish to use the DigitalClock or AnalogClock widgets. These are
extremely easy to use, as they automatically update with the passage of
time. All you need to do is put them in your layout and let them do their
thing.

For example, from the Fancy/Clocks sample application, here is an XML
layout containing both DigitalClock and AnalogClock:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <AnalogClock android:id="@+id/analog"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_centerHorizontal="true"
 android:layout_alignParentTop="true"
 />
 <DigitalClock android:id="@+id/digital"

176

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerHorizontal="true"
 android:layout_below="@id/analog"
 />
</RelativeLayout>

Without any Java code other than the generated stub, we can build this
project and get the following activity:

Figure 70. The ClocksDemo sample application

If you are looking for more of a timer, Chronometer may be of interest. With
a Chronometer, you can track elapsed time from a starting point. You simply
tell it when to start() and stop(), and possibly override the format string
that displays the text:

177

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

Figure 71. The Views/Chronometer API Demo from the Android 2.0 SDK

Seeking Resolution

The SeekBar is an input widget, allowing the user to select a value along a
range of possible values:

178

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

Figure 72. The Views/SeekBar API Demo from the Android 2.0 SDK

The user can either drag the "thumb" or click on either side of it to
reposition the thumb. The thumb then points to a particular value along a
range. That range will be 0 to some maximum value, 100 by default, that
you control via a call to setMax(). You can find out what the current position
is via getProgress(), or find out when the user makes a change to the
thumb's position by registering a listener via setOnSeekBarChangeListener().

We saw another variation on this theme with the RatingBar in the previous
chapter.

Putting It On My Tab

The general Android philosophy is to keep activities short and sweet. If
there is more information than can reasonably fit on one screen, albeit
perhaps with scrolling, then it perhaps belongs in another activity kicked
off via an Intent, as will be described later in this book. However, that can
be complicated to set up. Moreover, sometimes there legitimately is a lot of
information that needs to be collected to be processed as an atomic
operation.

179

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

In a traditional UI, you might use tabs to accomplish this end, such as a
JTabbedPane in Java/Swing. In Android, you now have an option of using a
TabHost container in much the same way – a portion of your activity's screen
is taken up with tabs which, when clicked, swap out part of the view and
replace it with something else. For example, you might have an activity with
a tab for entering a location and a second tab for showing a map of that
location.

Some GUI toolkits refer to "tabs" as being just the things a user clicks on to
toggle from one view to another. Some toolkits refer to "tabs" as being the
combination of the clickable button-ish element and the content that
appears when that tab is chosen. Android treats the tab buttons and
contents as discrete entities, so we will call them "tab buttons" and "tab
contents" in this section.

The Pieces

There are a few widgets and containers you need to use in order to set up a
tabbed portion of a view:

• TabHost is the overarching container for the tab buttons and tab
contents

• TabWidget implements the row of tab buttons, which contain text
labels and optionally contain icons

• FrameLayout is the container for the tab contents; each tab content is
a child of the FrameLayout

This is similar to the approach that Mozilla's XUL takes. In XUL's case, the
tabbox element corresponds to Android's TabHost, the tabs element
corresponds to TabWidget, and tabpanels corresponds to the FrameLayout.

For example, here is a layout definition for a tabbed activity, from
Fancy/Tab:

<?xml version="1.0" encoding="utf-8"?>
<TabHost xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/tabhost"

180

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <LinearLayout
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <TabWidget android:id="@android:id/tabs"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 <FrameLayout android:id="@android:id/tabcontent"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <AnalogClock android:id="@+id/tab1"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 />
 <Button android:id="@+id/tab2"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:text="A semi-random button"
 />
 </FrameLayout>
 </LinearLayout>
</TabHost>

Note that the TabWidget and FrameLayout are indirect children of the TabHost,
and the FrameLayout itself has children representing the various tabs. In this
case, there are two tabs: a clock and a button. In a more complicated
scenario, the tabs are probably some form of container (e.g., LinearLayout)
with their own contents.

Wiring It Together

You can put these widgets in a regular Activity or a TabActivity.
TabActivity, like ListActivity, wraps a common UI pattern (activity made
up entirely of tabs) into a pattern-aware activity subclass. If you wish to use
the TabActivity, you must give the TabHost an android:id of
@android:id/tabhost. Conversely, if you do not wish to use TabActivity, you
need to get your TabHost via findViewById(), then call setup() on the TabHost,
before you do anything else.

The rest of the Java code needs to tell the TabHost what views represent the
tab contents and what the tab buttons should look like. This is all wrapped

181

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

up in TabSpec objects. You get a TabSpec instance from the host via
newTabSpec(), fill it out, then add it to the host in the proper sequence.

The two key methods on TabSpec are:

• setContent(), where you indicate what goes in the tab content for
this tab, typically the android:id of the view you want shown when
this tab is selected

• setIndicator(), where you provide the caption for the tab button
and, in some flavors of this method, supply a Drawable to represent
the icon for the tab

Note that tab "indicators" can actually be views in their own right, if you
need more control than a simple label and optional icon.

Also note that you must call setup() on the TabHost before configuring any
of these TabSpec objects. The call to setup() is not needed if you are using
the TabActivity base class for your activity.

For example, here is the Java code to wire together the tabs from the
preceding layout example:

package com.commonsware.android.fancy;

import android.app.Activity;
import android.os.Bundle;
import android.widget.TabHost;

public class TabDemo extends Activity {
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 TabHost tabs=(TabHost)findViewById(R.id.tabhost);

 tabs.setup();

 TabHost.TabSpec spec=tabs.newTabSpec("tag1");

 spec.setContent(R.id.tab1);
 spec.setIndicator("Clock");
 tabs.addTab(spec);

182

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

 spec=tabs.newTabSpec("tag2");
 spec.setContent(R.id.tab2);
 spec.setIndicator("Button");
 tabs.addTab(spec);
 }
}

We find our TabHost via the familiar findViewById() method, then have it
setup(). After that, we get a TabSpec via newTabSpec(), supplying a tag whose
purpose is unknown at this time. Given the spec, you call setContent() and
setIndicator(), then call addTab() back on the TabHost to register the tab as
available for use. Finally, you can choose which tab is the one to show via
setCurrentTab(), providing the 0-based index of the tab.

The result?

Figure 73. The TabDemo sample application, showing the first tab

183

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

Figure 74. The same application, showing the second tab

Adding Them Up

TabWidget is set up to allow you to easily define tabs at compile time.
However, sometimes, you want to add tabs to your activity during runtime.
For example, imagine an email client where individual email messages get
opened in their own tab, for easy toggling between messages. In this case,
you do not know how many tabs or what their contents will be until
runtime, when the user chooses to open a message.

Fortunately, Android also supports adding tabs dynamically at runtime.

Adding tabs dynamically at runtime works much like the compile-time tabs
shown above, except you use a different flavor of setContent(), one that
takes a TabHost.TabContentFactory instance. This is just a callback that will
be invoked – you provide an implementation of createTabContent() and use
it to build and return the View that becomes the content of the tab.

Let us take a look at an example (Fancy/DynamicTab).

184

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

First, here is some layout XML for an activity that sets up the tabs and
defines one tab, containing a single button:

<?xml version="1.0" encoding="utf-8"?>
<TabHost xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/tabhost"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <LinearLayout
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <TabWidget android:id="@android:id/tabs"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 <FrameLayout android:id="@android:id/tabcontent"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <Button android:id="@+id/buttontab"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:text="A semi-random button"
 android:onClick="addTab"
 />
 </FrameLayout>
 </LinearLayout>
</TabHost>

What we want to do is add new tabs whenever the button is clicked. That
can be accomplished in just a few lines of code:

package com.commonsware.android.dynamictab;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.AnalogClock;
import android.widget.TabHost;

public class DynamicTabDemo extends Activity {
 private TabHost tabs=null;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 tabs=(TabHost)findViewById(R.id.tabhost);
 tabs.setup();

185

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

 TabHost.TabSpec spec=tabs.newTabSpec("buttontab");

 spec.setContent(R.id.buttontab);
 spec.setIndicator("Button");
 tabs.addTab(spec);
 }

 public void addTab(View v) {
 TabHost.TabSpec spec=tabs.newTabSpec("tag1");

 spec.setContent(new TabHost.TabContentFactory() {
 public View createTabContent(String tag) {
 return(new AnalogClock(DynamicTabDemo.this));
 }
 });

 spec.setIndicator("Clock");
 tabs.addTab(spec);
 }
}

In our button's addTab() callback, we create a TabHost.TabSpec object and
give it an anonymous TabHost.TabContentFactory. The factory, in turn,
returns the View to be used for the tab – in this case, just an AnalogClock.
The logic for constructing the tab’s View could be much more elaborate,
such as using LayoutInflater to construct a view from layout XML.

Initially, when the activity is launched, we just have the one tab:

186

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

Figure 75. The DynamicTab application, with the single initial tab

Figure 76. The DynamicTab application, with three dynamically-created tabs

187

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

Flipping Them Off

Sometimes, you want the overall effect of tabs (only some Views visible at a
time), but you do not want the actual UI implementation of tabs. Maybe
the tabs take up too much screen space. Maybe you want to switch between
perspectives based on a gesture or a device shake. Or maybe you just like
being different.

The good news is that the guts of the view-flipping logic from tabs can be
found in the ViewFlipper container, which can be used in other ways than
the traditional tab.

ViewFlipper inherits from FrameLayout, just like we used to describe the
innards of a TabWidget. However, initially, it just shows the first child view.
It is up to you to arrange for the views to flip, either manually by user
interaction, or automatically via a timer.

For example, here is a layout for a simple activity (Fancy/Flipper1) using a
Button and a ViewFlipper:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <Button android:id="@+id/flip_me"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Flip Me!"
 android:onClick="flip"
 />
 <ViewFlipper android:id="@+id/details"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:textStyle="bold"
 android:textColor="#FF00FF00"
 android:text="This is the first panel"
 />
 <TextView

188

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:textStyle="bold"
 android:textColor="#FFFF0000"
 android:text="This is the second panel"
 />
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:textStyle="bold"
 android:textColor="#FFFFFF00"
 android:text="This is the third panel"
 />
 </ViewFlipper>
</LinearLayout>

Notice that the layout defines three child views for the ViewFlipper, each a
TextView with a simple message. Of course, you could have very
complicated child views, if you so chose.

To manually flip the views, we need to hook into the Button and flip them
ourselves when the button is clicked:

package com.commonsware.android.flipper1;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.ViewFlipper;

public class FlipperDemo extends Activity {
 ViewFlipper flipper;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 flipper=(ViewFlipper)findViewById(R.id.details);
 }

 public void flip(View v) {
 flipper.showNext();
 }
}

This is just a matter of calling showNext() on the ViewFlipper, like you can on
any ViewAnimator class.

189

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

The result is a trivial activity: click the button, and the next TextView in
sequence is displayed, wrapping around to the first after viewing the last:

Figure 77. The Flipper1 application, showing the first panel

Figure 78. The same application, after switching to the second panel

190

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

This, of course, could be handled more simply by having a single TextView
and changing the text and color on each click. However, you can imagine
that the ViewFlipper contents could be much more complicated, like the
contents you might put into a TabView.

As with the TabWidget, sometimes, your ViewFlipper contents may not be
known at compile time. As with TabWidget, though, you can add new
contents on the fly with ease.

For example, let us look at another sample activity (Fancy/Flipper2), using
this layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <ViewFlipper android:id="@+id/details"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 </ViewFlipper>
</LinearLayout>

Notice that the ViewFlipper has no contents at compile time. Also note that
there is no Button for flipping between the contents – more on this in a
moment.

For the ViewFlipper contents, we will create large Button widgets, each
containing one of the random words used in many chapters in this book.
And, we will set up the ViewFlipper to automatically rotate between the
Button widgets:

package com.commonsware.android.flipper2;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.view.ViewGroup;
import android.widget.Button;
import android.widget.ViewFlipper;

191

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

public class FlipperDemo2 extends Activity {
 static String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
 "consectetuer", "adipiscing", "elit",
 "morbi", "vel", "ligula", "vitae",
 "arcu", "aliquet", "mollis", "etiam",
 "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque",
 "augue", "purus"};
 ViewFlipper flipper;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 flipper=(ViewFlipper)findViewById(R.id.details);

 for (String item : items) {
 Button btn=new Button(this);

 btn.setText(item);

 flipper.addView(btn,
 new ViewGroup.LayoutParams(
 ViewGroup.LayoutParams.FILL_PARENT,
 ViewGroup.LayoutParams.FILL_PARENT));
 }

 flipper.setFlipInterval(2000);
 flipper.startFlipping();
 }
}

After iterating over the funky words, turning each into a Button, and adding
the Button as a child of the ViewFlipper, we set up the flipper to
automatically flip between children (flipper.setFlipInterval(2000);) and
to start flipping (flipper.startFlipping();).

The result is an endless series of buttons, each appearing, then being
replaced by the next button in sequence after 2 seconds, wrapping around
to the first after the last has been shown:

192

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

Figure 79. The Flipper2 application

The auto-flipping ViewFlipper is useful for status panels or other situations
where you have a lot of information to display, but not much room. The
key is that, since it automatically flips between views, expecting users to
interact with individual views is dicey – the view might switch away part-
way through their interaction.

Getting In Somebody's Drawer

For a long time, Android developers yearned for a sliding drawer container
that worked like the one on the home screen, containing the icons for
launching applications. The official implementation was in the open source
code but was not part of the SDK...until Android 1.5, when they released
SlidingDrawer for others to use.

Unlike most other Android containers, SlidingDrawer moves, switching
from a closed to an open position. This puts some restrictions on what
container the SlidingDrawer itself can be in. It needs to be a container that

193

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

allows multiple widgets to sit atop each other. RelativeLayout and
FrameLayout satisfy this requirement, where FrameLayout is a container
purely for stacking widgets atop one another. On the flip side, LinearLayout
does not allow widgets to stack (they fall one after another in a row or
column), and so you should not have a SlidingDrawer as an immediate child
of a LinearLayout.

Here is a layout, showing a SlidingDrawer in a FrameLayout, from the
Fancy/DrawerDemo project:

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:background="#FF4444CC"
 >
 <SlidingDrawer
 android:id="@+id/drawer"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:handle="@+id/handle"
 android:content="@+id/content">
 <ImageView
 android:id="@id/handle"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:src="@drawable/tray_handle_normal"
 />
 <Button
 android:id="@id/content"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:text="I'm in here!"
 />
 </SlidingDrawer>
</FrameLayout>

The SlidingDrawer should contain two things:

1. A handle, frequently an ImageView or something along those lines,
such as the one used here, pulled from the Android open source
project

2. The contents of the drawer itself, usually some sort of container,
though in this case we are using a Button

194

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

Moreover, SlidingDrawer needs to know the android:id values of the handle
and contents, via the android:handle and android:content attributes,
respectively. This tells the drawer how to animate itself as it slides open and
closed.

Here is what the SlidingDrawer looks like closed, using the supplied handle:

Figure 80. A SlidingDrawer, closed

And here it is open, showing its contents:

195

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

Figure 81. A SlidingDrawer, open

As one might expect, you can open and close the drawer from Java code as
well as via user touch events. However, you have two sets of these methods,
ones that take place instantaneously (open(), close(), and toggle()) and
ones that use the animation (animateOpen(), animateClose(),
animateToggle()). You can also lock() and unlock() the drawer; while locked,
the drawer will not respond to touch events.

You can also register three types of callbacks if you wish:

1. A listener to be invoked when the drawer is opened

2. A listener to be invoked when the drawer is closed

3. A listener to be invoked when the drawer is "scrolled" (i.e., the user
drags or flings the handle)

For example, the Launcher's SlidingDrawer toggles the icon on the handle
from open to closed to "delete" (if you long-tap something on the desktop).
It accomplishes this, in part, through callbacks like these.

196

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

SlidingDrawer can be vertical or horizontal. Note, though, that it keeps its
orientation despite the screen orientation. In other words, if you rotate the
Android device or emulator running DrawerDemo, the drawer always opens
from the bottom – it does not always "stick" to the original side it opened
from. This means that if you want the drawer to always open from the same
side, like the Launcher does, you will need separate layouts for portrait
versus landscape, a topic we discuss in the chapter on resources.

Other Good Stuff

Android offers AbsoluteLayout, where the contents are laid out based on
specific coordinate positions. You tell AbsoluteLayout where to place a child
in precise X,Y coordinates, and Android puts it there, no questions asked.
On the plus side, this gives you precise positioning. On the minus side, it
means your views will only look "right" on screens of a certain dimension,
or it requires you to write a bunch of code to adjust the coordinates based
on screen size. Since Android screens might run the gamut of sizes, plus
have new sizes crop up periodically, using AbsoluteLayout could get quite
annoying. Also, note that AbsoluteLayout is officially deprecated, meaning
that while it is available to you, its use is discouraged.

Android also has the ExpandableListView. This provides a simplified tree
representation, supporting two levels of depth: groups and children.
Groups contain children; children are "leaves" of the tree. This requires a
new set of adapters, since the ListAdapter family does not provide any sort
of group information for the items in the list.

Here are some other widgets available in Android beyond those covered so
far in this book:

• CheckedTextView: a TextView that can either have a checkbox or a
radio button next to it, used with single-choice and multi-choice
lists

• Chronometer: a stopwatch-style countdown timer

• Gallery: a horizontal scrolling selection widget, designed for
thumbnail previews of images (e.g., camera photos, album covers)

197

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

• MultiAutoCompleteTextView: like an AutoCompleteTextView, except that
the user can make multiple choices from the drop-down list, rather
than just one

• QuickContactBadge: given the identity of a contact from the user's
contacts database, displays a roster of icons representing actions to
be performed on that contact (place a call, send a text message,
send an email, etc.)

• ToggleButton: a two-state button where the states are indicated by a
"light" and prose ("ON", "OFF") instead of a checkmark

• ViewSwitcher (and the ImageSwitcher and TextSwitcher subclasses):
like a simplified ViewFlipper for toggling between two views

198

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 15

Embedding the WebKit Browser

Other GUI toolkits let you use HTML for presenting information, from
limited HTML renderers (e.g., Java/Swing, wxWidgets) to embedding
Internet Explorer into .NET applications. Android is much the same, in that
you can embed the built-in Web browser as a widget in your own activities,
for displaying HTML or full-fledged browsing. The Android browser is
based on WebKit, the same engine that powers Apple's Safari Web browser.

The Android browser is sufficiently complex that it gets its own Java
package (android.webkit), though using the WebView widget itself can be
simple or powerful, based upon your requirements.

A Browser, Writ Small

For simple stuff, WebView is not significantly different than any other widget
in Android – pop it into a layout, tell it what URL to navigate to via Java
code, and you are done.

For example (WebKit/Browser1), here is a simple layout with a WebView:

<?xml version="1.0" encoding="utf-8"?>
<WebView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/webkit"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
/>

199

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Embedding the WebKit Browser

As with any other widget, you need to tell it how it should fill up the space
in the layout (in this case, it fills all remaining space).

The Java code is equally simple:

package com.commonsware.android.browser1;

import android.app.Activity;
import android.os.Bundle;
import android.webkit.WebView;

public class BrowserDemo1 extends Activity {
 WebView browser;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 browser=(WebView)findViewById(R.id.webkit);

 browser.loadUrl("http://commonsware.com");
 }
}

The only thing unusual with this edition of onCreate() is that we invoke
loadUrl() on the WebView widget, to tell it to load a Web page (in this case,
the home page of some random firm).

However, we also have to make one change to AndroidManifest.xml,
requesting permission to access the Internet:

<?xml version="1.0"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.browser1">
 <uses-permission android:name="android.permission.INTERNET"/>
 <application android:icon="@drawable/cw">
 <activity android:name=".BrowserDemo1" android:label="BrowserDemo1">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>
 <supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

200

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Embedding the WebKit Browser

If we fail to add this permission, the browser will refuse to load pages.
Permissions will be covered in greater detail in a later chapter.

The resulting activity looks like a Web browser, just with hidden scrollbars:

Figure 82. The Browser1 sample application

As with the regular Android browser, you can pan around the page by
dragging it, while the directional pad moves you around all the focusable
elements on the page.

What is missing is all the extra stuff that make up a Web browser, such as a
navigational toolbar.

Now, you may be tempted to replace the URL in that source code with
something else, such as Google's home page or something else that relies
upon Javascript. By default Javascript is turned off in WebView widgets. If you
want to enable Javascript, call getSettings().setJavaScriptEnabled(true);
on the WebView instance. This notion will be covered in a bit more detail
later in this chapter.

201

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Embedding the WebKit Browser

Loading It Up

There are two main ways to get content into the WebView. One, shown
above, is to provide the browser with a URL and have the browser display
that page via loadUrl(). The browser will access the Internet through
whatever means are available to that specific device at the present time
(WiFi, 2G, 3G, WiMax, well-trained tiny carrier pigeons, etc.).

The alternative is to use loadData(). Here, you supply the HTML for the
browser to view. You might use this to:

• display a manual that was installed as a file with your application
package

• display snippets of HTML you retrieved as part of other processing,
such as the description of an entry in an Atom feed

• generate a whole user interface using HTML, instead of using the
Android widget set

There are two flavors of loadData(). The simpler one allows you to provide
the content, the MIME type, and the encoding, all as strings. Typically, your
MIME type will be text/html and your encoding will be UTF-8 for ordinary
HTML.

For example, if you replace the loadUrl() invocation in the previous
example with the following:

browser.loadData("<html><body>Hello, world!</body></html>",
 "text/html", "UTF-8");

You get:

202

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Embedding the WebKit Browser

Figure 83. The Browser2 sample application

This is also available as a fully-buildable sample, as WebKit/Browser2.

Navigating the Waters

As was mentioned above, there is no navigation toolbar with the WebView
widget. This allows you to use it in places where such a toolbar would be
pointless and a waste of screen real estate. That being said, if you want to
offer navigational capabilities, you can, but you have to supply the UI.

WebView offers ways to perform garden-variety browser navigation,
including:

• reload() to refresh the currently-viewed Web page

• goBack() to go back one step in the browser history, and canGoBack()
to determine if there is any history to go back to

• goForward() to go forward one step in the browser history, and
canGoForward() to determine if there is any history to go forward to

203

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Embedding the WebKit Browser

• goBackOrForward() to go backwards or forwards in the browser
history, where negative numbers represent a count of steps to go
backwards, and positive numbers represent how many steps to go
forwards

• canGoBackOrForward() to see if the browser can go backwards or
forwards the stated number of steps (following the same
positive/negative convention as goBackOrForward())

• clearCache() to clear the browser resource cache and clearHistory()
to clear the browsing history

Entertaining the Client

Particularly if you are going to use the WebView as a local user interface (vs.
browsing the Web), you will want to be able to get control at key times,
particularly when users click on links. You will want to make sure those
links are handled properly, either by loading your own content back into
the WebView, by submitting an Intent to Android to open the URL in a full
browser, or by some other means (see the chapter on launching activities).

Your hook into the WebView activity is via setWebViewClient(), which takes an
instance of a WebViewClient implementation as a parameter. The supplied
callback object will be notified of a wide range of events, ranging from
when parts of a page have been retrieved (onPageStarted(), etc.) to when
you, as the host application, need to handle certain user- or circumstance-
initiated events, such as:

• onTooManyRedirects()

• onReceivedHttpAuthRequest()

• etc.

A common hook will be shouldOverrideUrlLoading(), where your callback is
passed a URL (plus the WebView itself) and you return true if you will handle
the request or false if you want default handling (e.g., actually fetch the
Web page referenced by the URL). In the case of a feed reader application,
for example, you will probably not have a full browser with navigation built
into your reader, so if the user clicks a URL, you probably want to use an

204

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Embedding the WebKit Browser

Intent to ask Android to load that page in a full browser. But, if you have
inserted a "fake" URL into the HTML, representing a link to some activity-
provided content, you can update the WebView yourself.

For example, let's amend the first browser example to be a browser-based
equivalent of our original example: an application that, upon a click, shows
the current time.

From WebKit/Browser3, here is the revised Java:

public class BrowserDemo3 extends Activity {
 WebView browser;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 browser=(WebView)findViewById(R.id.webkit);
 browser.setWebViewClient(new Callback());

 loadTime();
 }

 void loadTime() {
 String page="<html><body>"
 +new Date().toString()
 +"</body></html>";

 browser.loadData(page, "text/html", "UTF-8");
 }

 private class Callback extends WebViewClient {
 public boolean shouldOverrideUrlLoading(WebView view, String url) {
 loadTime();

 return(true);
 }
 }
}

Here, we load a simple Web page into the browser (loadTime()) that
consists of the current time, made into a hyperlink to the /clock URL. We
also attach an instance of a WebViewClient subclass, providing our
implementation of shouldOverrideUrlLoading(). In this case, no matter what
the URL, we want to just reload the WebView via loadTime().

205

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Embedding the WebKit Browser

Running this activity gives us:

Figure 84. The Browser3 sample application

Selecting the link and clicking the D-pad center button will "click" the link,
causing us to rebuild the page with the new time.

Settings, Preferences, and Options (Oh, My!)

With your favorite desktop Web browser, you have some sort of "settings"
or "preferences" or "options" window. Between that and the toolbar
controls, you can tweak and twiddle the behavior of your browser, from
preferred fonts to the behavior of Javascript.

Similarly, you can adjust the settings of your WebView widget as you see fit,
via the WebSettings instance returned from calling the widget's
getSettings() method.

There are lots of options on WebSettings to play with. Most appear fairly
esoteric (e.g., setFantasyFontFamily()). However, here are some that you
may find more useful:

206

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Embedding the WebKit Browser

• Control the font sizing via setDefaultFontSize() (to use a point size)
or setTextSize() (to use constants indicating relative sizes like
LARGER and SMALLEST)

• Control Javascript via setJavaScriptEnabled() (to disable it outright)
and setJavaScriptCanOpenWindowsAutomatically() (to merely stop it
from opening pop-up windows)

• Control Web site rendering via setUserAgent(), so you can supply
your own user agent string to make the Web server think you are a
desktop browser, another mobile device (e.g., iPhone), or whatever

The settings you change are not persistent, so you should store them
somewhere (such as via the Android preferences engine) if you are allowing
your users to determine the settings, versus hard-wiring the settings in your
application.

207

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 16

Applying Menus

Like applications for the desktop and some mobile operating systems,
Android supports activities with "application" menus. Most Android
phones will have a dedicated menu key for popping up the menu; other
devices will offer alternate means for triggering the menu to appear, such as
the on-screen button used by the ARCHOS 5 Android tablet.

Also, as with many GUI toolkits, you can create "context menus". On a
traditional GUI, this might be triggered by the right-mouse button. On
mobile devices, context menus typically appear when the user "taps-and-
holds" over a particular widget. For example, if a TextView had a context
menu, and the device was designed for finger-based touch input, you could
push the TextView with your finger, hold it for a second or two, and a pop-
up menu will appear for the user to choose from.

Flavors of Menu

Android considers the two types of menu described above as being the
"options menu" and "context menu". The options menu is triggered by
pressing the hardware "Menu button on the device, while the context menu
is raised by a tap-and-hold on the widget sporting the menu.

In addition, the options menu operates in one of two modes: icon and
expanded. When the user first presses the "Menu button, the icon mode
will appear, showing up to the first six menu choices as large, finger-

209

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

friendly buttons in a grid at the bottom of the screen. If the menu has more
than six choices, the sixth button will become "More" – clicking that option
will bring up the expanded mode, showing the remaining choices not
visible in the regular menu. The menu is scrollable, so the user can get to
any of the menu choices.

Menus of Options

Rather than building your activity's options menu during onCreate(), the
way you wire up the rest of your UI, you instead need to implement
onCreateOptionsMenu(). This callback receives an instance of Menu.

The first thing you should do is chain upward to the superclass
(super.onCreateOptionsMenu(menu)), so the Android framework can add in
any menu choices it feels are necessary. Then, you can go about adding
your own options, described below.

If you will need to adjust the menu during your activity's use (e.g., disable a
now-invalid menu choice), just hold onto the Menu instance you receive in
onCreateOptionsMenu(). Or, implement onPrepareOptionsMenu(), which is
called just before displaying the menu each time it is requested.

Given that you have received a Menu object via onCreateOptionsMenu(), you
add menu choices by calling add(). There are many flavors of this method,
which require some combination of the following parameters:

• A group identifier (int), which should be NONE unless you are
creating a specific grouped set of menu choices for use with
setGroupCheckable() (see below)

• A choice identifier (also an int), for use in identifying this choice in
the onOptionsItemSelected() callback when a menu choice is chosen

• An order identifier (yet another int), for indicating where this menu
choice should be slotted if the menu has Android-supplied choices
alongside your own – for now, just use NONE

• The text of the menu choice, as a String or a resource ID

210

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

The add() family of methods all return an instance of MenuItem, where you
can adjust any of the menu item settings you have already set (e.g., the text
of the menu choice). You can also set the shortcuts for the menu choice –
single-character mnemonics that choose that menu choice when the menu
is visible. Android supports both an alphabetic (or "qwerty") set of
shortcuts and a numeric set of shortcuts. These are set individually by
calling setAlphabeticShortcut() and setNumericShortcut() respectively. The
menu is placed into alphabetic shortcut mode by calling setQwertyMode() on
the menu with a true parameter.

The choice and group identifiers are keys used to unlock additional menu
features, such as:

• Calling MenuItem#setCheckable() with a choice identifier, to control if
the menu choice has a two-state checkbox alongside the title, where
the checkbox value gets toggled when the user chooses that menu
choice

• Calling Menu#setGroupCheckable() with a group identifier, to turn a
set of menu choices into ones with a mutual-exclusion radio button
between them, so one out of the group can be in the "checked" state
at any time

Finally, you can create fly-out sub-menus by calling addSubMenu(), supplying
the same parameters as addMenu(). Android will eventually call
onCreatePanelMenu(), passing it the choice identifier of your sub-menu,
along with another Menu instance representing the sub-menu itself. As with
onCreateOptionsMenu(), you should chain upward to the superclass, then add
menu choices to the sub-menu. One limitation is that you cannot
indefinitely nest sub-menus – a menu can have a sub-menu, but a sub-
menu cannot have a sub-sub-menu.

If the user makes a menu choice, your activity will be notified via the
onOptionsItemSelected() callback that a menu choice was selected. You are
given the MenuItem object corresponding to the selected menu choice. A
typical pattern is to switch() on the menu ID (item.getItemId()) and take
appropriate behavior. Note that onOptionsItemSelected() is used regardless
of whether the chosen menu item was in the base menu or in a submenu.

211

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

Menus in Context

By and large, context menus use the same guts as options menus. The two
main differences are how you populate the menu and how you are informed
of menu choices.

First, you need to indicate which widget(s) on your activity have context
menus. To do this, call registerForContextMenu() from your activity,
supplying the View that is the widget needing a context menu.

Next, you need to implement onCreateContextMenu(), which, among other
things, is passed the View you supplied in registerForContextMenu(). You can
use that to determine which menu to build, assuming your activity has
more than one.

The onCreateContextMenu() method gets the ContextMenu itself, the View the
context menu is associated with, and a ContextMenu.ContextMenuInfo, which
tells you which item in the list the user did the tap-and-hold over, in case
you want to customize the context menu based on that information. For
example, you could toggle a checkable menu choice based upon the current
state of the item.

It is also important to note that onCreateContextMenu() gets called for each
time the context menu is requested. Unlike the options menu (which is
only built once per activity), context menus are discarded once they are
used or dismissed. Hence, you do not want to hold onto the supplied
ContextMenu object; just rely on getting the chance to rebuild the menu to
suit your activity's needs on an on-demand basis based on user actions.

To find out when a context menu choice was chosen, implement
onContextItemSelected() on the activity. Note that you only get the MenuItem
instance that was chosen in this callback. As a result, if your activity has
two or more context menus, you may want to ensure they have unique
menu item identifiers for all their choices, so you can tell them apart in this
callback. Also, you can call getMenuInfo() on the MenuItem to get the
ContextMenu.ContextMenuInfo you received in onCreateContextMenu().

212

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

Otherwise, this callback behaves the same as onOptionsItemSelected() as is
described above.

Taking a Peek

In the sample project Menus/Menus, you will find an amended version of the
ListView sample (List) with associated menus. Since the menus do not
affect the layout, the XML layout file needs not change and is not reprinted
here.

However, the Java code has a few new behaviors:

package com.commonsware.android.menus;

import android.app.AlertDialog;
import android.app.ListActivity;
import android.content.DialogInterface;
import android.os.Bundle;
import android.view.ContextMenu;
import android.view.Menu;
import android.view.MenuItem;
import android.view.View;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.EditText;
import android.widget.ListView;
import android.widget.TextView;
import java.util.ArrayList;

public class MenuDemo extends ListActivity {
 private static final String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet", "consectetuer", "adipiscing", "elit",
 "morbi", "vel", "ligula", "vitae", "arcu", "aliquet",
 "mollis", "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue", "purus"};
 public static final int MENU_ADD = Menu.FIRST+1;
 public static final int MENU_RESET = Menu.FIRST+2;
 public static final int MENU_CAP = Menu.FIRST+3;
 public static final int MENU_REMOVE = Menu.FIRST+4;
 private ArrayList<String> words=null;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 initAdapter();
 registerForContextMenu(getListView());
 }

213

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 menu
 .add(Menu.NONE, MENU_ADD, Menu.NONE, "Add")
 .setIcon(R.drawable.ic_menu_add);
 menu
 .add(Menu.NONE, MENU_RESET, Menu.NONE, "Reset")
 .setIcon(R.drawable.ic_menu_refresh);

 return(super.onCreateOptionsMenu(menu));
 }

 @Override
 public void onCreateContextMenu(ContextMenu menu, View v,
 ContextMenu.ContextMenuInfo menuInfo) {
 menu.add(Menu.NONE, MENU_CAP, Menu.NONE, "Capitalize");
 menu.add(Menu.NONE, MENU_REMOVE, Menu.NONE, "Remove");
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case MENU_ADD:
 add();
 return(true);

 case MENU_RESET:
 initAdapter();
 return(true);
 }

 return(super.onOptionsItemSelected(item));
 }

 @Override
 public boolean onContextItemSelected(MenuItem item) {
 AdapterView.AdapterContextMenuInfo info=
 (AdapterView.AdapterContextMenuInfo)item.getMenuInfo();
 ArrayAdapter<String> adapter=(ArrayAdapter<String>)getListAdapter();

 switch (item.getItemId()) {
 case MENU_CAP:
 String word=words.get(info.position);

 word=word.toUpperCase();

 adapter.remove(words.get(info.position));
 adapter.insert(word, info.position);

 return(true);

 case MENU_REMOVE:
 adapter.remove(words.get(info.position));

214

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

 return(true);
 }

 return(super.onContextItemSelected(item));
 }

 private void initAdapter() {
 words=new ArrayList<String>();

 for (String s : items) {
 words.add(s);
 }

 setListAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1, words));
 }

 private void add() {
 final View addView=getLayoutInflater().inflate(R.layout.add, null);

 new AlertDialog.Builder(this)
 .setTitle("Add a Word")
 .setView(addView)
 .setPositiveButton("OK",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog,
 int whichButton) {
 ArrayAdapter<String> adapter=(ArrayAdapter<String>)getListAdapter();
 EditText title=(EditText)addView.findViewById(R.id.title);

 adapter.add(title.getText().toString());
 }
 })
 .setNegativeButton("Cancel", null)
 .show();
 }
}

In onCreate(), we register our ListView widget as having a context menu. We
also delegate loading the adapter to an initAdapter() private method, one
that copies the data out of our static String array and pours it into an
ArrayList, using the ArrayList for the ArrayAdapter. The reason: we want to
be able to change the contents of the list on the fly, and that is much easier
if you use an ArrayList rather than an ordinary String array.

For the options menu, we override onCreateOptionsMenu() and add two
menu items, one to add a new word to the list and one to reset the words to
their initial state. These menu items have IDs defined locally as static data

215

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

members (MENU_ADD and MENU_RESET), and they also sport icons copied out of
the Android open source project. If the user displays the menu, it looks like
this:

Figure 85. The MenuDemo sample application and its options menu

We also override onOptionsItemSelected(), which will be called if the user
makes a choice from the menu. The supplied MenuItem has a getItemId()
method that should map to either MENU_ADD or MENU_RESET. In the case of
MENU_ADD, we call a private add() method that displays an AlertDialog with a
custom View as its contents, inflated from res/layout/add.xml:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 >
 <TextView
 android:text="Word:"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 />
 <EditText

216

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

 android:id="@+id/title"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_marginLeft="4dip"
 />
</LinearLayout>

That gives us a dialog like this one:

Figure 86. The same application, showing the add-word dialog

If the user clicks the OK button, we get our ArrayAdapter and call add() on
it, adding the entered word to the end of the list.

If the user chooses MENU_RESET, we call initAdapter() again, setting up a new
ArrayAdapter and attaching the new one to our ListActivity.

For the context menu, we override onCreateContextMenu(). Once again, we
define a pair of menu items with local IDs, MENU_CAP (to capitalize the long-
tapped-upon word) and MENU_REMOVE (to remove the word). Since context

217

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

menus have no icons, we can skip that part. That gives the user a context
menu if they long tap on a word:

Figure 87. The same application, showing the context menu

We also override onContextMenuSelected(). Since this is a context menu for a
ListView, our MenuItem has some extra information for us – specifically,
which item was long-tapped-upon in the list. To do that, we call
getMenuInfo() on the MenuItem and cast the result to be an
AdapterView.AdapterContextMenuInfo. That object, in turn, has a position
data member, which is the index into our array of the word the user chose.
From there, we work with our ArrayAdapter to capitalize or remove the
word, as requested.

Yet More Inflation

We saw earlier in this book that you can describe Views via XML files and
"inflate" them into actual View objects at runtime. Android also allows you
to describe menus via XML files and "inflate" them when a menu is called
for. This helps you keep your menu structure separate from the

218

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

implementation of menu-handling logic, and it provides easier ways to
develop menu-authoring tools.

Menu XML Structure

Menu XML goes in res/menu/ in your project tree, alongside the other types
of resources that your project might employ. As with layouts, you can have
several menu XML files in your project, each with their own filename and
the .xml extension.

For example, from the Menus/Inflation sample project, here is a menu called
option.xml:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/add"
 android:title="Add"
 android:icon="@drawable/ic_menu_add" />
 <item android:id="@+id/reset"
 android:title="Reset"
 android:icon="@drawable/ic_menu_refresh" />
</menu>

• You must start with a menu root element

• Inside a menu are item elements and group elements, the latter
representing a collection of menu items that can be operated upon
as a group

• Submenus are specified by adding a menu element as a child of an
item element, using this new menu element to describe the contents
of the submenu

• If you want to detect when an item is chosen, or to reference an
item or group from your Java code, be sure to apply an android:id,
just as you do with View layout XML

Menu Options and XML

Inside the item and group elements you can specify various options,
matching up with corresponding methods on Menu or MenuItem.

219

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

Title

The title of a menu item is provided via the android:title attribute on an
item element. This can be either a literal string or a reference to a string
resource (e.g., @string/foo).

Icon

Menu items optionally have icons. To provide an icon – in the form of a
reference to a drawable resource (e.g., @drawable/eject), use the
android:icon attribute on the item element.

Order

By default, the order of the items in the menu is determined by the order
they appear in the menu XML. If you want, you can change that, by
specifying the android:orderInCategory attribute on item element. This is a
0-based index of the order for the items associated with the current
category. There is an implicit default category; groups can provide an
android:menuCategory attribute to specify a different category to use for
items in that group.

Generally, though, it is simplest just to put the items in the XML in the
order you want them to appear.

Enabled

Items and groups can be enabled or disabled, controlled in the XML via the
android:enabled attribute on the item or group element. By default, items
and groups are enabled. Disabled items and groups appear in the menu but
cannot be selected. You can change an item's status at runtime via the
setEnabled() method on MenuItem, or change a group's status via
setGroupEnabled() on Menu.

220

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

Visible

Similarly, items and groups can be visible or invisible, controlled in the
XML via the android:visible attribute on the item or group element. By
default, items and groups are visible. Invisible items and groups do not
appear in the menu at all. You can change an item's status at runtime via
the setVisible() method on MenuItem, or change a group's status via
setGroupVisible() on Menu.

Shortcut

Items can have shortcuts – single letters (android:alphabeticShortcut) or
numbers (android:numericShortcut) that can be pressed to choose the item
without having to use the touchscreen, D-pad, or trackball to navigate the
full menu.

Inflating the Menu

Actually using the menu, once defined in XML, is easy. Just create a
MenuInflater and tell it to inflate your menu.

The Menus/Inflation project is a clone of the Menus/Menus project, with the
menu creation converted to use menu XML resources and MenuInflater.
The options menu was converted to the XML shown previously in this
section; here is the context menu:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/cap"
 android:title="Capitalize" />
 <item android:id="@+id/remove"
 android:title="Remove" />
</menu>

The Java code is nearly identical, changing mostly in the implementation of
onCreateOptionsMenu() and onCreateContextMenu():

221

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 new MenuInflater(this).inflate(R.menu.option, menu);

 return(super.onCreateOptionsMenu(menu));
}

@Override
public void onCreateContextMenu(ContextMenu menu, View v,
 ContextMenu.ContextMenuInfo menuInfo) {
 new MenuInflater(this).inflate(R.menu.context, menu);
}

Here, we see how MenuInflater "pours in" the menu items specified in the
menu resource (e.g., R.menu.option) into the supplied Menu or ContextMenu
object.

We also need to change onOptionsItemSelected() and
onContextItemSelected() to use the android:id values specified in the XML:

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.add:
 add();
 return(true);

 case R.id.reset:
 initAdapter();
 return(true);
 }

 return(super.onOptionsItemSelected(item));
}

@Override
public boolean onContextItemSelected(MenuItem item) {
 AdapterView.AdapterContextMenuInfo info=
 (AdapterView.AdapterContextMenuInfo)item.getMenuInfo();
 ArrayAdapter<String> adapter=(ArrayAdapter<String>)getListAdapter();

 switch (item.getItemId()) {
 case R.id.cap:
 String word=words.get(info.position);

 word=word.toUpperCase();

 adapter.remove(words.get(info.position));
 adapter.insert(word, info.position);

222

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

 return(true);

 case R.id.remove:
 adapter.remove(words.get(info.position));

 return(true);
 }

 return(super.onContextItemSelected(item));
}

In the Land of Menus and Honey

Android 3.0 (a.k.a., Honeycomb) introduced a new look-and-feel for
Android applications, particularly on tablets. Options menus in particular
change from being something triggered by some MENU button to a drop-
down menu from the "action bar". Fortunately, this is backwards-
compatible, so your existing menus will not need to change to adopt this
new look. The concept of the new Honeycomb look is covered later in this
book, and the action bar itself is also covered later in this book.

223

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 17

Showing Pop-Up Messages

Sometimes, your activity (or other piece of Android code) will need to
speak up.

Not every interaction with Android users will be neat, tidy, and containable
in activities composed of views. Errors will crop up. Background tasks may
take way longer than expected. Something asynchronous may occur, such
as an incoming message. In these and other cases, you may need to
communicate with the user outside the bounds of the traditional user
interface.

Of course, this is nothing new. Error messages in the form of dialog boxes
have been around for a very long time. More subtle indicators also exist,
from task tray icons to bouncing dock icons to a vibrating cell phone.

Android has quite a few systems for letting you alert your users outside the
bounds of an Activity-based UI. One, notifications, is tied heavily into
intents and services and, as such, is covered in a later chapter. In this
chapter, you will see two means of raising pop-up messages: toasts and
alerts.

Raising Toasts

A Toast is a transient message, meaning that it displays and disappears on
its own without user interaction. Moreover, it does not take focus away

225

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Showing Pop-Up Messages

from the currently-active Activity, so if the user is busy writing the next
Great Programming Guide, they will not have keystrokes be "eaten" by the
message.

Since a Toast is transient, you have no way of knowing if the user even
notices it. You get no acknowledgment from them, nor does the message
stick around for a long time to pester the user. Hence, the Toast is mostly
for advisory messages, such as indicating a long-running background task is
completed, the battery has dropped to a low-but-not-too-low level, etc.

Making a Toast is fairly easy. The Toast class offers a static makeText() that
accepts a String (or string resource ID) and returns a Toast instance. The
makeText() method also needs the Activity (or other Context) plus a
duration. The duration is expressed in the form of the LENGTH_SHORT or
LENGTH_LONG constants to indicate, on a relative basis, how long the message
should remain visible.

If you would prefer your Toast be made out of some other View, rather than
be a boring old piece of text, simply create a new Toast instance via the
constructor (which takes a Context), then call setView() to supply it with the
view to use and setDuration() to set the duration.

Once your Toast is configured, call its show() method, and the message will
be displayed. We will see an example of this in action later in this chapter.

Alert! Alert!

If you would prefer something in the more classic dialog box style, what you
want is an AlertDialog. As with any other modal dialog box, an AlertDialog
pops up, grabs the focus, and stays there until closed by the user. You might
use this for a critical error, a validation message that cannot be effectively
displayed in the base activity UI, or something else where you are sure that
the user needs to see the message and needs to see it now.

The simplest way to construct an AlertDialog is to use the Builder class.
Following in true builder style, Builder offers a series of methods to

226

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Showing Pop-Up Messages

configure an AlertDialog, each method returning the Builder for easy
chaining. At the end, you call show() on the builder to display the dialog
box.

Commonly-used configuration methods on Builder include:

• setMessage() if you want the "body" of the dialog to be a simple
textual message, from either a supplied String or a supplied string
resource ID.

• setTitle() and setIcon(), to configure the text and/or icon to
appear in the title bar of the dialog box.

• setPositiveButton(), setNeutralButton(), and setNegativeButton(),
to indicate which button(s) should appear across the bottom of the
dialog, where they should be positioned (left, center, or right,
respectively), what their captions should be, and what logic should
be invoked when the button is clicked (besides dismissing the
dialog).

If you need to configure the AlertDialog beyond what the builder allows,
instead of calling show(), call create() to get the partially-built AlertDialog
instance, configure it the rest of the way, then call one of the flavors of
show() on the AlertDialog itself.

Once show() is called, the dialog box will appear and await user input.

Note that pressing any of the buttons will close the dialog, even if you have
registered a listener for the button in question. Hence, if all you need a
button to do is close the dialog, give it a caption and a null listener. There is
no option, with AlertDialog, to have a button at the bottom invoke a
listener yet not close the dialog.

Checking Them Out

To see how these work in practice, take a peek at Messages/Message,
containing the following layout...:

227

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Showing Pop-Up Messages

<?xml version="1.0" encoding="utf-8"?>
<Button xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/alert"
 android:text="Raise an alert"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:onClick="showAlert"
/>

...and Java code:

 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 setContentView(R.layout.main);
 }

 public void showAlert(View view) {
 new AlertDialog.Builder(this)
 .setTitle("MessageDemo")
 .setMessage("Let's raise a toast!")
 .setNeutralButton("Here, here!", new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dlg, int sumthin) {
 Toast
 .makeText(MessageDemo.this, "<clink, clink>",
 Toast.LENGTH_SHORT)
 .show();
 }
 })
 .show();
 }
}

The layout is unremarkable – just a really large Button to show the
AlertDialog.

When you click the Button, we use a builder (new Builder(this)) to set the
title (setTitle("MessageDemo")), message (setMessage("Let's raise a

toast!")), and "neutral button" (setNeutralButton("Here, here!", new

OnClickListener() ...) before showing the dialog. When the button is
clicked, the OnClickListener callback triggers the Toast class to make us a
text-based toast (makeText(this, "<clink, clink>", LENGTH_SHORT)), which
we then show(). The result is a typical dialog box:

228

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Showing Pop-Up Messages

Figure 88. The MessageDemo sample application, after clicking the "Raise an
alert" button

When you close the dialog via the button, it raises the toast:

229

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Showing Pop-Up Messages

Figure 89. The same application, after clicking the "Make a toast" button

230

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 18

Handling Activity Lifecycle
Events

While this may sound like a broken record...please remember that Android
devices, by and large, are phones. As such, some activities are more
important than others – taking a call is probably more important to users
than is playing Sudoku. And, since it is a phone, it probably has less RAM
than does your current desktop or notebook.

As a result, your activity may find itself being killed off because other
activities are going on and the system needs your activity's memory. Think
of it as the Android equivalent of the "circle of life" – your activity dies so
others may live, and so on. You cannot assume that your activity will run
until you think it is complete, or even until the user thinks it is complete.

This is one example – perhaps the most important example – of how an
activity's lifecycle will affect your own application logic. This chapter covers
the various states and callbacks that make up an activity's lifecycle and how
you can hook into them appropriately.

Schroedinger's Activity

An activity, generally speaking, is in one of four states at any point in time:

231

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Activity Lifecycle Events

• Active: the activity was started by the user, is running, and is in the
foreground. This is what you are used to thinking of in terms of
your activity's operation.

• Paused: the activity was started by the user, is running, and is
visible, but a notification or something is overlaying part of the
screen. During this time, the user can see your activity but may not
be able to interact with it. For example, if a call comes in, the user
will get the opportunity to take the call or ignore it.

• Stopped: the activity was started by the user, is running, but it is
hidden by other activities that have been launched or switched to.
Your application will not be able to present anything meaningful to
the user directly, only by way of a Notification.

• Dead: either the activity was never started (e.g., just after a phone
reset) or the activity was terminated, perhaps due to lack of
available memory.

Life, Death, and Your Activity

Android will call into your activity as the activity transitions between the
four states listed above. Some transitions may result in multiple calls to
your activity, and sometimes Android will kill your application without
calling it. This whole area is rather murky and probably subject to change,
so pay close attention to the official Android documentation as well as this
section when deciding which events to pay attention to and which you can
safely ignore.

Note that for all of these, you should chain upward and invoke the
superclass' edition of the method, or Android may raise an exception.

onCreate() and onDestroy()

We have been implementing onCreate() in all of our Activity subclasses in
all the examples. This will get called in three situations:

232

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Activity Lifecycle Events

1. When the activity is first started (e.g., since a system restart),
onCreate() will be invoked with a null parameter.

2. If the activity had been running, then sometime later was killed off,
onCreate() will be invoked with the Bundle from
onSaveInstanceState() as a parameter (see below).

3. If the activity had been running and you have set up your activity to
have different resources based on different device states (e.g.,
landscape versus portrait), your activity will be re-created and
onCreate() will be called.

Here is where you initialize your user interface and set up anything that
needs to be done once, regardless of how the activity gets used.

On the other end of the lifecycle, onDestroy() may be called when the
activity is shutting down, either because the activity called finish() (which
"finishes" the activity) or because Android needs RAM and is closing the
activity prematurely. Note that onDestroy() may not get called if the need
for RAM is urgent (e.g., incoming phone call) and that the activity will just
get shut down regardless. Hence, onDestroy() is mostly for cleanly releasing
resources you obtained in onCreate() (if any).

onStart(), onRestart(), and onStop()

An activity can come to the foreground either because it is first being
launched, or because it is being brought back to the foreground after
having been hidden (e.g., by another activity, by an incoming phone call).

The onStart() method is called in either of those cases. The onRestart()
method is called in the case where the activity had been stopped and is now
restarting.

Conversely, onStop() is called when the activity is about to be stopped.

233

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Activity Lifecycle Events

onPause() and onResume()

The onResume() method is called just before your activity comes to the
foreground, either after being initially launched, being restarted from a
stopped state, or after a pop-up dialog (e.g., incoming call) is cleared. This
is a great place to refresh the UI based on things that may have occurred
since the user last was looking at your activity. For example, if you are
polling a service for changes to some information (e.g., new entries for a
feed), onResume() is a fine time to both refresh the current view and, if
applicable, kick off a background thread to update the view (e.g., via a
Handler).

Conversely, anything that steals your user away from your activity – mostly,
the activation of another activity – will result in your onPause() being called.
Here, you should undo anything you did in onResume(), such as stopping
background threads, releasing any exclusive-access resources you may have
acquired (e.g., camera), and the like.

Once onPause() is called, Android reserves the right to kill off your activity's
process at any point. Hence, you should not be relying upon receiving any
further events.

The Grace of State

Mostly, the aforementioned methods are for dealing with things at the
application-general level (e.g., wiring together the last pieces of your UI in
onCreate(), closing down background threads in onPause()).

However, a large part of the goal of Android is to have a patina of
seamlessness. Activities may come and go as dictated by memory
requirements, but users are, ideally, unaware that this is going on. If, for
example, they were using a calculator, and come back to that calculator
after an absence, they should see whatever number(s) they were working on
originally – unless they themselves took some action to close down the
calculator (e.g., pressed the BACK button to exit it).

234

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Activity Lifecycle Events

To make all this work, activities need to be able to save their application-
instance state, and to do so quickly and cheaply. Since activities could get
killed off at any time, activities may need to save their state more frequently
than one might expect. Then, when the activity restarts, the activity should
get its former state back, so it can restore the activity to the way it appeared
previously. Think of it as establishing a bookmark, such that when the user
returns to that bookmark, you can return the application to the same state
as when they left it.

Saving instance state is handled by onSaveInstanceState(). This supplies a
Bundle, into which activities can pour whatever data they need (e.g., the
number showing on the calculator's display). This method implementation
needs to be speedy, so do not try to do too much fancy – just put your data
in the Bundle and exit the method.

That instance state is provided to you again in two places:

1. In onCreate()

2. In onRestoreInstanceState()

It is your choice when you wish to re-apply the state data to your activity –
either callback is a reasonable option.

The built-in implementation of onSaveInstanceState() will save likely
mutable state from a subset of widgets. For example, it will save the text in
an EditText, but it will not save whether or not a Button is enabled or
disabled. This works so long as the widgets are uniquely identified via their
android:id attributes.

Hence, if you implement onSaveInstanceState(), you can elect to either
chain upward and leverage the inherited implementation or not and
override the inherited implementation. Similarly, some activities may not
need onSaveInstanceState() to be implemented at all, as the built-in one
handles everything that is needed.

235

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 19

Handling Rotation

Some Android handsets offer a slide-out keyboard that triggers rotating the
screen from portrait to landscape. Other handsets use accelerometers to
determine when the screen rotates. As a result, it is reasonable to assume
that switching from portrait to landscape and back again may be something
your users will look to do.

Android has a number of ways for you to handle screen rotation, so your
application can properly handle either orientation. All these facilities do is
help you detect and manage the rotation process – you are still required to
make sure you have layouts that look decent on each orientation.

A Philosophy of Destruction

By default, when there is a change in the phone configuration that might
affect resource selection, Android will destroy and re-create any running or
paused activities the next time they are to be viewed. While this could
happen for a variety of different configuration changes (e.g., change of
language selection), it will most likely trip you up mostly for rotations,
since a change in orientation can cause you to load a different set of
resources (e.g., layouts).

The types of configuration changes that trigger this destroy-and-recreate
behavior include:

• Orientation changes (i.e., rotating the screen)

237

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

• Extending or hiding a physical keyboard, for devices that have such
sliding keyboards

• Putting the device in a car or desk dock, or removing it from a dock

• Changing the locale, and thereby changing the preferred language

The key here is that this is the default behavior. It is probably the behavior
that is best for most of your activities. You do have some control over the
matter, though, and can tailor how your activities respond to orientation
changes or similar configuration switches.

It's All The Same, Just Different

Since, by default, Android destroys and re-creates your activity on a
rotation, you may only need to hook into the same onSaveInstanceState()
that you would if your activity were destroyed for any other reason (e.g.,
low memory). Implement that method in your activity and fill in the
supplied Bundle with enough information to get you back to your current
state. Then, in onCreate() (or onRestoreInstanceState(), if you prefer), pick
the data out of the Bundle and use it to bring your activity back to the way it
was.

To demonstrate this, let's take a look at the Rotation/RotationOne project. It,
and the other sample projects used in this chapter, use a pair of main.xml
layouts, one in res/layout/ and one in res/layout-land/ for use in landscape
mode. Here is the portrait layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <Button android:id="@+id/pick"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"
 android:text="Pick"
 android:enabled="true"
 android:onClick="pickContact"
 />

238

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

 <Button android:id="@+id/view"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"
 android:text="View"
 android:enabled="false"
 android:onClick="viewContact"
 />
</LinearLayout>

While here is the similar landscape layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <Button android:id="@+id/pick"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"
 android:text="Pick"
 android:enabled="true"
 android:onClick="pickContact"
 />
 <Button android:id="@+id/view"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"
 android:text="View"
 android:enabled="false"
 android:onClick="viewContact"
 />
</LinearLayout>

Basically, it is a pair of buttons, each taking up half the screen. In portrait
mode, the buttons are stacked; in landscape mode, they are side-by-side.

If you were to simply create a project, put in those two layouts, and compile
it, the application would appear to work just fine – a rotation (<Ctrl>-<F12>
in the emulator) will cause the layout to change. And while buttons lack
state, if you were using other widgets (e.g., EditText), you would even find
that Android hangs onto some of the widget state for you (e.g., the text
entered in the EditText).

239

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

What Android cannot automatically help you with is anything held outside
the widgets.

Picking and Viewing a Contact

This application lets you pick a contact, then view the contact, via separate
buttons, with the "View" button only enabled when we actually have a
contact. Let us take a closer look at how this feat is accomplished.

When the user clicks the Pick button, we call startActivityForResult().
This is a variation on startActivity(), designed for activities that are set up
to return some sort of result – a user's choice of file, or contact, or whatever.
Relatively few activities are set up this way, so you cannot expect to call
startActivityForResult() and get answers from any activity you choose.

In this case, we want to pick a contact. There is an ACTION_PICK Intent action
available in Android, designed for this sort of scenario. An ACTION_PICK
Intent indicates to Android that we want to pick...something. The
"something" is determined by the Uri we put in the Intent.

In our case, it turns out that we can use an ACTION_PICK Intent for certain
system-defined Uri values to let the user pick a contact out of the device's
contacts. In particular, on Android 2.0 and higher, we can use
android.provider.ContactsContract.Contacts.CONTENT_URI for this purpose:

public void pickContact(View v) {
 Intent i=new Intent(Intent.ACTION_PICK,
 Contacts.CONTENT_URI);

 startActivityForResult(i, PICK_REQUEST);
}

For Android 1.6 and older, there is a separate
android.provider.Contacts.CONTENT_URI that we could use.

The second parameter to startActivityForResult() is an identifying
number, to help us distinguish this call to startActivityForResult() from
any others we might make.

240

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

Calling startActivityForResult() with an ACTION_PICK Intent for the
Contacts.CONTENT_URI will bring up a contact-picker activity, supplied by
Android.

When the user taps a contact, the picker activity ends (e.g., via finish()),
and control returns to our activity. At that point, our activity is called with
onActivityResult(). Android supplies us with three pieces of information:

1. The identifying number we supplied to startActivityForResult(), so
we can match this result to its original request

2. A result status, either RESULT_OK or RESULT_CANCELED, to indicate if the
user made a positive selection or if the user abandoned the picker
(e.g., by clicking the BACK button)

3. An Intent that represents the result data itself, for a RESULT_OK
response

The details of what is in the Intent will need to be documented by the
activity that you called. In the case of an ACTION_PICK Intent for the
Contacts.CONTENT_URI, the returned Intent has its own Uri (via getData())
that represents the chosen contact. In the RotationOne example, we stick
that in a data member of the activity and enable the View button:

@Override
protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 if (requestCode==PICK_REQUEST) {
 if (resultCode==RESULT_OK) {
 contact=data.getData();
 viewButton.setEnabled(true);
 }
 }
}

If the user clicks the now-enabled View button, we create an ACTION_VIEW
Intent on the contact's Uri, and call startActivity() on that Intent:

public void viewContact(View v) {
 startActivity(new Intent(Intent.ACTION_VIEW, contact));
}

241

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

This will bring up an Android-supplied activity to view details of that
contact.

Saving Your State

Given that we have used startActivityForResult() to pick a contact, now we
need to hang onto that contact when the screen orientation changes. In the
RotationOne example, we do this via onSaveInstanceState():

package com.commonsware.android.rotation.one;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.provider.ContactsContract.Contacts;
import android.view.View;
import android.widget.Button;
import android.util.Log;

public class RotationOneDemo extends Activity {
 static final int PICK_REQUEST=1337;
 Button viewButton=null;
 Uri contact=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 viewButton=(Button)findViewById(R.id.view);
 restoreMe(savedInstanceState);

 viewButton.setEnabled(contact!=null);
 }

 @Override
 protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 if (requestCode==PICK_REQUEST) {
 if (resultCode==RESULT_OK) {
 contact=data.getData();
 viewButton.setEnabled(true);
 }
 }
 }

 public void pickContact(View v) {
 Intent i=new Intent(Intent.ACTION_PICK,
 Contacts.CONTENT_URI);

242

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

 startActivityForResult(i, PICK_REQUEST);
 }

 public void viewContact(View v) {
 startActivity(new Intent(Intent.ACTION_VIEW, contact));
 }

 @Override
 protected void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);

 if (contact!=null) {
 outState.putString("contact", contact.toString());
 }
 }

 private void restoreMe(Bundle state) {
 contact=null;

 if (state!=null) {
 String contactUri=state.getString("contact");

 if (contactUri!=null) {
 contact=Uri.parse(contactUri);
 }
 }
 }
}

By and large, it looks like a normal activity...because it is. Initially, the
"model" – a Uri named contact – is null. It is set as the result of spawning
the ACTION_PICK sub-activity. Its string representation is saved in
onSaveInstanceState() and restored in restoreMe() (called from onCreate()).
If the contact is not null, the "View" button is enabled and can be used to
view the chosen contact.

Visually, it looks pretty much as one would expect:

243

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

Figure 90. The RotationOne application, in portrait mode

Figure 91. The RotationOne application, in landscape mode

The benefit to this implementation is that it handles a number of system
events beyond mere rotation, such as being closed by Android due to low
memory.

For fun, comment out the restoreMe() call in onCreate() and try running the
application. You will see that the application "forgets" a contact selected in
one orientation when you rotate the emulator or device.

244

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

Now With More Savings!

The problem with onSaveInstanceState() is that you are limited to a Bundle.
That's because this callback is also used in cases where your whole process
might be terminated (e.g., low memory), so the data to be saved has to be
something that can be serialized and has no dependencies upon your
running process.

For some activities, that limitation is not a problem. For others, though, it
is more annoying. Take an online chat, for example. You have no means of
storing a socket in a Bundle, so by default, you will have to drop your
connection to the chat server and re-establish it. That not only may be a
performance hit, but it might also affect the chat itself, such as you
appearing in the chat logs as disconnecting and reconnecting.

One way to get past this is to use onRetainNonConfigurationInstance()
instead of onSaveInstanceState() for "light" changes like a rotation. Your
activity's onRetainNonConfigurationInstance() callback can return an Object,
which you can retrieve later via getLastNonConfigurationInstance(). The
Object can be just about anything you want – typically, it will be some kind
of "context" object holding activity state, such as running threads, open
sockets, and the like. Your activity's onCreate() can call
getLastNonConfigurationInstance() – if you get a non-null response, you
now have your sockets and threads and whatnot. The biggest limitation is
that you do not want to put in the saved context anything that might
reference a resource that will get swapped out, such as a Drawable loaded
from a resource.

Let's take a look at the Rotation/RotationTwo sample project, which uses this
approach to handling rotations. The layouts, and hence the visual
appearance, is the same as with Rotation/RotationOne. Where things differ
slightly is in the Java code:

package com.commonsware.android.rotation.two;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;

245

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

import android.os.Bundle;
import android.provider.ContactsContract.Contacts;
import android.view.View;
import android.widget.Button;
import android.util.Log;

public class RotationTwoDemo extends Activity {
 static final int PICK_REQUEST=1337;
 Button viewButton=null;
 Uri contact=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 viewButton=(Button)findViewById(R.id.view);
 restoreMe();

 viewButton.setEnabled(contact!=null);
 }

 @Override
 protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 if (requestCode==PICK_REQUEST) {
 if (resultCode==RESULT_OK) {
 contact=data.getData();
 viewButton.setEnabled(true);
 }
 }
 }

 public void pickContact(View v) {
 Intent i=new Intent(Intent.ACTION_PICK,
 Contacts.CONTENT_URI);

 startActivityForResult(i, PICK_REQUEST);
 }

 public void viewContact(View v) {
 startActivity(new Intent(Intent.ACTION_VIEW, contact));
 }

 @Override
 public Object onRetainNonConfigurationInstance() {
 return(contact);
 }

 private void restoreMe() {
 contact=null;

 if (getLastNonConfigurationInstance()!=null) {
 contact=(Uri)getLastNonConfigurationInstance();

246

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

 }
 }
}

In this case, we override onRetainNonConfigurationInstance(), returning the
actual Uri for our contact, rather than a string representation of it. In turn,
restoreMe() calls getLastNonConfigurationInstance(), and if it is not null, we
hold onto it as our contact and enable the "View" button.

The advantage here is that we are passing around the Uri rather than a
string representation. In this case, that is not a big savings. But our state
could be much more complicated, including threads and sockets and other
things we cannot pack into a Bundle.

DIY Rotation

Even this, though, may still be too intrusive to your application. Suppose,
for example, you are creating a real-time game, such as a first-person
shooter. The "hiccup" your users experience as your activity is destroyed
and re-created might be enough to get them shot, which they may not
appreciate. While this would be less of an issue on the T-Mobile G1, since a
rotation requires sliding open the keyboard and therefore is unlikely to be
done mid-game, other devices might rotate based solely upon the device's
position as determined by accelerometers.

The third possibility for handling rotations, therefore, is to tell Android
that you will handle them completely yourself and that you do not want
assistance from the framework. To do this:

1. Put an android:configChanges entry in your AndroidManifest.xml file,
listing the configuration changes you want to handle yourself versus
allowing Android to handle for you

2. Implement onConfigurationChanged() in your Activity, which will be
called when one of the configuration changes you listed in
android:configChanges occurs

247

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

Now, for any configuration change you want, you can bypass the whole
activity-destruction process and simply get a callback letting you know of
the change.

To see this in action, turn to the Rotation/RotationThree sample application.
Once again, our layouts are the same, so the application looks the same as
the preceding two samples. However, the Java code is significantly
different, because we are no longer concerned with saving our state, but
rather with updating our UI to deal with the layout.

But first, we need to make a small change to our manifest:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.rotation.three" android:versionCode="1"
android:versionName="1.0.0">
 <uses-sdk android:minSdkVersion="5" android:targetSdkVersion="6"/>
 <application android:label="@string/app_name" android:icon="@drawable/cw">
 <activity android:name=".RotationThreeDemo"
android:label="@string/app_name" android:configChanges="keyboardHidden|
orientation">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>
 <supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

Here, we state that we will handle keyboardHidden and orientation
configuration changes ourselves. This covers us for any cause of the
"rotation" – whether it is a sliding keyboard or a physical rotation. Note
that this is set on the activity, not the application – if you have several
activities, you will need to decide for each which of the tactics outlined in
this chapter you wish to use.

In addition, we need to add an android:id to our LinearLayout containers,
such as:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

248

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

 android:id="@+id/container"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <Button android:id="@+id/pick"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"
 android:text="Pick"
 android:enabled="true"
 android:onClick="pickContact"
 />
 <Button android:id="@+id/view"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"
 android:text="View"
 android:enabled="false"
 android:onClick="viewContact"
 />
</LinearLayout>

The Java code for this project is shown below:

package com.commonsware.android.rotation.three;

import android.app.Activity;
import android.content.Intent;
import android.content.res.Configuration;
import android.net.Uri;
import android.os.Bundle;
import android.provider.ContactsContract.Contacts;
import android.view.View;
import android.widget.Button;
import android.widget.LinearLayout;

public class RotationThreeDemo extends Activity {
 static final int PICK_REQUEST=1337;
 Button viewButton=null;
 Uri contact=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);
 viewButton=(Button)findViewById(R.id.view);
 viewButton.setEnabled(contact!=null);
 }

 @Override
 protected void onActivityResult(int requestCode, int resultCode,

249

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

 Intent data) {
 if (requestCode==PICK_REQUEST) {
 if (resultCode==RESULT_OK) {
 contact=data.getData();
 viewButton.setEnabled(true);
 }
 }
 }

 public void pickContact(View v) {
 Intent i=new Intent(Intent.ACTION_PICK,
 Contacts.CONTENT_URI);

 startActivityForResult(i, PICK_REQUEST);
 }

 public void viewContact(View v) {
 startActivity(new Intent(Intent.ACTION_VIEW, contact));
 }

 public void onConfigurationChanged(Configuration newConfig) {
 super.onConfigurationChanged(newConfig);

 LinearLayout container=(LinearLayout)findViewById(R.id.container);

 if (newConfig.orientation==Configuration.ORIENTATION_LANDSCAPE) {
 container.setOrientation(LinearLayout.HORIZONTAL);
 }
 else {
 container.setOrientation(LinearLayout.VERTICAL);
 }
 }
}

Our onConfigurationChanged() needs to update the UI to reflect the
orientation change. Here, we find our LinearLayout and tell it to change its
orientation to match that of the device. The orientation field on the
Configuration object will tell us how the device is oriented.

...But Google Does Not Recommend This

You might think that onConfigurationChanged() and android:configChanges
would be the ultimate solution. After all, we no longer have to worry about
all that messy passing of data to the new activity as the old one is being
destroyed. The onConfigurationChanged() approach is very sexy.

However, Google does not recommend it.

250

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

The primary concern is forgetting about resources. With the
onConfigurationChanged() approach, you must take steps to ensure that each
and every resource that might possibly have changed as a result of this
configuration change gets updated. That includes strings, layouts,
drawables, menus, animations, preferences, dimensions, colors, and all the
others. If you are incomplete, your app will have a whole series of little (or
not so little) bugs as a result.

Allowing Android to destroy and recreate your activity guarantees you will
get the proper resources. All you need to do is arrange to pass the proper
data from the old to the new activity.

The onConfigurationChanged() approach is there where the user would be
directly affected by a destroy-and-create cycle. For example, imagine a
video player application, playing a streaming video. Destroying and
recreating the activity would necessarily cause us to have to reconnect to
the stream, losing our buffered data. Users will get frustrated if an
accidental movement causes the device to change orientation and interrupt
their video playback. In this case, since the user will perceive problems with
a destroy-and-create cycle, onConfigurationChanged() is an appropriate
choice.

Forcing the Issue

Some activities simply are not really meant to change orientation. Games,
camera previews, video players, and the like may only make sense in
landscape, for example. While most activities should allow the user to work
in any desired orientation, for activities where this makes no sense, you can
control it.

To block Android from rotating your activity, all you need to do is add
android:screenOrientation = "portrait" (or "landscape", as you prefer) to
your AndroidManifest.xml file, as shown below (from the
Rotation/RotationFour sample project):

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

251

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

package="com.commonsware.android.rotation.four" android:versionCode="1"
android:versionName="1.0.0">
 <uses-sdk android:minSdkVersion="5" android:targetSdkVersion="6"/>
 <application android:label="@string/app_name" android:icon="@drawable/cw">
 <activity android:name=".RotationFourDemo"
android:screenOrientation="portrait" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>
 <supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

Since this is applied on a per-activity basis, you will need to decide which of
your activities may need this turned on.

At this point, your activity is locked into whatever orientation you
specified, regardless of what you do. The following screen shots show the
same activity as in the previous three sections, but using the above manifest
and with the emulator set for both portrait and landscape orientation. Note
that the UI does not move a bit, but remains in portrait mode.

Figure 92. The RotationFour application, in portrait mode

252

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

Figure 93. The RotationFour application, in landscape mode

Note that Android will still destroy and recreate your activity, even if you
have the orientation set to a specific value as shown here. If you wish to
avoid that, you will also need to set android:configChanges in the manifest,
as described earlier in this chapter. Or, you can still use
onSaveInstanceState() or onRetainNonConfigurationInstance() to save your
activity's mutable state.

Making Sense of it All

As noted at the top of this chapter, devices with side-slider keyboards (T-
Mobile G1, Motorola DROID/Milestone, etc.) change screen orientation
when the keyboard is exposed or hidden, whereas other devices change
screen orientation based upon the accelerometer.

253

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

If you have an activity that should change orientation based on the
accelerometer, even if the device has a side-slider keyboard, just add
android:screenOrientation = "sensor" to your AndroidManifest.xml file (as
seen in the Rotation/RotationFive sample project):

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.rotation.five" android:versionCode="1"
android:versionName="1.0.0">
 <uses-sdk android:minSdkVersion="5" android:targetSdkVersion="6"/>
 <application android:label="@string/app_name" android:icon="@drawable/cw">
 <activity android:name=".RotationFiveDemo"
android:screenOrientation="sensor" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>
 <supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

The “sensor”, in this case, tells Android you want the accelerometers to
control the screen orientation, so the physical shift in the device
orientation controls the screen orientation.

Android 2.3 adds a number of other possible values for android:orientation,
including:

• reverseLandscape and reversePortrait, indicating that you want the
screen to be in landscape or portrait, respectively, but "upside
down" compared to the normal landscape and portrait orientations

• sensorLandscape and sensorPortrait, indicating you want to be
locked to landscape or portrait, respectively, but the sensors can be
used to determine which side is "up"

• fullSensor, which allows the sensors to put the screen in any of the
four possible orientations (portrait, reverse portrait, landscape,
reverse landscape), whereas sensor only toggles between portrait
and landscape

254

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 20

Dealing with Threads

Users like snappy applications. Users do not like applications that feel
sluggish.

The way to help your application feel snappy is to use the standard
threading capabilities built into Android. This chapter will go through the
issues involved with thread management in Android and will walk you
through some of the options for keeping the user interface crisp and
responsive.

The Main Application Thread

When you call setText() on a TextView, you probably think that the screen
is updated with the text you supply, right then and there.

You would be mistaken.

Rather, everything that modifies the widget-based UI goes through a
message queue. Calls to setText() do not update the screen – they just pop
a message on a queue telling the operating system to update the screen.
The operating system pops these messages off of this queue and does what
the messages require.

The queue is processed by one thread, variously called the "main
application thread" and the "UI thread". So long as that thread can keep

255

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

processing messages, the screen will update, user input will be handled,
and so on.

However, the main application thread is also used for nearly all callbacks
into your activity. Your onCreate(), onClick(), onListItemClick(), and similar
methods are all called on the main application thread. While your code is
executing in these methods, Android is not processing messages on the
queue, and so the screen does not update, user input is not handled, and so
on.

This, of course, is bad. So bad, that if you take more than a few seconds to
do work on the main application thread, Android may display the dreaded
"Application Not Responding" dialog (ANR for short), and your activity may
be killed off.

Hence, you want to make sure that all of your work on the main application
thread happens quickly. This means that anything slow should be done in a
background thread, so as not to tie up the main application thread. This
includes things like:

• Internet access, such as sending data to a Web service or
downloading an image

• Significant file operations, since flash storage can be remarkably
slow at times

• Any sort of complex calculations

Fortunately, Android supports threads using the standard Thread class from
Java, plus all of the wrappers and control structures you would expect, such
as the java.util.concurrent class package.

However, there is one big limitation: you cannot modify the UI from a
background thread. You can only modify the UI from the main application
thread.

Hence, you need to get long-running work moved into background threads,
but those threads need to do something to arrange to update the UI using

256

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

the main application thread. Fortunately, Android provides a wide range of
tools to do just that, and these tools are the primary focus of this chapter.

Making Progress with ProgressBars

If you are going to fork background threads to do work on behalf of the
user, you will want to think about keeping the user informed that work is
going on. This is particularly true if the user is effectively waiting for that
background work to complete.

The typical approach to keeping users informed of progress is some form of
progress bar, like you see when you copy a bunch of files from place to
place in many desktop operating systems. Android supports this through
the ProgressBar widget.

A ProgressBar keeps track of progress, defined as an integer, with 0
indicating no progress has been made. You can define the maximum end of
the range – what value indicates progress is complete – via setMax(). By
default, a ProgressBar starts with a progress of 0, though you can start from
some other position via setProgress().

If you prefer your progress bar to be indeterminate, use setIndeterminate(),
setting it to true.

In your Java code, you can either positively set the amount of progress that
has been made (via setProgress()) or increment the progress from its
current amount (via incrementProgressBy()). You can find out how much
progress has been made via getProgress().

There are other alternatives – ProgressDialog, progress indicator in the
activity's title bar, etc. – but a ProgressBar is a good place to start.

257

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

Getting Through the Handlers

The most flexible means of making an Android-friendly background thread
is to create an instance of a Handler subclass. You only need one Handler
object per activity, and you do not need to manually register it or anything
– merely creating the instance is sufficient to register it with the Android
threading subsystem.

Your background thread can communicate with the Handler, which will do
all of its work on the activity's UI thread. This is important, as UI changes,
such as updating widgets, should only occur on the activity's UI thread.

You have two options for communicating with the Handler: messages and
Runnable objects.

Messages

To send a Message to a Handler, first invoke obtainMessage() to get the
Message object out of the pool. There are a few flavors of obtainMessage(),
allowing you to just create empty Message objects, or ones populated with
message identifiers and arguments. The more complicated your Handler
processing needs to be, the more likely it is you will need to put data into
the Message to help the Handler distinguish different events.

Then, you send the Message to the Handler via its message queue, using one
of the sendMessage...() family of methods, such as:

• sendMessage() puts the message on the queue immediately

• sendMessageAtFrontOfQueue() puts the message on the queue
immediately, and moreover puts it at the front of the message
queue (versus the back, as is the default), so your message takes
priority over all others

• sendMessageAtTime() puts the message on the queue at the stated
time, expressed in the form of milliseconds based on system uptime
(SystemClock.uptimeMillis())

258

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

• sendMessageDelayed() puts the message on the queue after a delay,
expressed in milliseconds

• sendEmptyMessage(), which sends an empty Message object to the
queue, allowing you to skip the obtainMessage() step if you were
planning on leaving it empty anyway

To process these messages, your Handler needs to implement
handleMessage(), which will be called with each message that appears on the
message queue. There, the handler can update the UI as needed. However,
it should still do that work quickly, as other UI work is suspended until the
Handler is done.

For example, let's create a ProgressBar and update it via a Handler. Here is
the layout from the Threads/Handler sample project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <ProgressBar android:id="@+id/progress"
 style="?android:attr/progressBarStyleHorizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content" />
</LinearLayout>

The ProgressBar, in addition to setting the width and height as normal, also
employs the style property. This particular style indicates this ProgressBar
should be drawn as the traditional horizontal bar showing the amount of
work that has been completed.

And here is the Java:

package com.commonsware.android.threads;

import android.app.Activity;
import android.os.Bundle;
import android.os.Handler;
import android.os.Message;
import android.widget.ProgressBar;
import java.util.concurrent.atomic.AtomicBoolean;

259

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

public class HandlerDemo extends Activity {
 ProgressBar bar;
 Handler handler=new Handler() {
 @Override
 public void handleMessage(Message msg) {
 bar.incrementProgressBy(5);
 }
 };
 AtomicBoolean isRunning=new AtomicBoolean(false);

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 bar=(ProgressBar)findViewById(R.id.progress);
 }

 public void onStart() {
 super.onStart();
 bar.setProgress(0);

 Thread background=new Thread(new Runnable() {
 public void run() {
 try {
 for (int i=0;i<20 && isRunning.get();i++) {
 Thread.sleep(1000);
 handler.sendMessage(handler.obtainMessage());
 }
 }
 catch (Throwable t) {
 // just end the background thread
 }
 }
 });

 isRunning.set(true);
 background.start();
 }

 public void onStop() {
 super.onStop();
 isRunning.set(false);
 }
}

As part of constructing the Activity, we create an instance of Handler, with
our implementation of handleMessage(). Basically, for any message received,
we update the ProgressBar by 5 points, then exit the message handler.

260

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

We then take advantage of onStart() and onStop(). In onStart(), we set up a
background thread. In a real system, this thread would do something
meaningful. Here, we just sleep one second, post a Message to the Handler,
and repeat for a total of 20 passes. This, combined with the 5-point increase
in the ProgressBar position, will march the bar clear across the screen, as
the default maximum value for ProgressBar is 100. You can adjust that
maximum via setMax(), such as setting the maximum to be the number of
database rows you are processing, and updating once per row.

Note that we then leave onStart(). This is crucial. The onStart() method is
invoked on the activity UI thread, so it can update widgets and such.
However, that means we need to get out of onStart(), both to let the
Handler get its work done, and also so Android does not think our activity is
stuck.

The resulting activity is simply a horizontal progress bar:

Figure 94. The HandlerDemo sample application

Note, though, that while ProgressBar samples like this one show your code
arranging to update the progress on the UI thread, for this specific widget,
that is not necessary. At least as of Android 1.5, ProgressBar is now "UI

261

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

thread safe", in that you can update it from any thread, and it will handle
the details of performing the actual UI update on the UI thread.

Runnables

If you would rather not fuss with Message objects, you can also pass Runnable
objects to the Handler, which will run those Runnable objects on the activity
UI thread. Handler offers a set of post...() methods for passing Runnable
objects in for eventual processing.

Just as Handler supports post() and postDelayed() to add Runnable objects to
the event queue, you can use those same methods on any View (i.e., any
widget or container). This slightly simplifies your code, in that you can then
skip the Handler object.

Where, Oh Where Has My UI Thread Gone?

Sometimes, you may not know if you are currently executing on the UI
thread of your application. For example, if you package some of your code
in a JAR for others to reuse, you might not know whether your code is
being executed on the UI thread or from a background thread.

To help combat this problem, Activity offers runOnUiThread(). This works
similarly to the post() methods on Handler and View, in that it queues up a
Runnable to run on the UI thread...if you are not on the UI thread right now.
If you already are on the UI thread, it invokes the Runnable immediately.
This gives you the best of both worlds: no delay if you are on the UI thread,
yet safety in case you are not.

Asyncing Feeling

Android 1.5 introduced a new way of thinking about background
operations: AsyncTask. In one (reasonably) convenient class, Android will
handle all of the chores of doing work on the UI thread versus on a
background thread. Moreover, Android itself allocates and removes that

262

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

background thread. And, it maintains a small work queue, further
accentuating the "fire and forget" feel to AsyncTask.

The Theory

There is a saying, popular in marketing circles: "When a man buys a 1/4"
drill bit at a hardware store, he does not want a 1/4" drill bit – he wants 1/4"
holes". Hardware stores cannot sell holes, so they sell the next-best thing:
devices (drills and drill bits) that make creating holes easy.

Similarly, Android developers who have struggled with background thread
management do not strictly want background threads – they want work to
be done off the UI thread, so users are not stuck waiting and activities do
not get the dreaded "application not responding" (ANR) error. And while
Android cannot magically cause work to not consume UI thread time,
Android can offer things that make such background operations easier and
more transparent. AsyncTask is one such example.

To use AsyncTask, you must:

• Create a subclass of AsyncTask, commonly as a private inner class of
something that uses the task (e.g., an activity)

• Override one or more AsyncTask methods to accomplish the
background work, plus whatever work associated with the task that
needs to be done on the UI thread (e.g., update progress)

• When needed, create an instance of the AsyncTask subclass and call
execute() to have it begin doing its work

What you do not have to do is:

• Create your own background thread

• Terminate that background thread at an appropriate time

• Call all sorts of methods to arrange for bits of processing to be done
on the UI thread

263

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

AsyncTask, Generics, and Varargs

Creating a subclass of AsyncTask is not quite as easy as, say, implementing
the Runnable interface. AsyncTask uses generics, and so you need to specify
three data types:

• The type of information that is needed to process the task (e.g.,
URLs to download)

• The type of information that is passed within the task to indicate
progress

• The type of information that is passed when the task is completed
to the post-task code

What makes this all the more confusing is that the first two data types are
actually used as varargs, meaning that an array of these types is used within
your AsyncTask subclass.

This should become clearer as we work our way towards an example.

The Stages of AsyncTask

There are four methods you can override in AsyncTask to accomplish your
ends.

The one you must override, for the task class to be useful, is
doInBackground(). This will be called by AsyncTask on a background thread.
It can run as long as it needs to in order to accomplish whatever work needs
to be done for this specific task. Note, though, that tasks are meant to be
finite – using AsyncTask for an infinite loop is not recommended.

The doInBackground() method will receive, as parameters, a varargs array of
the first of the three data types listed above – the data needed to process
the task. So, if your task's mission is to download a collection of URLs,
doInBackground() will receive those URLs to process.

264

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

The doInBackground() method must return a value of the third data type
listed above – the result of the background work.

You may wish to override onPreExecute(). This method is called, from the
UI thread, before the background thread executes doInBackground(). Here,
you might initialize a ProgressBar or otherwise indicate that background
work is commencing.

Also, you may wish to override onPostExecute(). This method is called, from
the UI thread, after doInBackground() completes. It receives, as a parameter,
the value returned by doInBackground() (e.g., success or failure flag). Here,
you might dismiss the ProgressBar and make use of the work done in the
background, such as updating the contents of a list.

In addition, you may wish to override onProgressUpdate(). If
doInBackground() calls the task's publishProgress() method, the object(s)
passed to that method are provided to onProgressUpdate(), but in the UI
thread. That way, onProgressUpdate() can alert the user as to the progress
that has been made on the background work, such as updating a
ProgressBar or continuing an animation. The onProgressUpdate() method
will receive a varargs of the second data type from the above list – the data
published by doInBackground() via publishProgress().

A Sample Task

As mentioned earlier, implementing an AsyncTask is not quite as easy as
implementing a Runnable. However, once you get past the generics and
varargs, it is not too bad.

For example, below you will find an implementation of a ListActivity that
uses an AsyncTask, from the Threads/Asyncer sample project:

package com.commonsware.android.async;

import android.app.ListActivity;
import android.os.AsyncTask;
import android.os.Bundle;
import android.os.SystemClock;

265

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

import android.widget.ArrayAdapter;
import android.widget.Toast;
import java.util.ArrayList;

public class AsyncDemo extends ListActivity {
 private static final String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet", "consectetuer",
 "adipiscing", "elit", "morbi",
 "vel", "ligula", "vitae",
 "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat",
 "placerat", "ante",
 "porttitor", "sodales",
 "pellentesque", "augue",
 "purus"};
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 setListAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 new ArrayList()));

 new AddStringTask().execute();
 }

 class AddStringTask extends AsyncTask<Void, String, Void> {
 @Override
 protected Void doInBackground(Void... unused) {
 for (String item : items) {
 publishProgress(item);
 SystemClock.sleep(200);
 }

 return(null);
 }

 @Override
 protected void onProgressUpdate(String... item) {
 ((ArrayAdapter)getListAdapter()).add(item[0]);
 }

 @Override
 protected void onPostExecute(Void unused) {
 Toast
 .makeText(AsyncDemo.this, "Done!", Toast.LENGTH_SHORT)
 .show();
 }
 }
}

266

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

This is another variation on the lorem ipsum list of words, used frequently
throughout this book. This time, rather than simply hand the list of words
to an ArrayAdapter, we simulate having to work to create these words in the
background using AddStringTask, our AsyncTask implementation.

Let's examine this piece by piece:

The AddStringTask Declaration

class AddStringTask extends AsyncTask<Void, String, Void> {

Here, we use the generics to set up the specific types of data we are going to
leverage in AddStringTask. Specifically:

• We do not need any configuration information in this case, so our
first type is Void

• We want to pass each string "generated" by our background task to
onProgressUpdate(), so we can add it to our list, so our second type is
String

• We do not have any results, strictly speaking (beyond the updates),
so our third type is Void

The doInBackground() Method

@Override
protected Void doInBackground(Void... unused) {
 for (String item : items) {
 publishProgress(item);
 SystemClock.sleep(200);
 }

 return(null);
}

The doInBackground() method is invoked in a background thread. Hence,
we can take as long as we like. In a production application, we would be,
perhaps, iterating over a list of URLs and downloading each. Here, we
iterate over our static list of lorem ipsum words, call publishProgress() for
each, and then sleep 200 milliseconds to simulate real work being done.

267

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

Since we elected to have no configuration information, we should not need
parameters to doInBackground(). However, the contract with AsyncTask says
we need to accept a varargs of the first data type, which is why our method
parameter is Void... unused.

Since we elected to have no results, we should not need to return anything.
Again, though, the contract with AsyncTask says we have to return an object
of the third data type. Since that data type is Void, our returned object is
null.

The onProgressUpdate() Method

@Override
protected void onProgressUpdate(String... item) {
 ((ArrayAdapter)getListAdapter()).add(item[0]);
}

The onProgressUpdate() method is called on the UI thread, and we want to
do something to let the user know we are progressing on loading up these
strings. In this case, we simply add the string to the ArrayAdapter, so it gets
appended to the end of the list.

The onProgressUpdate() method receives a String... varargs because that is
the second data type in our class declaration. Since we are only passing one
string per call to publishProgress(), we only need to examine the first entry
in the varargs array.

The onPostExecute() Method

@Override
protected void onPostExecute(Void unused) {
 Toast
 .makeText(AsyncDemo.this, "Done!", Toast.LENGTH_SHORT)
 .show();
}

The onPostExecute() method is called on the UI thread, and we want to do
something to indicate that the background work is complete. In a real

268

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

system, there may be some ProgressBar to dismiss or some animation to
stop. Here, we simply raise a Toast.

Since we elected to have no results, we should not need any parameters.
The contract with AsyncTask says we have to accept a single value of the
third data type. Since that data type is Void, our method parameter is Void
unused.

The Activity

new AddStringTask().execute();

To use AddStringTask, we simply create an instance and call execute() on it.
That starts the chain of events eventually leading to the background thread
doing its work.

If AddStringsTask required configuration parameters, we would have not
used Void as our first data type, and the constructor would accept zero or
more parameters of the defined type. Those values would eventually be
passed to doInBackground().

The Results

If you build, install, and run this project, you will see the list being
populated in "real time" over a few seconds, followed by a Toast indicating
completion.

269

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

Figure 95. The AsyncDemo, partway through loading the list of words

Threads and Rotation

One problem with the default destroy-and-create cycle that activities go
through on an orientation change comes from background threads. If the
activity has started some background work – through an AsyncTask, for
example – and then the activity is destroyed and re-created, somehow the
AsyncTask needs to know about this. Otherwise, the AsyncTask might well
send updates and final results to the old activity, with the new activity none
the wiser. In fact, the new activity might start up the background work
again, wasting resources.

One way to deal with this is to disable the destroy-and-create cycle, by
taking over configuration changes, as described in a previous section.
Another alternative is to have a smarter activity and AsyncTask. You can see
an example of that in the Rotation/RotationAsync sample project. This
project uses a ProgressBar, much like the Handler demo from earlier in this
chapter. It also has a TextView to indicate when the background work is
completed, initially invisible:

270

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <ProgressBar android:id="@+id/progress"
 style="?android:attr/progressBarStyleHorizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 <TextView android:id="@+id/completed"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Work completed!"
 android:visibility="invisible"
 />
</LinearLayout>

The "business logic" is for an AsyncTask to do some (fake) work in the
background, updating the ProgressBar along the way, and making the
TextView visible when it is finished. More importantly, it needs to do this in
such a way as to behave properly if the screen is rotated:

• We cannot "lose" our AsyncTask, having it continue doing work and
updating the wrong activity

• We cannot start a second AsyncTask, thereby doubling our workload

• We need to have the UI correctly reflect our work's progress or
completion

Manual Activity Association

Earlier in this chapter, we showed the use of an AsyncTask that was
implemented as a regular inner class of the Activity class. That works well
when you are not concerned about rotation. For example, if the AsyncTask is
not affecting the user interface – such as uploading a photo – rotation will
not be an issue for you. Having the AsyncTask as an inner class of the
Activity means you get ready access to the Activity for any place where you
need a Context.

However, for the rotation scenario, a regular inner class will work poorly.
The AsyncTask will think it knows the Activity it is supposed to work with,

271

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

but in reality it will be holding onto an implicit reference to the old activity,
not one after an orientation change.

So, in RotationAsync, the RotationAwareTask class is a static inner class. This
means RotationAwareTask does not have any implicit reference to any
RotationAsync Activity (old or new):

import android.app.Activity;
import android.os.AsyncTask;
import android.os.Bundle;
import android.os.SystemClock;
import android.util.Log;
import android.view.View;
import android.widget.ProgressBar;

public class RotationAsync extends Activity {
 private ProgressBar bar=null;
 private RotationAwareTask task=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 bar=(ProgressBar)findViewById(R.id.progress);

 task=(RotationAwareTask)getLastNonConfigurationInstance();

 if (task==null) {
 task=new RotationAwareTask(this);
 task.execute();
 }
 else {
 task.attach(this);
 updateProgress(task.getProgress());

 if (task.getProgress()>=100) {
 markAsDone();
 }
 }
 }

 @Override
 public Object onRetainNonConfigurationInstance() {
 task.detach();

 return(task);
 }

 void updateProgress(int progress) {

272

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

 bar.setProgress(progress);
 }

 void markAsDone() {
 findViewById(R.id.completed).setVisibility(View.VISIBLE);
 }

 static class RotationAwareTask extends AsyncTask<Void, Void, Void> {
 RotationAsync activity=null;
 int progress=0;

 RotationAwareTask(RotationAsync activity) {
 attach(activity);
 }

 @Override
 protected Void doInBackground(Void... unused) {
 for (int i=0;i<20;i++) {
 SystemClock.sleep(500);
 publishProgress();
 }

 return(null);
 }

 @Override
 protected void onProgressUpdate(Void... unused) {
 if (activity==null) {
 Log.w("RotationAsync", "onProgressUpdate() skipped – no activity");
 }
 else {
 progress+=5;
 activity.updateProgress(progress);
 }
 }

 @Override
 protected void onPostExecute(Void unused) {
 if (activity==null) {
 Log.w("RotationAsync", "onPostExecute() skipped – no activity");
 }
 else {
 activity.markAsDone();
 }
 }

 void detach() {
 activity=null;
 }

 void attach(RotationAsync activity) {
 this.activity=activity;
 }

273

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

 int getProgress() {
 return(progress);
 }
 }
}

Since we want RotationAwareTask to update the current RotationAsync
Activity, we supply that Activity when we create the task, via the
constructor. RotationAwareTask also has attach() and detach() methods to
change what Activity the task knows about, as we will see shortly.

Flow of Events

When RotationAsync starts up for the first time, it creates a new instance of
the RotationAwareTask class and executes it. At this point, the task has a
reference to the RotationAsync Activity and can do its (fake) work, telling
RotationAsync to update the progress along the way.

Now, suppose that during the middle of the doInBackground() processing,
the user rotates the screen.

Our Activity will be called with onRetainNonConfigurationInstance(). Here,
we want to do two things:

1. Since this Activity instance is being destroyed, we need to make
sure the task no longer holds onto a reference to it. Hence, we call
detach(), causing the task to set its RotationAsync data member
(activity) to null.

2. We return the RotationAwareTask object, so that our new
RotationAsync instance can get access to it

Eventually, the new RotationAsync instance will be created. In onCreate(),
we try to get access to any current RotationAwareTask instance via
getLastNonConfigurationInstance(). If that was null, then we know that this
is a newly-created activity, and so we create a new task. If, however,
getLastNonConfigurationInstance() returned the task object from the old
RotationAsync instance, we hold onto it and update our UI to reflect the
current progress that has been made. We also attach() the new

274

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

RotationAsync to the RotationAwareTask, so as further progress is made, the
task can notify the proper activity.

The net result is that our ProgressBar smoothly progresses from 0 to 100,
even while rotations are going on.

Why This Works

Most callback methods in Android are driven by messages on the message
queue being processed by the main application thread. Normally, this
queue is being processed whenever the main application thread is not
otherwise busy, such as running our code.

However, when a configuration change occurs, like a screen rotation, that
no longer holds true.

In between the call to onRetainNonConfigurationInstance() instance of the
old activity and the completion of onCreate() of the new activity, the
message queue is left alone.

So, let us suppose that, in between onRetainNonConfigurationInstance()
activity and the subsequent onCreate(), our AsyncTask's background work
completes. This will trigger onPostExecute() to be called...eventually.
However, since onPostExecute() is actually launched from a message on the
message queue, onPostExecute() will not be called until after our onCreate()
has completed.

Hence, our AsyncTask can keep running during the configuration change, so
long as we do two things:

1. In onCreate() of the new activity instance, we update the AsyncTask
to have it work with our new activity, rather than the old one

2. We do not attempt to use the activity from doInBackground()

275

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

And Now, The Caveats

Background threads, while eminently possible using the Android Handler
system, are not all happiness and warm puppies. Background threads not
only add complexity, but they have real-world costs in terms of available
memory, CPU, and battery life.

To that end, there is a wide range of scenarios you need to account for with
your background thread, including:

• The possibility that users will interact with your activity's UI while
the background thread is chugging along. If the work that the
background thread is doing is altered or invalidated by the user
input, you will need to communicate this to the background thread.
Android includes many classes in the java.util.concurrent package
that will help you communicate safely with your background
thread.

• The possibility that the activity will be killed off while background
work is going on. For example, after starting your activity, the user
might have a call come in, followed by a text message, followed by a
need to look up a contact...all of which might be sufficient to kick
your activity out of memory. The next chapter will cover the various
events Android will take your activity through; hook the proper
ones and be sure to shut down your background thread cleanly
when you have the chance.

• The possibility that your user will get irritated if you chew up a lot
of CPU time and battery life without giving any payback. Tactically,
this means using ProgressBar or other means of letting the user
know that something is happening. Strategically, this means you
still need to be efficient at what you do – background threads are no
panacea for sluggish or pointless code.

• The possibility that you will encounter an error during background
processing. For example, if you are gathering information off the
Internet, the device might lose connectivity. Alerting the user of the
problem via a Notification and shutting down the background
thread may be your best option.

276

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 21

Creating Intent Filters

Up to now, the focus of this book has been on activities opened directly by
the user from the device's launcher. This, of course, is the most obvious
case for getting your activity up and visible to the user. And, in many cases
it is the primary way the user will start using your application.

However, remember that the Android system is based upon lots of loosely-
coupled components. What you might accomplish in a desktop GUI via
dialog boxes, child windows, and the like are mostly supposed to be
independent activities. While one activity will be "special", in that it shows
up in the launcher, the other activities all need to be reached...somehow.

The "how" is via intents.

An intent is basically a message that you pass to Android saying, "Yo! I want
to do...er...something! Yeah!" How specific the "something" is depends on
the situation – sometimes you know exactly what you want to do (e.g., open
up one of your other activities), and sometimes you do not.

In the abstract, Android is all about intents and receivers of those intents.
So, now that we are well-versed in creating activities, let's dive into intents,
so we can create more complex applications while simultaneously being
"good Android citizens".

277

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating Intent Filters

What's Your Intent?

When Sir Tim Berners-Lee cooked up the Hypertext Transfer Protocol –
HTTP – he set up a system of verbs plus addresses in the form of URLs. The
address indicated a resource, such as a Web page, graphic, or server-side
program. The verb indicated what should be done: GET to retrieve it, POST
to send form data to it for processing, etc.

Intents are similar, in that they represent an action plus context. There are
more actions and more components to the context with Android intents
than there are with HTTP verbs and resources, but the concept is still the
same.

Just as a Web browser knows how to process a verb+URL pair, Android
knows how to find activities or other application logic that will handle a
given intent.

Pieces of Intents

The two most important pieces of an intent are the action and what
Android refers to as the "data". These are almost exactly analogous to HTTP
verbs and URLs – the action is the verb, and the "data" is a Uri, such as
content://contacts/people/1 representing a contact in the contacts
database. Actions are constants, such as ACTION_VIEW (to bring up a viewer
for the resource), ACTION_EDIT (to edit the resource), or ACTION_PICK (to
choose an available item given a Uri representing a collection, such as
content://contacts/people).

If you were to create an intent combining ACTION_VIEW with a content Uri of
content://contacts/people/1, and pass that intent to Android, Android
would know to find and open an activity capable of viewing that resource.

There are other criteria you can place inside an intent (represented as an
Intent object), besides the action and "data" Uri, such as:

278

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating Intent Filters

• A category. Your "main" activity will be in the LAUNCHER category,
indicating it should show up on the launcher menu. Other activities
will probably be in the DEFAULT or ALTERNATIVE categories.

• A MIME type, indicating the type of resource you want to operate
on, if you do not know a collection Uri.

• A component, which is to say, the class of the activity that is
supposed to receive this intent. Using components this way obviates
the need for the other properties of the intent. However, it does
make the intent more fragile, as it assumes specific
implementations.

• "Extras", which is a Bundle of other information you want to pass
along to the receiver with the intent, that the receiver might want
to take advantage of. What pieces of information a given receiver
can use is up to the receiver and (hopefully) is well-documented.

You will find rosters of the standard actions and categories in the Android
SDK documentation for the Intent class.

Intent Routing

As noted above, if you specify the target component in your intent, Android
has no doubt where the intent is supposed to be routed to – it will launch
the named activity. This might be OK if the target intent is in your
application. It definitely is not recommended for sending intents to other
applications. Component names, by and large, are considered private to the
application and are subject to change. Content Uri templates and MIME
types are the preferred ways of identifying services you wish third-party
code to supply.

If you do not specify the target component, then Android has to figure out
what activities (or other receivers) are eligible to receive the intent. Note
the use of the plural "activities", as a broadly-written intent might well
resolve to several activities. That is the...ummm...intent (pardon the pun),
as you will see later in this chapter. This routing approach is referred to as
implicit routing.

279

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating Intent Filters

Basically, there are three rules, all of which must be true for a given activity
to be eligible for a given intent:

1. The activity must support the specified action

2. The activity must support the stated MIME type (if supplied)

3. The activity must support all of the categories named in the intent

The upshot is that you want to make your intents specific enough to find
the right receiver(s), and no more specific than that.

This will become clearer as we work through some examples later in this
chapter.

Stating Your Intent(ions)

All Android components that wish to be notified via intents must declare
intent filters, so Android knows which intents should go to that
component. To do this, you need to add intent-filter elements to your
AndroidManifest.xml file.

All of the example projects have intent filters defined, courtesy of the
Android application-building script (android create project or the IDE
equivalent). They look something like this:

<?xml version="1.0"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.skeleton">
 <application>
 <activity android:name=".Now" android:label="Now">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>
</manifest>

Note the intent-filter element under the activity element. Here, we
declare that this activity:

280

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating Intent Filters

• Is the main activity for this application

• It is in the LAUNCHER category, meaning it gets an icon in the Android
main menu

Because this activity is the main one for the application, Android knows
this is the component it should launch when somebody chooses the
application from the main menu.

You are welcome to have more than one action or more than one category
in your intent filters. That indicates that the associated component (e.g.,
activity) handles multiple different sorts of intents.

More than likely, you will also want to have your secondary (non-MAIN)
activities specify the MIME type of data they work on. Then, if an intent is
targeted for that MIME type – either directly, or indirectly by the Uri
referencing something of that type – Android will know that the
component handles such data.

For example, you could have an activity declared like this:

<activity android:name=".TourViewActivity">
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:mimeType="vnd.android.cursor.item/vnd.commonsware.tour" />
 </intent-filter>
</activity>

This activity will get launched by an intent requesting to view a Uri
representing a vnd.android.cursor.item/vnd.commonsware.tour piece of
content. That Intent could come from another activity in the same
application (e.g., the MAIN activity for this application) or from another
activity in another Android application that happens to know a Uri that this
activity handles.

281

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating Intent Filters

Narrow Receivers

In the examples shown above, the intent filters were set up on activities.
Sometimes, tying intents to activities is not exactly what we want:

• Some system events might cause us to want to trigger something in
a service rather than an activity

• Some events might need to launch different activities in different
circumstances, where the criteria are not solely based on the intent
itself, but some other state (e.g., if we get intent X and the database
has a Y, then launch activity M; if the database does not have a Y,
then launch activity N)

For these cases, Android offers the receiver, defined as a class implementing
the BroadcastReceiver interface. Broadcast receivers are disposable objects
designed to receive intents – specifically, broadcast intents – and take
action.

The BroadcastReceiver interface has only one method: onReceive().
Receivers implement that method, where they do whatever it is they wish
to do upon an incoming intent. To declare an receiver, add a receiver
element to your AndroidManifest.xml file:

<receiver android:name=".MyIntentReceiverClassName" />

An receiver is only alive for as long as it takes to process onReceive() – as
soon as that method returns, the receiver instance is subject to garbage
collection and will not be reused. This means receivers are somewhat
limited in what they can do, mostly to avoid anything that involves any sort
of callback. For example, they cannot bind to a service, and they cannot
open a dialog box.

The exception is if the BroadcastReceiver is implemented on some longer-
lived component, such as an activity or service – in that case, the receiver
lives as long as its "host" does (e.g., until the activity is frozen). However, in
this case, you cannot declare the receiver via AndroidManifest.xml. Instead,
you need to call registerReceiver() on your Activity's onResume() callback

282

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating Intent Filters

to declare interest in an intent, then call unregisterReceiver() from your
Activity's onPause() when you no longer need those intents.

The Pause Caveat

There is one hiccup with using Intent objects to pass arbitrary messages
around: it only works when the receiver is active. To quote from the
documentation for BroadcastReceiver:

If registering a receiver in your Activity.onResume()
implementation, you should unregister it in
Activity.onPause(). (You will not receive intents when
paused, and this will cut down on unnecessary system
overhead). Do not unregister in
Activity.onSaveInstanceState(), because this will not be
called if the user moves back in the history stack.

Hence, you can only really use the Intent framework as an arbitrary
message bus if:

• Your receiver does not care if it misses messages because it was not
active, or

• You provide some means of getting the receiver "caught up" on
messages it missed while it was inactive, or

• Your receiver is registered in the manifest

283

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 22

Launching Activities and Sub-
Activities

The theory behind the Android UI architecture is that developers should
decompose their application into distinct activities. For example, a calendar
application could have activities for viewing the calendar, viewing a single
event, editing an event (including adding a new one), and so forth.

This, of course, implies that one of your activities has the means to start up
another activity. For example, if somebody clicks on an event from the
view-calendar activity, you might want to show the view-event activity for
that event. This means that, somehow, you need to be able to cause the
view-event activity to launch and show a specific event (the one the user
clicked upon).

This can be further broken down into two scenarios:

1. You know what activity you want to launch, probably because it is
another activity in your own application

2. You have a content Uri to...something, and you want your users to
be able to do...something with it, but you do not know up front
what the options are

This chapter covers the first scenario; the companion advanced Android
book handles the second.

285

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid

Launching Activities and Sub-Activities

Peers and Subs

One key question you need to answer when you decide to launch an activity
is: does your activity need to know when the launched activity ends?

For example, suppose you want to spawn an activity to collect
authentication information for some Web service you are connecting to –
maybe you need to authenticate with OpenID in order to use an OAuth
service. In this case, your main activity will need to know when the
authentication is complete so it can start to use the Web service.

On the other hand, imagine an email application in Android. When the
user elects to view an attachment, neither you nor the user necessarily
expect the main activity to know when the user is done viewing that
attachment.

In the first scenario, the launched activity is clearly subordinate to the
launching activity. In that case, you probably want to launch the child as a
sub-activity, which means your activity will be notified when the child
activity is complete.

In the second scenario, the launched activity is more a peer of your activity,
so you probably want to launch the “child” just as a regular activity. Your
activity will not be informed when the “child” is done, but, then again, your
activity really does not need to know.

Start 'Em Up

The two pieces for starting an activity are an intent and your choice of how
to start it up.

Make an Intent

As discussed in a previous chapter, intents encapsulate a request, made to
Android, for some activity or other receiver to do something.

286

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://oauth.net/
http://openid.net/

Launching Activities and Sub-Activities

If the activity you intend to launch is one of your own, you may find it
simplest to create an explicit intent, naming the component you wish to
launch. For example, from within your activity, you could create an intent
like this:

new Intent(this, HelpActivity.class);

This would stipulate that you wanted to launch the HelpActivity. This
activity would need to be named in your AndroidManifest.xml file, though
not necessarily with any intent filter, since you are trying to request it
directly.

Or, you could put together an intent for some Uri, requesting a particular
action:

Uri uri=Uri.parse("geo:"+lat.toString()+","+lon.toString());
Intent i=new Intent(Intent.ACTION_VIEW, uri);

Here, given that we have the latitude and longitude of some position (lat
and lon, respectively) of type Double, we construct a geo scheme Uri and
create an intent requesting to view this Uri (ACTION_VIEW).

Make the Call

Once you have your intent, you need to pass it to Android and get the child
activity to launch. You have two choices:

1. The simplest option is to call startActivity() with the Intent – this
will cause Android to find the best-match activity and pass the
intent to it for handling. Your activity will not be informed when
the “child” activity is complete.

2. You can call startActivityForResult(), passing it the Intent and a
number (unique to the calling activity). Android will find the best-
match activity and pass the intent over to it. However, your activity
will be notified when the child activity is complete via the
onActivityResult() callback (see below).

287

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Launching Activities and Sub-Activities

With startActivityForResult(), as noted, you can implement the
onActivityResult() callback to be notified when the child activity has
completed its work. The callback receives the unique number supplied to
startActivityForResult(), so you can determine which child activity is the
one that has completed. You also get:

• A result code, from the child activity calling setResult(). Typically
this is RESULT_OK or RESULT_CANCELED, though you can create your own
return codes (pick a number starting with RESULT_FIRST_USER)

• An optional String containing some result data, possibly a URL to
some internal or external resource – for example, a ACTION_PICK
intent typically returns the selected bit of content via this data
string

• An optional Bundle containing additional information beyond the
result code and data string

To demonstrate launching a peer activity, take a peek at the
Activities/Launch sample application. The XML layout is fairly
straightforward: two fields for the latitude and longitude, plus a button:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TableLayout
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:stretchColumns="1,2"
 >
 <TableRow>
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:paddingLeft="2dip"
 android:paddingRight="4dip"
 android:text="Location:"
 />
 <EditText android:id="@+id/lat"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:cursorVisible="true"
 android:editable="true"
 android:singleLine="true"

288

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Launching Activities and Sub-Activities

 android:layout_weight="1"
 />
 <EditText android:id="@+id/lon"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:cursorVisible="true"
 android:editable="true"
 android:singleLine="true"
 android:layout_weight="1"
 />
 </TableRow>
 </TableLayout>
 <Button android:id="@+id/map"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Show Me!"
 android:onClick="showMe"
 />
</LinearLayout>

The button's showMe() callback method simply takes the latitude and
longitude, pours them into a geo scheme Uri, then starts the activity.

package com.commonsware.android.activities;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.view.View;
import android.widget.EditText;

public class LaunchDemo extends Activity {
 private EditText lat;
 private EditText lon;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 lat=(EditText)findViewById(R.id.lat);
 lon=(EditText)findViewById(R.id.lon);
 }

 public void showMe(View v) {
 String _lat=lat.getText().toString();
 String _lon=lon.getText().toString();
 Uri uri=Uri.parse("geo:"+_lat+","+_lon);

 startActivity(new Intent(Intent.ACTION_VIEW, uri));

289

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Launching Activities and Sub-Activities

 }
}

The activity is not much to look at:

Figure 96. The LaunchDemo sample application, with a location filled in

If you fill in a location (e.g., 38.8891 latitude and -77.0492 longitude) and
click the button, the resulting map is more interesting. Note that this is the
built-in Android map activity – we did not create our own activity to display
this map.

290

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Launching Activities and Sub-Activities

Figure 97. The map launched by Launch Demo, showing the Lincoln Memorial
in Washington DC

In a later chapter, you will see how you can create maps in your own
activities, in case you need greater control over how the map is displayed.

Note that this geo: Intent will only work on devices or emulators that have
Google Maps installed, or on devices that have some other mapping
application that supports the geo: URL.

Tabbed Browsing, Sort Of

One of the main features of the modern desktop Web browser is tabbed
browsing, where a single browser window can show several pages split
across a series of tabs. On a mobile device, this may not make a lot of sense,
given that you lose screen real estate for the tabs themselves.

In this book, however, we do not let little things like sensibility stop us, so
let us demonstrate a tabbed browser, using TabActivity and Intent objects.

291

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Launching Activities and Sub-Activities

As you may recall from the section on tabbed views from earlier in this
book, a tab can have a View as its contents. It can also have an Activity as its
contents. If you want to use an Activity as the content of a tab, you provide
an Intent that will launch the desired Activity; Android's tab-management
framework will then pour the Activity's user interface into the tab.

Your natural instinct might be to use an http: Uri the way we used a geo:
Uri in the previous example:

Intent i=new Intent(Intent.ACTION_VIEW);
i.setData(Uri.parse("http://commonsware.com"));

That way, you could use the built-in Browser application and get all of the
features that it offers.

Alas, this does not work. You cannot host other applications' activities in
your tabs, only your own activities, for security reasons.

So, we dust off our WebView demos from the chapter on WebKit and use
those instead, repackaged as Activities/IntentTab.

Here is the source to the main activity, the one hosting the TabView:

package com.commonsware.android.intenttab;

import android.app.Activity;
import android.app.TabActivity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.webkit.WebView;
import android.widget.TabHost;

public class IntentTabDemo extends TabActivity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 TabHost host=getTabHost();
 Intent i=new Intent(this, CWBrowser.class);

 i.putExtra(CWBrowser.URL, "http://commonsware.com");
 host.addTab(host.newTabSpec("one")

292

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Launching Activities and Sub-Activities

 .setIndicator("CW")
 .setContent(i));

 i=new Intent(i);
 i.putExtra(CWBrowser.URL, "http://www.android.com");
 host.addTab(host.newTabSpec("two")
 .setIndicator("Android")
 .setContent(i));
 }
}

As you can see, we are using TabActivity as the base class, and so we do not
need our own layout XML – TabActivity supplies it for us. All we do is get
access to the TabHost and add two tabs, each specifying an Intent that
directly refers to another class. In this case, our two tabs will each host a
CWBrowser, with a URL to load supplied via an Intent extra.

The CWBrowser activity is simple modification to the earlier browser demos:

package com.commonsware.android.intenttab;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.webkit.WebView;

public class CWBrowser extends Activity {
 public static final String URL="com.commonsware.android.intenttab.URL";
 private WebView browser;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 browser=new WebView(this);
 setContentView(browser);
 browser.loadUrl(getIntent().getStringExtra(URL));
 }
}

They simply load a different URL into the browser: the CommonsWare
home page in one, the Android home page in the other.

The resulting UI shows what tabbed browsing could look like on Android:

293

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Launching Activities and Sub-Activities

Figure 98. The IntentTabDemo sample application, showing the first tab

Figure 99. The IntentTabDemo sample application, showing the second tab

However, this approach is rather wasteful. There is a fair bit of overhead in
creating an activity, that one does not need just to populate tabs in a
TabHost. In particular, it increases the amount of stack space needed by your

294

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Launching Activities and Sub-Activities

application, and running out of stack space is a significant problem in
Android, as will be described in a later chapter.

295

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 23

Working with Resources

Resources are static bits of information held outside the Java source code.
You have seen one type of resource – the layout – frequently in the
examples in this book. There are many other types of resource, such as
images and strings, that you can take advantage of in your Android
applications.

The Resource Lineup

Resources are stored as files under the res/ directory in your Android
project layout. With the exception of raw resources (res/raw/), all the other
types of resources are parsed for you, either by the Android packaging
system or by the Android system on the device or emulator. So, for
example, when you lay out an activity's UI via a layout resource
(res/layout/), you do not have to parse the layout XML yourself – Android
handles that for you.

In addition to layout resources (first seen in an earlier chapter), there are
several other types of resource available to you, including:

• Images (res/drawable/), for putting static icons or other pictures in a
user interface

• Raw (res/raw/), for putting arbitrary files that have meaning to your
application but not necessarily to Android frameworks

297

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

• Strings, colors, arrays, and dimensions (res/values/), to both give
these sorts of constants symbolic names and to keep them separate
from the rest of the code (e.g., for internationalization and
localization)

• XML (res/xml/), for static XML files containing your own data and
structure

String Theory

Keeping your labels and other bits of text outside the main source code of
your application is generally considered to be a very good idea. In
particular, it helps with internationalization (I18N) and localization (L10N),
covered later in this chapter. Even if you are not going to translate your
strings to other languages, it is easier to make corrections if all the strings
are in one spot instead of scattered throughout your source code.

Android supports regular externalized strings, along with "string formats",
where the string has placeholders for dynamically-inserted information. On
top of that, Android supports simple text formatting, called "styled text", so
you can make your words be bold or italic intermingled with normal text.

Plain Strings

Generally speaking, all you need to do is have an XML file in the res/values
directory (typically named res/values/strings.xml), with a resources root
element, and one child string element for each string you wish to encode as
a resource. The string element takes a name attribute, which is the unique
name for this string, and a single text element containing the text of the
string:

<resources>
 <string name="quick">The quick brown fox...</string>
 <string name="laughs">He who laughs last...</string>
</resources>

The only tricky part is if the string value contains a quote (") or an
apostrophe ('). In those cases, you will want to escape those values, by

298

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

preceding them with a backslash (e.g., These are the times that try men\'s
souls). Or, if it is just an apostrophe, you could enclose the value in quotes
(e.g., "These are the times that try men's souls.").

You can then reference this string from a layout file (as @string/..., where
the ellipsis is the unique name – e.g., @string/laughs). Or you can get the
string from your Java code by calling getString() with the resource ID of
the string resource, that being the unique name prefixed with R.string.
(e.g., getString(R.string.quick)).

String Formats

As with other implementations of the Java language, Android's Dalvik VM
supports string formats. Here, the string contains placeholders
representing data to be replaced at runtime by variable information (e.g., My
name is %1$s). Plain strings stored as resources can be used as string
formats:

String strFormat=getString(R.string.my_name);
String strResult=String.format(strFormat, "Tim");
((TextView)findViewById(R.id.some_label)).setText(strResult);

There is also a flavor of getString() that does the String.format() call for
you:

String strResult=getString(R.string.my_name, "Tim");
((TextView)findViewById(R.id.some_label)).setText(strResult);

It is very important that you use the version of the placeholders that take an
index – %1$s instead of just %s. Strategically, translations of your string
resources may cause you to apply the variable data in a different order than
did your original translation, and using non-indexed placeholders lock you
into a particular order. Tactically, your project will fail to compile, as the
Android build tools reject non-indexed placeholders nowadays.

299

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

Styled Text

If you want really rich text, you should have raw resources containing
HTML, then pour those into a WebKit widget. However, for light HTML
formatting, using inline elements like , <i>, and <u>, you can just use
them in a string resource:

<resources>
 <string name="b">This has bold in it.</string>
 <string name="i">Whereas this has <i>italics</i>!</string>
</resources>

You can access these via getText(), where you will get back an object
supporting the android.text.Spanned interface and therefore has all of the
formatting applied:

((TextView)findViewById(R.id.another_label))
 .setText(getText(R.string.b));

Styled Text and Formats

Where styled text gets tricky is with styled string formats, as
String.format() works on String objects, not Spanned objects with
formatting instructions. If you really want to have styled string formats,
here is the workaround:

1. Entity-escape the angle brackets in the string resource (e.g., this is
%1$s)

2. Retrieve the string resource as normal, though it will not be styled
at this point (e.g., getString(R.string.funky_format))

3. Generate the format results, being sure to escape any string values
you substitute in, in case they contain angle brackets or ampersands

String.format(getString(R.string.funky_format),
 TextUtils.htmlEncode(strName));

4. Convert the entity-escaped HTML into a Spanned object via
Html.fromHtml()

300

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

someTextView.setText(Html
 .fromHtml(resultFromStringFormat));

To see this in action, let's look at the Resources/Strings demo. Here is the
layout file:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <LinearLayout
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 >
 <Button android:id="@+id/format"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/btn_name"
 android:onClick="applyFormat"
 />
 <EditText android:id="@+id/name"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 </LinearLayout>
 <TextView android:id="@+id/result"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
</LinearLayout>

As you can see, it is just a button, a field, and a label. The intent is for
somebody to enter their name in the field, then click the button to cause
the label to be updated with a formatted message containing their name.

The Button in the layout file references a string resource (@string/btn_name),
so we need a string resource file (res/values/strings.xml):

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">StringsDemo</string>
 <string name="btn_name">Name:</string>
 <string name="funky_format">My name is %1$s</string>
</resources>

301

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

The app_name resource is automatically created by the android create
project command. The btn_name string is the caption of the Button, while
our styled string format is in funky_format.

Finally, to hook all this together, we need a pinch of Java:

package com.commonsware.android.strings;

import android.app.Activity;
import android.os.Bundle;
import android.text.TextUtils;
import android.text.Html;
import android.view.View;
import android.widget.EditText;
import android.widget.TextView;

public class StringsDemo extends Activity {
 EditText name;
 TextView result;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 name=(EditText)findViewById(R.id.name);
 result=(TextView)findViewById(R.id.result);
 }

 public void applyFormat(View v) {
 String format=getString(R.string.funky_format);
 String simpleResult=String.format(format,
 TextUtils.htmlEncode(name.getText().toString()));
 result.setText(Html.fromHtml(simpleResult));
 }
}

The string resource manipulation can be found in applyFormat(), which is
called when the button is clicked. First, we get our format via getString() –
something we could have done at onCreate() time for efficiency. Next, we
format the value in the field using this format, getting a String back, since
the string resource is in entity-encoded HTML. Note the use of
TextUtils.htmlEncode() to entity-encode the entered name, in case
somebody decides to use an ampersand or something. Finally, we convert
the simple HTML into a styled text object via Html.fromHtml() and update
our label.

302

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

When the activity is first launched, we have an empty label:

Figure 100. The StringsDemo sample application, as initially launched

but if we fill in a name and click the button, we get:

303

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

Figure 101. The same application, after filling in some heroic figure's name

Got the Picture?

Android supports images in the PNG, JPEG, and GIF formats. GIF is
officially discouraged, however; PNG is the overall preferred format. Images
can be used anywhere that requires a Drawable, such as the image and
background of an ImageView.

Using images is simply a matter of putting your image files in res/drawable/
and then referencing them as a resource. Within layout files, images are
referenced as @drawable/... where the ellipsis is the base name of the file
(e.g., for res/drawable/foo.png, the resource name is @drawable/foo). In Java,
where you need an image resource ID, use R.drawable. plus the base name
(e.g., R.drawable.foo).

So, let's update the previous example to use an icon for the button instead
of the string resource. This can be found as Resources/Images. First, we
slightly adjust the layout file, using an ImageButton and referencing a
drawable named @drawable/icon, which refers to an image file in

304

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

res/drawable with a base name of icon. In this case, we use a 32x32 PNG file
from the Nuvola icon set:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <LinearLayout
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 >
 <ImageButton android:id="@+id/format"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:src="@drawable/icon"
 android:onClick="applyFormat"
 />
 <EditText android:id="@+id/name"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 </LinearLayout>
 <TextView android:id="@+id/result"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
</LinearLayout>

Now, our button has the desired icon:

305

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://en.wikipedia.org/wiki/Nuvola

Working with Resources

Figure 102. The ImagesDemo sample application

XML: The Resource Way

If you wish to package static XML with your application, you can use an
XML resource. Simply put the XML file in res/xml/, and you can access it by
getXml() on a Resources object, supplying it a resource ID of R.xml. plus the
base name of your XML file. So, in an activity, with an XML file of words.xml,
you could call getResources().getXml(R.xml.words).

This returns an instance of an XmlPullParser, found in the org.xmlpull.v1
Java namespace. An XML pull parser is event-driven: you keep calling
next() on the parser to get the next event, which could be START_TAG,
END_TAG, END_DOCUMENT, etc. On a START_TAG event, you can access the tag's
name and attributes; a single TEXT event represents the concatenation of all
text nodes that are direct children of this element. By looping, testing, and
invoking per-element logic, you parse the file.

To see this in action, let's rewrite the Java code for the Files/Static sample
project to use an XML resource. This new project, Resources/XML, requires
that you place the words.xml file from Static not in res/raw/, but in

306

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

res/xml/. The layout stays the same, so all that needs replacing is the Java
source:

package com.commonsware.android.resources;

import android.app.Activity;
import android.os.Bundle;
import android.app.ListActivity;
import android.view.View;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.ListView;
import android.widget.TextView;
import android.widget.Toast;
import java.io.InputStream;
import java.util.ArrayList;
import org.xmlpull.v1.XmlPullParser;
import org.xmlpull.v1.XmlPullParserException;

public class XMLResourceDemo extends ListActivity {
 TextView selection;
 ArrayList<String> items=new ArrayList<String>();

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 selection=(TextView)findViewById(R.id.selection);

 try {
 XmlPullParser xpp=getResources().getXml(R.xml.words);

 while (xpp.getEventType()!=XmlPullParser.END_DOCUMENT) {
 if (xpp.getEventType()==XmlPullParser.START_TAG) {
 if (xpp.getName().equals("word")) {
 items.add(xpp.getAttributeValue(0));
 }
 }

 xpp.next();
 }
 }
 catch (Throwable t) {
 Toast
 .makeText(this, "Request failed: "+t.toString(), Toast.LENGTH_LONG)
 .show();
 }

 setListAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 items));
 }

307

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

 public void onListItemClick(ListView parent, View v, int position,
 long id) {
 selection.setText(items.get(position).toString());
 }
}

Now, inside our try...catch block, we get our XmlPullParser and loop until
the end of the document. If the current event is START_TAG and the name of
the element is word (xpp.getName().equals("word")), then we get the one-
and-only attribute and pop that into our list of items for the selection
widget. Since we're in complete control over the XML file, it is safe enough
to assume there is exactly one attribute. But, if you were not as comfortable
that the XML is properly defined, you might consider checking the
attribute count (getAttributeCount()) and the name of the attribute
(getAttributeName()) before blindly assuming the 0-index attribute is what
you think it is.

The result looks the same as before, albeit with a different name in the title
bar:

Figure 103. The XMLResourceDemo sample application

308

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

Miscellaneous Values

In the res/values/ directory, in addition to string resources, you can place
one (or more) XML files describing other simple resources, such as
dimensions, colors, and arrays. We have already seen uses of dimensions
and colors in previous examples, where they were passed as simple strings
(e.g., "10dip") as parameters to calls. You can, of course, set these up as Java
static final objects and use their symbolic names...but this only works
inside Java source, not in layout XML files. By putting these values in
resource XML files, you can reference them from both Java and layouts,
plus have them centrally located for easy editing.

Resource XML files have a root element of resources; everything else is a
child of that root.

Dimensions

Dimensions are used in several places in Android to describe distances,
such as a widget's padding. There are several different units of
measurement available to you:

• in and mm for inches and millimeters, respectively, based on the
actual size of the screen

• pt for points, which in publishing terms is 1/72nd of an inch (again,
based on the actual physical size of the screen)

• dip and sp for device-independent pixels and scale-independent
pixels – one pixel equals one dip for a 160dpi resolution screen, with
the ratio scaling based on the actual screen pixel density (scale-
independent pixels also take into account the user's preferred font
size)

To encode a dimension as a resource, add a dimen element, with a name
attribute for your unique name for this resource, and a single child text
element representing the value:

309

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

<resources>
 <dimen name="thin">10px</dimen>
 <dimen name="fat">1in</dimen>
</resources>

In a layout, you can reference dimensions as @dimen/..., where the ellipsis is
a placeholder for your unique name for the resource (e.g., thin and fat from
the sample above). In Java, you reference dimension resources by the
unique name prefixed with R.dimen. (e.g.,
Resources.getDimen(R.dimen.thin)).

Colors

Colors in Android are hexadecimal RGB values, also optionally specifying
an alpha channel. You have your choice of single-character hex values or
double-character hex values, leaving you with four styles:

• #RGB

• #ARGB

• #RRGGBB

• #AARRGGBB

These work similarly to their counterparts in Cascading Style Sheets (CSS).

You can, of course, put these RGB values as string literals in Java source or
layout resources. If you wish to turn them into resources, though, all you
need to do is add color elements to the resources file, with a name attribute
for your unique name for this color, and a single text element containing
the RGB value itself:

<resources>
 <color name="yellow_orange">#FFD555</color>
 <color name="forest_green">#005500</color>
 <color name="burnt_umber">#8A3324</color>
</resources>

In a layout, you can reference colors as @color/..., replacing the ellipsis
with your unique name for the color (e.g., burnt_umber). In Java, you

310

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

reference color resources by the unique name prefixed with R.color. (e.g.,
Resources.getColor(R.color.forest_green)).

Arrays

Array resources are designed to hold lists of simple strings, such as a list of
honorifics (Mr., Mrs., Ms., Dr., etc.).

In the resource file, you need one string-array element per array, with a
name attribute for the unique name you are giving the array. Then, add one
or more child item elements, each of which having a single text element
with the value for that entry in the array:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string-array name="cities">
 <item>Philadelphia</item>
 <item>Pittsburgh</item>
 <item>Allentown/Bethlehem</item>
 <item>Erie</item>
 <item>Reading</item>
 <item>Scranton</item>
 <item>Lancaster</item>
 <item>Altoona</item>
 <item>Harrisburg</item>
 </string-array>
 <string-array name="airport_codes">
 <item>PHL</item>
 <item>PIT</item>
 <item>ABE</item>
 <item>ERI</item>
 <item>RDG</item>
 <item>AVP</item>
 <item>LNS</item>
 <item>AOO</item>
 <item>MDT</item>
 </string-array>
</resources>

From your Java code, you can then use Resources.getStringArray() to get a
String[] of the items in the list. The parameter to getStringArray() is your
unique name for the array, prefixed with R.array. (e.g.,
Resources.getStringArray(R.array.honorifics)).

311

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

Different Strokes for Different Folks

One set of resources may not fit all situations where your application may
be used. One obvious area comes with string resources and dealing with
internationalization (I18N) and localization (L10N). Putting strings all in
one language works fine – probably at least for the developer – but only
covers one language.

That is not the only scenario where resources might need to differ, though.
Here are others:

• Screen orientation: is the screen in a portrait orientation?
Landscape? Is the screen square and, therefore, does not really have
an orientation?

• Screen size: how many pixels does the screen have, so you can size
your resources accordingly (e.g., large versus small icons)?

• Touchscreen: does the device have a touchscreen? If so, is the
touchscreen set up to be used with a stylus or a finger?

• Keyboard: what keyboard does the user have (QWERTY, numeric,
neither), either now or as an option?

• Other input: does the device have some other form of input, like a
directional pad or click-wheel?

The way Android currently handles this is by having multiple resource
directories, with the criteria for each embedded in their names.

Suppose, for example, you want to support strings in both English and
Spanish. Normally, for a single-language setup, you would put your strings
in a file named res/values/strings.xml. To support both English and
Spanish, you would create two folders, res/values-en/ and res/values-es/,
where the value after the hyphen is the ISO 639-1 two-letter code for the
language you want. Your English-language strings would go in res/values-
en/strings.xml and the Spanish ones in res/values-es/strings.xml. Android
will choose the proper file based on the user's device settings.

312

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://en.wikipedia.org/wiki/ISO_639-1

Working with Resources

An even better approach is for you to consider some language to be your
default, and put those strings in res/values/strings.xml. Then, create other
resource directories for your translations (e.g., res/values-es/strings.xml
for Spanish). Android will try to match a specific language set of resources;
failing that, it will fall back to the default of res/values/strings.xml.

Seems easy, right?

Where things start to get complicated is when you need to use multiple
disparate criteria for your resources. For example, let us suppose you want
to develop both for the T-Mobile G1, the Samsung Galaxy Tab, and the
Motorola Charm.

• The T-Mobile G1 has a normal-size, medium-density screen and a
hardware keyboard

• The Samsung Galaxy Tab has a large size, high-density screen and
no hardware keyboard

• The Motorola Charm has a small size, medium-density screen and a
hardware keyboard

You may want to have somewhat different layouts for these devices, to take
advantage of different screen real estate and different input options.
Specifically:

• You want different layouts for each combination of size, orientation,
and keyboard

• You want different drawables for each density

Once you get into these sorts of situations, though, all sorts of rules come
into play, such as:

• The configuration options (e.g., -en) have a particular order of
precedence, and they must appear in the directory name in that
order. The Android documentation outlines the specific order in
which these options can appear. For the purposes of this example,
screen size is more important than screen orientation, which is

313

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://developer.android.com/guide/topics/resources/providing-resources.html#AlternativeResources

Working with Resources

more important than screen density, which is more important than
whether or not the device has a keyboard.

• There can only be one value of each configuration option category
per directory.

• Options are case sensitive

So, for the scenario described above, in theory, we would need the
following directories, representing the possible combinations:

• res/layout-large-port-mdpi-qwerty

• res/layout-large-port-mdpi-nokeys

• res/layout-large-port-hdpi-qwerty

• res/layout-large-port-hdpi-nokeys

• res/layout-large-land-mdpi-qwerty

• res/layout-large-land-mdpi-nokeys

• res/layout-large-land-hdpi-qwerty

• res/layout-large-land-hdpi-nokeys

• res/layout-normal-port-mdpi-qwerty

• res/layout-normal-port-mdpi-nokeys

• res/layout-normal-port-finger-qwerty

• res/layout-normal-port-hdpi-nokeys

• res/layout-normal-land-mdpi-qwerty

• res/layout-normal-land-mdpi-nokeys

• res/layout-normal-land-hdpi-qwerty

• res/layout-normal-land-hdpi-nokeys

• res/drawable-large-port-mdpi-qwerty

• res/drawable-large-port-mdpi-nokeys

• res/drawable-large-port-hdpi-qwerty

• res/drawable-large-port-hdpi-nokeys

• res/drawable-large-land-mdpi-qwerty

• res/drawable-large-land-mdpi-nokeys

• res/drawable-large-land-hdpi-qwerty

314

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

• res/drawable-large-land-hdpi-nokeys

• res/drawable-normal-port-mdpi-qwerty

• res/drawable-normal-port-mdpi-nokeys

• res/drawable-normal-port-finger-qwerty

• res/drawable-normal-port-hdpi-nokeys

• res/drawable-normal-land-mdpi-qwerty

• res/drawable-normal-land-mdpi-nokeys

• res/drawable-normal-land-hdpi-qwerty

• res/drawable-normal-land-hdpi-nokeys

Don't panic! We will shorten this list in just a moment!

Note that there is nothing preventing you from also having a directory with
the unadorned base name (res/layout). In fact, this is really a good idea, in
case future editions of the Android runtime introduce other configuration
options you did not consider – having a default layout might make the
difference between your application working or failing on that new device.

Also, we can cut the number of required directories a lot by decoding the
rules Android uses for determining which, among a set of candidates, is the
"right" resource directory to use:

1. First up, Android tosses out ones that are specifically invalid. So, for
example, if the screen size of the device is "normal", the -large
directories would be dropped as candidates, since they call for some
other size.

2. Next, Android counts the number of matches for each folder, and
only pays attention to those with the most matches.

3. Finally, Android goes in the order of precedence of the options – in
other words, it goes from left to right in the directory name.

Also, our drawables are only varying by density, and our layouts are not
varying by density, so we can clear out a lot of combinations by focusing on
only the relevant platform differences.

315

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

So we could skate by with only the following configurations:

• res/layout-large-land-qwerty

• res/layout-large-qwerty

• res/layout-large-land

• res/layout-large

• res/layout-normal-land-qwerty

• res/layout-normal-qwerty

• res/layout-normal-land

• res/layout

• res/drawable-hdpi

• res/drawable

Here, we take advantage of the fact that specific matches take precedence
over "unspecified" values. So, a device with a QWERTY keyboard will
choose a resource with qwerty in the directory over a resource that does not
specify its keyboard type.

We could refine this even further, to only cover the specific devices we are
targeting (e.g., there is no large device with qwerty):

• res/layout-large-land

• res/layout-large

• res/layout-land-qwerty

• res/layout-qwerty

• res/layout-land

• res/layout

• res/drawable-hdpi

• res/drawable

If we did not care about having different layouts for whether the device had
a hardware keyboard, we could drop the two -qwerty resource sets.

We will see these resource sets again in the chapter on supporting multiple
screen sizes, later in the book.

316

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

RTL Languages: Going Both Ways

Android 2.3 added support for many more languages than had existed in
previous versions of the platform. As such, you now have greater
opportunity to localize your application where it is needed.

In particular, Android 2.3 added support for right-to-left (RTL) languages,
notably Hebrew and Arabic. Previously, Android only supported languages
written horizontally from left to right, such as English. This not only means
you have the potential for creating localized versions for RTL languages,
but you may need to consider whether your UI in general will work
properly for RTL languages. For example:

• Are your TextView widgets aligned on the left side with other
widgets or containers? If so, is that the right answer for your RTL
users?

• Will there be any issues with your EditText widgets when users start
entering RTL text, such as inappropriate scrolling because you have
not properly constrained the EditText widget's width?

• If you created your own forms of text input, outside of EditText and
the input method framework (e.g., custom on-screen virtual
keyboards), will they support RTL languages?

317

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 24

Defining and Using Styles

Every now and then, you will find some code with a cryptic style attribute in
a layout element. For example, in the chapter on threading, there was our
ProgressBar:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <ProgressBar android:id="@+id/progress"
 style="?android:attr/progressBarStyleHorizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content" />
</LinearLayout>

Something about that magic style attribute changed our ProgressBar from a
normal circle to a horizontal bar.

This chapter will briefly explore the concept of styles, how you can create
them, and how you can apply them to your own widgets.

Styles: DIY DRY

The purpose of styles is to encapsulate a set of attributes that you intend to
use repeatedly, conditionally, or otherwise wish to keep separate from your
layouts proper. The primary use case is "don't repeat yourself" (DRY) – if
you have a bunch of widgets that look the same, use a style to use a single

319

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Defining and Using Styles

definition for "look the same", rather than copying the look from widget to
widget.

And that paragraph will make a bit more sense if we look at an example,
specifically the Styles/NowStyled sample project.

This is the same project we examined in an earlier chapter, with a full-
screen button that shows the date and time of when the activity was
launched or when the button was pushed. This time, though, we want to
change the way the text on the face of the button appears, and we will do so
using a style.

The res/layout/main.xml file in this project is the same as it was, with the
addition of a style attribute:

<?xml version="1.0" encoding="utf-8"?>
<Button xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/button"
 android:text=""
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 style="@style/bigred"
/>

Note that the style attribute is part of stock XML and therefore is not in the
android namespace, so it does not get the android: prefix.

The value, @style/bigred, points to a style resource. Style resources are
values resources and can be found in the res/values/ directory in your
project, or in other resource sets (e.g., res/values-v11/ for values resources
only to be used on API Level 11 or higher). The convention is for styles
resources to be held in a styles.xml file, such as the one from the NowStyled
project:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="bigred">
 <item name="android:textSize">30sp</item>
 <item name="android:textColor">#FFFF0000</item>
 </style>
</resources>

320

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Defining and Using Styles

The <style> element supplies the name of the style, which is what we use
when referring to the style from a layout. The <item> children of the <style>
element represent values of attributes to be applied to whatever the style is
applied towards – in our example, our Button widget. So, our Button will
have a comparatively large font (android:textSize set to 30sp) and have the
text appear in red (android:textColor set to #FFFF0000).

There are no changes needed elsewhere in the project – nothing needs to
be adjusted in the manifest, in the Java code of the activity, etc. Just
defining the style and applying it to the widget gives us results:

Figure 104. The Styles/NowStyled sample application

Elements of Style

There are four elements to consider when applying a style:

1. Where do you put the style attributes to say you want to apply a
style?

321

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Defining and Using Styles

2. What attributes can you define via a style?

3. How do you inherit from a previously-defined style (one of your
own or one from Android)?

4. What values can those attributes have in a style definition?

Where to Apply a Style

The style attribute can be applied to a widget, to only affect that widget.

The style attribute can be applied to a container, to affect that container.
However, doing this does not automatically style its children. For example,
suppose res/layout/main.xml looked instead like this:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 style="@style/bigred"
>
 <Button
 android:id="@+id/button"
 android:text=""
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 />
</LinearLayout>

The resulting UI would not have the Button text in a big red font, despite
the style attribute. The style only affects the container, not the contents of
the container.

You can also apply a style to an activity or an application as a whole, though
then it is referred to as a "theme", which will be covered a bit later in this
chapter.

The Available Attributes

When styling a widget or container, you can apply any of that widget's or
container's attributes in the style itself. So, if it shows up in the "XML

322

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Defining and Using Styles

Attributes" or "Inherited XML Attributes" portions of the Android
JavaDocs, you can put it in a style.

Note that Android will ignore invalid styles. So, had we applied the bigred
style to the LinearLayout as shown above, everything would run fine, just
with no visible results. Despite the fact that LinearLayout has no
android:textSize or android:textColor attribute, there is no compile-time
failure nor a runtime exception.

Also, layout directives, such as android:layout_width, can be put in a style.

Inheriting a Style

You can also indicate that you want to inherit style attributes from another
style, by specifying an parent attribute on the <style> element.

For example, take a look at this style resource:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="activated" parent="android:Theme.Holo">
 <item name="android:background">?
android:attr/activatedBackgroundIndicator</item>
 </style>
</resources>

We will see this resource again in a later chapter on using the new fragment
UI framework.

Here, we are indicating that we want to inherit the Theme.Holo style from
within Android. Hence, in addition to all of our own attribute definitions,
we are specifying that we want all of the attribute definitions from
Theme.Holo as well.

In many cases, this will not be necessary. If you do not specify a parent,
your attribute definitions will be blended into whatever default style is
being applied to the widget or container.

323

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Defining and Using Styles

The Possible Values

Typically, the value that you will give those attributes in the style will be
some constant, like 30sp or #FFFF0000.

Sometimes, though, you want to perform a bit of indirection – you want to
apply some other attribute value from the theme you are inheriting from. In
that case, you will wind up using the somewhat cryptic ?android:attr/
syntax, along with a few related magic incantations.

For example, let's look again at this style resource:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="activated" parent="android:Theme.Holo">
 <item name="android:background">?
android:attr/activatedBackgroundIndicator</item>
 </style>
</resources>

Here, we are indicating that the value of android:background is not some
constant value, or even a reference to a drawable resource (e.g.,
@drawable/my_background). Instead, we are referring to the value of some
other attribute – activatedBackgroundIndicator – from our inherited theme.
Whatever the theme defines as being the activatedBackgroundIndicator is
what our background should be.

Sometimes, this is applied to a style as a whole. For example, let's look again
at the ProgressBar:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <ProgressBar android:id="@+id/progress"
 style="?android:attr/progressBarStyleHorizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content" />
</LinearLayout>

324

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Defining and Using Styles

Here, our style attribute – not a style resource – is pointing to a theme-
supplied attribute (progressBarStyleHorizontal). If you poke through the
Android source code, you will see that this is defined as being a style
resource, specifically @android:style/Widget.ProgressBar.Horizontal. Hence,
we are saying to Android that we want our ProgressBar styled as
@android:style/Widget.ProgressBar.Horizontal, via the indirection of ?
android:attr/progressBarStyleHorizontal.

This portion of the Android style system is very under-documented, to the
point where Google itself recommends you look at the Android source code
listing the various styles to see what is possible.

This is one place where inheriting a style becomes important. In the first
example shown in this section, we inherited from Theme.Holo, because we
specifically wanted the activatedBackgroundIndicator value from Theme.Holo.
That value might not exist in other styles, or it might not have the value we
want.

Themes: Would a Style By Any Other Name...

Themes are styles, applied to an activity or application, via an android:theme
attribute on the <activity> or <application> element. If the theme you are
applying is your own, just reference it as @style/..., just as you would in a
style attribute of a widget. If the theme you are applying, though, comes
from Android, typically you will use a value with @android:style/ as the
prefix, such as @android:style/Theme.Dialog or @android:style/Theme.Light.

In a theme, your focus is not so much on styling widgets, but styling the
activity itself. For example, here is the definition of
@android:style/Theme.NoTitleBar.Fullscreen:

<!-- Variant of the default (dark) theme that has no title bar and
 fills the entire screen -->
<style name="Theme.NoTitleBar.Fullscreen">
 <item name="android:windowFullscreen">true</item>
 <item name="android:windowContentOverlay">@null</item>
</style>

325

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://developer.android.com/guide/topics/ui/themes.html#PlatformStyles
http://developer.android.com/guide/topics/ui/themes.html#PlatformStyles

Defining and Using Styles

It specifies that the activity should take over the entire screen, removing
the status bar on Android 1.x and 2.x devices (android:windowFullscreen set
to true). It also specifies that the "content overlay" – a layout that wraps
around your activity's content view – should be set to nothing
(android:windowContentOverlay set to @null), having the effect of removing
the title bar.

A theme might also specify other styles that are applied to specific widgets.
For example, it is in the root theme (Theme) that we see:

<item
name="progressBarStyleHorizontal">@android:style/Widget.ProgressBar.Horizontal</
item>

Here, progressBarStyleHorizontal is pointing to
@android:style/Widget.ProgressBar.Horizontal. This is how we are able to
reference ?android:attr/progressBarStyleHorizontal in our ProgressBar
widget, and we could create our own theme that re-defines
progressBarStyleHorizontal to point to some other style (e.g., we want to
change the rounded rectangle used for the actual progress bar image itself).

326

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 25

Handling Multiple Screen Sizes

For the first year or so since Android 1.0 was released, all production
Android devices had the same screen resolution (HVGA, 320x480) and size
(around 3.5" / 9cm). Starting in the fall of 2009, though, devices started
arriving with widely disparate screen sizes and resolutions, from tiny QVGA
(240x320) screens to much larger WVGA (480x800) screens. And, in the fall
of 2010, tablets and Google TV devices appeared, offering yet more screen
sizes.

Of course, users will be expecting your application to be functional on all of
these, and perhaps take advantage of larger screen sizes to add greater
value. To that end, Android 1.6 added new capabilities to help better
support these differing screen sizes and resolutions, and these capabilities
have been extended in subsequent Android releases.

The Android documentation has extensive coverage of the mechanics of
handling multiple screen sizes. You are encouraged to read that page along
with this chapter, to get the best understanding of how best to cope with,
and perhaps take advantage of, multiple screen sizes. After a number of
sections discussing the options and theory, the chapter wraps with an in-
depth look at making a fairly simple application handle multiple screen
sizes well.

327

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://d.android.com/guide/practices/screens_support.html

Handling Multiple Screen Sizes

Taking the Default

Let's suppose, though, that you start off by totally ignoring the issue of
screen sizes and resolutions. What happens?

If your application is compiled for Android 1.5 or lower, Android will
assume your application was designed to look good on the classic screen
size and resolution. Android will then automatically do the following:

• If your application is installed on a device with a larger screen,
Android will run your application in "compatibility mode", scaling
everything based on the actual screen size. So, suppose you have a
24px square PNG file, and Android install and runs your application
on a device with the standard physical size but a WVGA resolution
(a so-called "high-density" screen). Android might scale your PNG
file to be 36px when it displays it, so it will take up the same visible
space on the screen. On the plus side, Android handles this
automatically; on the minus side, bitmap scaling algorithms tend to
make the images a bit fuzzy.

• Android will block your application from running on a device with a
smaller screen. Hence, QVGA devices, like the HTC Tattoo, will be
unable to get your application, even if it is available on the Android
Market.

As an example of how this affects your app, take a peek at the
Containers/Table sample application as viewed on an HTC Tattoo, with its
QVGA screen:

328

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

Figure 105. TableLayout sample in QVGA via compatibility mode

If your application is compiled for Android 1.6 or higher, Android assumes
that you are properly handling all screen sizes, and therefore will not run
your application in "compatibility mode". We will see how to tailor this in a
later section.

Whole in One

The simplest approach to handling multiple screen sizes in Android is to
design your user interfaces such that they automatically scale for the screen
size, without any size-specific code or resources. In other words, "it just
works".

This implies, though, that everything you use in your user interface can be
gracefully scaled by Android and that everything will fit, even on a QVGA
screen.

Here are some tips for achieving this "all in one" solution:

329

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

Don't Think About Positions, Think About Rules

Some developers, perhaps those coming from the "drag-and-drop" school of
UI development, think first and foremost about the positions of widgets.
They think that they want certain widgets to be certain fixed sizes at certain
fixed locations. They get frustrated with Android layout manager
(containers) and may gravitate to the deprecated AbsoluteLayout as a way to
design UIs they way they used to.

That rarely works well even on desktops, as can be seen by applications that
do not handle window resizing very well. Similarly, it will not work on
mobile devices, particularly Android, with its range of screen sizes and
resolutions.

Instead of thinking about positions, think about rules. You need to teach
Android the "business rules" about where widgets should be sized and
placed, with Android then interpreting those rules based upon what the
device's screen actually supports in terms of resolution.

The simplest rules are the fill_parent and wrap_content values for
android:layout_width and android:layout_height. Those do not specify
specific sizes, but rather adapt to the space available.

The richest environment for easily specifying rules is to use RelativeLayout.
While complicated on the surface, RelativeLayout does an excellent job of
letting you control your layout while still adapting it to other screen sizes.
For example, you can:

• Explicitly anchor widgets to the bottom or right side of the screen,
rather than hoping they will wind up there courtesy of some other
layout

• Control the distances between widgets that are "connected" (e.g., a
label for a field should be to the left of the field) without having to
rely on padding or margins

The greatest control for specifying rules is to create your own layout class.
For example, suppose you are creating a series of applications that

330

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

implement card games. You may want to have a layout class that knows
about playing cards: how they overlap, which are face up versus face down,
how big to be to handle varying number of cards, etc. While you could
achieve the desired look with, say, a RelativeLayout, you may be better
served implementing a PlayingCardLayout or a HandOfCardsLayout or
something that is more explicitly tailored for your application.
Unfortunately, creating custom layout classes is under-documented at this
point in time.

Consider Physical Dimensions

Android offers a wide range of available units of measure for dimensions.
The most popular has been the pixel (px), because it is easy to "wrap your
head around" the concept. After all, all Android devices will have screens
with such-and-so number of pixels in each direction.

However, pixels start to become troublesome as screen density changes. As
the number of pixels in a given screen size increases, the pixels effectively
shrink. A 32px icon on a traditional Android device might be finger-friendly,
but on a high-density device (say, WVGA in a mobile phone form factor),
32px may be a bit small for use with a finger.

If you have something intrinsically scalable (e.g., a Button) where you had
been specifying a size in pixels, you might consider switching to using
millimeters (mm) or inches (in) as the unit of measure. 10mm is 10mm regardless
of the screen resolution or the screen size. This way, you can ensure that
your widget is sized to be finger-friendly, regardless of the number of pixels
that might take.

Avoid "Real" Pixels

In some circumstance using millimeters for dimensions will not make
sense. Then, you may wish to consider using other units of measure while
still avoiding "real" pixels.

331

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

Android offers dimensions measured in density-independent pixels (dip).
These map 1:1 to pixels for a 160dpi screen (e.g., a classic HVGA Android
device) and scale from there. For example, on a 240dpi device (e.g., a
phone-sized WVGA device), the ratio is 2:3, so 50dip = 50px at 160dpi = 75px
at 240dpi. The advantage to the user of going with dip is that the actual size
of the dimension stays the same, so visibly there is no difference between
50dip at 160dpi and 50dip at 240dpi.

Android also offers dimensions measured in scaled pixels (sp). Scaled
pixels, in theory, are scaled based on the user's choice of font size
(FONT_SCALE value in System.Settings).

Choose Scalable Drawables

Classic bitmaps – PNG, JPG, GIF – are not intrinsically scalable. If you are
not running in "compatibility mode", Android will not even try to scale
them for you based on screen resolution and size. Whatever size of bitmap
you supply is the size it will be, even if that makes the image too large or
too small on some screens.

One way to address this is to try to avoid static bitmaps, using nine-patch
bitmaps and XML-defined drawables (e.g., GradientDrawable) as
alternatives. A nine-patch bitmap is a PNG file specially encoded to have
rules indicating how that image can be stretched to take up more space.
XML-defined drawables use a quasi-SVG XML language to define shapes,
their strokes and fills, and so on.

Tailor Made, Just For You (And You, And You,
And...)

There will be times, though, when you want to have different looks or
behaviors based upon screen size or density. Android has ways for you to
switch out resources or code blocks based on the environment in which
your application runs. When properly used in combination with the above
techniques, achieving screen size- and density-independence is eminently
possible, at least for devices running Android 1.6 and newer.

332

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

<supports-screens>

The first step to proactively supporting screen sizes is to add the <supports-
screens> element to your AndroidManifest.xml file. This specifies which
screen sizes you explicitly support and which you do not. Those that you do
not will be handled by the automatic "compatibility mode" described
previously.

Here is a manifest containing a <supports-screens> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.eu4you"
 android:versionCode="1"
 android:versionName="1.0">
 <supports-screens
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="true"
 android:anyDensity="true"
 />
 <application android:label="@string/app_name"
 android:icon="@drawable/cw">
 <activity android:name=".EU4You"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

Three of these attributes are almost self-explanatory: android:smallScreens,
android:normalScreens, and android:largeScreens each take a boolean value
indicating if your application explicitly supports those screens (true) or
requires "compatibility mode" assistance (false). Android 2.3 has also
added an android:xlargeScreens for larger tablets and (perhaps) televisions.

The android:anyDensity attribute indicates whether you are taking density
into account in your calculations (true) or not (false). If false, Android will
pretend as though all of your dimensions (e.g., 4px) are for a normal-density
(160dpi) screen. If your application is running on a screen with lower or
higher density, Android will scale your dimensions accordingly. If you

333

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

indicate that android:anyDensity = "true", you are telling Android not to do
that, putting the onus on you to use density-independent units, such as dip,
mm, or in.

Resources and Resource Sets

The primary way to "toggle" different things based on screen size or density
is to create resource sets. By creating resource sets that are specific to
different device characteristics, you teach Android how to render each, with
Android switching among those sets automatically.

Default Scaling

By default, Android will scale all drawable resources. Those that are
intrinsically scalable, as described in the previous section, will scale nicely.
Ordinary bitmaps will be scaled just using a normal scaling algorithm,
which may or may not give you great results. It also may slow things down a
bit. If you wish to avoid this, you will need to set up separate resource sets
containing your non-scalable bitmaps.

Density-Based Sets

If you wish to have different layouts, dimensions, or the like based upon
different screen densities, you can use the -ldpi, -mdpi, -hdpi, and -xhdpi
resource set labels. For example, res/values-hdpi/dimens.xml would contain
dimensions used in high-density devices.

Note that there is a bug in Android 1.5 (API level 3) when it comes to
working with these screen density resource sets. Even though all Android
1.5 devices are medium density, Android 1.5 might pick one of the other
densities by accident. So long as you are aiming to support Android 1.5 and
use screen density resource sets, you will need to clone the contents of your
-mdpi set, with the clone named -mdpi-v3. This "version-based set" is
described in greater detail a bit later in this section.

334

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

Size-Based Sets

Similarly, if you wish to have different resource sets based upon screen size,
Android offers -small, -normal, and -large resource set labels. Creating
res/layout-large-land/ would indicate layouts to use on large screens (e.g.,
WVGA) in landscape orientation.

Version-Based Sets

There may be times when earlier versions of Android get confused by newer
resource set labels. To help with that, you can include a version label to
your resource set, of the form -vN, where N is an API level. Hence,
res/drawable-large-v4/ indicates these drawables should be used on large
screens at API level 4 (Android 1.6) and newer.

So, if you find that Android 1.5 emulators or devices are grabbing the wrong
resource sets, consider adding -v4 to their resource set names to filter them
out.

Finding Your Size

If you need to take different actions in your Java code based on screen size
or density, you have a few options.

If there is something distinctive in your resource sets, you can "sniff" on
that and branch accordingly in your code. For example, as will be seen in
the code sample at the end of this chapter, you can have extra widgets in
some layouts (e.g., res/layout-large/main.xml) – simply seeing if an extra
widget exists will tell you if you are running a "large" screen or not.

You can also find out your screen size class via a Configuration object,
typically obtained by an Activity via getResources().getConfiguration(). A
Configuration object has a public field named screenLayout that is a bitmask
indicating the type of screen the application is running on. You can test to
see if your screen is small, normal, or large, or if it is "long" or not (where

335

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

"long" indicates a 16:9 or similar aspect ratio, compared to 4:3). For
example, here we test to see if we are running on a large screen:

if (getResources().getConfiguration().screenLayout
 & Configuration.SCREENLAYOUT_SIZE_LARGE)
 ==Configuration.SCREENLAYOUT_SIZE_LARGE) {
 // yes, we are large
}
else {
 // no, we are not
}

Similarly, you can find out your screen density, or the exact number of
pixels in your screen size, using the DisplayMetrics class.

Ain't Nothing Like the Real Thing

The Android emulators will help you test your application on different
screen sizes. However, that will only get you so far, because mobile device
LCDs have different characteristics than your desktop or notebook, such as:

• Mobile device LCDs may have a much higher density than does
your development machine

• A mouse allows for much more precise "touchscreen" input than
does an actual fingertip

Where possible, you are going to need to either use the emulator in new
and exciting ways, or try to get your hands on actual devices with
alternative screen resolutions.

Density Differs

The Motorola DROID has a 240dpi, 3.7-inch, 480x854 pixel screen.

To emulate a DROID screen, based on pixel count, takes up one third of a
19" 1280x1024 LCD monitor, because the LCD monitor's density is much
lower than that of the DROID – around 96dpi. So, when you fire up your

336

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

Android emulator for an FWVGA display like that of the DROID, you will
get a massive emulator window.

This is still perfectly fine for determining the overall look of your
application in an FWVGA environment. Regardless of density, widgets will
still align the same, sizes will have the same relationships (e.g., Widget A
might be twice as tall as Widget B, and that will be true regardless of
density), and so on.

However:

• Things that might appear to be a suitable size when viewed on a 19"
LCD may be entirely too small on a mobile device screen of the
same resolution

• Things that you can easily click upon in the emulator with a mouse
may be much too small to pick out on a physically smaller and
denser screen when used with a finger

Adjusting the Density

By default, the emulator will keep the pixel count accurate at the expense of
density, which is why you get the really big emulator window. You do have
an option, though, of having the emulator keep the density accurate at the
expense of pixel count.

The easiest way to do this is to use the new Android AVD Manager,
introduced in Android 1.6. The Android 2.0 edition of this tool has a
"Launch Options" dialog that pops up when you go to start an emulator
instance via the "Start..." button:

337

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

Figure 106. The Launch Options dialog

By default, the "Scale display to real size" checkbox is unchecked, and
Android will open the emulator window normally. You can, however, check
that checkbox and then provide two bits of scaling information:

1. The screen size of the device you wish to emulate, in inches (e.g., 3.7
inches for the Motorola DROID)

2. The dpi of your monitor – click the "?" button to bring up a
calculator to help you determine what your dpi value is

This will give you an emulator window that more accurately depicts what
your user interface will look like on a physical device, at least in terms of
sizes. However, since the emulator is using far fewer pixels than will a
device, fonts may be difficult to read, images may be blocky, etc.

Ruthlessly Exploiting the Situation

So far, we have focused on how you can ensure your layouts look decent on
other screen sizes. And, for smaller screens than the norm (e.g., QVGA),
that is perhaps all you can ask for.

Once we get into larger screens, though, another possibility emerges: using
different layouts designed to take advantage of the extra screen space. This
is particularly useful when the physical screen size is larger (e.g., a 5" LCD

338

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

like on the Dell Streak Android tablet, a 7" LCD like on the Samsung Galaxy
Tab), rather than simply having more pixels in the same physical space.

Here are some ways you might take advantage of additional space:

Replace Menus with Buttons

An options menu selection requires two physical actions: press the MENU
button, then tap on the appropriate menu choice. A context menu selection
requires two physical actions as well: long-tap on the widget, then tap on
the menu choice. Context menus have the additional problem of being
effectively invisible – users may not realize that your ListView, for example,
has a context menu.

You might consider augmenting your user interface to provide direct on-
screen ways of accomplishing things that might otherwise be hidden away
on a menu. Not only does this reduce the number of steps a user needs to
take to do things, but it makes those options more obvious.

For example, let us suppose you are creating a media player application,
and you want to offer manual playlist management. You have an activity
that displays the songs in a playlist in a ListView. On an options menu, you
have an "add" choice, to add a new song from the ones on the device to the
playlist. On a context menu on the ListView, you have a "remove" choice,
plus "move up" and "move down" choices to reorder the songs in the list.
On a large screen, though, you might consider adding four ImageButton
widgets to your UI for these four options, with the three from the context
menu enabled only when a row is selected by the D-pad or trackball. On
regular or small screens, you would stick with just using the menus.

Replace Tabs with a Simple Activity

You may have introduced a TabHost into your UI to allow you to display
more widgets in the available screen space. So long as the widget space you
"save" by moving them to a separate tab is more than the space taken up by
the tabs themselves, you win. However, having multiple tabs means more

339

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

user steps to navigate your UI, particularly if they need to flip back and
forth between tabs frequently.

If you only have two tabs, consider changing your UI to offer a large-screen
layout that removes the tabs and puts all the widgets on one screen. This
puts everything in front of the user, without having to switch tabs all the
time.

If you have three or more tabs, you probably will lack screen space to put all
those tabs' contents on one activity. However, you might consider going
half-and-half: have popular widgets be on the activity all of the time,
leaving your TabHost to handle the rest on (roughly) half of the screen.

Consolidate Multiple Activities

The most powerful technique is to use a larger screen to get rid of activity
transitions outright. For example, if you have a ListActivity where clicking
on an item brings up that item's details in a separate activity, consider
supporting a large-screen layout where the details are on the same activity
as the ListView (e.g., ListView on the left, details on the right, in a landscape
layout). This eliminates the user having to constantly press the BACK
button to leave one set of details before viewing another.

We will see this technique applied in the sample code presented in the
following section.

Example: EU4You

To examine how to use some of these techniques, let us look at the
ScreenSizes/EU4You sample application. This application has one activity
(EU4You) that contains a ListView with the roster of European Union
members and their respective flags. Clicking on one of the countries brings
up the mobile Wikipedia page for that country.

340

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.wpclipart.com/flags/Countries/index.html

Handling Multiple Screen Sizes

In the source code to this book, you will find four versions of this
application, as we start with an application that is ignorant of screen size
and slowly add in more screen-related features.

The First Cut

First, here is our AndroidManifest.xml file, which looks distinctly like one
shown earlier in this chapter:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.eu4you"
 android:versionCode="1"
 android:versionName="1.0">
 <supports-screens
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="true"
 android:anyDensity="true"
 />
 <application android:label="@string/app_name"
 android:icon="@drawable/cw">
 <activity android:name=".EU4You"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

You will note we have the <supports-screens> element, saying that we
indeed do support all screen sizes. This blocks most of the automatic
scaling that Android would do if we said we did not support certain screen
sizes.

Our main layout is size-independent, as it is just a full-screen ListView:

<?xml version="1.0" encoding="utf-8"?>
<ListView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@android:id/list"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
/>

341

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

Our row, though, will eventually need some tweaking:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:padding="2dip"
 android:minHeight="?android:attr/listPreferredItemHeight"
>
 <ImageView android:id="@+id/flag"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical|left"
 android:paddingRight="4dip"
 />
 <TextView android:id="@+id/name"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical|right"
 android:textSize="20dip"
 />
</LinearLayout>

For example, right now, our font size is set to be 20dip, which will not vary
by screen size or density.

Our EU4You activity is a bit verbose, mostly because there are a lot of EU
members, and we have to have the smarts to display the flag and the text in
the row:

package com.commonsware.android.eu4you;

import android.app.ListActivity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.view.View;
import android.view.ViewGroup;
import android.widget.ArrayAdapter;
import android.widget.ImageView;
import android.widget.ListView;
import android.widget.TextView;
import java.util.ArrayList;

public class EU4You extends ListActivity {
 static private ArrayList<Country> EU=new ArrayList<Country>();

 static {
 EU.add(new Country(R.string.austria, R.drawable.austria,

342

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

 R.string.austria_url));
 EU.add(new Country(R.string.belgium, R.drawable.belgium,
 R.string.belgium_url));
 EU.add(new Country(R.string.bulgaria, R.drawable.bulgaria,
 R.string.bulgaria_url));
 EU.add(new Country(R.string.cyprus, R.drawable.cyprus,
 R.string.cyprus_url));
 EU.add(new Country(R.string.czech_republic,
 R.drawable.czech_republic,
 R.string.czech_republic_url));
 EU.add(new Country(R.string.denmark, R.drawable.denmark,
 R.string.denmark_url));
 EU.add(new Country(R.string.estonia, R.drawable.estonia,
 R.string.estonia_url));
 EU.add(new Country(R.string.finland, R.drawable.finland,
 R.string.finland_url));
 EU.add(new Country(R.string.france, R.drawable.france,
 R.string.france_url));
 EU.add(new Country(R.string.germany, R.drawable.germany,
 R.string.germany_url));
 EU.add(new Country(R.string.greece, R.drawable.greece,
 R.string.greece_url));
 EU.add(new Country(R.string.hungary, R.drawable.hungary,
 R.string.hungary_url));
 EU.add(new Country(R.string.ireland, R.drawable.ireland,
 R.string.ireland_url));
 EU.add(new Country(R.string.italy, R.drawable.italy,
 R.string.italy_url));
 EU.add(new Country(R.string.latvia, R.drawable.latvia,
 R.string.latvia_url));
 EU.add(new Country(R.string.lithuania, R.drawable.lithuania,
 R.string.lithuania_url));
 EU.add(new Country(R.string.luxembourg, R.drawable.luxembourg,
 R.string.luxembourg_url));
 EU.add(new Country(R.string.malta, R.drawable.malta,
 R.string.malta_url));
 EU.add(new Country(R.string.netherlands, R.drawable.netherlands,
 R.string.netherlands_url));
 EU.add(new Country(R.string.poland, R.drawable.poland,
 R.string.poland_url));
 EU.add(new Country(R.string.portugal, R.drawable.portugal,
 R.string.portugal_url));
 EU.add(new Country(R.string.romania, R.drawable.romania,
 R.string.romania_url));
 EU.add(new Country(R.string.slovakia, R.drawable.slovakia,
 R.string.slovakia_url));
 EU.add(new Country(R.string.slovenia, R.drawable.slovenia,
 R.string.slovenia_url));
 EU.add(new Country(R.string.spain, R.drawable.spain,
 R.string.spain_url));
 EU.add(new Country(R.string.sweden, R.drawable.sweden,
 R.string.sweden_url));
 EU.add(new Country(R.string.united_kingdom,
 R.drawable.united_kingdom,

343

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

 R.string.united_kingdom_url));
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 setListAdapter(new CountryAdapter());
 }

 @Override
 protected void onListItemClick(ListView l, View v,
 int position, long id) {
 startActivity(new Intent(Intent.ACTION_VIEW,
 Uri.parse(getString(EU.get(position).url))));
 }

 static class Country {
 int name;
 int flag;
 int url;

 Country(int name, int flag, int url) {
 this.name=name;
 this.flag=flag;
 this.url=url;
 }
 }

 class CountryAdapter extends ArrayAdapter<Country> {
 CountryAdapter() {
 super(EU4You.this, R.layout.row, R.id.name, EU);
 }

 @Override
 public View getView(int position, View convertView,
 ViewGroup parent) {
 CountryWrapper wrapper=null;

 if (convertView==null) {
 convertView=getLayoutInflater().inflate(R.layout.row, null);
 wrapper=new CountryWrapper(convertView);
 convertView.setTag(wrapper);
 }
 else {
 wrapper=(CountryWrapper)convertView.getTag();
 }

 wrapper.populateFrom(getItem(position));

 return(convertView);
 }
 }

344

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

 class CountryWrapper {
 private TextView name=null;
 private ImageView flag=null;
 private View row=null;

 CountryWrapper(View row) {
 this.row=row;
 }

 TextView getName() {
 if (name==null) {
 name=(TextView)row.findViewById(R.id.name);
 }

 return(name);
 }

 ImageView getFlag() {
 if (flag==null) {
 flag=(ImageView)row.findViewById(R.id.flag);
 }

 return(flag);
 }

 void populateFrom(Country nation) {
 getName().setText(nation.name);
 getFlag().setImageResource(nation.flag);
 }
 }
}

Here is what the activity looks like in an ordinary HVGA emulator:

345

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

Figure 107. EU4You, original version, HVGA

Here is what the activity looks like in a WVGA emulator:

Figure 108. EU4You, original version, WVGA (800x480 pixels)

346

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

And, here is what it looks like in a QVGA screen:

Figure 109. EU4You, original version, QVGA

Fixing the Fonts

The first problem that should be fixed is the font size. As you can see, with
a fixed 20px size, the font ranges from big to tiny, depending on screen size
and density. For a WVGA screen, the font may be rather difficult to read.

We could put the dimension as a resource (res/values/dimens.xml) and have
different versions of that resource based upon screen size or density.
However, it is simpler to just specify a density-independent size, such as
5mm, as seen in the ScreenSizes/EU4You_2 project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:padding="2dip"
 android:minHeight="?android:attr/listPreferredItemHeight"
>
 <ImageView android:id="@+id/flag"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical|left"
 android:paddingRight="4dip"

347

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

 />
 <TextView android:id="@+id/name"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical|right"
 android:textSize="5mm"
 />
</LinearLayout>

Here is what the new activity looks like in HVGA:

Figure 110. EU4You, 5mm font version, HVGA

...and WVGA:

348

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

Figure 111. EU4You, 5mm font version, WVGA (800x480 pixels)

....and QVGA:

Figure 112. EU4You, 5mm font version, QVGA

349

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

Now our font is a consistent size, and large enough to match the flags.

Fixing the Icons

So, what about those icons? By rights, they should be varying in size as well,
since they are the same for all three emulators.

However, Android automatically scales bitmap resources, even with
<supports-screens> and its attributes set to true. On the plus side, this
means you may not have to do anything with these bitmaps. However, you
are relying upon a device to do the scaling, which definitely costs CPU time
(and, hence battery life). Also, the scaling algorithms that the device uses
may not be optimal, compared to what you can do with graphics tools on
your development machine.

The ScreenSizes/EU4You_3 project creates res/drawable-ldpi and
res/drawable-hdpi, putting in smaller and larger renditions of the flags,
respectively. This project also renames res/drawable to res/drawable-mdpi.
Android will use the flags for the appropriate screen density, depending on
what the device or emulator needs.

This effect is subtle in this case and will not really show up well in this
book.

Using the Space

While the activity looks fine on WVGA in portrait mode, it really wastes a
lot of space in landscape mode:

350

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

Figure 113. EU4You, landscape WVGA (800x480 pixels)

We can put that to better use by having the Wikipedia content appear right
on the main activity when in large-screen landscape mode, instead of
having to spawn a separate Browser activity.

To do this, we first must clone the main.xml layout into a res/layout-large-
land rendition that incorporates a WebView widget, as seen in
ScreenSizes/EU4You_4:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
>
 <ListView
 android:id="@android:id/list"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"
 />
 <WebView
 android:id="@+id/browser"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"
 />
</LinearLayout>

Then, we need to adjust our activity to look for that WebView and use it when
found, defaulting to launching a Browser activity otherwise:

@Override
public void onCreate(Bundle savedInstanceState) {

351

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 browser=(WebView)findViewById(R.id.browser);

 setListAdapter(new CountryAdapter());
}

@Override
protected void onListItemClick(ListView l, View v,
 int position, long id) {
 String url=getString(EU.get(position).url);

 if (browser==null) {
 startActivity(new Intent(Intent.ACTION_VIEW,
 Uri.parse(url)));
 }
 else {
 browser.loadUrl(url);
 }
}

This gives us a more space-efficient edition of the activity:

Figure 114. EU4You, landscape WVGA (800x480 pixels), set for normal density,
and showing the embedded WebView

Of course, if the user clicks a link in the Wikipedia page, that will open up
the full Browser, for easier surfing.

352

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

Note that testing this version of the activity, to see this behavior, requires a
bit of extra emulator work. By default, Android sets up WVGA devices as
being high-density, meaning WVGA is not large in terms of resource sets,
but rather normal. You will need to create a different emulator AVD that is
set for normal (medium) density, which will result in a large screen size.

What If It Is Not a Browser?

Of course, EU4You does cheat a bit. The second activity is a Browser (or
WebView in the embedded form), not some activity of your own creation.
Things get slightly more complicated if the second activity is some activity
of yours, with many widgets in a layout, and you want to use it both as an
activity (for smaller screens) and have it embedded in your main activity UI
(for larger screens).

The best way to approach this problem, for Android 1.6 and newer, is to
employ the new fragments system. While this was introduced with Android
3.0, the Android Compatibility Library makes fragments available in earlier
versions of Android. The basic use of fragments – complete with another
edition of the EU4You sample – will be covered later in this book.

353

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PART III – Honeycomb and Tablets

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 26

Introducing the Honeycomb UI

February 2011 saw the introduction of Android 3.0 and a UI paradigm that,
for now, we will refer to by the Android 3.0 codename of "Honeycomb".
Android 3.0 itself is exclusively targeted at tablets, though elements of the
Honeycomb UI system will make it into future versions of Android that
support phones as well. The Honeycomb UI is perhaps the biggest single
change in Android since Android 0.9, before the first phones were
available. And, the impacts of Honeycomb will resound through the
Android ecosystem for a long time, as people adjust to make use of what we
now have.

Leading off some chapters on the Honeycomb capabilities, this chapter is
focused more on "the big picture" of Honeycomb and its place within
Android.

Why Honeycomb?

In principle, Android's original phone-centric UI can run on tablets. After
all, a few tablets shipped with Android 2.2 support, such as the Samsung
Galaxy Tab. Clearly, those manufacturers thought the Android of the time
was strong enough for their tablet devices.

That being said, as you get into larger tablets (e.g., the Motorola XOOM
with its 10" diagonal screen), the Android phone UI starts to become
more...clunky. While applications can scale up to use the larger screen, the

357

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Introducing the Honeycomb UI

default way to scale up is just to make everything bigger, frequently
resulting in a lot of wasted space. While an email client on a phone might
dedicate an activity to showing the list of emails in the inbox, an email
client on a tablet really ought to show the list of emails plus something else,
such as the content of a selected email. We have the room – we may as well
use it.

Similarly, the dependence on menus, while reasonable on a phone, makes
less sense on a tablet. We have the space to show more of those functions
right on the screen. Hiding them in menus makes them less discoverable to
users and require extra clicks to access.

So, Honeycomb is designed to retain the essence of the Android user
experience, while allowing applications to (relatively) gracefully take
advantage of the space that is available.

What the User Sees

An Android 3.0 screen looks a bit different than an Android 2.x screen:

Figure 115. The Android 3.0 app launcher, as seen on the emulator

358

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Introducing the Honeycomb UI

The status bar at the top of the screen has been moved to the bottom of the
screen and is now called the "system bar". On the left are on-screen buttons
for BACK, HOME, and recent tasks (what formerly would take a long-press
of the HOME button). On the right, along with the clock and signal/battery
strength indicators, will be where notification icons go – the concept of
notifications will be covered later in this book.

If we look at an application that has not been optimized for Android 3.x, we
see much the same UI:

Figure 116. The FancyLists/Dynamic sample project, on Android 3.0

The only substantive difference is the new icon in the system bar, which
will bring up an Android 2.x options menu, if the application has one.

However, Android 3.0-optimized applications will look a bit different:

359

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Introducing the Honeycomb UI

Figure 117. Adding a contact on Android 3.0

On the top, we see the "action bar". The action bar largely replaces options
menus, even though you define one the same way you define an options
menu. Here, "Done" and "Cancel" are the first two options menu choices.
The icon to the right represents other options menu choices, which will
appear when the user taps that icon:

360

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Introducing the Honeycomb UI

Figure 118. The options menu portion of the action bar in Android 3.0

The icon in the upper-left is tappable, and in this case takes the user "up" in
the hierarchy of actions in this application, indicated by the northwest-
pointing arrowhead. In this case, going "up" from adding a new contact
takes you to the list of existing contacts:

Figure 119. The roster of available contacts in Android 3.0

361

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Introducing the Honeycomb UI

In Android 2.x, the contacts UI would have one activity with the list of
contacts, and a separate activity to view the details of that contact. In
Android 3.0, these are combined in a single activity. Yet, in the future, when
the Honeycomb UI is applied to phones, the same code base will revert
back to the one-activity-per-operation mode from before. This is
accomplished through the use of fragments, which will be covered later in
this book.

Figure 120. The contact filter spinner in Android 3.0

To the right of that is a search field, built into the action bar. Also, the
menu items on the right side of the action bar now represent a mix of
options menu items (e.g., add a new contact) and context menu items for
the selected contact (e.g., edit the contact).

Functionally, everything is there that you would see in Android 2.x. It has
been reorganized for Android 3.x, with an emphasis on taking formerly
hidden things like menus and adding them to the main screen for ease of
discovery and use.

362

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Introducing the Honeycomb UI

The Holographic Theme

Android applications that are updated for Android 3.0 will have a different
look-and-feel, not only for the activity as a whole, but for individual
widgets. The so-called "Holographic" theme is applied by default to
Honeycomb-capable applications. This can have some significant impact on
the way widgets look. While they work the same, they will look different,
which may cause you to update documentation and such to show the
classic theme as well as the new Holographic look.

For example, the "All Contacts" item in the action bar of the last screenshot
is a Spinner, one that is opened up to show the available options. The
former pop-up dialog for choosing the Spinner value is gone, replaced by a
true drop-down.

Similarly, tabs, as implemented with TabWidget, will look substantially
different:

Figure 121. The Fancy/DynamicTabs sample application, updated for Android
3.0

If you are creating your own custom styles, there are two that you will want
to consider inheriting from:

363

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Introducing the Honeycomb UI

1. Theme.Holo is the standard dark "holographic theme" (dark
background, light text)

2. Theme.Holo.Light is the light equivalent (light background, dark
text)

Dealing with the Rest of the Devices

Of course, it's not like all the Android phones in the world have up and
vanished just because Android 3.0 has been released. The vision is for you
to create an application that supports both phones and tablets from a single
code base.

Your phone-centric app will run just fine on a tablet, though you may wish
to do some things to take advantage of larger screen sizes, as was discussed
earlier in this book. If you want to adopt the general look and feel of the
Honeycomb UI, you will need to include android:targetSdkVersion="11" in
your <uses-sdk> element in the manifest. Also, if you want the gradient
background for your Honeycomb activities, add the
android:hardwareAccelerated="true" attribute to the <application> or
<activity> elements in the manifest to turn on hardware acceleration for
2D graphics. For example, from the ScreenSizes/EU4You_5 sample project,
here is the AndroidManifest.xml file, showing both of these changes:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.eu4you"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-permission android:name="android.permission.INTERNET" />
 <supports-screens
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="true"
 android:anyDensity="true"
 />
 <uses-sdk android:minSdkVersion="4" android:targetSdkVersion="11" />
 <application android:label="@string/app_name"
 android:icon="@drawable/cw"
 android:hardwareAccelerated="true">
 <activity android:name=".EU4You"
 android:label="@string/app_name">
 <intent-filter>

364

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Introducing the Honeycomb UI

 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

The resulting application works fine on older devices, but with no other
changes, we get this on a Motorola XOOM:

Figure 122. The EU4You sample application, lightly updated for Android 3.0

If you want to take advantage of some of the newer features described in
this set of Honeycomb chapters, you will also need to think about
backwards compatibility, to make sure that what you do will work
successfully on both newer and older versions of Android. This topic is also
covered later in this book.

If you have resources, such as styles, that need to be version-specific, you
can use the -v11 resource set suffix. For example, you could have a
res/values/styles.xml and a res/values-v11/styles.xml – the latter would be
used on Honeycomb, the former on older versions of Android.

365

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Introducing the Honeycomb UI

But first, we need to explain what all is possible for you to use to take full
advantage of the Honeycomb UI, which is the point of the next few
chapters.

366

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 27

Using the Action Bar

One of the easiest ways for an application to blend in better with the
Honeycomb UI is to make use of the action bar, described in an earlier
chapter. What makes it "easy" is that most of the basic functionality is
backwards-compatible – your Honeycomb settings will not cause the
application to crash on earlier versions of Android.

The sample project shown in this chapter is Menus/ActionBar, which extends
the Menus/Inflation project shown in a previous chapter.

Enabling the Action Bar

By default, your Android application will not utilize the action bar. In fact,
it will not even be displayed on the screen.

If you want the action bar to be there, you will need to include
android:targetSdkVersion="11" in your <uses-sdk> element in the manifest,
such as the manifest for the Menus/ActionBar project:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.inflation">
 <application android:label="@string/app_name"
 android:icon="@drawable/cw"
 android:hardwareAccelerated="true">
 <activity android:name=".InflationDemo"
android:label="@string/app_name">
 <intent-filter>

367

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using the Action Bar

 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>
 <uses-sdk android:minSdkVersion="4" android:targetSdkVersion="11" />
 <supports-screens android:xlargeScreens="true"
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="true"
 android:anyDensity="true"/>
</manifest>

This will cause your options menu to appear in the upper-right corner of
the screen, under a menu icon in the action bar, as shown in an earlier
chapter. Also, your activity's icon will appear in the upper-left corner, with
your activity's name (from the android:label attribute in the manifest)
alongside of it.

While this gives you the basic Honeycomb look and feel – including the
Honeycomb-themed widgets, such as the new Spinner with the southeast-
pointing arrowhead – you have not really changed the user experience all
that much.

Promoting Menu Items to the Action Bar

The next step for integrating with the action bar is to promote certain
options menu items from being part of the options menu to being always
visible on the action bar itself. This makes them easier to discover and saves
the user a click when the time comes to use them.

To do this, in your menu XML resource, you can add the
android:showAsAction attribute to an <item> element. A value of ifRoom
means that the menu item will appear in the action bar if there is space for
it, while a value of always means that the menu item should always be put
in the action bar. All else being equal, ifRoom is the better choice, as it will
adapt better to smaller screens, once the Honeycomb UI moves onto
phones. You can also combine this with the withText value (e.g., ifRoom|
withText) – if you include withText, the title of the menu item will appear

368

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using the Action Bar

adjacent to the item's icon, instead of only the icon being put in the action
bar.

For example, the Menus/ActionBar project's options.xml menu resource has
android:showAsAction on the first two menu items:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/add"
 android:title="Add"
 android:icon="@drawable/ic_menu_add"
 android:actionLayout="@layout/add"
 android:showAsAction="ifRoom"/>
 <item android:id="@+id/reset"
 android:title="Reset"
 android:icon="@drawable/ic_menu_refresh"
 android:showAsAction="ifRoom|withText"/>
 <item android:id="@+id/about"
 android:title="About"
 android:icon="@drawable/ic_menu_info_details" />
</menu>

The second menu item – for resetting the contents of our list – is a normal
"with text" action bar button. The first menu item does something a bit
different, which we will examine later in this chapter. The fact that the
third menu item does not have android:showAsAction means that it will
remain in the menu, even if there is room in the action bar itself.

Note that the Java code does not change – onCreateOptionsMenu() and
onOptionsItemSelected() for our InflationDemo activity do not need to be
adjusted because menu items are promoted into the action bar via the
menu XML resource alone.

Responding to the Logo

The activity icon in the upper-left corner of the screen is clickable. If the
user clicks it, it triggers onOptionsItemSelected()...but not for one of your
options items you may have defined yourself. Rather, the "magic value" of
android.R.id.home is used. In the Menus/ActionBar project, we wire it to the
same code that is invoked if the user chooses the "About" options menu
item – displaying a Toast:

369

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using the Action Bar

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.add:
 add();
 return(true);

 case R.id.reset:
 initAdapter();
 return(true);

 case R.id.about:
 case android.R.id.home:
 Toast
 .makeText(this,
 "Action Bar Sample App",
 Toast.LENGTH_LONG)
 .show();
 return(true);
 }

 return(super.onOptionsItemSelected(item));
}

In a project with multiple activities, though, the expectation is that clicking
the logo will take you to the "home" activity for the application, whatever
that might mean.

Adding Custom Views to the Action Bar

You can do more with the action bar, though, than simply converting
options menu items into what amount to toolbar buttons. You can add your
own custom UI to the action bar. In the case of Menus/ActionBar, we are
replacing the "Add" menu choice and resulting dialog with an "Add" field
right in the action bar itself.

This, however, gets a little bit tricky to implement.

Defining the Layout

To put something custom in the action bar, we need to define what the
"something custom" is, in the form of a layout XML file. Fortunately, we
already have a layout XML file for adding a word to the list – it is the one

370

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using the Action Bar

that the Menus/Inflation sample wrapped in a custom AlertDialog for when
the "Add" options menu item was clicked. That original layout looked like
this:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 >
 <TextView
 android:text="Word:"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 />
 <EditText
 android:id="@+id/title"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_marginLeft="4dip"
 />
</LinearLayout>

We need to make some minor adjustments to this layout to use it for the
action bar:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 >
 <TextView
 android:text="Word:"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textAppearance="@android:style/TextAppearance.Medium"
 />
 <EditText
 android:id="@+id/title"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_marginLeft="4dip"
 android:width="160sp"
 android:inputType="text"
 android:imeActionId="1337"
 android:imeOptions="actionDone"
 />
</LinearLayout>

371

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using the Action Bar

Specifically:

• We add an android:textAppearance attribute to the TextView
representing our "Add:" caption. The android:textAppearance
attribute allows us to define the font type, size, color, and weight
(e.g., bold) in one shot. We specifically use a "magic value" of
@android:style/TextAppearance.Medium, so the caption matches the
styling of the "Reset" label on our other menu item we promoted to
the action bar.

• We specify android:width="160sp" for the EditText widget, because
android:layout_width="fill_parent" is ignored in the action bar –
otherwise, we would take up the whole rest of the bar.

• We specify android:inputType="text" on the EditText widget, which,
among other things, will restrict us to a single line of text.

• We also specify android:imeActionId and android:imeOptions on the
EditText widget to control the "action button" of the soft keyboard,
so we get control when the user presses <Enter> on the soft
keyboard.

Putting the Layout in the "Menu"

Next, we need to teach Android to use this layout for our "Add" options
menu item if we are running on Honeycomb. To do this, we use the
android:actionLayout attribute on our <item> element, referencing our
layout resource (@layout/add), as was shown earlier in this chapter. This
attribute will be ignored on earlier versions of Android, so it is safe to use.

If we did nothing else, we would get the desired UI:

372

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using the Action Bar

Figure 123. The Menus/ActionBar sample application

However, while the user could type something in, we have no way to find
out what they type in, when they are done, etc.

Getting Control of User Input

Given our soft keyboard settings we put on the EditText widget, we can
arrange to find out when the user presses the <Enter> key either on the soft
keyboard or on a hardware keyboard. To do that, though, we need to get
our hands on the EditText widget itself. You might think it is added when
the UI is inflated in onCreate()...but you would be mistaken.

In a Honeycomb environment, with an action bar, onCreateOptionsMenu() is
called after onCreate() as part of setting up the UI. On classic versions of
Android, onCreateOptionsMenu() would not be called until the user pressed
the MENU button. But, since some of the options menu might be promoted
into the action bar, Android calls onCreateOptionsMenu() automatically now.
The EditText will exist after we inflate our options.xml menu resource.

However, the best way to get the EditText is not to use findViewById() on
the activity. Rather, we should call getActionView() on the MenuItem

373

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using the Action Bar

associated with our "Add" option. This will return the root of the view
hierarchy inflated from the layout resource we defined in the
android:actionLayout attribute in the menu resource. In this case, that is the
LinearLayout from res/layout/add.xml, so we need to call findViewById() on
it to get the EditText:

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 new MenuInflater(this).inflate(R.menu.option, menu);

 EditText add=(EditText)menu
 .findItem(R.id.add)
 .getActionView()
 .findViewById(R.id.title);

 add.setOnEditorActionListener(onSearch);

 return(super.onCreateOptionsMenu(menu));
}

Then, we can call setOnEditorActionListener() on the EditText, to register
an OnEditorActionListener object that will get control when the user clicks
<Enter> on the hard or soft keyboard:

private TextView.OnEditorActionListener onSearch=
 new TextView.OnEditorActionListener() {
 public boolean onEditorAction(TextView v, int actionId,
 KeyEvent event) {
 if (event==null || event.getAction()==KeyEvent.ACTION_UP) {
 addWord(v);

 InputMethodManager
imm=(InputMethodManager)getSystemService(INPUT_METHOD_SERVICE);

 imm.hideSoftInputFromWindow(v.getWindowToken(), 0);
 }

 return(true);
 }
};

That in turn calls an addWord() method, supplying the EditText, which adds
the word to the list via the ArrayAdapter:

private void addWord(TextView title) {
 ArrayAdapter<String> adapter=(ArrayAdapter<String>)getListAdapter();

374

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using the Action Bar

 adapter.add(title.getText().toString());
}

That same addWord() method can also be used from the add() method that
displays the AlertDialog...even though that will not be used on a
Honeycomb tablet, since the "Add" menu choice no longer exists as a menu
choice:

private void add() {
 final View addView=getLayoutInflater().inflate(R.layout.add, null);

 new AlertDialog.Builder(this)
 .setTitle("Add a Word")
 .setView(addView)
 .setPositiveButton("OK",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog,
 int whichButton) {
 addWord((TextView)addView.findViewById(R.id.title));
 }
 })
 .setNegativeButton("Cancel", null)
 .show();
}

The net result is that when the user types in something in the "Add:" field
and presses <Enter>, the word is added to the bottom of the list. This saves
some clicks over the phone UI, as the user does not have to open the
options menu, does not have to click on the options menu item, and does
not have to click a button on the dialog.

Note that our OnEditorActionListener does one more thing than simply add
the word to the list: it hides the soft keyboard. It does this using the
InputMethodManager, as was seen in a previous chapter.

Don't Forget the Phones!

With the exception of the custom view feature described in the preceding
section, everything shown in this chapter regarding the action bar is
automatically backwards-compatible. The code and resources that work on
Honeycomb-flavored versions of Android will work on classic versions of
Android unmodified.

375

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using the Action Bar

If, however, you want to use the custom view feature, you have a problem –
the getActionView() method is new to API Level 11 and will be unavailable
on older versions of Android. This means you will need to compile for API
Level 11 (e.g., set your Eclipse target or Ant default.properties to reference
android-11), and you will need to take steps to avoid calling getActionView()
on older devices. We will explore how to pull off this feat in a later chapter.

376

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 28

Fragments

Perhaps the largest change in Android 3.0 facing Android developers is the
introduction of the fragment system. This is an optional layer you can put
between your activities and your widgets, designed to help you reconfigure
your activities to support screens both large (e.g., tablets) and small (e.g.,
phones). However, they also add an extra layer of complexity, one that will
take the Android developer community some time to adjust to. Hence, you
will find fewer blog posts or sample apps using fragments, just because they
were introduced so long after Android itself was.

This chapter will cover basic uses of fragments, including supporting
fragments on pre-Android 3.0 devices.

Introducing Fragments

Fragments are not widgets, like Button or EditText.

Fragments are not containers, like LinearLayout or RelativeLayout.

Fragments are not activities.

Rather, fragments aggregate widgets and containers. Fragments then can be
placed into activities – sometimes several fragments for one activity,
sometimes one fragment per activity.

377

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Fragments

And the reason for this is the variation in Android screen sizes.

The Problem

A tablet has a larger screen than does a phone. A TV has a larger screen
than does a tablet. It would seem to make sense to try to take advantage of
that extra screen space, much as we outlined in the chapter on handling
multiple screen sizes.

There, we profiled an EU4You sample application, eventually winding up
with an activity that would load in a different layout for larger-sized
screens, one that had an embedded WebView widget. The activity would
detect that widget's existence and use it for loading Web content related to
a selected country, rather than launching a separate browser activity or
some activity only containing a WebView.

However, this was a fairly trivial scenario. Imagine if, instead of a WebView,
we had a TableLayout containing 28 widgets. On larger-sized screens, we
want the TableLayout in the same activity as an adjacent ListView; on
smaller screens, we want the TableLayout to be in a separate activity, since
there would not be enough room otherwise. To do this using pre-
Honeycomb technology, we would either need to duplicate all of the
TableLayout-handling logic in both activities, or create an activity base class
and hope they can both inherit from it, or turn the TableLayout and its
contents into a custom ViewGroup, or something. And that would just be for
one such scenario – multiply that by many activities in a larger application,
and the complexity mounts.

The Fragments Solution

Fragments reduce, but do not eliminate, that complexity.

With fragments, each discrete chunk of user interface that could be in
multiple activities (based on screen size) goes in a fragment. The activities
in question determine, based on screen size, who gets the fragment.

378

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Fragments

In the case of EU4You, we will have two fragments. One fragment represents
the list of countries. The other fragment represents the details for that
country (in our case, a WebView). On a larger-screen device, we will want
both fragments to be in one activity, while a smaller-screen device will
house those fragments in separate activities. This gives us the same benefits
as we got with the last version of EU4You, with users getting more
information in fewer clicks when they have larger screens. Yet the
techniques we demonstrate with fragments will be more scalable, able to
handle more complex UI patterns than the simple WebView-or-not case of
EU4You.

In this case, our entire UI will be inside of fragments. That is not necessary.
Fragments are an "opt-in" technology – you only need them for the parts of
your UI that could appear in different activities in different scenarios. In
fact, your activities that do not change at all (say, a help screen) might not
use fragments whatsoever.

Fragments also give us a few other bells and whistles, including:

• The ability to dynamically add fragments, based on user interaction.
For example, the Gmail application initially shows a ListFragment of
the user's mail folders. Tapping a folder adds a second ListFragment
to the screen, showing the conversations in that folder. Tapping a
conversation adds a third Fragment to the screen, showing the
messages in that conversation.

• The ability to animate these dynamic fragments as they come on
and off the screen. For example, when the user taps a conversation
in Gmail, the folder ListFragment slides off the screen to the left, the
conversations ListFragment slides left and shrinks to take up less
room, and the messages Fragment slides in from the right.

• Automatic BACK button management for dynamic fragments. For
example, when the user presses BACK when viewing the messages
Fragment, that Fragment slides off to the right, the conversations
ListFragment slides right and expands to fill more of the screen, and
the folders ListFragment slides back in from the left. None of that
has to be managed by developers – simply describing adding the
dynamic fragment via a FragmentTransaction allows Android to

379

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Fragments

automatically handle the BACK button, including reversing all
animations.

• A fragment can add options to the options menu, and therefore to
the action bar. Call setHasOptionsMenu() in onCreate() of your
fragment to register an interest in this, then override
onCreateOptionsMenu() and onOptionsItemSelected() in the fragment
the same way you might in an activity. A fragment can also register
widgets to have context menus, and handle those context menus,
the same way as an activity would.

• The action bar can have tabs – replacing a TabHost – where each
tab's contents is a fragment. Similarly, the action bar can have a
"navigation mode" with a Spinner to switch between modes, where
each mode is represented by a fragment.

The Android Compatibility Library

If fragments were only available for Android 3.0 and higher, we would be
right back where we started, as not all Android devices today run Android
3.0 and higher.

However, Google has released the Android Compatibility Library (ACL).
This is available via the SDK and AVD Manager, where you install the other
SDK support files, create and start your emulator AVDs, etc.

This library gives you access to the fragment system on versions of Android
going back to Android 1.6. Since the vast majority of Android devices are
running 1.6 or newer, this allows you to start using fragments while
maintaining backwards compatibility. Over time, this library may add other
features to help with backwards compatibility, for applications that wish to
use it.

The material in this chapter focuses on using the ACL when employing
fragments. Generally speaking, using the ACL for fragments is almost
identical to using the native Android 3.0 fragments classes directly.

380

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Fragments

Since the ACL only supports back to Android 1.6, Android 1.5 devices will
not be able to use fragment-based applications. This is a very small
percentage of the Android device spectrum at this time – 3.0% as of the
time of this writing.

Creating Fragment Classes

The first step towards setting up a fragment-based application is to create
fragment classes for each of your fragments. Just as you inherit from
Activity (or a subclass) for your activities, you inherit from Fragment (or a
subclass) for your fragments.

Here, we will examine the Fragments/EU4You_6 sample project and the
fragments that it defines. The convention of this book will be to use
"fragment" as a generic noun and Fragment to refer to the actual Fragment
class.

General Fragments

Besides inheriting from Fragment, the only thing required of a fragment is to
override onCreateView(). This will be called as part of putting the fragment
on the screen. You need to return a View that represents the body of the
fragment. Most likely, you will create your fragment's UI via an XML layout
file, and onCreateView() will inflate that fragment layout file.

For example, here is DetailsFragment from EU4You_6, which will wrap around
our WebView to show the Web content for a given country:

import android.support.v4.app.Fragment;
import android.os.Bundle;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.webkit.WebView;

public class DetailsFragment extends Fragment {
 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {

381

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://developer.android.com/resources/dashboard/platform-versions.html
http://developer.android.com/resources/dashboard/platform-versions.html

Fragments

 return(inflater.inflate(R.layout.details_fragment, container, false));
 }

 public void loadUrl(String url) {
 ((WebView)(getView().findViewById(R.id.browser))).loadUrl(url);
 }
}

Note that we are inheriting not from android.app.Fragment but from
android.support.v4.app.Fragment. The latter is the Fragment implementation
from the ACL, and so this can be used across Android versions.

The onCreateView() implementation inflates a layout which happens to have
a WebView in it:

<?xml version="1.0" encoding="utf-8"?>
<WebView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/browser"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
/>

It also exposes a loadUrl() method, to be used by a hosting activity to tell
the fragment that it is time to display some Web content and supply the
URL for doing the same. The implementation of loadUrl() in
DetailsFragment uses getView() to retrieve the View created in
onCreateView(), finds the WebView in it, and delegates the loadUrl() call to
the WebView.

There are a myriad of other lifecycle methods available on Fragment. The
more important ones include mirrors of the standard onCreate(), onStart(),
onResume(), onPause(), onStop(), and onDestroy() of an activity. Since the
fragment is the one with the widgets, the fragment will implement more of
the business logic that formerly might have resided in the activity for these
methods. For example, in onPause() or onStop(), since the user may not be
returning to you, you may wish to save any unsaved edits to some
temporary storage. In the case of DetailsFragment, there was nothing that
really qualified here, so those lifecycle methods were left alone.

382

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Fragments

ListFragment

One Fragment subclass that is sure to be popular is ListFragment. This
wraps a ListView in a Fragment, designed to simplify setting up lists of things
– countries, mail folders, mail conversations, etc. Similar to a ListActivity,
all you need to do is call setListAdapter() with your chosen and configured
ListAdapter, plus override onListItemClick() to respond to when the user
clicks on a row in the list.

In EU4You_6, we have a CountriesFragment that represents the list of available
countries. It initializes the ListAdapter in onActivityCreated(), which is
called after onCreate() has wrapped up in the activity that holds the
fragment:

@Override
public void onActivityCreated(Bundle state) {
 super.onCreate(state);

 setListAdapter(new CountryAdapter());

 if (state!=null) {
 int position=state.getInt(STATE_CHECKED, -1);

 if (position>-1) {
 getListView().setItemChecked(position, true);
 }
 }
}

The code dealing with the Bundle supplied to onCreate() will be explained a
bit later in this chapter.

The CountryAdapter is nearly identical to the one from past EU4You samples,
except that there is no getLayoutInflater() method on a Fragment, so we
have to use the static from() method on LayoutInflater and supply our
activity via getActivity():

class CountryAdapter extends ArrayAdapter<Country> {
 CountryAdapter() {
 super(getActivity(), R.layout.row, R.id.name, EU);
 }

 @Override

383

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Fragments

 public View getView(int position, View convertView,
 ViewGroup parent) {
 CountryWrapper wrapper=null;

 if (convertView==null) {
 convertView=LayoutInflater
 .from(getActivity())
 .inflate(R.layout.row, null);
 wrapper=new CountryWrapper(convertView);
 convertView.setTag(wrapper);
 }
 else {
 wrapper=(CountryWrapper)convertView.getTag();
 }

 wrapper.populateFrom(getItem(position));

 return(convertView);
 }
}

Similarly, the CountryWrapper is no different than before:

static class CountryWrapper {
 private TextView name=null;
 private ImageView flag=null;
 private View row=null;

 CountryWrapper(View row) {
 this.row=row;
 name=(TextView)row.findViewById(R.id.name);
 flag=(ImageView)row.findViewById(R.id.flag);
 }

 TextView getName() {
 return(name);
 }

 ImageView getFlag() {
 return(flag);
 }

 void populateFrom(Country nation) {
 getName().setText(nation.name);
 getFlag().setImageResource(nation.flag);
 }
}

As are the list of countries:

384

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Fragments

static {
 EU.add(new Country(R.string.austria, R.drawable.austria,
 R.string.austria_url));
 EU.add(new Country(R.string.belgium, R.drawable.belgium,
 R.string.belgium_url));
 EU.add(new Country(R.string.bulgaria, R.drawable.bulgaria,
 R.string.bulgaria_url));
 EU.add(new Country(R.string.cyprus, R.drawable.cyprus,
 R.string.cyprus_url));
 EU.add(new Country(R.string.czech_republic,
 R.drawable.czech_republic,
 R.string.czech_republic_url));
 EU.add(new Country(R.string.denmark, R.drawable.denmark,
 R.string.denmark_url));
 EU.add(new Country(R.string.estonia, R.drawable.estonia,
 R.string.estonia_url));
 EU.add(new Country(R.string.finland, R.drawable.finland,
 R.string.finland_url));
 EU.add(new Country(R.string.france, R.drawable.france,
 R.string.france_url));
 EU.add(new Country(R.string.germany, R.drawable.germany,
 R.string.germany_url));
 EU.add(new Country(R.string.greece, R.drawable.greece,
 R.string.greece_url));
 EU.add(new Country(R.string.hungary, R.drawable.hungary,
 R.string.hungary_url));
 EU.add(new Country(R.string.ireland, R.drawable.ireland,
 R.string.ireland_url));
 EU.add(new Country(R.string.italy, R.drawable.italy,
 R.string.italy_url));
 EU.add(new Country(R.string.latvia, R.drawable.latvia,
 R.string.latvia_url));
 EU.add(new Country(R.string.lithuania, R.drawable.lithuania,
 R.string.lithuania_url));
 EU.add(new Country(R.string.luxembourg, R.drawable.luxembourg,
 R.string.luxembourg_url));
 EU.add(new Country(R.string.malta, R.drawable.malta,
 R.string.malta_url));
 EU.add(new Country(R.string.netherlands, R.drawable.netherlands,
 R.string.netherlands_url));
 EU.add(new Country(R.string.poland, R.drawable.poland,
 R.string.poland_url));
 EU.add(new Country(R.string.portugal, R.drawable.portugal,
 R.string.portugal_url));
 EU.add(new Country(R.string.romania, R.drawable.romania,
 R.string.romania_url));
 EU.add(new Country(R.string.slovakia, R.drawable.slovakia,
 R.string.slovakia_url));
 EU.add(new Country(R.string.slovenia, R.drawable.slovenia,
 R.string.slovenia_url));
 EU.add(new Country(R.string.spain, R.drawable.spain,
 R.string.spain_url));
 EU.add(new Country(R.string.sweden, R.drawable.sweden,
 R.string.sweden_url));

385

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Fragments

 EU.add(new Country(R.string.united_kingdom,
 R.drawable.united_kingdom,
 R.string.united_kingdom_url));
}

...and the definition of a Country, from a separate public class:

public class Country {
 int name;
 int flag;
 int url;

 Country(int name, int flag, int url) {
 this.name=name;
 this.flag=flag;
 this.url=url;
 }
}

Persistent Highlight

One thing leaps out at you when you use fragment-based applications like
Gmail. When you tap on a row in a list, and another fragment is shown (or
updated) within the same activity, the row you tapped remains highlighted.
This runs counter to the traditional use of a ListView, where the list selector
is only present when using a D-pad, trackball, or similar pointing device.
The purpose is to show the user the context of the adjacent fragment.

The actual implementation differs from what you might expect.

These ListView widgets are actually implementing CHOICE_MODE_SINGLE, what
normally would be rendered using a RadioButton along the right side of the
rows. In a ListFragment, though, the typical styling for a single-choice
ListFragment is via an "activated" background.

In EU4You_6, this is handled via the row layout (res/layout/row.xml) used by
our CountryAdapter:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"

386

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Fragments

 android:padding="2dip"
 android:minHeight="?android:attr/listPreferredItemHeight"
 style="@style/activated"
>
 <ImageView android:id="@+id/flag"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical|left"
 android:paddingRight="4dip"
 />
 <TextView android:id="@+id/name"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical|right"
 android:textSize="5mm"
 />
</LinearLayout>

You will notice the style attribute, pointing to an activated style. That is
defined by EU4You_6 as a local style, versus one provided by the operating
system. In fact, it has to have two implementations of the style, because the
"activated" concept is new to Android 3.0 and cannot be used in previous
versions of Android.

So, EU4You_6 has res/values/styles.xml with a backwards-compatible empty
style:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="activated">
 </style>
</resources>

It also has res/values-v11/styles.xml. The -v11 resource set suffix means
that this will only be used on API Level 11 (Android 3.0) and higher. Here,
the style inherits from the standard Android "holographic" theme and uses
the standard activated background color:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="activated" parent="android:Theme.Holo">
 <item name="android:background">?
android:attr/activatedBackgroundIndicator</item>
 </style>
</resources>

387

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Fragments

In CountriesFragment, the activity will let us know if CountriesFragment
appears alongside DetailsFragment – therefore needing single-choice mode
– via a enablePersistentSelection() method:

public void enablePersistentSelection() {
 getListView().setChoiceMode(ListView.CHOICE_MODE_SINGLE);
}

Also, in onListItemClick(), CountriesFragment "checks" the row the user
clicked upon, thereby enabling the persistent highlight:

@Override
public void onListItemClick(ListView l, View v, int position,
 long id) {
 l.setItemChecked(position, true);

 if (listener!=null) {
 listener.onCountrySelected(EU.get(position));
 }
}

(the listener object and call to onCountrySelected() will be explained later
in this chapter)

Other Fragment Base Classes

The ACL has one other subclass of Fragment: DialogFragment. This is used to
help coordinate between a modal Dialog and a fragment-based UI.

Android 3.0 itself has two more subclasses of Fragment, ones not available in
the ACL as of the time of this writing:

• PreferenceFragment, for use in the new Honeycomb-style
PreferenceActivity – this is covered in a later chapter

• WebViewFragment, which is merely a Fragment wrapped around a
WebView

388

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Fragments

Fragments, Layouts, Activities, and Multiple
Screen Sizes

Having some fragment classes and their accompanying layouts is all well
and good, but somewhere along the line, we need to hook them up to
activities and get them on the screen. Along the way, we will have to think
about dealing with multiple screen sizes, much like we went with the
WebView-or-browser approach with the previous version of the EU4You
sample.

In Android 3.0 and higher, any activity can host a fragment. However, for
the ACL, you need to inherit from FragmentActivity to use fragments. This
limitation of the ACL definitely causes challenges, particularly if you were
aiming to put a map in a fragment, a topic we will discuss later in this book.
Other activity base classes will pose less of an issue – ListActivity would be
replaced by ListFragment, for example.

Fragments are added in two ways to an activity:

1. You can define them via <fragment> elements in the activity's layout.
These fragments are fixed and will always exist for the lifetime of
this activity instance.

2. You can add them on the fly via FragmentManager and a
FragmentTransaction. This gives more flexibility, but adds a degree of
complexity. This technique is not covered in this book.

One big limitation of dealing with multiple screen sizes is that the layouts
need to have the same starting fragments for any configuration change. So,
a small-screen version of an activity and a large-screen version of an activity
can have different mixes of fragment, but a portrait layout and a landscape
layout for the same screen size must have the same fragments defined.
Otherwise, when the screen is rotated, Android will have problems, trying
to work with a fragment that does not exist, for example.

We will also need to work out communications between our fragments and
our activities. The activities are the ones defining what fragments they hold,
so they typically know the classes that implement those fragments and will

389

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Fragments

be able to call methods on them directly. The fragments, though, only
know that they are hosted by some activity, and that activity may differ
from case to case. Hence, the typical pattern will be to use interfaces for
fragment->activity communication:

• Define an interface for the methods that the fragment will want to
call on its activity (or some other object supplied by that activity)

• The activity provides an implementation of that interface via some
setter method on the fragment when the fragment is created

• The fragment uses that interface implementation as needed

We will see all of this as we work through the EU4You_6 activities and their
corresponding layouts.

EU4You

In the earlier versions of the EU4You project, we had only one activity, also
named EU4You. In EU4You_6, though, we will have two activities:

• EU4You will handle displaying the CountriesFragment in all screen
sizes, plus the DetailsFragment on larger screens

• DetailsActivity will host the DetailsFragment on smaller screens

While we could probably get away with having EU4You launch the browser
activity for smaller screens, rather than have a DetailsActivity host a
WebView-only DetailsFragment, the latter approach is more realistic for more
fragment-based applications.

With that in mind, let's take a look at the pieces of the EU4You activity.

The Layout

For normal-screen devices, we want to just display the CountriesFragment.
That is accomplished via res/layout/main.xml just having the appropriate
<fragment> element:

390

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Fragments

<?xml version="1.0" encoding="utf-8"?>
<fragment xmlns:android="http://schemas.android.com/apk/res/android"
 class="com.commonsware.android.eu4you.CountriesFragment"
 android:id="@+id/countries"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
/>

The class attribute indicates what Java class implements the fragment.
Otherwise, this layout is unremarkable.

Note that fragments do not get listed in the manifest file the way activities
do.

The Other Layout

For large screen devices, in the landscape mode, we want to have both the
CountriesFragment and the DetailsFragment, side-by-side. That way, users
can tap on a country and view the details without flipping back and forth
between activities. Besides, we can take better advantage of the screen
space.

However, there is a catch. If we want to pre-define those two fragments in
our layout file, we have to use those same pair of fragments for both
landscape and portrait. This is despite the fact that we do not want to use
the DetailsFragment in EU4You in portrait mode (having a list vertically
stacked over the WebView would be odd-looking at best). Here, we will just
use the same layout file for both orientations and make adjustments in our
Java code. Another approach to the problem would be to have the layout
file only have CountriesFragment and to use FragmentManager and a
FragmentTransaction to add in the DetailsFragment. Here, though, we will
use other tricks.

Hence, in res/layout-large/ (not res/layout-large-land/), we have this
layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"

391

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Fragments

 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <fragment class="com.commonsware.android.eu4you.CountriesFragment"
 android:id="@+id/countries"
 android:layout_weight="30"
 android:layout_width="0px"
 android:layout_height="fill_parent"
 />
 <fragment class="com.commonsware.android.eu4you.DetailsFragment"
 android:id="@+id/details"
 android:layout_weight="70"
 android:layout_width="0px"
 android:layout_height="fill_parent"
 />
</LinearLayout>

Note that we are responsible for the positioning of the fragments, so here
we use a horizontal LinearLayout to wrap around the two <fragment>
elements.

The Listener Interface

When the user chooses a country in the CountriesFragment, we want to let
our containing activity know about that. In this case, it so happens that the
only activity that will ever host CountriesFragment is EU4You. However,
perhaps in the future that will not be the case. So, we should abstract out
the communications from CountriesFragment to its hosting activity via a
listener interface.

Hence, the EU4You_6 project has a CountryListener interface:

package com.commonsware.android.eu4you;

public interface CountryListener {
 void onCountrySelected(Country c);
}

The CountriesFragment holds onto an instance of CountryListener, supplied
by the hosting activity:

public void setCountryListener(CountryListener listener) {
 this.listener=listener;
}

392

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Fragments

And, when the user clicks on a country and triggers onListItemClick(),
CountriesFragment calls the onCountrySelected() method on the interface:

@Override
public void onListItemClick(ListView l, View v, int position,
 long id) {
 l.setItemChecked(position, true);

 if (listener!=null) {
 listener.onCountrySelected(EU.get(position));
 }
}

The Activity

The EU4You activity is not long, though it is a bit tricky:

package com.commonsware.android.eu4you;

import android.content.Intent;
import android.content.res.Configuration;
import android.net.Uri;
import android.os.Bundle;
import android.support.v4.app.Fragment;
import android.support.v4.app.FragmentActivity;
import android.view.View;

public class EU4You extends FragmentActivity implements CountryListener {
 private boolean detailsInline=false;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 CountriesFragment countries
 =(CountriesFragment)getSupportFragmentManager()
 .findFragmentById(R.id.countries);

 countries.setCountryListener(this);

 Fragment f=getSupportFragmentManager().findFragmentById(R.id.details);

 detailsInline=(f!=null &&
 (getResources().getConfiguration().orientation==
 Configuration.ORIENTATION_LANDSCAPE));

 if (detailsInline) {
 countries.enablePersistentSelection();
 }

393

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Fragments

 else if (f!=null) {
 f.getView().setVisibility(View.GONE);
 }
 }

 @Override
 public void onCountrySelected(Country c) {
 String url=getString(c.url);

 if (detailsInline) {
 ((DetailsFragment)getSupportFragmentManager()
 .findFragmentById(R.id.details))
 .loadUrl(url);
 }
 else {
 Intent i=new Intent(this, DetailsActivity.class);

 i.putExtra(DetailsActivity.EXTRA_URL, url);
 startActivity(i);
 }
 }
}

Our mission in onCreate() is to wire up our fragments. The fragments
themselves are created by our call to setContentView(), inflating our layout
and the fragments defined therein. In addition, though, EU4You:

• Finds the CountriesFragment and registers itself as the
CountryListener, since EU4You implements that interface.

• Finds the DetailsFragment, if it exists. If it exists and we are in
landscape mode, we tell the CountriesFragment to enable the
persistent highlight, to remind the user what details are being
loaded on the right. If DetailsFragment exists, but we are in portrait
mode, we actually do not want DetailsFragment but need it to be
consistent with the layout mode, so we mark the fragment's
contents as being GONE. Otherwise, the DetailsFragment does not
exist, and so we do not have to do anything special.

In Android 3.0, getting the FragmentManager for calls like findFragmentById()
is accomplished via getFragmentManager(). The ACL, however, defines a
separate getSupportFragmentManager(), to ensure you are working with the
ACL's implementation of FragmentManager and to work across the wider
range of Android versions.

394

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Fragments

In addition, since EU4You implements the CountryListener interface, it must
implement onCountrySelected(). Here, EU4You notes whether we should be
routing to an inline edition of DetailsFragment or not. If we are, then
onCountrySelected() passes the Country to the DetailsFragment, so it loads
that country's Web page. Otherwise, we launch the DetailsActivity,
supplying the URL as an extra.

DetailsActivity

The DetailsActivity will be used in cases where the DetailsFragment is not
being shown in the EU4You activity, including:

• When the device has a normal screen size and therefore does not
have the DetailsFragment in the layout

• When the device has a large screen in the portrait size and therefore
EU4You is hiding its own DetailsFragment

The Layout

The layout just has our <fragment> element in it, since there is nothing else
to show:

<?xml version="1.0" encoding="utf-8"?>
<fragment xmlns:android="http://schemas.android.com/apk/res/android"
 class="com.commonsware.android.eu4you.DetailsFragment"
 android:id="@+id/details"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
/>

The Activity

DetailsActivity simply passes the URL from the Intent extra on to the
DetailsFragment, telling it what Web content to display:

package com.commonsware.android.eu4you;

import android.support.v4.app.FragmentActivity;
import android.content.Intent;

395

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Fragments

import android.net.Uri;
import android.os.Bundle;

public class DetailsActivity extends FragmentActivity {
 public static final String
EXTRA_URL="com.commonsware.android.eu4you.EXTRA_URL";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.details);

 DetailsFragment details
 =(DetailsFragment)getSupportFragmentManager()
 .findFragmentById(R.id.details);

 details.loadUrl(getIntent().getStringExtra(EXTRA_URL));

 }
}

Fragments and Configuration Changes

In a previous chapter, we reviewed how activities can deal with
configuration changes, such as screen rotations. How does this translate
into a world of fragments?

Well, as is typical, there is good news, and there is other news.

The good news is that fragments have onSaveInstanceState() methods that
they can override, behaving much like their activity counterparts. The
Bundle then is made available in a variety of places, such as onCreate() and
onActivityCreated(), though there is no dedicated
onRestoreInstanceState().

The other news is that not only do fragments lack
onRetainNonConfigurationInstance() but the ACL's FragmentActivity does
not allow you to extend onRetainNonConfigurationInstance(), as that is used
internally. Applications using the Android 3.0 implementation of fragments
directly do not suffer from this problem. This limitation is substantial, and
it remains to be seen what techniques we collectively work out to get past
the limitation.

396

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Fragments

Designing for Fragments

The overall design approach for fragment favors having business logic in
the fragment, with activities serving as an orchestration layer for inter-
fragment navigation and things that fragments are incapable of (e.g.,
onRetainNonConfigurationInstance()). For example, the Gmail application
originally probably had much of its business logic implemented in each
activity (e.g., activity for folders, activity for a list of conversations, activity
for a single conversation). Nowadays, that application is probably built
around having that business logic delegated to fragments, with the
activities merely choosing which fragments to display based upon available
screen size.

This will cause some amount of restructuring of an existing application,
above and beyond the simple act of refactoring the code. For example, a
ListActivity might have launched another activity from onListItemClick().
The first-cut refactoring of that would have the fragment's
onListItemClick() launch an activity. However, the fragment does not know
whether the content requested by the user should be shown in another
activity or not – it might go to another fragment within the current activity.
Hence, the fragment should not blindly call startActivity() but rather
should call a method on its container activity (or, more likely, a listener
interface implemented by that activity), telling it of the click event and
letting it decide the right course of action.

Right now, fragments are very new, so there are few well-established
patterns to follow. Over time, the Android developer community, in
conjunction with Google, will figure out those patterns, in some cases
packaging them in pre-fabricated activities and fragments for reuse in the
form of libraries and JARs.

397

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 29

Handling Platform Changes

Android is going to undergo rapid evolution over the next few years.
Perhaps, in time, the rate of change will decline some. However, for the
here and now, you have to assume significant Android releases every 6-12
months, and changes to the lineup of possible Android hardware on an
ongoing basis. So, while right now, the focus of Android is phones, soon
you will see Android netbooks, Android tablets, Android media players,
and so on.

Many of these changes will have little impact on your existing code. Some,
though, will necessitate at least new rounds of testing for your applications,
and perhaps changes to those applications based upon the test results.

In this chapter, we cover a number of the areas which may cause you
trouble in the future as Android evolves, and how to deal with them.

Things That Make You Go "Boom"

Android changes, not only in terms of what comes from Google, but also in
how that OS is tweaked by device manufacturers for their own hardware.
This section points out a couple of places where these changes can bite you.

399

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Platform Changes

View Hierarchy

Android is not designed to handle arbitrarily-complicated view hierarchies.
Here, "view hierarchy" means containers holding containers holding
containers holding widgets. The hierarchyviewer program, described in a
later chapter, depicts such view hierarchies well.

Android has always had limits as to how deep the view hierarchy can be. In
Android 1.5, though, the limit was reduced, so some applications that
worked fine on Android 1.1 would crash with a StackOverflowException in the
newer Android. This, of course, was frustrating to developers who never
realized there was an issue with view hierarchy depth and then got caught
by this change.

The lessons to take from this:

• Keep your view hierarchies shallow – once you drift into double-
digit depth, you are increasingly likely to run out of stack space

• If you encounter a StackOverflowException, and the stack trace looks
like it is somewhere in the middle of drawing your widgets, your
view hierarchy is probably too complex

Changing Resources

The core Android team may change resources with an Android upgrade,
and those may have unexpected effects in your application. For example, in
Android 1.5, they changed the stock Button background, to allow for smaller
buttons. However, applications that implicitly relied upon the former larger
minimum size wound up "breaking" and needing some UI adjustment.

Similarly, applications can reuse public resources, such as icons, available
inside of Android proper. While doing so saves some storage space, many of
these resources are public by necessity and are not considered part of the
SDK. For example, hardware manufacturers may change the icons to fit
some alternative UI look-and-feel. Relying upon the existing ones to always

400

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Platform Changes

look as they do is a bit dangerous. You are better served copying those
resources out of the Android open source project into your own code base.

Handling API Changes

The core Android team has generally done a good job of keeping APIs
stable, and supporting a deprecation model where they change APIs. In
Android, being deprecated does not mean it is going away, just that its
continued use is discouraged. And, of course, new APIs are released with
every new Android update. Changes to the APIs are well-documented with
each release via an API differences report.

Unfortunately, the Android Market – the primary distribution channel for
Android applications – only allows you to upload one APK for each
application. Hence, you need that one APK to deal with as many Android
versions as possible. Many times, your code will "just work" and not require
changing. Other times, though, you will need to make adjustments,
particularly if you want to support new APIs on new versions while not
breaking on old versions. Let us examine some techniques for handling
these cases.

Minimum, Maximum, Target, and Build Versions

Android goes to great lengths to help you deal with the fact that at any
point in time, there will be many Android OS versions out on the market.
Unfortunately, the tools supplied by Android have given us a somewhat
confusing set of overlapping concepts, such as targets and SDK versions.
This section will attempt to explain a bit more about what is all going on
here.

Targets versus SDK Versions versus OS Versions

Way back towards the beginning of this book, we introduced the concept of
targets. Targets are used when defining AVDs, to determine what sort of
device those AVDs support. Targets are also used when creating new

401

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://source.android.com/

Handling Platform Changes

projects, primarily to determine what version of the SDK build tools will be
used to build your project.

A target combines an API level with an indicator of whether or not the
target includes Google APIs (e.g., Google Maps support).

An API level is an integer representing a version of the Android API. Each
Android OS release that makes changes to the Android API triggers a new
API level. So, we have:

• Android 1.5r1, 1.5r2, and 1.5r3 all using API Level 3

• Android 1.6r1 and 1.6r2 using API Level 4

• Android 2.0 using API Level 5

• Android 2.0.1 using API Level 6

• Android 2.1 using API Level 7

• Android 2.2 using API Level 8

• Android 2.3 using API Level 9

• Android 2.3.3 using API Level 10

• Android 3.0 using API Level 11

Google maintains a Web page outlining which versions of Android are in
use today, based on requests made to the Android Market.

Minimum SDK Version

In your AndroidManifest.xml file, you should add a <uses-sdk> element. This
element will describe how your application relates to the various SDK
versions.

The most critical attribute to have in <uses-sdk> is android:minSdkVersion.
This indicates what the lowest API level is that you will support. Devices
running Android OS versions associated with lower API levels will not be
able to install your application. Your application may not even appear to

402

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://developer.android.com/resources/dashboard/platform-versions.html

Handling Platform Changes

those devices in the Android Market listings, should you elect to publish via
that distributor.

If you skip this attribute, Android assumes you work on all Android API
versions. That may be true, but it is rather dangerous to assume if you have
not tested it. Hence, set android:minSdkVersion to the lowest level you are
testing and are willing to support.

Target SDK Version

Another <uses-sdk> attribute is android:targetSdkVersion. This represents
the version of the Android API that you are primarily developing for. Any
Android device running a newer version of the OS may elect to apply some
"compatibility settings" that will help apps like yours, targeting an older
API, run on the newer version.

Most of the time, you should set this to be the then-current Android API
version, as of the time you are publishing your application.

In particular, with Honeycomb, you need to specify a target of 11 to get the
new look-and-feel.

Maximum SDK Version

The third <uses-sdk> attribute is android:maxSdkVersion. Any Android device
running a newer Android OS than is indicated by this API level will be
prohibited from running your application.

On the plus side, this ensures that your application will not be used on API
levels you have not tested, particularly if you set this to be the then-current
Android API version as of your publication date.

However, bear in mind that your application will be filtered out of the
Android Market for these newer devices. Over time, this will limit the reach

403

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Platform Changes

of your application, if you do not release an update with a higher maximum
SDK version.

The core Android team recommends not using this option and relying upon
Android's intrinsic backwards compatibility – particularly leveraging your
android:targetSdkVersion value – to allow your application to continue to
run on new Android OS versions.

Detecting the Version

If all you need to do is take different branches in your code based upon
version, the easiest thing to do is inspect android.os.Build.VERSION.SDK_INT.
This public static integer value will reflect the same API level as you use
when creating AVDs and specifying API levels in the manifest. So, you can
compare that value to, say, android.os.Build.VERSION_CODES.DONUT to see
whether you are running on Android 1.6 or newer.

Wrapping the API

So long as the APIs you try to use exist across all Android versions you are
supporting, just branching may be sufficient. Where things get
troublesome is when the APIs change: new parameters to methods, new
methods, or even new classes. You need code that will work regardless of
Android version, yet lets you take advantage of new APIs where available.

The challenge is that if you try loading code into the virtual machine that
refers to classes, methods, and such that do not exist in the version of
Android that the device is running upon, your application will crash with a
VerifyError. You can (and need to) compile against the version of Android
that contains the latest APIs you are trying to use – you just cannot load
that code into an older Android device.

Note that the key phrase here is "load that code". Just because a class exists
in your application that uses a newer-than-available API, you do not have a
problem. It is only if you execute code that triggers Android to load that
class into your running process will you encounter the VerifyError.

404

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Platform Changes

With that in mind, there are three primary tricks to deal with this situation,
outlined in the following sections.

Detecting Classes

Perhaps all you need to do is disable some features in your app that lead to
things that are not possible on a given device. For example, maybe you have
an activity that uses the new Android 3.0 "fragments" feature. You cannot
successfully start that activity on a pre-3.0 device. Stopping that may just be
a matter of disabling a menu choice or Button or something.

To see if a certain class – say, ListFragment – is available to you, you can call
Class.forName(). This will either return a Class object representing the
requested class, or it will throw an Exception if it is not available. You can
use the exception handler as the spot to disable the UI paths that would
cause you to try starting an activity that uses the unavailable class.

Reflection

If you need limited access to a class that will not exist on older versions of
Android, you can use a bit of reflection.

For example, in the chapter on rotation, we used a series of sample
applications that allowed the user to pick a contact. That relied upon an
ACTION_PICK Intent, using a specific Uri for the contacts content provider. In
those samples, we specifically used ContactsContract, the revised contacts
API offered in Android 2.0 and beyond. That means those projects will not
work on older versions of Android.

However, all we really need is this magic Uri value. If we can devise a way to
get the right Uri for older versions of Android, as well as the right Uri for
newer versions of Android, without causing problems, we can be more
backwards-compatible.

Fortunately, this is fairly easy to do with some reflection:

405

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Platform Changes

static {
 int sdk=new Integer(Build.VERSION.SDK).intValue();

 if (sdk>=5) {
 try {
 Class clazz=Class.forName("android.provider.ContactsContract$Contacts");

 CONTENT_URI=(Uri)clazz.getField("CONTENT_URI").get(clazz);
 }
 catch (Throwable t) {
 Log.e("PickDemo", "Exception when determining CONTENT_URI", t);
 }
 }
 else {
 CONTENT_URI=android.provider.Contacts.People.CONTENT_URI;
 }
}

Here, we examine the API level of the device, by looking at
Build.VERSION.SDK (we could use Build.VERSION.SDK_INT, but that was only
added with Android 1.6 – the code shown here works on Android 1.5 as
well). If we are at Android 2.0 (API level 5) or higher, we use
Class.forName() to get at the new ContactsContract.Contacts class, then use
reflection to get at the CONTENT_URI static data member on that class. If we
are on an older version of Android, we simply use the Uri published by the
older Contacts.People class.

Since we are not directly referencing ContactsContract.Contacts in our code,
we can safely execute this, even on older versions of Android.

Conditional Class Loading

Reflection works but is a pain for anything complex. Also, it is slower than
calling code directly.

The most powerful technique, therefore, is simply to organize your code
such that you have regular classes using newer APIs, but you do not load
those classes on older devices. We will examine this technique later in this
book.

406

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Platform Changes

Patterns for Honeycomb

More so than any previous Android release, Honeycomb (Android 3.0)
makes supporting multiple Android versions a significant challenge. The UI
changes required to support the Honeycomb UI will, in many cases, require
you to take steps to make sure that you still work successfully on older
versions of Android. This section will outline some patterns for dealing with
this area of backwards compatibility.

The Action Bar

As noted in the chapter on the action bar, many of its basic features will
work in a backwards-compatible fashion. For example, indicating than an
options menu item can be shown in the action bar requires just an attribute
in the menu resource XML, an attribute that will be ignored on older
versions of Android. Honeycomb-capable devices will put the item in the
action bar, while devices running previous Android versions will not.

However, not everything involved with the action bar is backwards
compatible. In the Menus/ActionBar sample application, we added a custom
View to the action bar, to allow people to add words to our list without
dealing with menus and dialogs. However, this required some code that
would only work on API Level 11 (Android 3.0) and higher. More advanced
action bar capabilities – ones beyond the scope of this book – will have
similar requirements.

You need to arrange to only use those action bar methods on devices that
run API Level 11 or higher. Conditional class loading, outlined in a previous
section of this chapter, is one such technique, and is the technique used in
the Menus/ActionBarBC sample application. Let's take a look at how this
works.

Checking the API Level

Our original implementation of onCreateOptionsMenu() looked like this:

407

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Platform Changes

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 new MenuInflater(this).inflate(R.menu.option, menu);

 EditText add=(EditText)menu
 .findItem(R.id.add)
 .getActionView()
 .findViewById(R.id.title);

 add.setOnEditorActionListener(onSearch);

 return(super.onCreateOptionsMenu(menu));
}

This is fine, but it will only work on API Level 11 and higher, as
getActionView() only exists from that API level onward. Hence, we cannot
run this code, or even load this class, on older versions of Android without
getting a VerifyError.

The new version of onCreateOptionsMenu() hides the offending code and
checks the API level:

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 new MenuInflater(this).inflate(R.menu.option, menu);

 EditText add=null;

 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.HONEYCOMB) {
 View v=HoneycombHelper.getAddActionView(menu);

 if (v!=null) {
 add=(EditText)v.findViewById(R.id.title);
 }
 }

 if (add!=null) {
 add.setOnEditorActionListener(onSearch);
 }

 return(super.onCreateOptionsMenu(menu));
}

We only hide the code that retrieves the View that we theoretically have put
in the action bar. If we are on an older version of Android, the HONEYCOMB
check will fail, and we will wind up with a null View, so we skip adding the
OnEditorActionListener to the EditText inside of that View.

408

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Platform Changes

This has another benefit: it works if the Android device runs API Level 11 or
higher but does not have room for our custom View. Android tablets will
have an action bar and have sufficient room, but future Honeycomb-
capable phones might have an action bar but lack sufficient room. In that
case, the phone would leave the "Add" options menu item in place, and we
still would wind up with a null View. This code handles that scenario; the
original code did not.

Isolating the Honeycomb Code

Our Honeycomb-specific code is held in a separate HoneycombHelper class,
one that will only be used on API Level 11 (or higher) devices:

package com.commonsware.android.inflation;

import android.view.Menu;
import android.view.View;

class HoneycombHelper {
 static View getAddActionView(Menu menu) {
 return(menu.findItem(R.id.add).getActionView());
 }
}

HoneycombHelper has a single getAddActionView() static method that finds the
View for the Add action bar entry, if there is one.

Since we do not try executing any code on this class except inside the are-
we-on-HONEYCOMB check, it is safe to have this class on older versions of
Android. The Menus/ActionBarHC app works on Android 1.6 and newer.

Writing Tablet-Only Apps

Ideally, your Android applications work on all form factors: phones, tablets,
etc. However, it may be that you want to create an app that simply would
be unusable on phones. Ideally, there would be a way to keep such an app
off of small-screen devices, so users are not disappointed.

409

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Platform Changes

To do this, you can take advantage of the fact that while Android will scale
apps up, it will not scale apps down. In other words, if you say that you do
not support some larger screen size (e.g., android:xlargeScreens="false" in
your <supports-screens> element in your AndroidManifest.xml file), Android
will still allow your app to run on such screens, with Android taking steps to
help your app run with the additional screen space. However, if you say that
you do not support some smaller screen size (e.g.,
android:smallScreens="false" in your <supports-screens> element), Android
will not run your app, and you will be filtered out of the Android Market for
such devices.

Hence, if your application will only make sense for larger-screen devices,
use a <supports-screens> element like this:

<supports-screens android:xlargeScreens="true"
 android:largeScreens="true"
 android:normalScreens="false"
 android:smallScreens="false"
 android:anyDensity="true"/>

410

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PART IV – Data Stores, Network
Services, and APIs

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 30

Accessing Files

While Android offers structured storage, via preferences and databases,
sometimes a simple file will suffice. Android offers two models for accessing
files: one for files pre-packaged with your application, and one for files
created on-device by your application.

You And The Horse You Rode In On

Let's suppose you have some static data you want to ship with the
application, such as a list of words for a spell-checker. The easiest way to
deploy that is to put the file in the res/raw directory, so it gets put in the
Android application .apk file as part of the packaging process as a raw
resource.

To access this file, you need to get yourself a Resources object. From an
activity, that is as simple as calling getResources(). A Resources object offers
openRawResource() to get an InputStream on the file you specify. Rather than
a path, openRawResource() expects an integer identifier for the file as
packaged. This works just like accessing widgets via findViewById() – if you
put a file named words.xml in res/raw, the identifier is accessible in Java as
R.raw.words.

Since you can only get an InputStream, you have no means of modifying this
file. Hence, it is really only useful for static reference data. Moreover, since
it is unchanging until the user installs an updated version of your

413

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Files

application package, either the reference data has to be valid for the
foreseeable future, or you will need to provide some means of updating the
data. The simplest way to handle that is to use the reference data to
bootstrap some other modifiable form of storage (e.g., a database), but this
makes for two copies of the data in storage. An alternative is to keep the
reference data as-is but keep modifications in a file or database, and merge
them together when you need a complete picture of the information. For
example, if your application ships a file of URLs, you could have a second
file that tracks URLs added by the user or reference URLs that were deleted
by the user.

In the Files/Static sample project, you will find a reworking of the listbox
example from earlier, this time using a static XML file instead of a
hardwired array in Java. The layout is the same:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >
 <TextView
 android:id="@+id/selection"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 <ListView
 android:id="@android:id/list"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:drawSelectorOnTop="false"
 />
</LinearLayout>

In addition to that XML file, you also need an XML file with the words to
show in the list:

<words>
 <word value="lorem" />
 <word value="ipsum" />
 <word value="dolor" />
 <word value="sit" />
 <word value="amet" />
 <word value="consectetuer" />
 <word value="adipiscing" />
 <word value="elit" />

414

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Files

 <word value="morbi" />
 <word value="vel" />
 <word value="ligula" />
 <word value="vitae" />
 <word value="arcu" />
 <word value="aliquet" />
 <word value="mollis" />
 <word value="etiam" />
 <word value="vel" />
 <word value="erat" />
 <word value="placerat" />
 <word value="ante" />
 <word value="porttitor" />
 <word value="sodales" />
 <word value="pellentesque" />
 <word value="augue" />
 <word value="purus" />
</words>

While this XML structure is not exactly a model of space efficiency, it will
suffice for a demo.

The Java code now must read in that XML file, parse out the words, and put
them someplace for the list to pick up:

public class StaticFileDemo extends ListActivity {
 TextView selection;
 ArrayList<String> items=new ArrayList<String>();

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 selection=(TextView)findViewById(R.id.selection);

 try {
 InputStream in=getResources().openRawResource(R.raw.words);
 DocumentBuilder builder=DocumentBuilderFactory
 .newInstance()
 .newDocumentBuilder();
 Document doc=builder.parse(in, null);
 NodeList words=doc.getElementsByTagName("word");

 for (int i=0;i<words.getLength();i++) {
 items.add(((Element)words.item(i)).getAttribute("value"));
 }

 in.close();
 }
 catch (Throwable t) {
 Toast

415

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Files

 .makeText(this, "Exception: "+t.toString(), Toast.LENGTH_LONG)
 .show();
 }

 setListAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 items));
 }

 public void onListItemClick(ListView parent, View v, int position,
 long id) {
 selection.setText(items.get(position).toString());
 }
}

The differences mostly lie within onCreate(). We get an InputStream for the
XML file (getResources().openRawResource(R.raw.words)), then use the built-
in XML parsing logic to parse the file into a DOM Document, pick out the
word elements, then pour the value attributes into an ArrayList for use by
the ArrayAdapter.

The resulting activity looks the same as before, since the list of words is the
same, just relocated:

Figure 124. The StaticFileDemo sample application

416

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Files

Of course, there are even easier ways to have XML files available to you as
pre-packaged files, such as by using an XML resource. That is covered in
the next chapter. However, while this example used XML, the file could just
as easily have been a simple one-word-per-line list, or in some other format
not handled natively by the Android resource system.

Readin' 'n Writin'

Reading and writing your own, application-specific data files is nearly
identical to what you might do in a desktop Java application. The key is to
use openFileInput() and openFileOutput() on your Activity or other Context
to get an InputStream and OutputStream, respectively. From that point
forward, it is not much different than regular Java I/O logic:

• Wrap those streams as needed, such as using an InputStreamReader
or OutputStreamWriter for text-based I/O

• Read or write the data

• Use close() to release the stream when done

If two applications both try reading a notes.txt file via openFileInput(),
they will each access their own edition of the file. If you need to have one
file accessible from many places, you probably want to create a content
provider, as will be described in an upcoming chapter.

Note that openFileInput() and openFileOutput() do not accept file paths
(e.g., path/to/file.txt), just simple filenames.

Below you will see the layout for the world's most trivial text editor, pulled
from the Files/ReadWrite sample application:

<?xml version="1.0" encoding="utf-8"?>
<EditText xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/editor"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:singleLine="false"
 android:gravity="top"
 />

417

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Files

All we have here is a large text-editing widget...which is pretty boring.

The Java is only slightly more complicated:

package com.commonsware.android.readwrite;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import android.widget.Toast;
import java.io.BufferedReader;
import java.io.File;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.io.OutputStreamWriter;

public class ReadWriteFileDemo extends Activity {
 private final static String NOTES="notes.txt";
 private EditText editor;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 editor=(EditText)findViewById(R.id.editor);
 }

 public void onResume() {
 super.onResume();

 try {
 InputStream in=openFileInput(NOTES);

 if (in!=null) {
 InputStreamReader tmp=new InputStreamReader(in);
 BufferedReader reader=new BufferedReader(tmp);
 String str;
 StringBuilder buf=new StringBuilder();

 while ((str = reader.readLine()) != null) {
 buf.append(str+"\n");
 }

 in.close();
 editor.setText(buf.toString());
 }
 }
 catch (java.io.FileNotFoundException e) {
 // that's OK, we probably haven't created it yet

418

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Files

 }
 catch (Throwable t) {
 Toast
 .makeText(this, "Exception: "+t.toString(), Toast.LENGTH_LONG)
 .show();
 }
 }

 public void onPause() {
 super.onPause();

 try {
 OutputStreamWriter out=
 new OutputStreamWriter(openFileOutput(NOTES, 0));

 out.write(editor.getText().toString());
 out.close();
 }
 catch (Throwable t) {
 Toast
 .makeText(this, "Exception: "+t.toString(), Toast.LENGTH_LONG)
 .show();
 }
 }
}

First, we hook into onResume(), so we get control when our editor is coming
back to life, from a fresh launch or after having been frozen. We use
openFileInput() to read in notes.txt and pour the contents into the text
editor. If the file is not found, we assume this is the first time the activity
was run (or the file was deleted by other means), and we just leave the
editor empty.

Finally, we hook into onPause(), so we get control as our activity gets hidden
by another activity or is closed, such as via the device's BACK button. Here,
we use openFileOutput() to open notes.txt, into which we pour the contents
of the text editor.

The net result is that we have a persistent notepad: whatever is typed in will
remain until deleted, surviving our activity being closed (e.g., via the BACK
button), the phone being turned off, or similar situations.

419

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Files

Figure 125. The ReadWriteFileDemo sample application, as initially launched

Figure 126. The same application, after entering some text

420

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Files

Another approach for working with application-local files is to use
getFilesDir(). This returns a File object pointing to a place in the on-board
flash where an application can store files. This directory is where
openFileInput() and openFileOuptut() work. However, while openFileInput()
and openFileOutput() do not support subdirectories, the File from
getFilesDir() can be used to create and navigate subdirectories if desired.

The files stored here are accessible only to your application, by default.
Other applications on the device have no rights to read, let alone write, to
this space. However, bear in mind that some users "root" their Android
phones, gaining superuser access. These users will be able to read and write
whatever files they wish. As a result, please consider application-local files
to be secure against malware but not necessarily secure against interested
users.

External Storage: Giant Economy-Size Space

In addition to application-local storage, you also have access to "external
storage". This may come in the form of a removable media card, like an SD
card or microSD card. This may come in the form of additional on-board
flash set aside to serve in the "external storage" role.

On the plus side, external storage tends to have more space available. On-
board storage can be rather limited – the original T-Mobile G1 (HTC
Dream) had a total of 70MB for all applications combined. While newer
phones offer more space, external storage is usually at least 2GB and can be
as big as 32GB.

On the minus side, all applications can, if they wish, read and write external
storage, and so these files are not very secure. Furthermore, external
storage can be mounted on a host computer as a USB mass storage device –
when it is in use in this mode, Android applications cannot access it. As a
result, files on external storage may or may not be available to you at any
given moment.

421

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Files

Where to Write

If you have files that are tied to your application that are simply too big to
risk putting in the application-local file area, you can use
getExternalFilesDir(), available on any activity or other Context. This will
give you a File object pointing to an automatically-created directory on
external storage, unique for your application. While not secure against
other applications, it does have one big advantage: when your application is
uninstalled, these files are automatically deleted, just like the ones in the
application-local file area.

If you have files that belong more to the user than to your app – pictures
taken by the camera, downloaded MP3 files, etc. – a better solution is to use
getExternalStoragePublicDirectory(), available on the Environment class.
This will give you a File object pointing to a directory set aside for a certain
type of file, based on the type you pass into
getExternalStoragePublicDirectory(). For example, you can ask for
DIRECTORY_MOVIES, DIRECTORY_MUSIC, or DIRECTORY_PICTURES for storing MP4,
MP3, or JPEG files, respectively. These files will be left behind when your
application is uninstalled.

You will also find a getExternalStorageDirectory() method on Environment,
pointing to the root of the external storage. This is no longer the preferred
approach – the methods described above help keep the user's files better
organized. However, if you are supporting older Android devices, you may
need to use getExternalStorageDirectory(), simply because the newer
options may not be available to you.

When to Write

Starting with Android 1.6, you will also need to hold permissions to work
with external storage (e.g., WRITE_EXTERNAL_STORAGE) – the concept of
permissions will be covered in a later chapter.

Also, external storage may be tied up by the user having mounted it as a
USB storage device. You can use getExternalStorageState() (a static method

422

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Files

on Environment) to determine if there external storage is presently available
or not.

StrictMode: Avoiding Janky Code

Users are more likely to like your application if, to them, it feels responsive.
Here, by "responsive", we mean that it reacts swiftly and accurately to user
operations, like taps and swipes.

Conversely, users are less likely to be happy with you if they perceive that
your UI is "janky" – sluggish to respond to their requests. For example,
maybe your lists do not scroll as smoothly as they would like, or tapping a
button does not yield the immediate results they seek.

While threads and AsyncTask and the like can help, it may not always be
obvious where you should be applying them. A full-scale performance
analysis, using Traceview or similar Android tools, is certainly possible.
However, there are a few standard sorts of things that developers do,
sometimes quite by accident, on the main application thread that will tend
to cause sluggishness:

• Flash I/O, both for the on-board storage and for "external storage"
(e.g., the SD card)

• Network I/O

However, even here, it may not be obvious that you are performing these
operations on the main application thread. This is particularly true when
the operations are really being done by Android's code that you are simply
calling.

That is where StrictMode comes in. Its mission is to help you determine
when you are doing things on the main application thread that might cause
a janky user experience.

423

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Files

Setting up Strict Mode

StrictMode works on a set of policies. There are presently two categories of
policies: VM policies and thread policies. The former represent bad coding
practices that pertain to your entire application, notably leaking SQLite
Cursor objects and kin. The latter represent things that are bad when
performed on the main application thread, notably flash I/O and network
I/O.

Each policy dictates what StrictMode should watch for (e.g., flash reads are
OK but flash writes are not) and how StrictMode should react when you
violate the rules, such as:

• Log a message to LogCat

• Display a dialog

• Crash your application (seriously!)

The simplest thing to do is call the static enableDefaults() method on
StrictMode from onCreate() of your first activity. This will set up normal
operation, reporting all violations by simply logging to LogCat. However,
you can set your own custom policies via Builder objects if you so choose.

Seeing It In Action

The Threads/ReadWriteStrict sample application is a reworking of the
Files/ReadWrite sample shown earlier in this chapter. All it adds is a custom
StrictMode thread policy:

StrictMode.setThreadPolicy(new StrictMode.ThreadPolicy.Builder()
 .detectAll()
 .penaltyLog()
 .build());

If you run the application, the user will see no difference. However, you will
have a debug-level log message in LogCat with the following stack trace:

424

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Files

12-28 17:19:40.009: DEBUG/StrictMode(480): StrictMode policy violation;
~duration=169 ms: android.os.StrictMode$StrictModeDiskReadViolation: policy=23
violation=2
12-28 17:19:40.009: DEBUG/StrictMode(480): at
android.os.StrictMode$AndroidBlockGuardPolicy.onReadFromDisk(StrictMode.java:745
)
12-28 17:19:40.009: DEBUG/StrictMode(480): at
dalvik.system.BlockGuard$WrappedFileSystem.open(BlockGuard.java:228)
12-28 17:19:40.009: DEBUG/StrictMode(480): at
android.app.ContextImpl.openFileOutput(ContextImpl.java:410)
12-28 17:19:40.009: DEBUG/StrictMode(480): at
android.content.ContextWrapper.openFileOutput(ContextWrapper.java:158)
12-28 17:19:40.009: DEBUG/StrictMode(480): at
com.commonsware.android.readwrite.ReadWriteFileDemo.onPause(ReadWriteFileDemo.ja
va:82)
...

Here, StrictMode is warning you that you attempted a flash write on the
main application thread (the thread on which you set the StrictMode
policy). Ideally, we would rewrite this project to use an AsyncTask or
something for writing out the data.

Development Only, Please!

Do not use StrictMode in production code. It is designed for use when you
are building, testing, and debugging your application. It is not designed to
be used in the field.

To deal with this, you could:

• Simply comment out or remove the StrictMode setup code when you
prepare your production builds

• Use some sort of production flag to skip the StrictMode setup code
when needed

Conditionally Being Strict

StrictMode is only for Android 2.3 and higher. Hence, if we have it in our
code, even in development mode, it might interfere when we try testing on
older emulators or devices. As we saw in an earlier chapter, there are

425

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Files

techniques for dealing with this, but using reflection for configuring
StrictMode would be rather painful.

The right approach, therefore, is simply to organize your code such that you
have regular classes using newer APIs, but you do not load those classes on
older devices. The APIVersions/ReadWriteStrict project demonstrates this,
allowing an application to use Android 2.3's StrictMode where available, or
skipping it where it is not available.

When we examined StrictMode earlier in this section , we configured
StrictMode right in the onCreate() method of our sample activity. This
works, but only on Android 2.3 and newer.

To allow this to work on older versions of Android, we have StrictWrapper:

package com.commonsware.android.readwrite;

import android.os.Build;

abstract class StrictWrapper {
 static private StrictWrapper INSTANCE=null;

 static public void init() {
 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.GINGERBREAD) {
 INSTANCE=new StrictForRealz();
 }
 else {
 INSTANCE=new NotAllThatStrict();
 }
 }

 static class NotAllThatStrict extends StrictWrapper {
 // no methods needed
 }
}

This odd-looking class encapsulates our "do-we-or-don't-we" logic for
dealing with StrictMode. It contains an init() method that, when called,
checks to see what version of Android the application is running on, and
creates a singleton instance of a StrictWrapper subclass based upon it –
StrictForRealz for Android 2.3 and higher, NotAllThatStrict for older
versions of Android. The latter class, a static inner class of StrictWrapper,

426

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Files

does nothing, reflecting that there is no StrictMode in newer versions of
Android.

StrictForRealz contains the StrictMode initialization logic:

package com.commonsware.android.readwrite;

import android.os.StrictMode;

class StrictForRealz extends StrictWrapper {
 StrictForRealz() {
 StrictMode.setThreadPolicy(new StrictMode.ThreadPolicy.Builder()
 .detectAll()
 .penaltyLog()
 .build());
 }
}

And, our onCreate() method of our activity calls init() on StrictWrapper, to
trigger creating the proper object:

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 StrictWrapper.init();

 editor=(EditText)findViewById(R.id.editor);
}

When the activity first starts up, neither StrictWrapper nor StrictForRealz
are loaded in the process. As soon as we reach the init() statement in
onCreate(), Android loads StrictWrapper into the process, but this is safe, as
it does not refer to any potentially-nonexistent classes. The init() method
on StrictWrapper then only executes a statement involving StrictForRealz if
we are safely on a supported version of Android. Hence, StrictForRealz will
only be loaded into the process if we are on a newer Android release, and
hence our use of StrictMode in StrictForRealz will not trigger a VerifyError.

Here, all we needed was a bit of initialization. The singleton pattern is used
to demonstrate that you could expose an version-dependent API
implementation if you desired. Simply define the API as abstract methods

427

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Files

on the abstract class (StrictWrapper) and have version-dependent concrete
implementations of those abstract methods on the concrete subclasses
(StrictForRealz, NotAllThatStrict).

Linux Filesystems: You Sync, You Win

Android is built atop a Linux kernel and uses Linux filesystems for holding
its files. Classically, Android used YAFFS (Yet Another Flash File System),
optimized for use on low-power devices for storing data to flash memory.
Many devices still use YAFFS today.

YAFFS has one big problem: only one process can write to the filesystem at
a time. For those of you into filesystems, rather than offering file-level
locking, YAFFS has partition-level locking. This can become a bit of a
bottleneck, particularly as Android devices grow in power and start wanting
to do more things at the same time like their desktop and notebook
brethren.

Android is starting to move towards ext4, another Linux filesystem aimed
more at desktops/notebooks. Your applications will not directly perceive
the difference. However, ext4 does a fair bit of buffering, and it can cause
problems for applications that do not take this buffering into account.
Linux application developers ran headlong into this in 2008-2009, when
ext4 started to become popular. Android developers will need to think
about it now...for your own file storage.

If you are using SQLite or SharedPreferences, you do not need to worry
about this problem. Android (and SQLite, in the case of SQLite) handle all
the buffering issues for you. If, however, you write your own files, you may
wish to contemplate an extra step as you flush your data to disk.
Specifically, you need to trigger a Linux system call known as fsync(),
which tells the filesystem to ensure all buffers are written to disk.

If you are using java.io.RandomAccessFile in a synchronous mode, this step
is handled for you as well, so you will not need to worry about it. However,
Java developers tend to use FileOutputStream, which does not trigger an

428

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Files

fsync(), even when you call close() on the stream. Instead, you call
getFD().sync() on the FileOutputStream to trigger the fsync(). Note that this
may be time-consuming, and so disk writes should be done off the main
application thread wherever practical, such as via an AsyncTask.

429

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 31

Using Preferences

Android has many different ways for you to store data for long-term use by
your activity. The simplest to use is the preferences system.

Android allows activities and applications to keep preferences, in the form
of key/value pairs (akin to a Map), that will hang around between
invocations of an activity. As the name suggests, the primary purpose is for
you to store user-specified configuration details, such as the last feed the
user looked at in your feed reader, or what sort order to use by default on a
list, or whatever. Of course, you can store in the preferences whatever you
like, so long as it is keyed by a String and has a primitive value (boolean,
String, etc.)

Preferences can either be for a single activity or shared among all activities
in an application. Other components, such as services, also can work with
shared preferences.

Getting What You Want

To get access to the preferences, you have three APIs to choose from:

1. getPreferences() from within your Activity, to access activity-
specific preferences

2. getSharedPreferences() from within your Activity (or other
application Context), to access application-level preferences

431

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

3. getDefaultSharedPreferences(), on PreferenceManager, to get the
shared preferences that work in concert with Android's overall
preference framework

The first two take a security mode parameter – the right answer here is
MODE_PRIVATE, so no other applications can access the file. The
getSharedPreferences() method also takes a name of a set of preferences –
getPreferences() effectively calls getSharedPreferences() with the activity's
class name as the preference set name. The getDefaultSharedPreferences()
method takes the Context for the preferences (e.g., your Activity).

All of those methods return an instance of SharedPreferences, which offers a
series of getters to access named preferences, returning a suitably-typed
result (e.g., getBoolean() to return a boolean preference). The getters also
take a default value, which is returned if there is no preference set under
the specified key.

Unless you have a good reason to do otherwise, you are best served using
the third option above – getDefaultSharedPreferences() – as that will give
you the SharedPreferences object that works with a PreferenceActivity by
default, as will be described later in this chapter.

Stating Your Preference

Given the appropriate SharedPreferences object, you can use edit() to get an
"editor" for the preferences. This object has a set of setters that mirror the
getters on the parent SharedPreferences object. It also has:

• remove() to get rid of a single named preference

• clear() to get rid of all preferences

• commit() to persist your changes made via the editor

The last one is important – if you modify preferences via the editor and fail
to commit() the changes, those changes will evaporate once the editor goes
out of scope. Note that Android 2.3 has an apply() method, that works like
commit(), but runs faster.

432

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

Conversely, since the preferences object supports live changes, if one part
of your application (say, an activity) modifies shared preferences, another
part of your application (say, a service) will have access to the changed
value immediately.

Introducing PreferenceActivity

You could roll your own activity to collect preferences from the user. On
the whole, this is a bad idea. Instead, use preference XML resources and a
PreferenceActivity.

Why?

One of the common complaints about Android developers is that they lack
discipline, not following any standards or conventions inherent in the
platform. For other operating systems, the device manufacturer might
prevent you from distributing apps that violate their human interface
guidelines. With Android, that is not the case – but this is not a blanket
permission to do whatever you want. Where there is a standard or
convention, please follow it, so that users will feel more comfortable with
your app and their device.

Using a PreferenceActivity for collecting preferences is one such
convention.

The linchpin to the preferences framework and PreferenceActivity is yet
another XML data structure. You can describe your application's
preferences in an XML file stored in your project's res/xml/ directory. Given
that, Android can present a pleasant UI for manipulating those preferences,
which are then stored in the SharedPreferences you get back from
getDefaultSharedPreferences().

Below, you will find the preference XML for the Prefs/Simple preferences
sample project:

433

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

<PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android">
 <CheckBoxPreference
 android:key="checkbox"
 android:title="Checkbox Preference"
 android:summary="Check it on, check it off" />
 <RingtonePreference
 android:key="ringtone"
 android:title="Ringtone Preference"
 android:showDefault="true"
 android:showSilent="true"
 android:summary="Pick a tone, any tone" />
</PreferenceScreen>

The root of the preference XML is a PreferenceScreen element. We will
explain why it is named that later in this chapter; for now, take it on faith
that it is a sensible name.

One of the things you can have inside a PreferenceScreen element, not
surprisingly, are preference definitions. These are subclasses of Preference,
such as CheckBoxPreference or RingtonePreference, as shown above. As one
might expect, these allow you to check a checkbox or choose a ringtone,
respectively. In the case of RingtonePreference, you have your option of
allowing users to choose the system default ringtone, or to choose "silence"
as a ringtone.

Letting Users Have Their Say

Given that you have set up the preference XML, you can use a nearly-built-
in activity for allowing your users to set their preferences. The activity is
nearly "built-in" because you merely need to subclass it and point it to your
preference XML, plus hook the activity into the rest of your application.

So, for example, here is the EditPreferences activity of the Prefs/Simple
project:

package com.commonsware.android.simple;

import android.app.Activity;
import android.os.Bundle;
import android.preference.PreferenceActivity;

434

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

public class EditPreferences extends PreferenceActivity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 addPreferencesFromResource(R.xml.preferences);
 }
}

As you can see, there is not much to see. All you need to do is call
addPreferencesFromResource() and specify the XML resource containing your
preferences.

You will also need to add this as an activity to your AndroidManifest.xml file:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.simple">
 <application android:label="@string/app_name" android:icon="@drawable/cw">
 <activity android:name=".SimplePrefsDemo"
android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 <activity android:name=".EditPreferences"
android:label="@string/app_name">
 </activity>
 </application>
 <supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

And you will need to arrange to invoke the activity, such as from a menu
option, here pulled from SimplePrefsDemo:

 public boolean onCreateOptionsMenu(Menu menu) {
 menu.add(Menu.NONE, EDIT_ID, Menu.NONE, "Edit Prefs")
 .setIcon(R.drawable.misc)
 .setAlphabeticShortcut('e');

 return(super.onCreateOptionsMenu(menu));
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {

435

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

 switch (item.getItemId()) {
 case EDIT_ID:
 startActivity(new Intent(this, EditPreferences.class));
 return(true);
 }

 return(super.onOptionsItemSelected(item));
 }
}

However, that is all that is needed, and it really is not that much code
outside of the preferences XML. What you get for your effort is an Android-
supplied preference UI:

Figure 127. The Simple project's preferences UI

The checkbox can be directly checked or unchecked. To change the
ringtone preference, just click on the entry in the preference list to bring up
a selection dialog:

436

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

Figure 128. Choosing a ringtone preference

Note that there is no explicit "save" or "commit" button or menu on the
PreferenceActivity – changes are persisted automatically.

The SimplePrefsDemo activity, beyond having the aforementioned menu, also
displays the current preferences via a TableLayout:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
>
 <TableRow>
 <TextView
 android:text="Checkbox:"
 android:paddingRight="5dip"
 />
 <TextView android:id="@+id/checkbox"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Ringtone:"
 android:paddingRight="5dip"
 />
 <TextView android:id="@+id/ringtone"

437

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

 />
 </TableRow>
</TableLayout>

The fields for the table are found in onCreate():

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 checkbox=(TextView)findViewById(R.id.checkbox);
 ringtone=(TextView)findViewById(R.id.ringtone);
}

The fields are updated on each onResume():

public void onResume() {
 super.onResume();

 SharedPreferences prefs=PreferenceManager
 .getDefaultSharedPreferences(this);

 checkbox.setText(new Boolean(prefs
 .getBoolean("checkbox", false))
 .toString());
 ringtone.setText(prefs.getString("ringtone", "<unset>"));
}

This means the fields will be updated when the activity is opened and after
the preferences activity is left (e.g., via the BACK button):

438

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

Figure 129. The Simple project's list of saved preferences

Adding a Wee Bit O' Structure

If you have a lot of preferences for users to set, having them all in one big
list may become troublesome. Android's preference UI gives you a few ways
to impose a bit of structure on your bag of preferences, including categories
and screens.

Categories are added via a PreferenceCategory element in your preference
XML and are used to group together related preferences. Rather than have
your preferences all as children of the root PreferenceScreen, you can put a
few PreferenceCategory elements in the PreferenceScreen, and then put your
preferences in their appropriate categories. Visually, this adds a divider
with the category title between groups of preferences.

If you have lots and lots of preferences – more than is convenient for users
to scroll through – you can also put them on separate "screens" by
introducing the PreferenceScreen element.

Yes, that PreferenceScreen element.

439

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

Any children of PreferenceScreen go on their own screen. If you nest
PreferenceScreens, the parent screen displays the screen as a placeholder
entry – tapping that entry brings up the child screen.

For example, from the Prefs/Structured sample project, here is a preference
XML file that contains both PreferenceCategory and nested PreferenceScreen
elements:

<PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android">
 <PreferenceCategory android:title="Simple Preferences">
 <CheckBoxPreference
 android:key="checkbox"
 android:title="Checkbox Preference"
 android:summary="Check it on, check it off"
 />
 <RingtonePreference
 android:key="ringtone"
 android:title="Ringtone Preference"
 android:showDefault="true"
 android:showSilent="true"
 android:summary="Pick a tone, any tone"
 />
 </PreferenceCategory>
 <PreferenceCategory android:title="Detail Screens">
 <PreferenceScreen
 android:key="detail"
 android:title="Detail Screen"
 android:summary="Additional preferences held in another page">
 <CheckBoxPreference
 android:key="checkbox2"
 android:title="Another Checkbox"
 android:summary="On. Off. It really doesn't matter."
 />
 </PreferenceScreen>
 </PreferenceCategory>
</PreferenceScreen>

The result, when you use this preference XML with your PreferenceActivity
implementation, is a categorized list of elements:

440

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

Figure 130. The Structured project's preference UI, showing categories and a
screen placeholder

And, if you tap on the Detail Screen entry, you are taken to the child
preference screen:

441

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

Figure 131. The child preference screen of the Structured project's preference
UI

The Kind Of Pop-Ups You Like

Of course, not all preferences are checkboxes and ringtones.

For others, like entry fields and lists, Android uses pop-up dialogs. Users do
not enter their preference directly in the preference UI activity, but rather
tap on a preference, fill in a value, and click OK to commit the change.

Structurally, in the preference XML, fields and lists are not significantly
different from other preference types, as seen in this preference XML from
the Prefs/Dialogs sample project:

<PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android">
 <PreferenceCategory android:title="Simple Preferences">
 <CheckBoxPreference
 android:key="checkbox"
 android:title="Checkbox Preference"
 android:summary="Check it on, check it off"
 />
 <RingtonePreference

442

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

 android:key="ringtone"
 android:title="Ringtone Preference"
 android:showDefault="true"
 android:showSilent="true"
 android:summary="Pick a tone, any tone"
 />
 </PreferenceCategory>
 <PreferenceCategory android:title="Detail Screens">
 <PreferenceScreen
 android:key="detail"
 android:title="Detail Screen"
 android:summary="Additional preferences held in another page">
 <CheckBoxPreference
 android:key="checkbox2"
 android:title="Another Checkbox"
 android:summary="On. Off. It really doesn't matter."
 />
 </PreferenceScreen>
 </PreferenceCategory>
 <PreferenceCategory android:title="Other Preferences">
 <EditTextPreference
 android:key="text"
 android:title="Text Entry Dialog"
 android:summary="Click to pop up a field for entry"
 android:dialogTitle="Enter something useful"
 />
 <ListPreference
 android:key="list"
 android:title="Selection Dialog"
 android:summary="Click to pop up a list to choose from"
 android:entries="@array/cities"
 android:entryValues="@array/airport_codes"
 android:dialogTitle="Choose a Pennsylvania city" />
 </PreferenceCategory>
</PreferenceScreen>

With the field (EditTextPreference), in addition to the title and summary
you put on the preference itself, you can also supply the title to use for the
dialog.

With the list (ListPreference), you supply both a dialog title and two string-
array resources: one for the display names, one for the values. These need
to be in the same order – the index of the chosen display name determines
which value is stored as the preference in the SharedPreferences. For
example, here are the arrays for use by the ListPreference shown above:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string-array name="cities">

443

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

 <item>Philadelphia</item>
 <item>Pittsburgh</item>
 <item>Allentown/Bethlehem</item>
 <item>Erie</item>
 <item>Reading</item>
 <item>Scranton</item>
 <item>Lancaster</item>
 <item>Altoona</item>
 <item>Harrisburg</item>
 </string-array>
 <string-array name="airport_codes">
 <item>PHL</item>
 <item>PIT</item>
 <item>ABE</item>
 <item>ERI</item>
 <item>RDG</item>
 <item>AVP</item>
 <item>LNS</item>
 <item>AOO</item>
 <item>MDT</item>
 </string-array>
</resources>

When you bring up the preference UI, you start with another category with
another pair of preference entries:

Figure 132. The preference screen of the Dialogs project's preference UI

444

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

Tapping the Text Entry Dialog one brings up a text entry dialog – in this
case, with the prior preference entry pre-filled-in:

Figure 133. Editing a text preference

Tapping the Selection Dialog one brings up a selection dialog, showing the
display names from the one array:

445

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

Figure 134. Editing a list preference

Preferences via Fragments

Android 3.0 revamped PreferenceScreen and PreferenceActivity. On the
plus side, the new system looks great, providing rapid access to a large
number of settings:

446

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

Figure 135. A Honeycomb-based PreferenceActivity

On the minus side, the new system is not part of the Android Compatibility
Library, and as such cannot directly be used on pre-Honeycomb versions of
Android. That being said, it is possible to work out a backwards-compatible
solution, though it may require some redesign of your preferences, if you
have a lot of them and have been using nested PreferenceScreen elements.
In fact, this is pretty much required, as the nested PreferenceScreen
approach looks lousy on Honeycomb devices.

The Honeycomb Way

In pre-Honeycomb versions of Android, a PreferenceActivity subclass
would load preferences from resource files, to indicate what should go on
the screen.

In Honeycomb, a PreferenceActivity subclass loads preference headers
from resource files, to indicate what should go on the screen.

447

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

Preference Headers

Visually, preference headers are not preference categories (placing a header
over a set of preferences). Rather, preference headers are the term for the
major clusters of preferences. The headers are listed on the left, with the
preferences for the selected header shown on the right, as depicted in the
preceding screenshot.

So, instead of calling addPreferencesFromResource(), a Honeycomb
PreferenceActivity will call loadHeadersFromResource(), pointing to another
XML resource, this time describing the preference headers.

For example, here is res/xml/preference_headers.xml from the
Prefs/Fragments sample project:

<preference-headers xmlns:android="http://schemas.android.com/apk/res/android">
 <header
android:fragment="com.commonsware.android.preffrags.StockPreferenceFragment"
 android:title="Original"
 android:summary="The original set from the other examples">
 <extra android:name="resource" android:value="preferences" />
 </header>
 <header
android:fragment="com.commonsware.android.preffrags.StockPreferenceFragment"
 android:title="Other Stuff"
 android:summary="Well, we needed to show two sets here...">
 <extra android:name="resource" android:value="preferences2" />
 </header>
</preference-headers>

Each <header> element indicates the PreferenceFragment subclass that will
be describing the preferences that belong to the header. In addition, the
<header> describes the title and summary for the header, along with an
optional icon (android:icon attribute). A <header> element may also have
one or more <extra> child elements, providing a key-value pair of extra data
that a PreferenceFragment can use for configuration. In the example shown
above, each <header> element has one <extra> element defining the name of
an XML resource that will hold the preferences for that header.

Hence, the PreferenceActivity is still as short as before, just with a slightly
different structure:

448

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

package com.commonsware.android.preffrags;

import android.os.Bundle;
import android.preference.PreferenceActivity;
import java.util.List;

public class EditPreferences extends PreferenceActivity {
 @Override
 public void onBuildHeaders(List<Header> target) {
 loadHeadersFromResource(R.xml.preference_headers, target);
 }
}

Instead of defining the headers in onCreate(), you override an
onLoadHeaders() method and call loadHeadersFromResource() there.

PreferenceFragments and StockPreferenceFragment

So, the preference headers point to subclasses of PreferenceFragment. The
job of PreferenceFragment is to do what PreferenceActivity would do in
older versions of Android – call addPreferencesFromResource() to define the
preferences to be displayed on the right when the associated header is
clicked on the left.

What is odd about PreferenceFragment is that it requires subclasses.
Considering that the vast majority of such fragments would simply call
addPreferencesFromResource() once on a single resource, it would seem
logical to have that built into Android, allowing subclasses of
PreferenceFragment for more complicated cases. Yet, that is not presently
supported. Official Android samples would have you create one
PreferenceFragment subclass for each preference header, which seems
wasteful.

Another approach is to use StockPreferenceFragment, a PreferenceFragment
subclass that is implemented in the Prefs/Fragments project but can be used
wherever. It assumes that you have added an <extra> to the <header>
identifying the name of the preference XML resource to load, and it loads
it. No extra subclasses required. That is how both headers shown in the
previous section can point to the single StockPreferenceFragment
implementation.

449

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

StockPreferenceFragment is not especially long, but it does employ one trick:

package com.commonsware.android.preffrags;

import android.os.Bundle;
import android.preference.PreferenceFragment;

public class StockPreferenceFragment extends PreferenceFragment {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 int res=getActivity()
 .getResources()
 .getIdentifier(getArguments().getString("resource"),
 "xml",
 getActivity().getPackageName());

 addPreferencesFromResource(res);
 }
}

To get at the extras, a PreferenceFragment can call getArguments(), which
returns a Bundle. In our case, we can get the resources extra value via
getArguments().getString("resource"). The problem is, this is a String, not a
resource ID. In order to call addPreferencesFromResource(), we need the
resource ID of the preference that we only know by name.

The trick is to use getIdentifier().

The getIdentifier() method on the Resources object – itself obtained by
calling getResources() on an Activity – will use reflection to find the
resource ID given three pieces of information:

1. The name of the resource (in this case, the value from the
arguments)

2. The type of the resource (in this case, xml)

3. The package where this ID should reside (typically, your own
package, obtained by calling getPackageName() on an Activity)

450

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

So, StockPreferenceFragment uses getIdentifier() to convert the resource
extra into a resource ID, which it then uses with
addPreferencesFromResource().

Note that getIdentifier() is not particularly fast, since it uses reflection. Do
not use this in a tight loop, or in getView() of an Adapter, or any place where
it may be called thousands of times.

Avoiding Nested PreferenceScreens

In pre-Honeycomb Android, if you have a lot of preferences, you might
consider turning them into nested PreferenceScreens. It is better, on
Honeycomb, to break them out into separate preference headers. Partly,
this is to have a better user experience – they can directly see and access the
various headers, versus having to wade through your preferences to find
ones that lead to nested PreferenceScreens. Partly, this is because the
nested PreferenceScreen UI does not adopt the Honeycomb look-and-feel
(e.g., there are no nested preference headers), and so there will be a visual
clash.

Intents for Headers or Preferences

If you have the need to collect some preferences that are beyond what the
standard preferences can handle, you have some choices.

One is to create a custom Preference. Extending DialogPreference to create
your own Preference implementation is not especially hard. However, it
does constrain you to something that can fit in a dialog.

Another option is to specify an <intent> element as a child of a <header>
element. When the user taps on this header, your specified Intent is used
with startActivity(), giving you a gateway to your own activity for
collecting things that are beyond what the preference UI can handle. For
example, you could have the following <header>:

451

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

<header android:icon="@drawable/something"
 android:title="Fancy Stuff"
 android:summary="Click here to transcend your plane of existence">
 <intent android:action="com.commonsware.android.MY_CUSTOM_ACTION" />
</header>

Then, so long as you have an activity with an <intent-filter> specifying
your desired action (com.commonsware.android.MY_CUSTOM_ACTION), that
activity will get control when the user taps on the associated header.

Adding Backwards Compatibility

Of course, everything described above is nice and all, but it only works on
Android 3.0 and higher. What about the millions of other Android devices?
Are they chopped liver?

No. For one thing, chopped liver has notoriously bad cellular reception.

However, they will have to retreat to the original PreferenceActivity
approach. Since older versions of Android cannot load classes that refer to
other classes or methods that are from newer versions of Android, the
simplest approach is to have two PreferenceActivity classes, one new, and
one old.

For example, the Prefs/FragmentsBC sample project has all the code from
Prefs/Fragments, with a few alterations.

First, the Honeycomb-specific EditPreferences class is renamed
EditPreferencesHC. Another EditPreferences class, based upon our original
pre-fragment implementation, is added:

package com.commonsware.android.preffrags;

import android.os.Bundle;
import android.preference.PreferenceActivity;

public class EditPreferences extends PreferenceActivity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

452

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

 addPreferencesFromResource(R.xml.preferences);
 addPreferencesFromResource(R.xml.preferences2);
 }
}

Here, we take advantage of the fact that addPreferencesFromResource() can
be called multiple times to simply chain together our two preference
headers' worth of preferences.

And, the options menu choice for opening our PreferenceActivity changes
to choose the right one, based on our Build.VERSION.SDK_INT value:

}

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case EDIT_ID:
 if (Build.VERSION.SDK_INT<Build.VERSION_CODES.HONEYCOMB) {
 startActivity(new Intent(this, EditPreferences.class));
 }
 else {
 startActivity(new Intent(this, EditPreferencesHC.class));
 }

 return(true);
 }

Hence, we only use the EditPreferencesHC class when that is known to be
safe. Otherwise, we use the older one.

453

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 32

Managing and Accessing Local
Databases

SQLite is a very popular embedded database, as it combines a clean SQL
interface with a very small memory footprint and decent speed. Moreover,
it is public domain, so everyone can use it. Lots of firms (Adobe, Apple,
Google, Sun, Symbian) and open source projects (Mozilla, PHP, Python) all
ship products with SQLite.

For Android, SQLite is "baked into" the Android runtime, so every Android
application can create SQLite databases. Since SQLite uses a SQL interface,
it is fairly straightforward to use for people with experience in other SQL-
based databases. However, its native API is not JDBC, and JDBC might be
too much overhead for a memory-limited device like a phone, anyway.
Hence, Android programmers have a different API to learn – the good news
being is that it is not that difficult.

This chapter will cover the basics of SQLite use in the context of working
on Android. It by no means is a thorough coverage of SQLite as a whole. If
you want to learn more about SQLite and how to use it in environments
other than Android, a fine book is The Definitive Guide to SQLite by
Michael Owens.

Much of the sample code shown in this chapter comes from the
Database/Constants application. This application presents a list of physical
constants, with names and values culled from Android's SensorManager:

455

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.amazon.com/Definitive-Guide-SQLite/dp/1590596730
http://www.sqlite.org/

Managing and Accessing Local Databases

Figure 136. The Constants sample application, as initially launched

You can pop up a menu to add a new constant, which brings up a dialog to
fill in the name and value of the constant:

Figure 137. The Constants sample application's add-constant dialog

456

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Managing and Accessing Local Databases

The constant is then added to the list. A long-tap on an existing constant
will bring up a context menu with a "Delete" option – after confirmation,
that will delete the constant.

And, of course, all of this is stored in a SQLite database.

A Quick SQLite Primer

SQLite, as the name suggests, uses a dialect of SQL for queries (SELECT),
data manipulation (INSERT, et al.), and data definition (CREATE TABLE, et al.).
SQLite has a few places where it deviates from the SQL-92 standard, no
different than most SQL databases. The good news is that SQLite is so
space-efficient that the Android runtime can include all of SQLite, not
some arbitrary subset to trim it down to size.

The biggest difference from other SQL databases you will encounter is
probably the data typing. While you can specify the data types for columns
in a CREATE TABLE statement, and while SQLite will use those as a hint, that
is as far as it goes. You can put whatever data you want in whatever column
you want. Put a string in an INTEGER column? Sure! No problem! Vice versa?
Works too! SQLite refers to this as "manifest typing", as described in the
documentation:

In manifest typing, the datatype is a property of the value
itself, not of the column in which the value is stored. SQLite
thus allows the user to store any value of any datatype into
any column regardless of the declared type of that column.

Start at the Beginning

No databases are automatically supplied to you by Android. If you want to
use SQLite, you have to create your own database, then populate it with
your own tables, indexes, and data.

457

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.sqlite.org/different.html

Managing and Accessing Local Databases

To create and open a database, your best option is to craft a subclass of
SQLiteOpenHelper. This class wraps up the logic to create and upgrade a
database, per your specifications, as needed by your application. Your
subclass of SQLiteOpenHelper will need three methods:

• The constructor, chaining upward to the SQLiteOpenHelper
constructor. This takes the Context (e.g., an Activity), the name of
the database, an optional cursor factory (typically, just pass null),
and an integer representing the version of the database schema you
are using.

• onCreate(), which passes you a SQLiteDatabase object that you use to
populate with tables and initial data, as appropriate.

• onUpgrade(), which passes you a SQLiteDatabase object and the old
and new version numbers, so you can figure out how best to convert
the database from the old schema to the new one. The simplest,
albeit least friendly, approach is to simply drop the old tables and
create new ones.

For example, here is a DatabaseHelper class from Database/Constants that, in
onCreate(), creates a table and adds a number of rows, and in onUpgrade()
"cheats" by dropping the existing table and executing onCreate():

package com.commonsware.android.constants;

import android.content.ContentValues;
import android.content.Context;
import android.database.Cursor;
import android.database.SQLException;
import android.database.sqlite.SQLiteOpenHelper;
import android.database.sqlite.SQLiteDatabase;
import android.hardware.SensorManager;

public class DatabaseHelper extends SQLiteOpenHelper {
 private static final String DATABASE_NAME="db";
 static final String TITLE="title";
 static final String VALUE="value";

 public DatabaseHelper(Context context) {
 super(context, DATABASE_NAME, null, 1);
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 db.execSQL("CREATE TABLE constants (_id INTEGER PRIMARY KEY AUTOINCREMENT,

458

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Managing and Accessing Local Databases

title TEXT, value REAL);");

 ContentValues cv=new ContentValues();

 cv.put(TITLE, "Gravity, Death Star I");
 cv.put(VALUE, SensorManager.GRAVITY_DEATH_STAR_I);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Earth");
 cv.put(VALUE, SensorManager.GRAVITY_EARTH);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Jupiter");
 cv.put(VALUE, SensorManager.GRAVITY_JUPITER);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Mars");
 cv.put(VALUE, SensorManager.GRAVITY_MARS);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Mercury");
 cv.put(VALUE, SensorManager.GRAVITY_MERCURY);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Moon");
 cv.put(VALUE, SensorManager.GRAVITY_MOON);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Neptune");
 cv.put(VALUE, SensorManager.GRAVITY_NEPTUNE);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Pluto");
 cv.put(VALUE, SensorManager.GRAVITY_PLUTO);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Saturn");
 cv.put(VALUE, SensorManager.GRAVITY_SATURN);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Sun");
 cv.put(VALUE, SensorManager.GRAVITY_SUN);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, The Island");
 cv.put(VALUE, SensorManager.GRAVITY_THE_ISLAND);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Uranus");
 cv.put(VALUE, SensorManager.GRAVITY_URANUS);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Venus");
 cv.put(VALUE, SensorManager.GRAVITY_VENUS);

459

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Managing and Accessing Local Databases

 db.insert("constants", TITLE, cv);
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 android.util.Log.w("Constants", "Upgrading database, which will destroy all
old data");
 db.execSQL("DROP TABLE IF EXISTS constants");
 onCreate(db);
 }
}

We will take a closer look at what onCreate() is doing – in terms of
execSQL() and insert() calls – later in this chapter.

To use your SQLiteOpenHelper subclass, create and hold onto an instance of
it. Then, when you need a SQLiteDatabase object to do queries or data
modifications, ask your SQLiteOpenHelper to getReadableDatabase() or
getWriteableDatabase(), depending upon whether or not you will be
changing its contents. For example, our ConstantsBrowser activity opens the
database in onCreate() as part of doing a query:

constantsCursor=db
 .getReadableDatabase()
 .rawQuery("SELECT _ID, title, value "+
 "FROM constants ORDER BY title",
 null);

When you are done with the database (e.g., your activity is being closed),
simply call close() on your SQLiteOpenHelper to release your connection.

For onUpgrade() to work properly, your version numbers for your database
schema must increase as you move forward. A typical pattern is to start
with 1 and work your way up from there.

There are two other methods you can elect to override in your
SQLiteOpenHelper, if you feel the need:

1. You can override onOpen(), to get control when somebody opens this
database. Usually, this is not required.

460

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Managing and Accessing Local Databases

2. Android 3.0 introduced onDowngrade(), which will be called if the
code requests an older schema than what is in the database
presently. This is the converse of onUpgrade() – if your version
numbers differ, one of these two methods will be invoked. Since
normally you are moving forward with updates, you can usually skip
onDowngrade().

Setting the Table

For creating your tables and indexes, you will need to call execSQL() on your
SQLiteDatabase, providing the DDL statement you wish to apply against the
database. Barring a database error, this method returns nothing.

So, for example, you can call execSQL() to create the constants table, as
shown in the DatabaseHelper onCreate() method:

db.execSQL("CREATE TABLE constants (_id INTEGER PRIMARY KEY AUTOINCREMENT, title
TEXT, value REAL);");

This will create a table, named constants, with a primary key column
named _id that is an auto-incremented integer (i.e., SQLite will assign the
value for you when you insert rows), plus two data columns: title (text)
and value (a float, or "real" in SQLite terms). SQLite will automatically
create an index for you on your primary key column – you could add other
indexes here via some CREATE INDEX statements, if you so chose to.

Most likely, you will create tables and indexes when you first create the
database, or possibly when the database needs upgrading to accommodate
a new release of your application. If you do not change your table schemas,
you might never drop your tables or indexes, but if you do, just use
execSQL() to invoke DROP INDEX and DROP TABLE statements as needed.

461

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Managing and Accessing Local Databases

Makin' Data

Given that you have a database and one or more tables, you probably want
to put some data in them and such. You have two major approaches for
doing this.

You can always use execSQL(), just like you did for creating the tables. The
execSQL() method works for any SQL that does not return results, so it can
handle INSERT, UPDATE, DELETE, etc. just fine.

Your alternative is to use the insert(), update(), and delete() methods on
the SQLiteDatabase object, which eliminate much of the SQL syntax
required to do basic operations.

For example, here we insert() a new row into our constants table:

private void processAdd(DialogWrapper wrapper) {
 ContentValues values=new ContentValues(2);

 values.put(DatabaseHelper.TITLE, wrapper.getTitle());
 values.put(DatabaseHelper.VALUE, wrapper.getValue());

 db.getWritableDatabase().insert("constants", DatabaseHelper.TITLE, values);
 constantsCursor.requery();
}

These methods make use of ContentValues objects, which implement a Map-
esque interface, albeit one that has additional methods for working with
SQLite types. For example, in addition to get() to retrieve a value by its key,
you have getAsInteger(), getAsString(), and so forth.

The insert() method takes the name of the table, the name of one column
as the "null column hack", and a ContentValues with the initial values you
want put into this row. The "null column hack" is for the case where the
ContentValues instance is empty – the column named as the "null column
hack" will be explicitly assigned the value NULL in the SQL INSERT statement
generated by insert(). This is required due to a quirk in SQLite's support
for the SQL INSERT statement.

462

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Managing and Accessing Local Databases

The update() method takes the name of the table, a ContentValues
representing the columns and replacement values to use, an optional WHERE
clause, and an optional list of parameters to fill into the WHERE clause, to
replace any embedded question marks (?). Since update() only replaces
columns with fixed values, versus ones computed based on other
information, you may need to use execSQL() to accomplish some ends. The
WHERE clause and parameter list works akin to the positional SQL
parameters you may be used to from other SQL APIs.

The delete() method works akin to update(), taking the name of the table,
the optional WHERE clause, and the corresponding parameters to fill into the
WHERE clause. For example, here we delete() a row from our constants table,
given its _ID:

private void processDelete(long rowId) {
 String[] args={String.valueOf(rowId)};

 db.getWritableDatabase().delete("constants", "_ID=?", args);
 constantsCursor.requery();
}

What Goes Around, Comes Around

As with INSERT, UPDATE, and DELETE, you have two main options for retrieving
data from a SQLite database using SELECT:

1. You can use rawQuery() to invoke a SELECT statement directly, or

2. You can use query() to build up a query from its component parts

Confounding matters further is the SQLiteQueryBuilder class and the issue
of cursors and cursor factories. Let's take all of this one piece at a time.

Raw Queries

The simplest solution, at least in terms of the API, is rawQuery(). Simply call
it with your SQL SELECT statement. The SELECT statement can include
positional parameters; the array of these forms your second parameter to
rawQuery(). So, we wind up with:

463

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Managing and Accessing Local Databases

constantsCursor=db
 .getReadableDatabase()
 .rawQuery("SELECT _ID, title, value "+
 "FROM constants ORDER BY title",
 null);

The return value is a Cursor, which contains methods for iterating over
results (see below).

If your queries are pretty much "baked into" your application, this is a very
straightforward way to use them. However, it gets complicated if parts of
the query are dynamic, beyond what positional parameters can really
handle. For example, if the set of columns you need to retrieve is not
known at compile time, puttering around concatenating column names
into a comma-delimited list can be annoying...which is where query()
comes in.

Regular Queries

The query() method takes the discrete pieces of a SELECT statement and
builds the query from them. The pieces, in order that they appear as
parameters to query(), are:

• The name of the table to query against

• The list of columns to retrieve

• The WHERE clause, optionally including positional parameters

• The list of values to substitute in for those positional parameters

• The GROUP BY clause, if any

• The HAVING clause, if any

• The ORDER BY clause, if any

These can be null when they are not needed (except the table name, of
course):

String[] columns={"ID", "inventory"};
String[] parms={"snicklefritz"};

464

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Managing and Accessing Local Databases

Cursor result=db.query("widgets", columns, "name=?",
 parms, null, null, null);

Using Cursors

No matter how you execute the query, you get a Cursor back. This is the
Android/SQLite edition of the database cursor, a concept used in many
database systems. With the cursor, you can:

• Find out how many rows are in the result set via getCount()

• Iterate over the rows via moveToFirst(), moveToNext(), and
isAfterLast()

• Find out the names of the columns via getColumnNames(), convert
those into column numbers via getColumnIndex(), and get values for
the current row for a given column via methods like getString(),
getInt(), etc.

• Re-execute the query that created the cursor via requery()

• Release the cursor's resources via close()

For example, here we iterate over a widgets table entries:

Cursor result=
 db.rawQuery("SELECT ID, name, inventory FROM widgets", null);

while (!result.moveToNext()) {
 int id=result.getInt(0);
 String name=result.getString(1);
 int inventory=result.getInt(2);

 // do something useful with these
}

result.close();

You can also wrap a Cursor in a SimpleCursorAdapter or other
implementation, then hand the resulting adapter to a ListView or other
selection widget. Note, though, that if you are going to use CursorAdapter or
its subclasses (like SimpleCursorAdapter), your result set of your query must
contain an integer column named _ID that is unique for the result set. This

465

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Managing and Accessing Local Databases

"id" value is then supplied to methods like onListItemClick(), to identify
what item the user clicked upon in the AdapterView.

For example, after retrieving the sorted list of constants, we pop those into
the ListView for the ConstantsBrowser activity in just a few lines of code:

ListAdapter adapter=new SimpleCursorAdapter(this,
 R.layout.row, constantsCursor,
 new String[] {DatabaseHelper.TITLE,
 DatabaseHelper.VALUE},
 new int[] {R.id.title, R.id.value});

Custom CursorAdapters

You may recall from an earlier chapter that you can override getView() in
ArrayAdapter to provide more custom control over how rows are displayed.

However, CursorAdapter and its subclasses have a default implementation of
getView(). What getView() does is inspect the supplied View to recycle and,
if it is null, calls newView() then bindView(), or just calls bindView() if it is not
null. If you are extending CursorAdapter – used for displaying results of a
database or content provider query – you should override newView() and
bindView() instead of getView().

All this does is remove your if() test you would have had in getView() and
putting each branch of that test in an independent method, akin to the
following:

public View newView(Context context, Cursor cursor,
 ViewGroup parent) {
 LayoutInflater inflater=getLayoutInflater();
 View row=inflater.inflate(R.layout.row, null);
 ViewWrapper wrapper=new ViewWrapper(row);

 row.setTag(wrapper);

 return(row);
}

public void bindView(View row, Context context, Cursor cursor) {
 ViewWrapper wrapper=(ViewWrapper)row.getTag();

466

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Managing and Accessing Local Databases

 // actual logic to populate row from Cursor goes here
}

Making Your Own Cursors

There may be circumstances in which you want to use your own Cursor
subclass, rather than the stock implementation provided by Android. In
those cases, you can use queryWithFactory() and rawQueryWithFactory() that
take a SQLiteDatabase.CursorFactory instance as a parameter. The factory, as
one might expect, is responsible for creating new cursors via its newCursor()
implementation.

Finding and implementing a valid use for this facility is left as an exercise
for the reader. Suffice it to say that you should not need to create your own
cursor classes much, if at all, in ordinary Android development.

Flash: Sounds Faster Than It Is

Your database will be stored on flash memory, normally the on-board flash
for the device.

Reading data off of flash is relatively quick. While the memory is not
especially fast, there is no "seek time" to move hard drive heads around like
you find with magnetic media, and so performing a query against a SQLite
database will tend to be speedy.

Writing data to flash is another matter entirely.

Sometimes, this may happen fairly quickly, on the order of a couple of
milliseconds. Sometimes, though, it may take hundreds of milliseconds,
even for writing small amounts of data. Moreover, flash tends to get slower
the more full it is, so the speed your users will see varies even more.

The net result is that you should seriously consider doing all database write
operations off the main application thread, such as via an AsyncTask, as is

467

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Managing and Accessing Local Databases

described in the chapter on threads. This way, the database write
operations will not slow down your user interface.

Note that the emulator behaves differently, because it is typically using a
file on your hard drive for storing data, rather than flash. While the
emulator tends to be much slower than hardware for CPU and GPU
operations, the emulator will tend to be much faster for writing data to
flash. Hence, just because you are not seeing any UI slowdowns due to
database I/O in the emulator, do not assume that will be the same when
your code is running on a real Android device.

Data, Data, Everywhere

If you are used to developing for other databases, you are also probably
used to having tools to inspect and manipulate the contents of the
database, beyond merely the database's API. With Android's emulator, you
have two main options for this.

First, the emulator is supposed to bundle in the sqlite3 console program
and makes it available from the adb shell command. Once you are in the
emulator's shell, just execute sqlite3, providing it the path to your database
file. Your database file can be found at:

/data/data/your.app.package/databases/your-db-name

Here your.app.package is the Java package for your application (e.g.,
com.commonsware.android) and your-db-name is the name of your database, as
supplied to createDatabase().

The sqlite3 program works, and if you are used to poking around your
tables using a console interface, you are welcome to use it. If you prefer
something a little bit friendlier, you can always copy the SQLite database
off the device onto your development machine, then use a SQLite-aware
client program to putter around. Note, though, that you are working off a
copy of the database; if you want your changes to go back to the device, you
will need to transfer the database back over.

468

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Managing and Accessing Local Databases

To get the database off the device, you can use the adb pull command (or
the equivalent in your IDE, or the File Manager in DDMS), which takes the
path to the on-device database and the local destination as parameters. To
store a modified database on the device, use adb push, which takes the local
path to the database and the on-device destination as parameters.

One of the most-accessible SQLite clients is the SQLite Manager extension
for Firefox, as it works across all platforms.

Figure 138. the SQLite Manager Firefox extension

You can find other client tools on the SQLite Web site.

469

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.sqlite.org/
http://www.sqlite.org/cvstrac/wiki?p=SqliteTools
https://addons.mozilla.org/en-US/firefox/addon/5817

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 33

Leveraging Java Libraries

Java has as many, if not more, third-party libraries than any other modern
programming language. Here, "third-party libraries" refer to the
innumerable JARs that you can include in a server or desktop Java
application – the things that the Java SDKs themselves do not provide.

In the case of Android, the Dalvik VM at its heart is not precisely Java, and
what it provides in its SDK is not precisely the same as any traditional Java
SDK. That being said, many Java third-party libraries still provide
capabilities that Android lacks natively and therefore may be of use to you
in your project, for the ones you can get working with Android's flavor of
Java.

This chapter explains what it will take for you to leverage such libraries and
the limitations on Android's support for arbitrary third-party code.

Ants and Jars

You have two choices for integrating third-party code into your project: use
source code, or use pre-packaged JARs.

If you choose to use their source code, all you need to do is copy it into your
own source tree (under src/ in your project), so it can sit alongside your
existing code, then let the compiler perform its magic.

471

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Leveraging Java Libraries

If you choose to use an existing JAR, perhaps one for which you do not have
the source code, you will need to teach your build chain how to use the
JAR. First, place the JAR in the libs/ directory in your Android project.
Then, if you are using an IDE, you probably need to add the JAR to your
build path (Ant will automatically pick up all JARs found in libs/) – this is
definitely required for Eclipse.

And that's it. Adding third-party code to your Android application is fairly
easy.

Getting to actually work may be somewhat more complicated, however.

The Outer Limits

Not all available Java code will work well with Android. There are a number
of factors to consider, including:

• Expected Platform APIs: Does the code assume a newer JVM than
the one Android is based on? Or, does the code assume the
existence of Java APIs that ship with J2SE but not with Android,
such as Swing?

• Size: Existing Java code designed for use on desktops or servers
need not worry too much about on-disk size, or, to some extent,
even in-RAM size. Android, of course, is short on both. Using third-
party Java code, particularly when pre-packaged as JARs, may
balloon the size of your application.

• Performance: Does the Java code effectively assume a much more
powerful CPU than what you may find on many Android devices?
Just because a desktop can run it without issue does not mean your
average mobile phone will handle it well.

• Interface: Does the Java code assume a console interface? Or is it a
pure API that you can wrap your own interface around?

• Operating System: Does the Java code assume the existence of
certain console programs? Does the Java code assume it can use a
Windows DLL?

472

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Leveraging Java Libraries

• Language Version: Was the JAR compiled with an older version of
Java (1.4.2 or older)? Was the JAR compiled with a different compiler
than the official one from Sun (e.g., GCJ)?

• Dependencies: Does the Java code depend on other third-party JARs
that might have some of these problems as well? Does the Java code
depend upon third-party libraries (e.g., the org.json JSON library)
that are built into Android, but the third party expects a different
version of that library?

One trick for addressing some of these concerns is to use open source Java
code, and actually work with the code to make it more Android-friendly.
For example, if you are only using 10% of the third-party library, maybe it's
worthwhile to recompile the subset of the project to be only what you need,
or at least removing the unnecessary classes from the JAR. The former
approach is safer, in that you get compiler help to make sure you are not
discarding some essential piece of code, though it may be more tedious to
do.

Following the Script

Unlike other mobile device operating systems, Android has no restrictions
on what you can run on it, so long as you can do it in Java using the Dalvik
VM. This includes incorporating your own scripting language into your
application, something that is expressly prohibited on some other devices.

One possible Java scripting language is BeanShell. BeanShell gives you Java-
compatible syntax with implicit typing and no compilation required.

So, to add BeanShell scripting, you need to put the BeanShell interpreter's
JAR file in your libs/ directory. The 2.0b4 JAR available for download from
the BeanShell site, unfortunately, does not work out of the box with the
Android 0.9 and newer SDKs, perhaps due to the compiler that was used to
build it. Instead, you should probably check out the source code from
Subversion and execute ant jarcore to build it, then copy the resulting JAR
(in BeanShell's dist/ directory) to your own project's libs/. Or, just use the

473

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://beanshell.org/

Leveraging Java Libraries

BeanShell JAR that accompanies the source code for this book, up on the
CommonsWare site, in the Java/AndShell project.

From there, using BeanShell on Android is no different than using
BeanShell in any other Java environment:

1. Create an instance of the BeanShell Interpreter class

2. Set any “globals” for the script’s use via Interpreter#set()

3. Call Interpreter#eval() to run the script and, optionally, get the
result of the last statement

For example, here is the XML layout for the world’s smallest BeanShell IDE:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<Button
 android:id="@+id/eval"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Go!"
 android:onClick="go"
 />
<EditText
 android:id="@+id/script"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:singleLine="false"
 android:gravity="top"
 />
</LinearLayout>

Couple that with the following activity implementation:

package com.commonsware.android.andshell;

import android.app.Activity;
import android.app.AlertDialog;
import android.os.Bundle;
import android.view.View;
import android.widget.EditText;
import android.widget.Toast;
import bsh.Interpreter;

474

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/Android/

Leveraging Java Libraries

public class MainActivity extends Activity {
 private Interpreter i=new Interpreter();

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 }

 public void go(View v) {
 EditText script=(EditText)findViewById(R.id.script);
 String src=script.getText().toString();

 try {
 i.set("context", MainActivity.this);
 i.eval(src);
 }
 catch (bsh.EvalError e) {
 AlertDialog.Builder builder=
 new AlertDialog.Builder(MainActivity.this);

 builder
 .setTitle("Exception!")
 .setMessage(e.toString())
 .setPositiveButton("OK", null)
 .show();
 }
 }
}

Compile and run it (including incorporating the BeanShell JAR as
mentioned above), and install it on the emulator. Fire it up, and you get a
trivial IDE, with a large text area for your script and a big "Go!" button to
execute it:

475

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Leveraging Java Libraries

Figure 139. The AndShell BeanShell IDE

import android.widget.Toast;

Toast.makeText(context, "Hello, world!", Toast.LENGTH_LONG).show();

Note the use of context to refer to the activity when making the Toast. That
is the global set by the activity to reference back to itself. You could call this
global variable anything you want, so long as the set() call and the script
code use the same name.

Then, click the Go! button, and you get:

476

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Leveraging Java Libraries

Figure 140. The AndShell BeanShell IDE, executing some code

And now, some caveats...

First, not all scripting languages will work. For example, those that
implement their own form of just-in-time (JIT) compilation, generating
Java bytecodes on the fly, would probably have to be augmented to
generate Dalvik VM bytecodes instead of those for stock Java
implementations. Simpler languages that execute off of parsed scripts,
calling Java reflection APIs to call back into compiled classes, will likely
work better. Even there, though, not every feature of the language may
work, if it relies upon some facility in a traditional Java API that does not
exist in Dalvik – for example, there could be stuff hidden inside BeanShell
or the add-on JARs that does not work on today’s Android.

Second, scripting languages without JIT will inevitably be slower than
compiled Dalvik applications. Slower may mean users experience
sluggishness. Slower definitely means more battery life is consumed for the
same amount of work. So, building a whole Android application in
BeanShell, simply because you feel it is easier to program in, may cause
your users to be unhappy.

477

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Leveraging Java Libraries

Third, scripting languages that expose the whole Java API, like BeanShell,
can pretty much do anything the underlying Android security model
allows. So, if your application has the READ_CONTACTS permission, expect any
BeanShell scripts your application runs to have the same permission.

Last, but certainly not least, is that language interpreter JARs tend to
be...portly. The BeanShell JAR used in this example is 200KB. That is not
ridiculous, considering what it does, but it will make applications that use
BeanShell that much bigger to download, take up that much more space on
the device, etc.

Reviewing the Script

Since this chapter covers scripting in Android, you may be interested to
know that you have options beyond embedding BeanShell directly in your
project.

Some experiments have been conducted with other JVM-based
programming languages, such as JRuby and Jython. At present, their
support for Android is incomplete, but progress is being made.

Beyond that, though, there is the Scripting Layer for Android (SL4A). SL4A
allows you to write scripts in a wide range of scripting languages, beyond
BeanShell, such as:

• Perl

• Python

• JRuby

• Lua

• Javascript (implemented via Rhino, the Mozilla Javascript
interpreter written in Java)

• PHP

478

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://code.google.com/p/android-scripting/

Leveraging Java Libraries

These scripts are not full-fledged applications, though the SL4A team is
working on allowing you to turn them into APK files complete with basic
UIs. For on-device development, SL4A is a fine choice.

479

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 34

Communicating via the Internet

The expectation is that most, if not all, Android devices will have built-in
Internet access. That could be WiFi, cellular data services (EDGE, 3G, etc.),
or possibly something else entirely. Regardless, most people – or at least
those with a data plan or WiFi access – will be able to get to the Internet
from their Android phone.

Not surprisingly, the Android platform gives developers a wide range of
ways to make use of this Internet access. Some offer high-level access, such
as the integrated WebKit browser component we saw in an earlier chapter.
If you want, you can drop all the way down to using raw sockets. Or, in
between, you can leverage APIs – both on-device and from 3rd-party JARs –
that give you access to specific protocols: HTTP, XMPP, SMTP, and so on.

The emphasis of this book is on the higher-level forms of access: the
WebKit component and Internet-access APIs, as busy coders should be
trying to reuse existing components versus rolling one's own on-the-wire
protocol wherever possible.

REST and Relaxation

Android does not have built-in SOAP or XML-RPC client APIs. However, it
does have the Apache HttpClient library baked in. You can either layer a
SOAP/XML-RPC layer atop this library, or use it "straight" for accessing
REST-style Web services. For the purposes of this book, "REST-style Web

481

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Communicating via the Internet

services" is defined as "simple HTTP requests for ordinary URLs over the
full range of HTTP verbs, with formatted payloads (XML, JSON, etc.) as
responses".

More expansive tutorials, FAQs, and HOWTOs can be found at the
HttpClient Web site. Here, we'll cover the basics, while checking the
weather.

HTTP Operations via Apache HttpClient

The first step to using HttpClient is, not surprisingly, to create an
HttpClient object. The client object handles all HTTP requests upon your
behalf. Since HttpClient is an interface, you will need to actually instantiate
some implementation of that interface, such as DefaultHttpClient.

Those requests are bundled up into HttpRequest instances, with different
HttpRequest implementations for each different HTTP verb (e.g., HttpGet for
HTTP GET requests). You create an HttpRequest implementation instance, fill
in the URL to retrieve and other configuration data (e.g., form values if you
are doing an HTTP POST via HttpPost), then pass the method to the client to
actually make the HTTP request via execute().

What happens at this point can be as simple or as complicated as you want.
You can get an HttpResponse object back, with response code (e.g,. 200 for
OK), HTTP headers, and the like. Or, you can use a flavor of execute() that
takes a ResponseHandler<String> as a parameter – the net result there being
that execute() returns just the String representation of the response body.
In practice, this is not a recommended approach, because you really should
be checking your HTTP response codes for errors. However, for trivial
applications, like book examples, the ResponseHandler<String> approach
works just fine.

For example, let's take a look at the Internet/Weather sample project. This
implements an activity that retrieves weather data for your current location
from the National Weather Service (NOTE: this probably only works for
geographic locations in the US). That data is converted into an HTML page,

482

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://hc.apache.org/

Communicating via the Internet

which is poured into a WebKit widget for display. Rebuilding this demo
using a ListView is left as an exercise for the reader. Also, since this sample
is relatively long, we will only show relevant pieces of the Java code here in
this chapter, though you can always download the full source from the
CommonsWare Web site.

To make this a bit more interesting, we use the Android location services to
figure out where we are...sort of. The full details of how that works is
described in the chapter on location services.

In the onResume() method, we toggle on location updates, so we will be
informed where we are now and when we move a significant distance
(10km). When a location is available – either at the start or based on
movement – we retrieve the National Weather Service data via our
updateForecast() method:

private void updateForecast(Location loc) {
 String url=String.format(format, loc.getLatitude(),
 loc.getLongitude());
 HttpGet getMethod=new HttpGet(url);

 try {
 ResponseHandler<String> responseHandler=new BasicResponseHandler();
 String responseBody=client.execute(getMethod,
 responseHandler);
 buildForecasts(responseBody);

 String page=generatePage();

 browser.loadDataWithBaseURL(null, page, "text/html",
 "UTF-8", null);
 }
 catch (Throwable t) {
 android.util.Log.e("WeatherDemo", "Exception fetching data", t);
 Toast
 .makeText(this, "Request failed: "+t.toString(), Toast.LENGTH_LONG)
 .show();
 }
}

The updateForecast() method takes a Location as a parameter, obtained
from the location update process. For now, all you need to know is that
Location sports getLatitude() and getLongitude() methods that return the
latitude and longitude of the device's position, respectively.

483

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/Android/

Communicating via the Internet

We hold the URL to the National Weather Service XML in a string resource,
and pour in the latitude and longitude at runtime. Given our HttpClient
object created in onCreate(), we populate an HttpGet with that customized
URL, then execute that method. Given the resulting XML from the REST
service, we build the forecast HTML page (see below) and pour that into
the WebKit widget. If the HttpClient blows up with an exception, we provide
that error as a Toast.

Note that we also shut down the HttpClient object in onDestroy().

Parsing Responses

The response you get will be formatted using some system – HTML, XML,
JSON, whatever. It is up to you, of course, to pick out what information you
need and do something useful with it. In the case of the WeatherDemo, we
need to extract the forecast time, temperature, and icon (indicating sky
conditions and precipitation) and generate an HTML page from it.

Android includes:

• Three XML parsers: the traditional W3C DOM (org.w3c.dom), a SAX
parser (org.xml.sax), and the XML pull parser discussed in the
chapter on resources

• A JSON parser (org.json)

You are also welcome to use third-party Java code, where possible, to
handle other formats, such as a dedicated RSS/Atom parser for a feed
reader. The use of third-party Java code is discussed in a separate chapter.

For WeatherDemo, we use the W3C DOM parser in our buildForecasts()
method:

void buildForecasts(String raw) throws Exception {
 DocumentBuilder builder=DocumentBuilderFactory
 .newInstance()
 .newDocumentBuilder();
 Document doc=builder.parse(new InputSource(new StringReader(raw)));
 NodeList times=doc.getElementsByTagName("start-valid-time");

484

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Communicating via the Internet

 for (int i=0;i<times.getLength();i++) {
 Element time=(Element)times.item(i);
 Forecast forecast=new Forecast();

 forecasts.add(forecast);
 forecast.setTime(time.getFirstChild().getNodeValue());
 }

 NodeList temps=doc.getElementsByTagName("value");

 for (int i=0;i<temps.getLength();i++) {
 Element temp=(Element)temps.item(i);
 Forecast forecast=forecasts.get(i);

 forecast.setTemp(new Integer(temp.getFirstChild().getNodeValue()));
 }

 NodeList icons=doc.getElementsByTagName("icon-link");

 for (int i=0;i<icons.getLength();i++) {
 Element icon=(Element)icons.item(i);
 Forecast forecast=forecasts.get(i);

 forecast.setIcon(icon.getFirstChild().getNodeValue());
 }
}

The National Weather Service XML format is...curiously structured, relying
heavily on sequential position in lists versus the more object-oriented style
you find in formats like RSS or Atom. That being said, we can take a few
liberties and simplify the parsing somewhat, taking advantage of the fact
that the elements we want (start-valid-time for the forecast time, value for
the temperature, and icon-link for the icon URL) are all unique within the
document.

The HTML comes in as an InputStream and is fed into the DOM parser.
From there, we scan for the start-valid-time elements and populate a set of
Forecast models using those start times. Then, we find the temperature
value elements and icon-link URLs and fill those in to the Forecast objects.

In turn, the generatePage() method creates a rudimentary HTML table with
the forecasts:

String generatePage() {
 StringBuilder bufResult=new StringBuilder("<html><body><table>");

485

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Communicating via the Internet

 bufResult.append("<tr><th width=\"50%\">Time</th>"+
 "<th>Temperature</th><th>Forecast</th></tr>");

 for (Forecast forecast : forecasts) {
 bufResult.append("<tr><td align=\"center\">");
 bufResult.append(forecast.getTime());
 bufResult.append("</td><td align=\"center\">");
 bufResult.append(forecast.getTemp());
 bufResult.append("</td><td><img src=\"");
 bufResult.append(forecast.getIcon());
 bufResult.append("\"></td></tr>");
 }

 bufResult.append("</table></body></html>");

 return(bufResult.toString());
}

The result looks like this:

Figure 141. The WeatherDemo sample application

Stuff To Consider

If you need to use SSL, bear in mind that the default HttpClient setup does
not include SSL support. Mostly, this is because you need to decide how to

486

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Communicating via the Internet

handle SSL certificate presentation – do you blindly accept all certificates,
even self-signed or expired ones? Or do you want to ask the user if they
really want to use some strange certificates?

Similarly, HttpClient, by default, is designed for single-threaded use. If you
will be using HttpClient from some other place where multiple threads
might be an issue, you can readily set up HttpClient to support multiple
threads.

For these sorts of topics, you are best served by checking out the HttpClient
Web site for documentation and support.

AndroidHttpClient

Starting in Android 2.2 (API level 8), you can use the AndroidHttpClient
class, found in the android.net.http package. This is an implementation of
the HttpClient interface, like DefaultHttpClient. However, it is pre-
configured with settings that the core Android team feels make sense for
the platform.

What you gain is:

• SSL management

• A direct way to specify the user agent string – this is supplied in
your call to the static newInstance() method to get an instance of
AndroidHttpClient

• Utility methods for working with material compressed via GZIP, for
parsing dates in HTTP headers, etc.

What you lose is automatic cookie storage. A regular DefaultHttpClient will
cache cookies in memory and use them on subsequent requests where they
are needed. AndroidHttpClient does not. There are ways to fix that, by using
an HttpContext object, as is described in the AndroidHttpClient
documentation.

487

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://hc.apache.org/
http://hc.apache.org/

Communicating via the Internet

Also, AndroidHttpClient prevents you from using it on the main application
thread – requests can only be made on a background thread. This is a
feature, even if some people might consider it to be a bug.

Since this class is only available in Android 2.2 and beyond, it may not
make sense to do much with it until such time as you are only supporting
API level 8 or higher.

Leveraging Internet-Aware Android
Components

Wherever possible, aim to use built-in Android components that can
handle your Internet access for you. Such components will have been fairly
rigorously tested and are more likely to handle edge cases well, such as
dealing with users on WiFi who move out of range of the access point and
fail over to mobile data connections (e.g., 3G).

For example, the WebView widget (introduced in a previous chapter) and the
MapView widget (covered in a later chapter) both handle Internet access for
you. While you still need the INTERNET permission, you do not have to
perform HTTP requests or the like yourself.

This section outlines some other ways you can take advantage of built-in
Internet capability.

Downloading Files

Android 2.3 has introduced a DownloadManager, designed to handle a lot of
the complexities of downloading larger files, such as:

• Determining whether the user is on WiFi or mobile data, and if so,
whether the download should occur

• Handling when the user, previously on WiFi, moves out of range of
the access point and "fails over" to mobile data

• Ensuring the device stays awake while the download proceeds

488

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Communicating via the Internet

DownloadManager itself is less complicated than the alternative of writing all
of it yourself. However, it does present a few challenges. In this section, we
will examine the Internet/Download sample project that uses
DownloadManager.

The Permissions

To use DownloadManager, you will need to hold the INTERNET permission.
Depending on where you elect to download the file, you may also need the
WRITE_EXTERNAL_STORAGE permission.

However, at the time of this writing, if you lack sufficient permissions, you
may get an error complaining that you are missing ACCESS_ALL_DOWNLOADS.
This appears to be a bug in the DownloadManager implementation – it should
be complaining about INTERNET and/or WRITE_EXTERNAL_STORAGE. You do not
need to hold the ACCESS_ALL_DOWNLOADS permission, which is not even
documented as of Android 3.0.

For example, here is the manifest for the Internet/Download application:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.download" android:versionCode="1"
android:versionName="1.0">
 <!-- <uses-permission android:name="android.permission.ACCESS_ALL_DOWNLOADS"
/> -->
 <uses-permission android:name="android.permission.INTERNET"/>
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
 <application android:label="@string/app_name" android:icon="@drawable/cw">
 <activity android:name="DownloadDemo" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>
 <supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

489

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://code.google.com/p/android/issues/detail?id=13043

Communicating via the Internet

The Layout

Our sample application has a simple layout, consisting of three buttons:

• One to kick off a download

• One to query the status of a download

• One to display a system-supplied activity containing the roster of
downloaded files

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <Button
 android:id="@+id/start"
 android:text="Start Download"
 android:layout_width="fill_parent"
 android:layout_height="0dip"
 android:layout_weight="1"
 android:onClick="startDownload"
 />
 <Button
 android:id="@+id/query"
 android:text="Query Status"
 android:layout_width="fill_parent"
 android:layout_height="0dip"
 android:layout_weight="1"
 android:onClick="queryStatus"
 android:enabled="false"
 />
 <Button
 android:text="View Log"
 android:layout_width="fill_parent"
 android:layout_height="0dip"
 android:layout_weight="1"
 android:onClick="viewLog"
 />
</LinearLayout>

Requesting the Download

To kick off a download, we first need to get access to the DownloadManager.
This is a so-called "system service". You can call getSystemService() on any
activity (or other Context), provide it the identifier of the system service you

490

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Communicating via the Internet

want, and receive the system service object back. However, since
getSystemService() supports a wide range of these objects, you need to cast
it to the proper type for the service you requested.

So, for example, here is a line from onCreate() of the DownloadDemo activity
where we get the DownloadManager:

mgr=(DownloadManager)getSystemService(DOWNLOAD_SERVICE);

Most of these managers have no close() or release() or goAwayPlease() sort
of methods – you can just use them and let garbage collection take care of
cleaning them up.

Given the manager, we can now call an enqueue() method to request a
download. The name is relevant – do not assume that your download will
begin immediately, though often times it will. The enqueue() method takes
a DownloadManager.Request object as a parameter. The Request object uses the
builder pattern, in that most methods return the Request itself, so you can
chain a series of calls together with less typing.

For example, the top-most button in our layout is tied to a startDownload()
method in DownloadDemo, shown below:

public void startDownload(View v) {
 Uri uri=Uri.parse("http://commonsware.com/misc/test.mp4");

 Environment
 .getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWNLOADS)
 .mkdirs();

 lastDownload=
 mgr.enqueue(new DownloadManager.Request(uri)
 .setAllowedNetworkTypes(DownloadManager.Request.NETWORK_WIFI |
 DownloadManager.Request.NETWORK_MOBILE)
 .setAllowedOverRoaming(false)
 .setTitle("Demo")
 .setDescription("Something useful. No, really.")
 .setDestinationInExternalPublicDir(Environment.DIRECTORY_DOWNLOA
DS,
 "test.mp4"));

 v.setEnabled(false);

491

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Communicating via the Internet

 findViewById(R.id.query).setEnabled(true);
}

We are downloading a sample MP4 file, and we want to download it to the
external storage area. To do the latter, we are using
getExternalStoragePublicDirectory() on Environment, which gives us a
directory suitable for storing a certain class of content. In this case, we are
going to store the download in the Environment.DIRECTORY_DOWNLOADS, though
we could just as easily have chosen Environment.DIRECTORY_MOVIES, since we
are downloading a video clip. Note that the File object returned by
getExternalStoragePublicDirectory() may point to a not-yet-created
directory, which is why we call mkdirs() on it, to ensure the directory exists.

We then create the DownloadManager.Request object, with the following
attributes:

• We are downloading the specific URL we want, courtesy of the Uri
supplied to the Request constructor

• We are willing to use either mobile data or WiFi for the download
(setAllowedNetworkTypes()), but we do not want the download to
incur roaming charges (setAllowedOverRoaming())

• We want the file downloaded as test.mp4 in the downloads area on
the external storage (setDestinationInExternalPublicDir())

We also provide a name (setTitle()) and description (setDescription()),
which are used as part of the notification drawer entry for this download.
The user will see these when they slide down the drawer while the
download is progressing.

The enqueue() method returns an ID of this download, which we hold onto
for use in querying the download status.

Keeping Track of Download Status

If the user presses the Query Status button, we want to find out the details
of how the download is progressing. To do that, we can call query() on the
DownloadManager. The query() method takes a DownloadManager.Query object,

492

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Communicating via the Internet

describing what download(s) you are interested in. In our case, we use the
value we got from the enqueue() method when the user requested the
download:

public void queryStatus(View v) {
 Cursor c=mgr.query(new DownloadManager.Query().setFilterById(lastDownload));

 if (c==null) {
 Toast.makeText(this, "Download not found!", Toast.LENGTH_LONG).show();
 }
 else {
 c.moveToFirst();

 Log.d(getClass().getName(), "COLUMN_ID: "+
 c.getLong(c.getColumnIndex(DownloadManager.COLUMN_ID)));
 Log.d(getClass().getName(), "COLUMN_BYTES_DOWNLOADED_SO_FAR: "+
 c.getLong(c.getColumnIndex(DownloadManager.COLUMN_BYTES_DOWNLOADED_SO_
FAR)));
 Log.d(getClass().getName(), "COLUMN_LAST_MODIFIED_TIMESTAMP: "+
 c.getLong(c.getColumnIndex(DownloadManager.COLUMN_LAST_MODIFIED_TIMEST
AMP)));
 Log.d(getClass().getName(), "COLUMN_LOCAL_URI: "+
 c.getString(c.getColumnIndex(DownloadManager.COLUMN_LOCAL_URI)));
 Log.d(getClass().getName(), "COLUMN_STATUS: "+
 c.getInt(c.getColumnIndex(DownloadManager.COLUMN_STATUS)));
 Log.d(getClass().getName(), "COLUMN_REASON: "+
 c.getInt(c.getColumnIndex(DownloadManager.COLUMN_REASON)));

 Toast.makeText(this, statusMessage(c), Toast.LENGTH_LONG).show();
 }
}

The query() method returns a Cursor, containing a series of columns
representing the details about our download. There are a series of constants
on the DownloadManager class outlining what is possible. In our case, we
retrieve (and dump to LogCat):

• The ID of the download (COLUMN_ID)

• The amount of data that has been downloaded to date
(COLUMN_BYTES_DOWNLOADED_SO_FAR)

• What the last-modified timestamp is on the download
(COLUMN_LAST_MODIFIED_TIMESTAMP)

• Where the file is being saved to locally (COLUMN_LOCAL_URI)

• What the actual status is (COLUMN_STATUS)

493

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Communicating via the Internet

• What the reason is for that status (COLUMN_REASON)

There are a number of possible status codes (e.g., STATUS_FAILED,
STATUS_SUCCESSFUL, STATUS_RUNNING). Some, like STATUS_FAILED, may have an
accompanying reason to provide more details.

What the User Sees

The user, upon launching the application, sees our three pretty buttons:

Figure 142. The Download sample application, as initially launched

Clicking the first disables the button while the download is going on, and a
download icon appears in the status bar (though it is a bit difficult to see,
given the poor contrast between Android's icon and Android's status bar):

494

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Communicating via the Internet

Figure 143. The Download sample application, performing a download

Sliding down the notification drawer shows the user the progress in the
form of a ProgressBar widget:

495

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Communicating via the Internet

Figure 144. The notification drawer, during a download using
DownloadManager

Tapping on the entry in the notification drawer returns control to our
original activity, where they see a Toast:

496

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Communicating via the Internet

Figure 145. The Download sample application, after coming to the foreground
from the notification

If they tap the middle button during the download, a Toast will appear
indicating that the download is in progress:

497

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Communicating via the Internet

Figure 146. The Download sample application, showing the status mid-
download

Additional details are also dumped to LogCat, visible via DDMS or adb
logcat:

12-10 08:45:01.289: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_ID: 12
12-10 08:45:01.289: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_BYTES_DOWNLOADED_SO_FAR: 615400
12-10 08:45:01.289: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_LAST_MODIFIED_TIMESTAMP: 1291988696232
12-10 08:45:01.289: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_LOCAL_URI: file:///mnt/sdcard/Download/test.mp4
12-10 08:45:01.299: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_STATUS: 2
12-10 08:45:01.299: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_REASON: 0

Once the download is complete, tapping the middle button will indicate
that the download is, indeed, complete, and final information about the
download is emitted to LogCat:

498

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Communicating via the Internet

12-10 08:49:27.360: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_ID: 12
12-10 08:49:27.360: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_BYTES_DOWNLOADED_SO_FAR: 6219229
12-10 08:49:27.370: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_LAST_MODIFIED_TIMESTAMP: 1291988713409
12-10 08:49:27.370: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_LOCAL_URI: file:///mnt/sdcard/Download/test.mp4
12-10 08:49:27.370: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_STATUS: 8
12-10 08:49:27.370: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_REASON: 0

Tapping the bottom button brings up the activity displaying all downloads,
including both successes and failures:

Figure 147. The Downloads screen, showing everything downloaded by the
DownloadManager

And, of course, the file is downloaded. In Android 2.3, in the emulator, our
chosen location maps to /mnt/sdcard/Downloads/test.mp4.

499

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Communicating via the Internet

Limitations

DownloadManager works with HTTP URLs, but not HTTPS (SSL) URLs. This is
unfortunate, as more and more sites are switching to SSL encryption across
the board, to deal with various security challenges. Hopefully, in the future,
DownloadManager will have more options here.

If you display the list of all downloads, and your download is among them,
it is a really good idea to make sure that some activity (perhaps one of
yours) is able to respond to an ACTION_VIEW Intent on that download's MIME
type. Otherwise, when the user taps on the entry in the list, they will get a
Toast indicating that there is nothing available to view the download. This
may confuse users. Alternatively, use setVisibleInDownloadsUi() on your
request, passing in false, to suppress it from this list.

Continuing Our Escape From Janky Code

The rule is simple: do not access the Internet from the main application
thread. Always use a background thread with HttpClient, HttpUrlConnection,
or any other Internet access API you wish to use.

StrictMode, introduced in an earlier chapter, will warn you if you attempt to
access the Internet on the main application thread. AndroidHttpClient will
simply crash if you attempt to make Web requests on the main application
thread. However, these capabilities are only available in newer versions of
Android. That being said, there are ways to have StrictMode in your
application yet only use it in newer versions of Android using conditional
class loading – this technique was covered earlier in this book.

500

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PART V – Services

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 35

Services: The Theory

As noted previously, Android services are for long-running processes that
may need to keep running even when decoupled from any activity.
Examples include playing music even if the "player" activity gets garbage-
collected, polling the Internet for RSS/Atom feed updates, and maintaining
an online chat connection even if the chat client loses focus due to an
incoming phone call.

Services are created when manually started (via an API call) or when some
activity tries connecting to the service via inter-process communication
(IPC). Services will live until specifically shut down or until Android is
desperate for RAM and destroys them prematurely. Running for a long time
has its costs, though, so services need to be careful not to use too much
CPU or keep radios active too much of the time, lest the service cause the
device's battery to get used up too quickly.

This chapter outlines the basic theory behind creating and consuming
services. The next chapter will outline a few specific patterns for services,
ones that may closely match your particular needs. Hence, this chapter is
short on code examples – you will find them and more in the next chapter.

Why Services?

Services are a "Swiss Army knife" for a wide range of functions that do not
require direct access to an activity's user interface, such as:

503

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Services: The Theory

• Performing operations that need to continue even if the user leaves
the application's activities, like a long download (as seen with the
Android Market) or playing music (as seen with Android music
apps)

• Performing operations that need to exist regardless of activities
coming and going, such as maintaining a chat connection in
support of a chat application

• Providing a local API to remote APIs, such as might be provided by
a Web service

• Performing periodic work without user intervention, akin to cron
jobs or Windows scheduled tasks

Even things like home screen app widgets often involve a service to assist
with long-running work.

Many applications will not need any services. Very few applications will
need more than one. However, the service is a powerful tool for an Android
developer's toolbox and is a subject with which any qualified Android
developer should be familiar.

Setting Up a Service

Creating a service implementation shares many characteristics with
building an activity. You inherit from an Android-supplied base class,
override some lifecycle methods, and hook the service into the system via
the manifest.

The Service Class

Just as an activity in your application extends either Activity or an Android-
supplied Activity subclass, a service in your application extends either
Service or an Android-supplied Service subclass. The most common
Service subclass is IntentService, used primarily for the command pattern,
described later in this chapter. That being said, many services simply
extend Service.

504

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Services: The Theory

Lifecycle Methods

Just as activities have onCreate(), onResume(), onPause() and kin, Service
implementations have their own lifecycle methods, such as:

1. onCreate(), which, as with activities, is called when the service
process is created, by any means

2. onStartCommand(), which is called each time the service is sent a
command via startService()

3. onBind(), which is called whenever a client binds to the service via
bindService()

4. onDestroy() which is called as the service is being shut down

As with activities, services initialize whatever they need in onCreate() and
clean up those items in onDestroy(). And, as with activities, the onDestroy()
method of a service might not be called, if Android terminates the entire
application process, such as for emergency RAM reclamation.

The onStartCommand() and onBind() lifecycle methods will be implemented
based on your choice of communicating to the client, as will be explained
later in this chapter.

Manifest Entry

Finally, you need to add the service to your AndroidManifest.xml file, for it to
be recognized as an available service for use. That is simply a matter of
adding a <service> element as a child of the application element, providing
android:name to reference your service class.

Since the service class is in the same Java namespace as everything else in
this application, we can use the shorthand ("WeatherService" or
".WeatherService") to reference our class.

505

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Services: The Theory

If you wish to require some permission of those who wish to start or bind to
the service, add an android:permission attribute naming the permission you
are mandating – see the chapter on permissions for more details.

For example, here is a manifest showing the <service> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.downloader" android:versionCode="1"
android:versionName="1.0">
 <uses-permission android:name="android.permission.INTERNET"/>
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
 <application android:label="@string/app_name" android:icon="@drawable/cw">
 <activity android:name="DownloaderDemo"
android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 <service android:name="Downloader"/>
 </application>
 <supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

Communicating To Services

Clients of services – frequently activities, though not necessarily – have two
main ways to send requests or information to a service. One approach is to
send a command, which creates no lasting connection to the service. The
other approach is to bind to the service, establishing a bi-directional
communications channel that lasts as long as the client needs it.

Sending Commands with startService()

The simplest way to work with a service is to call startService(). The
startService() method takes an Intent parameter, much like
startActivity() does. In fact, the Intent supplied to startService() has the
same two-part role as it does with startActivity():

• Identify the service to communicate with

506

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Services: The Theory

• Supply parameters, in the form of Intent extras, to tell the service
what it is supposed to do

For a local service – the focus of this book – the simplest form of Intent is
one that identifies the class that implements the Intent (e.g., new
Intent(this, MyService.class);).

The call to startService() is asynchronous, so the client will not block. The
service will be created if it is not already running, and it will receive the
Intent via a call to the onStartCommand() lifecycle method. The service can do
whatever it needs to in onStartCommand(), but since onStartCommand() is
called on the main application thread, it should do its work very quickly.
Anything that might take a while should be delegated to a background
thread.

The onStartCommand() method can return one of several values, mostly to
indicate to Android what should happen if the service's process should be
killed while it is running. The most likely return values are:

• START_STICKY, meaning that the service should be moved back into
the started state (as if onStartCommand() had been called), but do not
re-deliver the Intent to onStartCommand()

• START_REDELIVER_INTENT, meaning that the service should be
restarted via a call to onStartCommand(), supplying the same Intent as
was delivered this time

• START_NOT_STICKY, meaning that the service should remain stopped
until explicitly started by application code

By default, calling startService() not only sends the command, but tells
Android to keep the service running until something tells it to stop. One
way to stop a service is to call stopService(), supplying the same Intent
used with startService(), or at least one that is equivalent (e.g., identifies
the same class). At that point, the service will stop and will be destroyed.
Note that stopService() does not employ any sort of reference counting, so
three calls to startService() will result in a single service running, which
will be stopped by a call to stopService().

507

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Services: The Theory

Another possibility for stopping a service is to have the service call
stopSelf() on itself. You might do this if you use startService() to have a
service begin running and doing some work on a background thread, then
having the service stop itself when that background work is completed.

Binding with bindService()

Binding allows a service to expose an API to activities (or other services)
that bind to it. When an activity (or other client) binds to a service, it
primarily is requesting to be able to access the public API exposed by that
service via the service's "binder", as returned by the service's onBind()
method. When doing this, the activity can also indicate, via the
BIND_AUTO_CREATE flag, to have Android automatically start up the service if
it is not already running.

The service's "binder" is usually a subclass of Binder, on which you can put
whatever methods you want to expose to clients. For local services, you can
have as many methods as you want, with whatever method signatures
(parameters, return type, etc.) that you want. The service returns an
instance of the Binder subclass in onBind().

Clients call bindService(), supplying the Intent that identifies the service, a
ServiceConnection object representing the client side of the binding, and an
optional BIND_AUTO_CREATE flag. As with startService(), bindService() is
asynchronous. The client will not know anything about the status of the
binding until the ServiceConnection object is called with
onServiceConnected(). This not only indicates the binding has been
established, but for local services it provides the Binder object that the
service returned via onBind(). At this point, the client can use the Binder to
ask the service to do work on its behalf. Note that if the service is not
already running, and if you provide BIND_AUTO_CREATE, then the service will
be created first before being bound to the client. If you skip
BIND_AUTO_CREATE, bindService() will return false, indicating there was no
existing service to bind to.

508

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Services: The Theory

Eventually, the client will need to call unbindService(), to indicate it no
longer needs to communicate with the service. For example, an activity
might call bindService() in its onCreate() method, then call unbindService()
in its onDestroy() method. The call to unbindService() eventually triggers
onServiceDisconnected() to be called on the ServiceConnection object – at
this point, the client can no longer safely use the Binder object.

If there are no other bound clients to the service, Android will shut down
the service as well, releasing its memory. Hence, we do not need to call
stopService() ourselves – Android handles that, if needed, as a side effect of
unbinding.

If the client is an activity, there are two important steps to take to ensure
that the binding survives a configuration change, like a screen rotation:

1. Instead of calling bindService() on the activity itself, call
bindService() on the Application Context (obtained via
getApplicationContext()).

2. Make sure the ServiceConnection gets from the old instance of the
activity to the new one, probably via
onRetainNonConfigurationInstance().

This allows the binding to persist between activity instances.

Communicating From Services

Of course, the approaches listed in the previous section only work for a
client calling out to a service. The reverse is also frequently needed, so the
service can let an activity or something know about asynchronous events.

Callback/Listener Objects

An activity or other service client can provide some sort of "callback" or
"listener" object to the service, which the service could then call when
needed. To make this work, you would need to:

509

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Services: The Theory

1. Define a Java interface for that listener object

2. Give the service a public API to register and retract listeners

3. Have the service use those listeners at appropriate times, to notify
those who registered the listener of some event

4. Have the activity register and retract a listener as needed

5. Have the activity respond to the listener-based events in some
suitable fashion

The biggest catch is to make sure that the activity retracts the listeners
when it is done. Listener objects generally know their activity, explicitly
(via a data member) or implicitly (by being implemented as an inner class).
If the service is holding onto defunct listener objects, the corresponding
activities will linger in memory, even if the activities are not being used by
Android any more. This represents a big memory leak. You may wish to use
WeakReferences, SoftReferences, or similar constructs to ensure that if an
activity is destroyed, any listeners it registers with your service will not
keep that activity in memory.

Broadcast Intents

An alternative approach, first mentioned in the chapter on Intent filters, is
to have the service send a broadcast Intent that can be picked up by the
activity...assuming the activity is still around and is not paused. The service
can call sendBroadcast(), supplying an Intent that identifies the broadcast,
designed to be picked up by a BroadcastReceiver. This could be a
component-specific broadcast (e.g., new Intent(this, MyReceiver.class)), if
the BroadcastReceiver is registered in the manifest. Or, it can be based on
some action string, perhaps one even documented and designed for third-
party applications to listen for.

The activity, in turn, can register a BroadcastReceiver via
registerReceiver(), though this approach will only work for Intent objects
specifying some action, not ones identifying a particular component. But,
when the activity's BroadcastReceiver receives the broadcast, it can do what
it wants to inform the user or otherwise update itself.

510

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Services: The Theory

Pending Results

Your activity can call createPendingResult(). This returns a PendingIntent –
an object that represents an Intent and the corresponding action to be
performed upon that Intent (e.g., use it to start an activity). In this case, the
PendingIntent will cause a result to be delivered to your activity's
implementation of onActivityResult(), just as if another activity had been
called with startActivityForResult() and, in turn, called setResult() to
send back a result.

Since a PendingIntent is Parcelable, and can therefore be put into an Intent
extra, your activity can pass this PendingIntent to the service. The service, in
turn, can call one of several flavors of the send() method on the
PendingIntent, to notify the activity (via onActivityResult()) of an event,
possibly even supplying data (in the form of an Intent) representing that
event.

Messenger

Yet another possibility is to use a Messenger object. A Messenger sends
messages to an activity's Handler. Within a single activity, a Handler can be
used to send messages to itself, as was demonstrated in the chapter on
threads. However, between components – such as between an activity and a
service – you will need a Messenger to serve as the bridge.

As with a PendingIntent, a Messenger is Parcelable, and so can be put into an
Intent extra. The activity calling startService() or bindService() would
attach a Messenger as an extra on the Intent. The service would obtain that
Messenger from the Intent. When it is time to alert the activity of some
event, the service would:

• Call Message.obtain() to get an empty Message object

• Populate that Message object as needed, with whatever data the
service wishes to pass to the activity

• Call send() on the Messenger, supplying the Message as a parameter

511

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Services: The Theory

The Handler will then receive the message via handleMessage(), on the main
application thread, and so can update the UI or whatever is necessary.

Notifications

Another approach is for the service to let the user know directly about the
work that was completed. To do that, a service can raise a Notification –
putting an icon in the status bar and optionally shaking or beeping or
something. This technique is covered in an upcoming chapter.

512

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 36

Basic Service Patterns

Now that you have seen the pieces that make up services and their clients,
let us examine a few scenarios that employ services and how those
scenarios might be implemented.

The Downloader

If you elect to download something from the Android Market, you are
welcome to back out of the Market application entirely. This does not
cancel the download – the download and installation run to completion,
despite no Market activity being on-screen.

You may have similar circumstances in your application, from downloading
a purchased e-book to downloading a map for a game to downloading a file
from some sort of "drop box" file-sharing service.

Android 2.3 introduced the DownloadManager (covered in a previous chapter),
which would handle this for you. However, you might need that sort of
capability on older versions of Android, at least through 2011.

The sample project reviewed in this section is Services/Downloader.

513

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

The Design

This sort of situation is a perfect use for the command pattern and an
IntentService. The IntentService has a background thread, so downloads
can take as long as needed. An IntentService will automatically shut down
when the work is done, so the service will not linger and you do not need to
worry about shutting it down yourself. Your activity can simply send a
command via startService() to the IntentService to tell it to go do the
work.

Admittedly, things get a bit trickier when you want to have the activity find
out when the download is complete. This example will show the use of
Messenger for this.

The Service Implementation

Here is the implementation of this IntentService, named Downloader:

package com.commonsware.android.downloader;

import android.app.Activity;
import android.app.IntentService;
import android.content.Intent;
import android.os.Bundle;
import android.os.Environment;
import android.os.Message;
import android.os.Messenger;
import android.util.Log;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import org.apache.http.client.ResponseHandler;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import org.apache.http.impl.client.BasicResponseHandler;
import org.apache.http.impl.client.DefaultHttpClient;

public class Downloader extends IntentService {
 public static final String
EXTRA_MESSENGER="com.commonsware.android.downloader.EXTRA_MESSENGER";
 private HttpClient client=null;

 public Downloader() {
 super("Downloader");
 }

514

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

 @Override
 public void onCreate() {
 super.onCreate();

 client=new DefaultHttpClient();
 }

 @Override
 public void onDestroy() {
 super.onDestroy();

 client.getConnectionManager().shutdown();
 }

 @Override
 public void onHandleIntent(Intent i) {
 HttpGet getMethod=new HttpGet(i.getData().toString());
 int result=Activity.RESULT_CANCELED;

 try {
 ResponseHandler<byte[]> responseHandler=new ByteArrayResponseHandler();
 byte[] responseBody=client.execute(getMethod, responseHandler);
 File output=new File(Environment.getExternalStorageDirectory(),
 i.getData().getLastPathSegment());

 if (output.exists()) {
 output.delete();
 }

 FileOutputStream fos=new FileOutputStream(output.getPath());

 fos.write(responseBody);
 fos.close();
 result=Activity.RESULT_OK;
 }
 catch (IOException e2) {
 Log.e(getClass().getName(), "Exception in download", e2);
 }

 Bundle extras=i.getExtras();

 if (extras!=null) {
 Messenger messenger=(Messenger)extras.get(EXTRA_MESSENGER);
 Message msg=Message.obtain();

 msg.arg1=result;

 try {
 messenger.send(msg);
 }
 catch (android.os.RemoteException e1) {
 Log.w(getClass().getName(), "Exception sending message", e1);
 }

515

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

 }
 }
}

In onCreate(), we obtain a DefaultHttpClient object, as was described in the
chapter on Internet access. In onDestroy(), we shut down the client. This
way, if several download requests are invoked in sequence, we can use a
single DefaultHttpClient object – the IntentService will only shut down
after all enqueued work has been completed.

The bulk of the work is accomplished in onHandleIntent(), which is called
on the IntentService, on a background thread, every time startService() is
called. For the Intent, we obtain the URL of the file to download via a call to
getData() on the supplied Intent. Actually downloading the file uses the
DefaultHttpClient object, along with an HttpGet object. However, since the
file might be binary (e.g., MP3) instead of text, we cannot use a
BasicResponseHandler. Instead, we use a ByteArrayResponseHandler – a
custom ResponseHandler cloned from the source for BasicResponseHandler,
but one that returns a byte[] instead of a String:

package com.commonsware.android.downloader;

import java.io.IOException;
import org.apache.http.HttpEntity;
import org.apache.http.HttpResponse;
import org.apache.http.StatusLine;
import org.apache.http.client.ResponseHandler;
import org.apache.http.client.HttpResponseException;
import org.apache.http.util.EntityUtils;

public class ByteArrayResponseHandler implements ResponseHandler<byte[]> {
 public byte[] handleResponse(final HttpResponse response)
 throws IOException, HttpResponseException {
 StatusLine statusLine=response.getStatusLine();

 if (statusLine.getStatusCode()>=300) {
 throw new HttpResponseException(statusLine.getStatusCode(),
 statusLine.getReasonPhrase());
 }

 HttpEntity entity=response.getEntity();

 if (entity==null) {
 return(null);
 }

516

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

 return(EntityUtils.toByteArray(entity));
 }
}

Once the file is downloaded to external storage, we need to alert the
activity that the work is completed. If the activity is interested in this sort
of message, it will have attached a Messenger object as EXTRA_MESSENGER to the
Intent. Downloader gets the Messenger, creates an empty Message object, and
puts a result code in the arg1 field of the Message. It then sends the Message
to the activity. If the activity was destroyed before this point, the request to
send the message will fail with a RemoteObjectException.

Since this is an IntentService, it will automatically shut down when
onHandleIntent() completes, if there is no more work queued to be done.

Using the Service

The activity demonstrating the use of Downloader has a trivial UI, consisting
of one large button:

<?xml version="1.0" encoding="utf-8"?>
<Button xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/button"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:text="Do the Download"
 android:onClick="doTheDownload"
/>

That UI is initialized in onCreate(), as usual:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 b=(Button)findViewById(R.id.button);
}

When the user clicks the button, doTheDownload() is called to disable the
button (to prevent accidental duplicate downloads) and call startService():

517

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

public void doTheDownload(View v) {
 b.setEnabled(false);

 Intent i=new Intent(this, Downloader.class);

 i.setData(Uri.parse("http://commonsware.com/Android/excerpt.pdf"));
 i.putExtra(Downloader.EXTRA_MESSENGER, new Messenger(handler));

 startService(i);
}

Here, the Intent we pass over has the URL of the file to download (in this
case, a URL pointing to a PDF), plus a Messenger in the EXTRA_MESSENGER
extra. That Messenger is created with an attachment to the activity's Handler:

private Handler handler=new Handler() {
 @Override
 public void handleMessage(Message msg) {
 b.setEnabled(true);

 Toast
 .makeText(DownloaderDemo.this, "Download complete!",
 Toast.LENGTH_LONG)
 .show();
 }
};

If the activity is still around when the download is complete, the Handler
enables the button and displays a Toast to let the user know that the
download is complete. Note that the activity is ignoring the result code
supplied by the service, though in principle it could do something different
in both the success and failure cases.

The Music Player

Most audio player applications in Android – for music, audiobooks, or
whatever – do not require the user to remain in the player application itself.
Rather, the user can go on and do other things with their device, with the
audio playing in the background. This is similar in many respects to the
download scenario from the previous section. However, in this case, the
user is the one that controls when the work (playing audio) ends.

The sample project reviewed in this section is Services/FakePlayer.

518

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

The Design

Once again, we will use startService(), since we want the service to run
even when the activity starting it has been destroyed. However, this time,
we will use a regular Service, rather than an IntentService. An
IntentService is designed to do work and stop itself, whereas in this case,
we want the user to be able to stop the music playback.

Since music playback is outside the scope of this book, the service will
simply stub out those particular operations.

The Service Implementation

Here is the implementation of this Service, named PlayerService:

package com.commonsware.android.fakeplayer;

import android.app.Service;
import android.content.Intent;
import android.os.Bundle;
import android.os.IBinder;
import android.util.Log;

public class PlayerService extends Service {
 public static final String EXTRA_PLAYLIST="EXTRA_PLAYLIST";
 public static final String EXTRA_SHUFFLE="EXTRA_SHUFFLE";
 private boolean isPlaying=false;

 @Override
 public int onStartCommand(Intent intent, int flags, int startId) {
 String playlist=intent.getStringExtra(EXTRA_PLAYLIST);
 boolean useShuffle=intent.getBooleanExtra(EXTRA_SHUFFLE, false);

 play(playlist, useShuffle);

 return(START_NOT_STICKY);
 }

 @Override
 public void onDestroy() {
 stop();
 }

 @Override
 public IBinder onBind(Intent intent) {
 return(null);

519

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

 }

 private void play(String playlist, boolean useShuffle) {
 if (!isPlaying) {
 Log.w(getClass().getName(), "Got to play()!");
 isPlaying=true;
 }
 }

 private void stop() {
 if (isPlaying) {
 Log.w(getClass().getName(), "Got to stop()!");
 isPlaying=false;
 }
 }
}

In this case, we really do not need anything for onCreate(), so that lifecycle
method is skipped. On the other hand, we have to implement onBind(),
because that is a required method of Service subclasses. IntentService
implements onBind() for us, which is why that was not needed for the
Downloader sample.

When the client calls startService(), onStartCommand() is called in
PlayerService. Here, we get the Intent and pick out some extras to tell us
what to play back (EXTRA_PLAYLIST) and other configuration details (e.g.,
EXTRA_SHUFFLE). onStartCommand() calls play(), which simply flags that we are
playing and logs a message to LogCat – a real music player would use
MediaPlayer to start playing the first song in the playlist. onStartCommand()
returns START_NOT_STICKY, indicating that if Android has to kill off this
service (e.g., low memory), it should not restart it once conditions improve.

onDestroy() stops the music from playing – theoretically, anyway – by
calling a stop() method. Once again, this just logs a message to LogCat,
plus updates our internal are-we-playing flag.

In the upcoming chapter on notifications, we will revisit this sample and
discuss the use of startForeground() to make it easier for the user to get
back to the music player, plus let Android know that the service is
delivering part of the foreground experience and therefore should not be
shut down.

520

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

Using the Service

The FakePlayer activity demonstrating the use of PlayerService has a UI
twice as complex as the previous sample, consisting of two large buttons:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <Button
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"
 android:text="Start the Player"
 android:onClick="startPlayer"
 />
 <Button
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"
 android:text="Stop the Player"
 android:onClick="stopPlayer"
 />
</LinearLayout>

The activity itself is not much more complex:

package com.commonsware.android.fakeplayer;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;

public class FakePlayer extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 public void startPlayer(View v) {
 Intent i=new Intent(this, PlayerService.class);

 i.putExtra(PlayerService.EXTRA_PLAYLIST, "main");
 i.putExtra(PlayerService.EXTRA_SHUFFLE, true);

 startService(i);

521

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

 }

 public void stopPlayer(View v) {
 stopService(new Intent(this, PlayerService.class));
 }
}

The onCreate() method merely loads the UI. The startPlayer() method
constructs an Intent with fake values for EXTRA_PLAYLIST and EXTRA_SHUFFLE,
then calls startService(). After you press the top button, you will see the
corresponding message in LogCat. Similarly, stopPlayer() calls
stopService(), triggering the second LogCat message. Notably, you do not
need to keep the activity running in between those button clicks – you can
exit the activity via BACK and come back later to stop the service.

The Web Service Interface

If you are going to consume a REST-style Web service, you may wish to
create a Java client-side API for that service. This allows you to isolate
details about the Web service (URLs, authorization credentials, etc.) in one
place, with the rest of your application just able to use the published API. If
the client-side API might involve state, such as a session ID or cached
results, you may wish to use a service to implement the client-side API. In
this case, the most natural form of service would be one that publishes a
Binder, so clients can call a "real" API, that the service translates into HTTP
requests.

In this case, we want to create a client-side Java API for the US National
Weather Service's forecast Web service, so we can get a weather forecast
(timestamps, projected temperatures, and projected precipitation) for a
given latitude and longitude. As you may recall, we examined this Web
service back in the chapter on Internet access.

The sample project reviewed in this section is Services/WeatherAPI.

522

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

The Design

To use the binding pattern, we will need to expose an API from a "binder"
object. Since the weather forecast arrives in a singularly awful XML
structure, we will have the binder be responsible for parsing the XML.
Hence, we can say that the binder will have a getForecast() method to get
us an ArrayList of Forecast objects, each Forecast representing one
timestamp/temperature/precipitation triple.

Once again, to supply the latitude and longitude of the forecast roster to
retrieve, we will use a Location object, which will be obtained from GPS.
This part of the sample will be described in greater detail in the chapter on
location management.

Since the Web service call may take a while, it is unsafe to do this on the
main application thread. In this sample, we will have the service use an
AsyncTask to call our weather API, so the activity largely can be ignorant of
threading issues.

The Rotation Challenge

Back in the chapter on threading, we noted the issues involved with
orientation changes (or other configuration changes) and background
threads in activities. The solution was to use
onRetainNonConfigurationInstance() with a static inner class AsyncTask
implementation, which we would manually associate with the new, post-
configuration-change activity.

That same problem crops up with the binding pattern as well, one of the
reasons why binding is difficult to use. If you bind to a service from an
activity, that binding will not magically pass to the new activity instance
after an orientation change. Instead, you need to do two things:

1. Bind to the service not using the activity as the Context, but rather
by using getApplicationContext(), as that Context is one that will live
for the lifetime of your process

523

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

2. Pass the ServiceConnection representing this binding from the old
activity instance to the new one as part of the configuration change

To accomplish the second feat, you will need to use the same
onRetainNonConfigurationInstance() trick as was used with threads.

The Service Implementation

Our service-side logic is broken into three classes, Forecast, WeatherBinder,
and WeatherService, plus one interface, WeatherListener.

The Forecast

The Forecast class merely encapsulates the three pieces of the forecast data
triple: the timestamp, the temperature, and the icon indicating the
expected precipitation (if any):

package com.commonsware.android.weather;

class Forecast {
 String time="";
 Integer temp=null;
 String iconUrl="";

 String getTime() {
 return(time);
 }

 void setTime(String time) {
 this.time=time.substring(0,16).replace('T', ' ');
 }

 Integer getTemp() {
 return(temp);
 }

 void setTemp(Integer temp) {
 this.temp=temp;
 }

 String getIcon() {
 return(iconUrl);
 }

 void setIcon(String iconUrl) {

524

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

 this.iconUrl=iconUrl;
 }
}

The Interface

Because we are going to fetch the actual weather forecast on a background
thread in the service, we have a slight API challenge – calls on our binder
are synchronous. Hence, we cannot have a getForecast() method that
returns our forecast. Rather, we need to give some way for the service to get
the forecast back to our activity. In this case, we will pass in a listener
object (WeatherListener), that the service will use when a forecast is ready:

package com.commonsware.android.weather;

import java.util.ArrayList;

public interface WeatherListener {
 void updateForecast(ArrayList<Forecast> forecast);
 void handleError(Exception e);
}

The Binder

The WeatherBinder extends Binder, a requirement for the local binding
pattern. Other than that, the API is up to us.

Hence, we expose three methods:

1. onCreate(), to be called when the WeatherBinder is set up, so we can
get a DefaultHttpClient object to use with the Web service

2. onDestroy(), to be called when the WeatherBinder is no longer
needed, so we can shut down that DefaultHttpClient object

3. getForecast(), the main public API for use by our activity, to kick off
the background work to create our ArrayList of Forecast objects
given a Location

package com.commonsware.android.weather;

import android.app.Service;

525

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

import android.content.Context;
import android.content.Intent;
import android.location.Location;
import android.os.AsyncTask;
import android.os.Binder;
import android.os.Bundle;
import java.io.IOException;
import java.io.StringReader;
import java.util.ArrayList;
import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import org.apache.http.client.ResponseHandler;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import org.apache.http.impl.client.BasicResponseHandler;
import org.apache.http.impl.client.DefaultHttpClient;
import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.NodeList;
import org.xml.sax.InputSource;

public class WeatherBinder extends Binder {
 private String forecast=null;
 private HttpClient client=null;
 private String format=null;

 void onCreate(Context ctxt) {
 client=new DefaultHttpClient();
 format=ctxt.getString(R.string.url);
 }

 void onDestroy() {
 client.getConnectionManager().shutdown();
 }

 void getForecast(Location loc, WeatherListener listener) {
 new FetchForecastTask(listener).execute(loc);
 }

 private ArrayList<Forecast> buildForecasts(String raw) throws Exception {
 ArrayList<Forecast> forecasts=new ArrayList<Forecast>();
 DocumentBuilder builder=DocumentBuilderFactory
 .newInstance()
 .newDocumentBuilder();
 Document doc=builder.parse(new InputSource(new StringReader(raw)));
 NodeList times=doc.getElementsByTagName("start-valid-time");

 for (int i=0;i<times.getLength();i++) {
 Element time=(Element)times.item(i);
 Forecast forecast=new Forecast();

 forecasts.add(forecast);
 forecast.setTime(time.getFirstChild().getNodeValue());
 }

526

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

 NodeList temps=doc.getElementsByTagName("value");

 for (int i=0;i<temps.getLength();i++) {
 Element temp=(Element)temps.item(i);
 Forecast forecast=forecasts.get(i);

 forecast.setTemp(new Integer(temp.getFirstChild().getNodeValue()));
 }

 NodeList icons=doc.getElementsByTagName("icon-link");

 for (int i=0;i<icons.getLength();i++) {
 Element icon=(Element)icons.item(i);
 Forecast forecast=forecasts.get(i);

 forecast.setIcon(icon.getFirstChild().getNodeValue());
 }

 return(forecasts);
 }

 class FetchForecastTask extends AsyncTask<Location, Void, ArrayList<Forecast>>
{
 Exception e=null;
 WeatherListener listener=null;

 FetchForecastTask(WeatherListener listener) {
 this.listener=listener;
 }

 @Override
 protected ArrayList<Forecast> doInBackground(Location... locs) {
 ArrayList<Forecast> result=null;

 try {
 Location loc=locs[0];
 String url=String.format(format, loc.getLatitude(),
 loc.getLongitude());
 HttpGet getMethod=new HttpGet(url);
 ResponseHandler<String> responseHandler=new BasicResponseHandler();
 String responseBody=client.execute(getMethod, responseHandler);

 result=buildForecasts(responseBody);
 }
 catch (Exception e) {
 this.e=e;
 }

 return(result);
 }

 @Override
 protected void onPostExecute(ArrayList<Forecast> forecast) {

527

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

 if (listener!=null) {
 if (forecast!=null) {
 listener.updateForecast(forecast);
 }

 if (e!=null) {
 listener.handleError(e);
 }
 }
 }
 }
}

Most of this is merely doing the Web service request using
DefaultHttpClient and an HttpGet object, plus using the DOM parser to
convert the XML into the Forecast objects. However, this is wrapped in a
FetchForecastTask – an AsyncTask that will do the HTTP operation and
parsing on a background thread. In onPostExecute(), the task invokes our
WeatherListener, either to supply the forecast (updateForecast()) or hand
over an Exception that was raised (handleError()).

The Service

The WeatherService, therefore, is fairly short, with the business logic
delegated to WeatherBinder:

package com.commonsware.android.weather;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;
import java.util.ArrayList;

public class WeatherService extends Service {
 private final WeatherBinder binder=new WeatherBinder();

 @Override
 public void onCreate() {
 super.onCreate();

 binder.onCreate(this);
 }

 @Override
 public IBinder onBind(Intent intent) {
 return(binder);
 }

528

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

 @Override
 public void onDestroy() {
 super.onDestroy();

 binder.onDestroy();
 }
}

Our onCreate() and onDestroy() methods delegate to the WeatherBinder, and
onBind() returns the WeatherBinder itself.

Using the Service

On the surface, the WeatherDemo activity should be simple:

• Bind to the service in onCreate()

• Arrange to get GPS fixes, in the form of Location objects

• When a fix comes in, use the WeatherBinder to get a forecast, convert
it to HTML, and display it in a WebView

• Unbind from the service in onDestroy()

However, our decision to use the binding pattern and to have the activity
deal with the background thread means there is more work involved than
those bullet points.

First, here is the full WeatherDemo implementation:

package com.commonsware.android.weather;

import android.app.Activity;
import android.app.AlertDialog;
import android.content.ComponentName;
import android.content.Context;
import android.content.Intent;
import android.content.IntentFilter;
import android.content.ServiceConnection;
import android.location.Location;
import android.location.LocationListener;
import android.location.LocationManager;
import android.os.AsyncTask;
import android.os.Bundle;

529

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

import android.os.DeadObjectException;
import android.os.RemoteException;
import android.os.IBinder;
import android.util.Log;
import android.webkit.WebView;
import java.util.ArrayList;

public class WeatherDemo extends Activity {
 private WebView browser;
 private LocationManager mgr=null;
 private State state=null;
 private boolean isConfigurationChanging=false;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 browser=(WebView)findViewById(R.id.webkit);
 state=(State)getLastNonConfigurationInstance();

 if (state==null) {
 state=new State();
 getApplicationContext()
 .bindService(new Intent(this, WeatherService.class),
 state.svcConn, BIND_AUTO_CREATE);
 }
 else if (state.lastForecast!=null) {
 showForecast();
 }

 state.attach(this);

 mgr=(LocationManager)getSystemService(LOCATION_SERVICE);
 mgr.requestLocationUpdates(LocationManager.GPS_PROVIDER,
 3600000, 1000, onLocationChange);
 }

 @Override
 public void onDestroy() {
 super.onDestroy();

 if (mgr!=null) {
 mgr.removeUpdates(onLocationChange);
 }

 if (!isConfigurationChanging) {
 getApplicationContext().unbindService(state.svcConn);
 }
 }

 @Override
 public Object onRetainNonConfigurationInstance() {
 isConfigurationChanging=true;

530

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

 return(state);
 }

 private void goBlooey(Throwable t) {
 AlertDialog.Builder builder=new AlertDialog.Builder(this);

 builder
 .setTitle("Exception!")
 .setMessage(t.toString())
 .setPositiveButton("OK", null)
 .show();
 }

 static String generatePage(ArrayList<Forecast> forecasts) {
 StringBuilder bufResult=new StringBuilder("<html><body><table>");

 bufResult.append("<tr><th width=\"50%\">Time</th>"+
 "<th>Temperature</th><th>Forecast</th></tr>");

 for (Forecast forecast : forecasts) {
 bufResult.append("<tr><td align=\"center\">");
 bufResult.append(forecast.getTime());
 bufResult.append("</td><td align=\"center\">");
 bufResult.append(forecast.getTemp());
 bufResult.append("</td><td><img src=\"");
 bufResult.append(forecast.getIcon());
 bufResult.append("\"></td></tr>");
 }

 bufResult.append("</table></body></html>");

 return(bufResult.toString());
 }

 void showForecast() {
 browser.loadDataWithBaseURL(null, state.lastForecast,
 "text/html", "UTF-8", null);
 }

 LocationListener onLocationChange=new LocationListener() {
 public void onLocationChanged(Location location) {
 if (state.weather!=null) {
 state.weather.getForecast(location, state);
 }
 else {
 Log.w(getClass().getName(), "Unable to fetch forecast – no
WeatherBinder");
 }
 }

 public void onProviderDisabled(String provider) {
 // required for interface, not used
 }

531

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

 public void onProviderEnabled(String provider) {
 // required for interface, not used
 }

 public void onStatusChanged(String provider, int status,
 Bundle extras) {
 // required for interface, not used
 }
 };

 static class State implements WeatherListener {
 WeatherBinder weather=null;
 WeatherDemo activity=null;
 String lastForecast=null;

 void attach(WeatherDemo activity) {
 this.activity=activity;
 }

 public void updateForecast(ArrayList<Forecast> forecast) {
 lastForecast=generatePage(forecast);
 activity.showForecast();
 }

 public void handleError(Exception e) {
 activity.goBlooey(e);
 }

 ServiceConnection svcConn=new ServiceConnection() {
 public void onServiceConnected(ComponentName className,
 IBinder rawBinder) {
 weather=(WeatherBinder)rawBinder;
 }

 public void onServiceDisconnected(ComponentName className) {
 weather=null;
 }
 };
 }
}

Now, let us look at the highlights of the service connection and the
background thread.

Managing the State

We need to ensure that our ServiceConnection can be passed between
activity instances on a configuration change. Hence, we have a State static

532

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

inner class to hold that, plus two other bits of information: the Activity the
state is associated with, and a String showing the last forecast we retrieved:

static class State implements WeatherListener {
 WeatherBinder weather=null;
 WeatherDemo activity=null;
 String lastForecast=null;

 void attach(WeatherDemo activity) {
 this.activity=activity;
 }

 public void updateForecast(ArrayList<Forecast> forecast) {
 lastForecast=generatePage(forecast);
 activity.showForecast();
 }

 public void handleError(Exception e) {
 activity.goBlooey(e);
 }

 ServiceConnection svcConn=new ServiceConnection() {
 public void onServiceConnected(ComponentName className,
 IBinder rawBinder) {
 weather=(WeatherBinder)rawBinder;
 }

 public void onServiceDisconnected(ComponentName className) {
 weather=null;
 }
 };
}

The lastForecast String is to allow us to re-display the generated HTML
after a configuration change. Otherwise, if the user rotates the screen, we
will lose our forecast (only held in the old instance's WebView) and either
have to retrieve a fresh one or wait for a GPS fix.

We return this State object from onRetainNonConfigurationInstance():

@Override
public Object onRetainNonConfigurationInstance() {
 isConfigurationChanging=true;

 return(state);
}

533

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

In onCreate(), if there is no non-configuration instance, we create a fresh
State and bind to the service, since we do not have a service connection at
present. On the other hand, if onCreate() gets a State from
getLastNonConfigurationInstance(), it simply holds onto that state and
reloads our forecast in the WebView. In either case, onCreate() indicates to
the State that the new activity instance is the current one:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 browser=(WebView)findViewById(R.id.webkit);
 state=(State)getLastNonConfigurationInstance();

 if (state==null) {
 state=new State();
 getApplicationContext()
 .bindService(new Intent(this, WeatherService.class),
 state.svcConn, BIND_AUTO_CREATE);
 }
 else if (state.lastForecast!=null) {
 showForecast();
 }

 state.attach(this);

 mgr=(LocationManager)getSystemService(LOCATION_SERVICE);
 mgr.requestLocationUpdates(LocationManager.GPS_PROVIDER,
 3600000, 1000, onLocationChange);
}

Time to Unbind

We bind to the service when onCreate() is called, if it did not receive a State
via getLastNonConfigurationInstance() (in which case, we are already
bound). This begs the question: when do we unbind from the service?

We want to unbind when the activity is destroyed...but not if the activity is
being destroyed because of a configuration change.

Unfortunately, there is no built-in way to make that determination from
onDestroy(). There is an isFinishing() method you can call on an Activity,
which will return true if the activity is going away for good or false

534

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

otherwise. This does return false for a configuration change, but it will also
return false if the activity is being destroyed to free up RAM and the user
might be able to return to it via the BACK button.

This is why onRetainNonConfigurationInstance() flips a
isConfigurationChanging flag in WeatherDemo to true. That flag is initially
false. We then check that flag to see if we should unbind from the service
or not:

@Override
public void onDestroy() {
 super.onDestroy();

 if (mgr!=null) {
 mgr.removeUpdates(onLocationChange);
 }

 if (!isConfigurationChanging) {
 getApplicationContext().unbindService(state.svcConn);
 }
}

535

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 37

Alerting Users Via Notifications

Pop-up messages. Tray icons and their associated "bubble" messages.
Bouncing dock icons. You are no doubt used to programs trying to get your
attention, sometimes for good reason.

Your phone also probably chirps at you for more than just incoming calls:
low battery, alarm clocks, appointment notifications, incoming text
message or email, etc.

Not surprisingly, Android has a whole framework for dealing with these
sorts of things, collectively called "notifications".

Notification Configuration

A service, running in the background, needs a way to let users know
something of interest has occurred, such as when email has been received.
Moreover, the service may need some way to steer the user to an activity
where they can act upon the event – reading a received message, for
example. For this, Android supplies status bar icons, flashing lights, and
other indicators collectively known as "notifications".

Your current phone may well have such icons, to indicate battery life, signal
strength, whether Bluetooth is enabled, and the like. With Android,
applications can add their own status bar icons, with an eye towards having
them appear only when needed (e.g., a message has arrived).

537

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Alerting Users Via Notifications

In Android, you can raise notifications via the NotificationManager. The
NotificationManager is a system service. To use it, you need to get the
service object via getSystemService(NOTIFICATION_SERVICE) from your
activity.

The NotificationManager gives you three methods: one to raise a
Notification (notify()) and two to get rid of an existing Notification
(cancel() and cancelAll()).

The notify() method takes a Notification, which is a data structure that
spells out what form your pestering should take – the capabilities of this
object are described in the following sections.

Hardware Notifications

You can flash LEDs on the device by setting lights to true, also specifying
the color (as an #ARGB value in ledARGB) and what pattern the light should
blink in (by providing off/on durations in milliseconds for the light via
ledOnMS and ledOffMS). Note, however, that Android devices will apply "best
efforts" to meet your color request, meaning that different devices may give
you different colors, or perhaps no control over color at all. For example,
the Motorola CLIQ only has a white LED, so you can ask for any color you
want, and you will get white. Note that you will have to OR (|) in the
Notification.FLAG_SHOW_LIGHTS value into the public flags field on the
Notification object for flashing the LED to work.

You can play a sound, using a Uri to a piece of content held, perhaps, by a
ContentManager (sound). Think of this as a "ringtone" for your application.

You can vibrate the device, controlled via a long[] indicating the on/off
patterns (in milliseconds) for the vibration (vibrate). You might do this by
default, or you might make it an option the user can choose when
circumstances require a more subtle notification than a ringtone. To use
this, though, you will need to request the VIBRATE permission.

538

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Alerting Users Via Notifications

All of these, by default, happen once (e.g., one LED flash, one playback of
the sound). If you want to have them persist until the Notification is
canceled, you will need to set the flags public field in your Notification to
include FLAG_INSISTENT.

Instead of manually specifying the hardware options, you can also use the
defaults field in the Notification, setting it to DEFAULT_LIGHTS,
DEFAULT_SOUND, DEFAULT_VIBRATE, or DEFAULT_ALL, which will use platform
defaults for all hardware options.

Icons

While the flashing lights, sounds, and vibrations are aimed at getting
somebody to look at the device, icons are designed to take them the next
step and tell them what's so important.

To set up an icon for a Notification, you need to set two public fields: icon,
where you provide the identifier of a Drawable resource representing the
icon, and contentIntent, where you supply a PendingIntent to be raised
when the icon is clicked. A PendingIntent is a wrapper around a regular
Intent that allows the Intent to be invoked later, by another process, to
start an activity or whatever. Typically, a Notification will trigger an
activity, in which case you would create the PendingIntent via the static
getActivity() method and give it an Intent that identifies one of your
activities. That being said, you could have the Notification send a
broadcast Intent instead by using a getBroadcast() version of a
PendingIntent.

You can also supply a text blurb to appear when the icon is put on the
status bar (tickerText).

If you want all three, the simpler approach is to call setLatestEventInfo(),
which wraps all three of those in a single call.

You can also set a value in the number public field of your Notification. This
will cause the number you supply to be drawn over top of the icon in one

539

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Alerting Users Via Notifications

corner. This is used, for example, to show the number of unread email
messages, to save you from having to have a bunch of different icons, one
for each possible number of unread messages. By default, the number will be
ignored and not used.

Note that the size of the icons used with a Notification changed with
Android 2.3. It used to be that 25px square was the desired size. Now, they
prefer per-density icons in a more rectangular shape:

• 24px square (inside a 24px wide by 38px high bounding box) for
high-density screens

• 16px square (inside a 16px by 25px bounding box) for medium-
density screens

• 12px square (inside a 12px by 19px bounding box) for low-density
screens

Applications following these rules will want to use specific resource sets for
the new icons:

• res/drawable-hdpi-v9/ for the high-density Android 2.3 editions

• res/drawable-mdpi-v9/ for the medium-density Android 2.3 editions

• res/drawable-ldpi-v9/ for the low-density Android 2.3 editions

• res/drawable/ for the icon to use on Android 2.2 and earlier

More details on guidelines for all icons, including status bar icons, can be
found in the Android developer documentation.

Notifications in Action

Let us now take a peek at the Notifications/Notify1 sample project, in
particular the NotifyDemo class:

package com.commonsware.android.notify;

import android.app.Activity;
import android.app.Notification;

540

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://developer.android.com/guide/practices/ui_guidelines/icon_design.html

Alerting Users Via Notifications

import android.app.NotificationManager;
import android.app.PendingIntent;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;

public class NotifyDemo extends Activity {
 private static final int NOTIFY_ME_ID=1337;
 private int count=0;
 private NotificationManager mgr=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mgr=(NotificationManager)getSystemService(NOTIFICATION_SERVICE);
 }

 public void notifyMe(View v) {
 Notification note=new Notification(R.drawable.stat_notify_chat,
 "Status message!",
 System.currentTimeMillis());
 PendingIntent i=PendingIntent.getActivity(this, 0,
 new Intent(this, NotifyMessage.class),
 0);

 note.setLatestEventInfo(this, "Notification Title",
 "This is the notification message", i);
 note.number=++count;
 note.vibrate=new long[] {500L, 200L, 200L, 500L};
 note.flags|=Notification.FLAG_AUTO_CANCEL;

 mgr.notify(NOTIFY_ME_ID, note);
 }

 public void clearNotification(View v) {
 mgr.cancel(NOTIFY_ME_ID);
 }
}

This activity sports two large buttons, one to kick off a notification after a
five-second delay, and one to cancel that notification (if it is active):

541

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Alerting Users Via Notifications

Figure 148. The NotifyDemo activity main view

Creating the notification, in notifyMe(), is accomplished in a handful of
steps:

1. Create a Notification object with our icon, a message to flash on the
status bar as the notification is raised, and the time associated with
this event

2. Create a PendingIntent that will trigger the display of another
activity (NotifyMessage)

3. Use setLatestEventInfo() to specify that, when the notification is
clicked on, we are to display a certain title and message, and if that
is clicked on, we launch the PendingIntent

4. Update the "number" associated with the notification

5. Specify a vibration pattern – 500ms on, 200ms off, 200ms on, 500ms
off

6. Include FLAG_AUTO_CANCEL in the Notification object's flags field

542

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Alerting Users Via Notifications

7. Tell the NotificationManager (obtained in onCreate())to display the
notification

Hence, if we click the top button, our icon will appear in the status bar,
briefly along with our status message.

Figure 149. Our notification as it appears on the status bar, with our status
message

After the status message goes away, the icon will have our number (initially
1) superimposed on the lower-right corner – you might use this to signify
the number of unread messages.

543

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Alerting Users Via Notifications

Figure 150. Our notification with the superimposed number

If you drag down the icon, a drawer will appear beneath the status bar.
Drag that drawer all the way to the bottom of the screen to show the
outstanding notifications, including our own:

544

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Alerting Users Via Notifications

Figure 151. The notifications drawer, fully expanded, with our notification

If you click on the notification entry in the drawer, you'll be taken to a
trivial activity displaying a message – though in a real application, this
activity would do something useful based upon the event that occurred
(e.g., take users to the newly-arrived mail messages).

Clicking on the cancel button, or clicking on the Clear button in the
drawer, or clicking on the notification entry in the drawer, will remove the
icon from the status bar. The latter is because we included FLAG_AUTO_CANCEL
in the Notification, indicating that a tap on the drawer entry should cancel
the Notification itself.

Staying in the Foreground

Notifications have another use: keeping select services around.

Services do not live forever. Android may terminate your application's
process to free up memory in an emergency situation, or just because it

545

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Alerting Users Via Notifications

seems to have been hanging around memory too long. Ideally, you design
your services to deal with the fact that they may not run indefinitely.

However, some services will be missed by the user if they mysteriously
vanish. For example, the default music player application that ships with
Android uses a service for the actual music playback. That way, the user can
listen to music while continuing to use their phone for other purposes. The
service only stops when the user goes in and presses the stop button in the
music player activity. If that service were to be shut down unexpectedly, the
user might wonder what is wrong.

Services like this can declare themselves as being part of the "foreground".
This will cause their priority to rise and make them less likely to be bumped
out of memory. The trade-off is that the service has to maintain a
Notification, so the user knows that this service is claiming part of the
foreground. And, ideally, that Notification provides an easy path back to
some activity where the user can stop the service.

To do this, on onCreate() of your service (or wherever else in the service's
life it would make sense), call startForeground(). This takes a Notification
and a locally-unique integer, just like the notify() method on
NotificationManager. It causes the Notification to appear and moves the
service into foreground priority. Later on, you can call stopForeground() to
return to normal priority.

Note that this method was added with Android 2.0 (API level 5). There was
an earlier method, setForeground(), that performs a similar function in
earlier versions of Android.

FakePlayer, Redux

In the chapter on service patterns, we showed a fake music player,
implemented with an Activity (FakePlayer) and a Service (PlayerService).
The PlayerService is actually what is playing the music, so the music can
play even while the FakePlayer activity is gone.

546

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Alerting Users Via Notifications

However, Android may not consider PlayerService to be part of the user
experience, since services normally interact very little directly with users.
This means Android may run PlayerService in a way that caps CPU usage
(not necessarily bad) and might elect to shut down the service if it thinks it
has been running too long (probably bad).

The answer is to use startForeground() and stopForeground(). We can call
startForeground() when we start the music playing in our play() method:

private void play(String playlist, boolean useShuffle) {
 if (!isPlaying) {
 Log.w(getClass().getName(), "Got to play()!");
 isPlaying=true;

 Notification note=new Notification(R.drawable.stat_notify_chat,
 "Can you hear the music?",
 System.currentTimeMillis());
 Intent i=new Intent(this, FakePlayer.class);

 i.setFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP|
 Intent.FLAG_ACTIVITY_SINGLE_TOP);

 PendingIntent pi=PendingIntent.getActivity(this, 0,
 i, 0);

 note.setLatestEventInfo(this, "Fake Player",
 "Now Playing: \"Ummmm, Nothing\"",
 pi);
 note.flags|=Notification.FLAG_NO_CLEAR;

 startForeground(1337, note);
 }
}

The plus side is that our service will have more CPU availability if needed
and will be far less likely to be killed. The user will see an icon in the status
bar, though. If they slide down the notification drawer and tap on our
Notification's entry, they will be taken back to FakePlayer – the existing
instance if there is one, otherwise a fresh instance, courtesy of our Intent
flags (Intent.FLAG_ACTIVITY_CLEAR_TOP| Intent.FLAG_ACTIVITY_SINGLE_TOP).
For a music player, this UI pattern is a good thing, as it makes it easy for the
user to quickly go back to stop the music when needed.

Stopping the music, via our stop() method, will call stopForeground():

547

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Alerting Users Via Notifications

private void stop() {
 if (isPlaying) {
 Log.w(getClass().getName(), "Got to stop()!");
 isPlaying=false;
 stopForeground(true);
 }
}

The true value passed to stopForeground() tells Android to remove the
Notification, which would be the typical approach for this pattern.

Notifications and Honeycomb

The Honeycomb UI introduced in Android 3.0 supports notifications, just
like all previous versions of Android. However, the user experience is a bit
different, owing to the tablet metaphor and its additional screen space.

Here is the unmodified Notifications/Notify1 project, as seen in the
Android 3.0 emulator:

Figure 152. Notify1 as seen on an Android 3.0 emulator

548

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Alerting Users Via Notifications

Other than the Android 3.0 version of the status bar, and the extra-huge
buttons, this is no different than what you would see on a pre-Honeycomb
phone.

Now, if we click the top button, our Notification appears, this time in the
lower right, with the icon and ticker text:

Figure 153. Notify1 with a notification being added

Note that if the user taps the ticker, it triggers your PendingIntent, just as if
they had tapped on the notification drawer entry on a phone.

When the ticker is removed, our icon remains...without the number:

549

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Alerting Users Via Notifications

Figure 154. Notify1 with a number-less notification icon

If the user taps that icon, a notification drawer-style pop-up appears
nearby:

Figure 155. Notify1 with the notification content appearing

550

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Alerting Users Via Notifications

Tapping the icon or the text triggers the PendingIntent, while clicking the X
on the right cancels this Notification.

551

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 38

Requesting and Requiring
Permissions

In the late 1990's, a wave of viruses spread through the Internet, delivered
via email, using contact information culled from Microsoft Outlook. A virus
would simply email copies of itself to each of the Outlook contacts that had
an email address. This was possible because, at the time, Outlook did not
take any steps to protect data from programs using the Outlook API, since
that API was designed for ordinary developers, not virus authors.

Nowadays, many applications that hold onto contact data secure that data
by requiring that a user explicitly grant rights for other programs to access
the contact information. Those rights could be granted on a case-by-case
basis or all at once at install time.

Android is no different, in that it requires permissions for applications to
read or write contact data. Android's permission system is useful well
beyond contact data, and for content providers and services beyond those
supplied by the Android framework.

You, as an Android developer, will frequently need to ensure your
applications have the appropriate permissions to do what you want to do
with other applications' data. You may also elect to require permissions for
other applications to use your data or services, if you make those available
to other Android components. This chapter covers how to accomplish both
these ends.

553

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Requesting and Requiring Permissions

Mother, May I?

Requesting the use of other applications' data or services requires the uses-
permission element to be added to your AndroidManifest.xml file. Your
manifest may have zero or more uses-permission elements, all as direct
children of the root manifest element.

The uses-permission element takes a single attribute, android:name, which is
the name of the permission your application requires:

<uses-permission
 android:name="android.permission.ACCESS_LOCATION" />

The stock system permissions all begin with android.permission and are
listed in the Android SDK documentation for Manifest.permission. Third-
party applications may have their own permissions, which hopefully they
have documented for you. Here are some of the permissions we will see in
this book:

• INTERNET, if your application wishes to access the Internet through
any means, from raw Java sockets through the WebView widget

• WRITE_EXTERNAL_STORAGE, for writing data to the SD card (or whatever
the device has designated as "external storage")

• ACCESS_COARSE_LOCATION and ACCESS_FINE_LOCATION, for determining
where the device is

• CALL_PHONE, to allow the application to place phone calls directly,
without user intervention

Permissions are confirmed at the time the application is installed – the user
will be prompted to confirm it is OK for your application to do what the
permission calls for. Hence, it is important for you to ask for as few
permissions as possible and to justify those you ask for, so users do not
elect to skip installing your application because you ask for too many
unnecessary permissions. This prompt will not appear when loading an
application via USB, such as during development.

554

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Requesting and Requiring Permissions

If you do not have the desired permission and try to do something that
needs it, you should get a SecurityException informing you of the missing
permission. Note that you will only fail on a permission check if you forgot
to ask for the permission – it is impossible for your application to be
running and not have been granted your requested permissions.

Halt! Who Goes There?

The other side of the coin, of course, is to secure your own application. If
your application is mostly activities, security may be just an “outbound”
thing, where you request the right to use resources of other applications. If,
on the other hand, you put content providers or services in your
application, you will want to implement “inbound” security to control
which applications can do what with the data.

Note that the issue here is less about whether other applications might
“mess up” your data, but rather about privacy of the user's information or
use of services that might incur expense. That is where the stock
permissions for built-in Android applications are focused – can you read or
modify contacts, can you send SMS, etc. If your application does not store
information that might be considered private, security is less an issue. If, on
the other hand, your application stores private data, such as medical
information, security is much more important.

The first step to securing your own application using permissions is to
declare said permissions, once again in the AndroidManifest.xml file. In this
case, instead of uses-permission, you add permission elements. Once again,
you can have zero or more permission elements, all as direct children of the
root manifest element.

Declaring a permission is slightly more complicated than using a
permission. There are three pieces of information you need to supply:

1. The symbolic name of the permission. To keep your permissions
from colliding with those from other applications, you should use
your application's Java namespace as a prefix

555

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Requesting and Requiring Permissions

2. A label for the permission: something short that would be
understandable by users

3. A description for the permission: something a wee bit longer that is
understandable by your users

<permission
 android:name="vnd.tlagency.sekrits.SEE_SEKRITS"
 android:label="@string/see_sekrits_label"
 android:description="@string/see_sekrits_description" />

This does not enforce the permission. Rather, it indicates that it is a
possible permission; your application must still flag security violations as
they occur.

Enforcing Permissions via the Manifest

There are two ways for your application to enforce permissions, dictating
where and under what circumstances they are required. The easier one is to
indicate in the manifest where permissions are required.

Activities, services, and receivers can all declare an attribute named
android:permission, whose value is the name of the permission that is
required to access those items:

<activity
 android:name=".SekritApp"
 android:label="Top Sekrit"
 android:permission="vnd.tlagency.sekrits.SEE_SEKRITS">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category
 android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
</activity>

Only applications that have requested your indicated permission will be
able to access the secured component. In this case, “access” means:

• Activities cannot be started without the permission

556

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Requesting and Requiring Permissions

• Services cannot be started, stopped, or bound to an activity without
the permission

• Intent receivers ignore messages sent via sendBroadcast() unless the
sender has the permission

Enforcing Permissions Elsewhere

In your code, you have two additional ways to enforce permissions.

Your services can check permissions on a per-call basis via
checkCallingPermission(). This returns PERMISSION_GRANTED or
PERMISSION_DENIED depending on whether the caller has the permission you
specified. For example, if your service implements separate read and write
methods, you could require separate read versus write permissions in code
by checking those methods for the permissions you need from Java.

Also, you can include a permission when you call sendBroadcast(). This
means that eligible broadcast receivers must hold that permission; those
without the permission are ineligible to receive it. We will examine
sendBroadcast() in greater detail elsewhere in this book.

May I See Your Documents?

There is no automatic discovery of permissions at compile time; all
permission failures occur at runtime. Hence, it is important that you
document the permissions required for your public APIs, including content
providers, services, and activities intended for launching from other
activities. Otherwise, the programmers attempting to interface with your
application will have to find out the permission rules by trial and error.

Furthermore, you should expect that users of your application will be
prompted to confirm any permissions your application says it needs.
Hence, you need to document for your users what they should expect, lest
they get confused by the question posed by the phone and elect to not
install or use your application. You may wish to use string resources for this,

557

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Requesting and Requiring Permissions

so you can internationalize your permission details the way you
internationalize all the other messages and prompts in your application.

New Permissions in Old Applications

Sometimes, Android introduces new permissions that govern behavior that
formerly did not require permissions. WRITE_EXTERNAL_STORAGE is one
example – originally, applications could write to external storage without
any permission at all. Android 1.6 introduced WRITE_EXTERNAL_STORAGE,
required before you can write to external storage. However, applications
that were written before Android 1.6 could not possibly request that
permission, since it did not exist at the time. Breaking those applications
would seem to be a harsh price for progress.

What Android does is "grandfather" in certain permissions for applications
supporting earlier SDK versions.

In particular, if you have <uses-sdk android:minSdkVersion="3"> in your
manifest, saying that you support Android 1.5, your application will
automatically request WRITE_EXTERNAL_STORAGE and READ_PHONE_STATE, even if
you do not explicitly request those permissions. People installing your
application on an Android 1.5 device will see these requests.

Eventually, when you drop support for the older version (e.g., switch to
<uses-sdk android:minSdkVersion="4">), Android will no longer
automatically request those permissions. Hence, if your code really does
need those permissions, you will need to ask for them yourself.

Permissions: Up Front Or Not At All

The permission system in Android is not especially flexible. Notably, you
have to ask for all permissions you might ever need up front, and the user
has to agree to all of them or abandon the installation of your app.

This means:

558

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Requesting and Requiring Permissions

• You cannot create optional permissions, ones the user could say "no,
thanks" to, that your application could react to dynamically

• You cannot request new permissions after installation, so even if a
permission is only needed for some lightly-used feature, you have to
ask for it anyway

Hence, it is important as you come up with the feature list for your app that
you keep permissions in mind. Every additional permission that your
request is a filter that will cost you some portion of your prospective
audience. Certain combinations – such as INTERNET and READ_CONTACTS – will
have a stronger effect, as users fear what the combination can do. You will
need to decide for yourself if the additional users you will get from having
the feature will be worth the cost of requiring the permissions the feature
needs to operate.

559

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PART VI – Other Android Capabilities

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 39

Accessing Location-Based
Services

A popular feature on current-era mobile devices is GPS capability, so the
device can tell you where you are at any point in time. While the most
popular use of GPS service is mapping and directions, there are other things
you can do if you know your location. For example, you might set up a
dynamic chat application where the people you can chat with are based on
physical location, so you are chatting with those you are nearest. Or, you
could automatically "geotag" posts to Twitter or similar services.

GPS is not the only way a mobile device can identify your location.
Alternatives include:

• The European equivalent to GPS, called Galileo, which is still under
development at the time of this writing

• Cell tower triangulation, where your position is determined based
on signal strength to nearby cell towers

• Proximity to public WiFi "hotspots" that have known geographic
locations

Android devices may have one or more of these services available to them.
You, as a developer, can ask the device for your location, plus details on
what providers are available. There are even ways for you to simulate your
location in the emulator, for use in testing your location-enabled
applications.

563

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Location-Based Services

Location Providers: They Know Where You're
Hiding

Android devices can have access to several different means of determining
your location. Some will have better accuracy than others. Some may be
free, while others may have a cost associated with them. Some may be able
to tell you more than just your current position, such as your elevation over
sea level, or your current speed.

Android, therefore, has abstracted all this out into a set of LocationProvider
objects. Your Android environment will have zero or more LocationProvider
instances, one for each distinct locating service that is available on the
device. Providers know not only your location, but their own
characteristics, in terms of accuracy, cost, etc.

You, as a developer, will use a LocationManager, which holds the
LocationProvider set, to figure out which LocationProvider is right for your
particular circumstance. You will also need a permission in your
application, or the various location APIs will fail due to a security violation.
Depending on which location providers you wish to use, you may need
ACCESS_COARSE_LOCATION, ACCESS_FINE_LOCATION, or both.

Finding Yourself

The obvious thing to do with a location service is to figure out where you
are right now.

To do that, you need to get a LocationManager – call
getSystemService(LOCATION_SERVICE) from your activity or service and cast it
to be a LocationManager.

The next step to find out where you are is to get the name of the
LocationProvider you want to use. Here, you have two main options:

1. Ask the user to pick a provider

2. Find the best-match provider based on a set of criteria

564

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Location-Based Services

If you want the user to pick a provider, calling getProviders() on the
LocationManager will give you a List of providers, which you can then
present to the user for selection.

Or, you can create and populate a Criteria object, stating the particulars of
what you want out of a LocationProvider, such as:

• setAltitudeRequired() to indicate if you need the current altitude or
not

• setAccuracy() to set a minimum level of accuracy, in meters, for the
position

• setCostAllowed() to control if the provider must be free or if it can
incur a cost on behalf of the device user

Given a filled-in Criteria object, call getBestProvider() on your
LocationManager, and Android will sift through the criteria and give you the
best answer. Note that not all of your criteria may be met – all but the
monetary cost criterion might be relaxed if nothing matches.

You are also welcome to hard-wire in a LocationProvider name (e.g.,
GPS_PROVIDER), perhaps just for testing purposes.

Once you know the name of the LocationProvider, you can call
getLastKnownPosition() to find out where you were recently. However,
unless something else is causing the desired provider to collect fixes (e.g.,
unless the GPS radio is on), getLastKnownPosition() will return null,
indicating that there is no known position. On the other hand,
getLastKnownPosition() incurs no monetary or power cost, since the
provider does not need to be activated to get the value.

These methods return a Location object, which can give you the latitude
and longitude of the device in degrees as a Java double. If the particular
location provider offers other data, you can get at that as well:

• For altitude, hasAltitude() will tell you if there is an altitude value,
and getAltitude() will return the altitude in meters.

565

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Location-Based Services

• For bearing (i.e., compass-style direction), hasBearing() will tell you
if there is a bearing available, and getBearing() will return it as
degrees east of true north.

• For speed, hasSpeed() will tell you if the speed is known and
getSpeed() will return the speed in meters per second.

A more likely approach to getting the Location from a LocationProvider,
though, is to register for updates, as described in the next section.

On the Move

Not all location providers are necessarily immediately responsive. GPS, for
example, requires activating a radio and getting a fix from the satellites
before you get a location. That is why Android does not offer a
getMeMyCurrentLocationNow() method. Combine that with the fact that your
users may well want their movements to be reflected in your application,
and you are probably best off registering for location updates and using
that as your means of getting the current location.

The Internet/Weather and Service/WeatherAPI sample applications show how
to register for updates – call requestLocationUpdates() on your
LocationManager instance. This takes four parameters:

1. The name of the location provider you wish to use

2. How long, in milliseconds, should have elapsed before we might get
a location update

3. How far, in meters, must the device have moved before we might
get a location update

4. A LocationListener that will be notified of key location-related
events, as shown below:

LocationListener onLocationChange=new LocationListener() {
 public void onLocationChanged(Location location) {
 if (state.weather!=null) {
 state.weather.getForecast(location, state);
 }
 else {

566

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Location-Based Services

 Log.w(getClass().getName(), "Unable to fetch forecast – no
WeatherBinder");
 }
 }

 public void onProviderDisabled(String provider) {
 // required for interface, not used
 }

 public void onProviderEnabled(String provider) {
 // required for interface, not used
 }

 public void onStatusChanged(String provider, int status,
 Bundle extras) {
 // required for interface, not used
 }
};

Here, all we do is trigger a FetchForecastTask with the Location supplied to
the onLocationChanged() callback method.

Bear in mind that the time parameter is only a guide to help steer Android
from a power consumption standpoint. You may get many more location
updates than this. To get the maximum number of location updates, supply
0 for both the time and distance constraints.

When you no longer need the updates, call removeUpdates() with the
LocationListener you registered. If you fail to do this, your application will
continue receiving location updates even after all activities and such are
closed up, which will also prevent Android from reclaiming your
application's memory.

There is another version of requestLocationUpdates() that takes a
PendingIntent rather than a LocationListener. This is useful if you want to
be notified of changes in your position even when your code is not running.
For example, if you are logging movements, you could use a PendingIntent
that triggers a BroadcastReceiver (getBroadcast()) and have the
BroadcastReceiver add the entry to the log. This way, your code is only in
memory when the position changes, so you do not tie up system resources
while the device is not moving.

567

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Location-Based Services

Are We There Yet? Are We There Yet? Are
We There Yet?

Sometimes, you want to know not where you are now, or even when you
move, but when you get to where you are going. This could be an end
destination, or it could be getting to the next step on a set of directions, so
you can give the user the next turn.

To accomplish this, LocationManager offers addProximityAlert(). This
registers an PendingIntent, which will be fired off when the device gets
within a certain distance of a certain location. The addProximityAlert()
method takes, as parameters:

• The latitude and longitude of the position that you are interested in

• A radius, specifying how close you should be to that position for the
Intent to be raised

• A duration for the registration, in milliseconds – after this period,
the registration automatically lapses. A value of -1 means the
registration lasts until you manually remove it via
removeProximityAlert().

• The PendingIntent to be raised when the device is within the "target
zone" expressed by the position and radius

Note that it is not guaranteed that you will actually receive an Intent, if
there is an interruption in location services, or if the device is not in the
target zone during the period of time the proximity alert is active. For
example, if the position is off by a bit, and the radius is a little too tight, the
device might only skirt the edge of the target zone, or go by so quickly that
the device's location isn't sampled while in the target zone.

It is up to you to arrange for an activity or receiver to respond to the Intent
you register with the proximity alert. What you then do when the Intent
arrives is up to you: set up a notification (e.g., vibrate the device), log the
information to a content provider, post a message to a Web site, etc. Note
that you will receive the Intent whenever the position is sampled and you
are within the target zone – not just upon entering the zone. Hence, you

568

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Location-Based Services

will get the Intent several times, perhaps quite a few times depending on
the size of the target zone and the speed of the device's movement.

Testing...Testing...

The Android emulator does not have the ability to get a fix from GPS,
triangulate your position from cell towers, or identify your location by some
nearby WiFi signal. So, if you want to simulate a moving device, you will
need to have some means of providing mock location data to the emulator.

For whatever reason, this particular area has undergone significant changes
as Android itself has evolved. It used to be that you could provide mock
location data within your application, which was very handy for
demonstration purposes. Alas, those options have all been removed as of
Android 1.0.

One likely option for supplying mock location data is the Dalvik Debug
Monitor Service (DDMS). This is an external program, separate from the
emulator, where you can feed it single location points or full routes to
traverse, in a few different formats. DDMS is described in greater detail in
the chapter on Android development tools.

569

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 40

Mapping with MapView and
MapActivity

One of Google's most popular services – after search, of course – is Google
Maps, where you can find everything from the nearest pizza parlor to
directions from New York City to San Francisco (only 2,905 miles!) to street
views and satellite imagery.

Most Android devices, not surprisingly, integrate Google Maps. For those
that do, there is a mapping activity available to users straight off the main
Android launcher. More relevant to you, as a developer, are MapView and
MapActivity, which allow you to integrate maps into your own applications.
Not only can you display maps, control the zoom level, and allow people to
pan around, but you can tie in Android's location-based services to show
where the device is and where it is going.

Fortunately, integrating basic mapping features into your Android project
is fairly easy. However, there is a fair bit of power available to you, if you
want to get sophisticated.

Terms, Not of Endearment

Google Maps, particularly when integrated into third party applications,
requires agreeing to a fairly lengthy set of legal terms. These terms include
clauses that you may find unpalatable.

571

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Mapping with MapView and MapActivity

If you are considering Google Maps, please review these terms closely to
determine if your intended use will not run afoul of any clauses. You are
strongly recommended to seek professional legal counsel if there are any
potential areas of conflict.

Also, keep your eyes peeled for other mapping options, based off of other
sources of map data, such as OpenStreetMap.

Piling On

As of Android 1.5, Google Maps are not strictly part of the Android SDK.
Instead, they are part of the Google APIs Add-On, an extension of the stock
SDK. The Android add-on system provides hooks for other subsystems that
may be part of some devices, but not others.

After all, Google Maps is not part of the Android open source project, and
undoubtedly there will be some devices that lack Google Maps due to
licensing issues. For example, at the time of this writing, the ARCHOS 5
Android tablet does not have Google Maps.

By and large, the fact that Google Maps is in an add-on does not affect your
day-to-day development. However, bear in mind:

• You will need to create your project with an appropriate target to
ensure the Google Maps APIs will be available

• To test your Google Maps integration, you will also need an AVD
that uses an appropriate target

The Key To It All

If you download the source code for the book, compile the Maps/NooYawk
project, install it in your emulator, and run it, you will probably see a screen
with a grid and a couple of push-pins, but no actual maps.

572

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.openstreetmap.org/

Mapping with MapView and MapActivity

That's because the API key in the source code is invalid for your
development machine. Instead, you will need to generate your own API
key(s) for use with your application. This also holds true for any map-
enabled projects you create on your own from scratch.

Full instructions for generating API keys, for development and production
use, can be found on the Android Web site. In the interest of brevity, let's
focus on the narrow case of getting NooYawk running in your emulator.
Doing this requires the following steps:

1. Visit the API key signup page and review the terms of service.

2. Re-read those terms of service and make really really sure you want
to agree to them.

3. Find the MD5 digest of the certificate used for signing your debug-
mode applications (described in detail below)

4. On the API key signup page, paste in that MD5 signature and
submit the form

5. On the resulting page, copy the API key and paste it as the value of
apiKey in your MapView-using layout

The trickiest part is finding the MD5 signature of the certificate used for
signing your debug-mode applications... and much of the complexity is
merely in making sense of the concept.

All Android applications are signed using a digital signature generated from
a certificate. You are automatically given a debug certificate when you set
up the SDK, and there is a separate process for creating a self-signed
certificate for use in your production applications. This signature process
involves the use of the Java keytool and jarsigner utilities. For the purposes
of getting your API key, you only need to worry about keytool.

To get your MD5 digest of your debug certificate, if you are on OS X or
Linux, use the following command:

keytool -list -alias androiddebugkey -keystore ~/.android/debug.keystore
-storepass android -keypass android

573

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://code.google.com/android/add-ons/google-apis/mapkey.html

Mapping with MapView and MapActivity

On other development platforms, you will need to replace the value of the
-keystore switch with the location for your platform and user account:

• XP: C:\Documents and Settings\<user>\.android\debug.keystore

• Vista: C:\Users\<user>\.android\debug.keystore

(where <user> is your account name)

The second line of the output contains your MD5 digest, as a series of pairs
of hex digits separated by colons.

The Bare Bones

To put a map into your application, you need to create your own subclass of
MapActivity. Like ListActivity, which wraps up some of the smarts behind
having an activity dominated by a ListView, MapActivity handles some of
the nuances of setting up an activity dominated by a MapView. A MapView can
only be used by a MapActivity, not any other type of Activity.

In your layout for the MapActivity subclass, you need to add an element
named com.google.android.maps.MapView. This is the "longhand" way to spell
out the names of widget classes, by including the full package name along
with the class name. This is necessary because MapView is not in the
android.widget namespace. You can give the MapView widget whatever
android:id attribute value you want, plus handle all the layout details to
have it render properly alongside your other widgets.

However, you do need to have:

• android:apiKey, your Google Maps API key

• android:clickable = "true", if you want users to be able to click and
pan through your map

For example, from the Maps/NooYawk sample application, here is the main
layout:

574

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Mapping with MapView and MapActivity

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <com.google.android.maps.MapView android:id="@+id/map"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:apiKey="00yHj0k7_7vxbuQ9zwyXI4bNMJrAjYrJ9KKHgbQ"
 android:clickable="true" />
</RelativeLayout>

In addition, you will need a couple of extra things in your
AndroidManifest.xml file:

• The INTERNET and ACCESS_FINE_LOCATION permissions (the latter for
use with the MyLocationOverlay class, described later in this chapter)

• Inside your <application>, a <uses-library> element with
android:name = "com.google.android.maps", to indicate you are using
one of the optional Android APIs

Here is the AndroidManifest.xml file for NooYawk:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.maps">
 <uses-permission android:name="android.permission.INTERNET"/>
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>

 <application android:label="@string/app_name" android:icon="@drawable/cw">
 <uses-library android:name="com.google.android.maps"/>
 <activity android:name=".NooYawk" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>
 <supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

That is pretty much all you need for starters, plus to subclass your activity
from MapActivity. If you were to do nothing else, and built that project and
tossed it in the emulator, you'd get a nice map of the world. Note, however,
that MapActivity is abstract – you need to implement isRouteDisplayed() to
indicate if you are supplying some sort of driving directions or not. Since

575

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Mapping with MapView and MapActivity

displaying driving directions is not supported by the current edition of the
terms of service, you should have isRouteDisplayed() return false.

Optional Maps

Not every Android device will have Google Maps, because they did not elect
to license it from Google. While most mainstream devices will have Google
Maps, a few percent of Android devices will be without it.

You need to decide if having Google Maps is essential for your application's
operation, or not.

If it is, the <uses-library> element shown above is the right answer, as that
will require any device running your app to have Google Maps.

If, however, you want Google Maps to be optional, there is an
undocumented android:required attribute available on <uses-library>. Set
that to false, and then Google Maps will be loaded into your application if
it is available, but your application will run regardless. You will then need to
use something like Class.forName("com.google.android.maps.MapView") to see
if Google Maps is available to you. If it is not, you can disable the menu
items or whatever would lead the user to your MapActivity. While this
attribute is undocumented, Google has indicated that it is an available
option, and hopefully it will be officially documented in a future Android
release.

Exercising Your Control

You can find your MapView widget by findViewById(), no different than any
other widget. The widget itself then offers a getController() method.
Between the MapView and MapController, you have a fair bit of capability to
determine what the map shows and how it behaves. Here are some likely
features you will want to use:

576

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Mapping with MapView and MapActivity

Zoom

The map of the world you start with is rather broad. Usually, people
looking at a map on a phone will be expecting something a bit narrower in
scope, such as a few city blocks.

You can control the zoom level directly via the setZoom() method on the
MapController. This takes an integer representing the level of zoom, where 1
is the world view and 21 is the tightest zoom you can get. Each level is a
doubling of the effective resolution: 1 has the equator measuring 256 pixels
wide, while 21 has the equator measuring 268,435,456 pixels wide. Since the
phone's display probably does not have 268,435,456 pixels in either
dimension, the user sees a small map focused on one tiny corner of the
globe. A level of 17 will show you several city blocks in each dimension and
is probably a reasonable starting point for you to experiment with.

If you wish to allow users to change the zoom level, call
setBuiltInZoomControls(true);, and the user will be able to zoom in and out
of the map via zoom controls found in the bottom center of the map.

Center

Typically, you will need to control what the map is showing, beyond the
zoom level, such as the user's current location, or a location saved with
some data in your activity. To change the map's position, call setCenter() on
the MapController.

This takes a GeoPoint as a parameter. A GeoPoint represents a location, via
latitude and longitude. The catch is that the GeoPoint stores latitude and
longitude as integers representing the actual latitude and longitude in
microdegrees (degrees multiplied by 1E6). This saves a bit of memory versus
storing a float or double, and it greatly speeds up some internal calculations
Android needs to do to convert the GeoPoint into a map position. However,
it does mean you have to remember to multiply the "real world" latitude
and longitude by 1E6.

577

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Mapping with MapView and MapActivity

Layers Upon Layers

If you have ever used the full-size edition of Google Maps, you are probably
used to seeing things overlaid atop the map itself, such as "push-pins"
indicating businesses near the location being searched. In map parlance –
and, for that matter, in many serious graphic editors – the push-pins are on
a separate layer than the map itself, and what you are seeing is the
composition of the push-pin layer atop the map layer.

Android's mapping allows you to create layers as well, so you can mark up
the maps as you need to based on user input and your application's
purpose. For example, NooYawk uses a layer to show where select buildings
are located in the island of Manhattan.

Overlay Classes

Any overlay you want to add to your map needs to be implemented as a
subclass of Overlay. There is an ItemizedOverlay subclass available if you are
looking to add push-pins or the like; ItemizedOverlay simplifies this process.

To attach an overlay class to your map, just call getOverlays() on your
MapView and add() your Overlay instance to it, as we do here with a custom
SitesOverlay:

marker.setBounds(0, 0, marker.getIntrinsicWidth(),
 marker.getIntrinsicHeight());

map.getOverlays().add(new SitesOverlay(marker));

We will explain that marker in just a bit.

Drawing the ItemizedOverlay

As the name suggests, ItemizedOverlay allows you to supply a list of points
of interest to be displayed on the map – specifically, instances of
OverlayItem. The overlay, then, handles much of the drawing logic for you.
Here are the minimum steps to make this work:

578

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Mapping with MapView and MapActivity

• First, override ItemizedOverlay<OverlayItem> as your own subclass
(in this example, SitesOverlay)

• In the constructor, build your roster of OverlayItem instances, and
call populate() when they are ready for use by the overlay

• Implement size() to return the number of items to be handled by
the overlay

• Override createItem() to return OverlayItem instances given an
index

• When you instantiate your ItemizedOverlay subclass, provide it with
a Drawable that represents the default icon (e.g., push-pin) to display
for each item, on which you call boundCenterBottom() to enable the
drop-shadow effect

The marker from the NooYawk constructor is the Drawable used for the last
bullet above – it shows a push-pin.

For example, here is SitesOverlay:

private class SitesOverlay extends ItemizedOverlay<OverlayItem> {
 private List<OverlayItem> items=new ArrayList<OverlayItem>();
 private Drawable marker=null;

 public SitesOverlay(Drawable marker) {
 super(marker);
 this.marker=marker;

 boundCenterBottom(marker);

 items.add(new OverlayItem(getPoint(40.748963847316034,
 -73.96807193756104),
 "UN", "United Nations"));
 items.add(new OverlayItem(getPoint(40.76866299974387,
 -73.98268461227417),
 "Lincoln Center",
 "Home of Jazz at Lincoln Center"));
 items.add(new OverlayItem(getPoint(40.765136435316755,
 -73.97989511489868),
 "Carnegie Hall",
 "Where you go with practice, practice, practice"));
 items.add(new OverlayItem(getPoint(40.70686417491799,
 -74.01572942733765),
 "The Downtown Club",
 "Original home of the Heisman Trophy"));

579

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Mapping with MapView and MapActivity

 populate();
 }

 @Override
 protected OverlayItem createItem(int i) {
 return(items.get(i));
 }

 @Override
 protected boolean onTap(int i) {
 Toast.makeText(NooYawk.this,
 items.get(i).getSnippet(),
 Toast.LENGTH_SHORT).show();

 return(true);
 }

 @Override
 public int size() {
 return(items.size());
 }
}

Handling Screen Taps

An Overlay subclass can also implement onTap(), to be notified when the
user taps on the map, so the overlay can adjust what it draws. For example,
in full-size Google Maps, clicking on a push-pin pops up a bubble with
information about the business at that pin's location. With onTap(), you can
do much the same in Android.

The onTap() method for ItemizedOverlay receives the index of the
OverlayItem that was clicked. It is up to you to do something worthwhile
with this event.

In the case of SitesOverlay, as shown above, onTap() looks like this:

@Override
protected boolean onTap(int i) {
 Toast.makeText(NooYawk.this,
 items.get(i).getSnippet(),
 Toast.LENGTH_SHORT).show();

 return(true);
}

580

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Mapping with MapView and MapActivity

Here, we just toss up a short Toast with the "snippet" from the OverlayItem,
returning true to indicate we handled the tap.

My, Myself, and MyLocationOverlay

Android has a built-in overlay to handle two common scenarios:

1. Showing where you are on the map, based on GPS or other location-
providing logic

2. Showing where you are pointed, based on the built-in compass
sensor, where available

All you need to do is create a MyLocationOverlay instance, add it to your
MapView's list of overlays, and enable and disable the desired features at
appropriate times.

The "at appropriate times" notion is for maximizing battery life. There is no
sense in updating locations or directions when the activity is paused, so it is
recommended that you enable these features in onResume() and disable
them in onPause().

For example, NooYawk will display a compass rose using MyLocationOverlay.
To do this, we first need to create the overlay and add it to the list of
overlays:

me=new MyLocationOverlay(this, map);
map.getOverlays().add(me);

(where me is the MyLocationOverlay instance as a private data member)

Then, we enable and disable the compass rose as appropriate:

@Override
public void onResume() {
 super.onResume();

 me.enableCompass();
}

581

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Mapping with MapView and MapActivity

@Override
public void onPause() {
 super.onPause();

 me.disableCompass();
}

This gives us a compass rose while the activity is on-screen:

Figure 156. The NooYawk map, showing a compass rose and two OverlayItems

Rugged Terrain

Just as the Google Maps you use on your full-size computer can display
satellite imagery, so too can Android maps.

MapView offers toggleSatellite(), which, as the name suggests, toggles on
and off this perspective on the area being viewed. You can have the user
trigger these via an options menu or, in the case of NooYawk, via keypresses:

582

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Mapping with MapView and MapActivity

 @Override
 public boolean onKeyDown(int keyCode, KeyEvent event) {
 if (keyCode == KeyEvent.KEYCODE_S) {
 map.setSatellite(!map.isSatellite());
 return(true);
 }
 else if (keyCode == KeyEvent.KEYCODE_Z) {
 map.displayZoomControls(true);
 return(true);
 }

 return(super.onKeyDown(keyCode, event));
 }

So, for example, here is NooYawk showing a satellite view, courtesy of
pressing the S key:

Figure 157. The NooYawk map, showing a compass rose and two OverlayItems,
overlaid on the satellite view

583

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Mapping with MapView and MapActivity

Maps and Fragments

You might think that maps would be an ideal place to use fragments. After
all, on a large tablet screen, we could allocate most of the space to the map
but then have other stuff alongside.

Alas, as of the time of this writing, maps and fragments are two great tastes
that do not taste so great together.

First, MapView requires you to inherit from MapActivity. This has a few
ramifications:

• You cannot use the Android Compatibility Library (ACL), because
that requires you to inherit from FragmentActivity, and Java does
not support multiple inheritance. Hence, you can only use maps-in-
fragments on Android 3.0 and higher, falling back to some
alternative implementation on older versions of Android.

• Any activity that might host a map in a fragment will have to inherit
from MapActivity, even if in some cases it might not host a map in a
fragment.

Also, MapView makes some assumptions about the timing of various events,
in a fashion that makes setting up a map-based fragment a bit more
complex than it might otherwise have to be.

It is entirely possible that someday these problems will be resolved,
through a combination of an updated Google APIs Add-On for Android
with fragment support, and possibly an updated ACL. In the meantime,
here is the recipe for getting maps to work, as well as they can, in
fragments.

Limit Yourself to Android 3.0

In the manifest, make sure that you set both your android:minSdkVersion
and your android:targetSdkVersion to 11, so you only run on Android 3.0

584

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Mapping with MapView and MapActivity

and newer. For example, here is the manifest from the
Maps/NooYawkFragments sample project:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.maps">
 <uses-permission android:name="android.permission.INTERNET"/>
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>

 <application android:label="@string/app_name"
 android:icon="@drawable/cw"
 android:hardwareAccelerated="true">
 <uses-library android:name="com.google.android.maps"/>
 <activity android:name=".NooYawk" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>
 <uses-sdk android:minSdkVersion="11" android:targetSdkVersion="11" />
 <supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

Use onCreateView() and onActivityCreated()

A map-based fragment is simply a Fragment that shows a MapView. By and
large, this code can look and work much like a MapActivity would,
configuring the MapView, setting up an ItemizedOverlay, and so on.

However, there is that timing problem.

The timing problem is that you cannot reliably return a MapView widget, or
an inflated layout containing such a widget, from onCreateView(). For
whatever reason, it works fine the first time, but on a configuration change
(e.g., screen rotation) it fails.

The solution is to return a container from onCreateView(), such as a
FrameLayout, as shown here in the MapFragment class from NooYawkFragments:

@Override
public View onCreateView(LayoutInflater inflater, ViewGroup container,

585

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Mapping with MapView and MapActivity

 Bundle savedInstanceState) {
 return(new FrameLayout(getActivity()));
}

Then, in onActivityCreated() – once onCreate() has been completed in the
hosting MapActivity – you can add a MapView to that container and continue
with the rest of your normal setup:

@Override
public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);

 map=new MapView(getActivity(), "00yHj0k7_7vxbuQ9zwyXI4bNMJrAjYrJ9KKHgbQ");
 map.setClickable(true);

 map.getController().setCenter(getPoint(40.76793169992044,
 -73.98180484771729));
 map.getController().setZoom(17);
 map.setBuiltInZoomControls(true);

 Drawable marker=getResources().getDrawable(R.drawable.marker);

 marker.setBounds(0, 0, marker.getIntrinsicWidth(),
 marker.getIntrinsicHeight());

 map.getOverlays().add(new SitesOverlay(marker));

 me=new MyLocationOverlay(getActivity(), map);
 map.getOverlays().add(me);

 ((ViewGroup)getView()).addView(map);
}

Note that we are creating a MapView in Java code, which means our Maps API
key resides in the Java code (or something reachable from the Java code,
such as a string resource). You could inflate a layout containing a MapView
here if you wished – the change for MapFragment was simply to illustrate
creating a MapView from Java code.

Host the Fragment in a MapActivity

You must make sure that whatever activity hosts the map-enabled fragment
is a MapActivity. So, even though the NooYawk activity no longer has much to
do with mapping, it must still be a MapActivity:

586

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Mapping with MapView and MapActivity

package com.commonsware.android.maps;

import android.os.Bundle;
import com.google.android.maps.MapActivity;

public class NooYawk extends MapActivity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 @Override
 protected boolean isRouteDisplayed() {
 return(false);
 }
}

The layout now points to a <fragment> instead of a MapView:

<?xml version="1.0" encoding="utf-8"?>
<fragment xmlns:android="http://schemas.android.com/apk/res/android"
 class="com.commonsware.android.maps.MapFragment"
 android:id="@+id/map_fragment"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
/>

The resulting application looks like the original NooYawk activity would on a
large screen, because we are not doing anything much else with the
fragment system (e.g., having other fragments alongside in a landscape
layout):

587

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Mapping with MapView and MapActivity

Figure 158. The NooYawkFragments map, rendered on a Motorola XOOM

588

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 41

Handling Telephone Calls

Many, if not most, Android devices will be phones. As such, not only will
users be expecting to place and receive calls using Android, but you will
have the opportunity to help them place calls, if you wish.

Why might you want to?

• Maybe you are writing an Android interface to a sales management
application (a la Salesforce.com) and you want to offer users the
ability to call prospects with a single button click, and without them
having to keep those contacts both in your application and in the
phone's contacts application

• Maybe you are writing a social networking application, and the
roster of phone numbers that you can access shifts constantly, so
rather than try to "sync" the social network contacts with the
phone's contact database, you let people place calls directly from
your application

• Maybe you are creating an alternative interface to the existing
contacts system, perhaps for users with reduced motor control (e.g.,
the elderly), sporting big buttons and the like to make it easier for
them to place calls

Whatever the reason, Android has the means to let you manipulate the
phone just like any other piece of the Android system.

589

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Telephone Calls

Report To The Manager

To get at much of the phone API, you use the TelephonyManager. That class
lets you do things like:

• Determine if the phone is in use via getCallState(), with return
values of CALL_STATE_IDLE (phone not in use), CALL_STATE_RINGING
(call requested but still being connected), and CALL_STATE_OFFHOOK
(call in progress)

• Find out the SIM ID (IMSI) via getSubscriberId()

• Find out the phone type (e.g., GSM) via getPhoneType() or find out
the data connection type (e.g., GPRS, EDGE) via getNetworkType()

You Make the Call!

You can also initiate a call from your application, such as from a phone
number you obtained through your own Web service. To do this, simply
craft an ACTION_DIAL Intent with a Uri of the form tel:NNNNN (where NNNNN is
the phone number to dial) and use that Intent with startActivity(). This
will not actually dial the phone; rather, it activates the dialer activity, from
which the user can then press a button to place the call.

For example, let's look at the Phone/Dialer sample application. Here's the
crude-but-effective layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <LinearLayout
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 >
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Number to dial:"
 />

590

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Telephone Calls

 <EditText android:id="@+id/number"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:cursorVisible="true"
 android:editable="true"
 android:singleLine="true"
 />
 </LinearLayout>
 <Button android:id="@+id/dial"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="Dial It!"
 android:onClick="dial"
 />
</LinearLayout>

We have a labeled field for typing in a phone number, plus a button for
dialing said number.

The Java code simply launches the dialer using the phone number from the
field:

package com.commonsware.android.dialer;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.view.View;
import android.widget.EditText;

public class DialerDemo extends Activity {
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 }

 public void dial(View v) {
 EditText number=(EditText)findViewById(R.id.number);
 String toDial="tel:"+number.getText().toString();

 startActivity(new Intent(Intent.ACTION_DIAL, Uri.parse(toDial)));
 }
}

The activity's own UI is not that impressive:

591

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Telephone Calls

Figure 159. The DialerDemo sample application, as initially launched

However, the dialer you get from clicking the dial button is better, showing
you the number you are about to dial:

Figure 160. The Android Dialer activity, as launched from DialerDemo

592

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Telephone Calls

No, Really, You Make the Call!

The good news is that ACTION_DIAL works without any special permissions.
The bad news is that it only takes the user to the Dialer – the user still has
to take action (pressing the green call button) to actually place the phone
call.

An alternative approach is to use ACTION_CALL instead of ACTION_DIAL. Calling
startActivity() on an ACTION_CALL Intent will immediately place the phone
call, without any other UI steps required. However, you need the CALL_PHONE
permission in order to use ACTION_CALL.

593

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 42

Fonts

Inevitably, you’ll get the question “hey, can we change this font?” when
doing application development. The answer depends on what fonts come
with the platform, whether you can add other fonts, and how to apply them
to the widget or whatever needs the font change.

Android is no different. It comes with some fonts plus a means for adding
new fonts. Though, as with any new environment, there are a few
idiosyncrasies to deal with.

Love The One You're With

Android natively knows three fonts, by the shorthand names of “sans”,
“serif”, and “monospace”. These fonts are actually the Droid series of fonts,
created for the Open Handset Alliance by Ascender.

For those fonts, you can just reference them in your layout XML, if you
choose, such as the following layout from the Fonts/FontSampler sample
project:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:stretchColumns="1">
 <TableRow>

595

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.ascendercorp.com/oha.html

Fonts

 <TextView
 android:text="sans:"
 android:layout_marginRight="4dip"
 android:textSize="20sp"
 />
 <TextView
 android:id="@+id/sans"
 android:text="Hello, world!"
 android:typeface="sans"
 android:textSize="20sp"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="serif:"
 android:layout_marginRight="4dip"
 android:textSize="20sp"
 />
 <TextView
 android:id="@+id/serif"
 android:text="Hello, world!"
 android:typeface="serif"
 android:textSize="20sp"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="monospace:"
 android:layout_marginRight="4dip"
 android:textSize="20sp"
 />
 <TextView
 android:id="@+id/monospace"
 android:text="Hello, world!"
 android:typeface="monospace"
 android:textSize="20sp"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Custom:"
 android:layout_marginRight="4dip"
 android:textSize="20sp"
 />
 <TextView
 android:id="@+id/custom"
 android:text="Hello, world!"
 android:textSize="20sp"
 />
 </TableRow>
 <TableRow android:id="@+id/filerow">
 <TextView
 android:text="Custom from File:"
 android:layout_marginRight="4dip"

596

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Fonts

 android:textSize="20sp"
 />
 <TextView
 android:id="@+id/file"
 android:text="Hello, world!"
 android:textSize="20sp"
 />
 </TableRow>
</TableLayout>

This layout builds a table showing short samples of five fonts. Notice how
the first three have the android:typeface attribute, whose value is one of the
three built-in font faces (e.g., “sans”).

The three built-in fonts are very nice. However, it may be that a designer,
or a manager, or a customer wants a different font than one of those three.
Or perhaps you want to use a font for specialized purposes, such as a
“dingbats” font instead of a series of PNG graphics.

The easiest way to accomplish this is to package the desired font(s) with
your application. To do this, simply create an assets/ folder in the project
root, and put your TrueType (TTF) fonts in the assets. You might, for
example, create assets/fonts/ and put your TTF files in there.

Then, you need to tell your widgets to use that font. Unfortunately, you can
no longer use layout XML for this, since the XML does not know about any
fonts you may have tucked away as an application asset. Instead, you need
to make the change in Java code:

import android.widget.TextView;
import java.io.File;

public class FontSampler extends Activity {
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 TextView tv=(TextView)findViewById(R.id.custom);
 Typeface face=Typeface.createFromAsset(getAssets(),
 "fonts/HandmadeTypewriter.ttf");

 tv.setTypeface(face);

597

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Fonts

 File font=new File(Environment.getExternalStorageDirectory(),
 "MgOpenCosmeticaBold.ttf");

 if (font.exists()) {
 tv=(TextView)findViewById(R.id.file);
 face=Typeface.createFromFile(font);

 tv.setTypeface(face);
 }
 else {
 findViewById(R.id.filerow).setVisibility(View.GONE);
 }
 }
}

Here we grab the TextView for our “custom” sample, then create a Typeface
object via the static createFromAsset() builder method. This takes the
application’s AssetManager (from getAssets()) and a path within your
assets/ directory to the font you want.

Then, it is just a matter of telling the TextView to setTypeface(), providing
the Typeface you just created. In this case, we are using the Handmade
Typewriter font.

You can also load a font out of a local file and use it. The benefit is that you
can customize your fonts after your application has been distributed. On
the other hand, you have to somehow arrange to get the font onto the
device. But just as you can get a Typeface via createFromAsset(), you can get
a Typeface via createFromFile(). In our FontSampler, we look in the root of
"external storage" (typically the SD card) for the MgOpenCosmeticaBold
TrueType font file, and if it is found, we use it for the fifth row of the table.
Otherwise, we hide that row.

The results?

598

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://moorstation.org/typoasis/designers/klein07/text01/handmade.htm
http://moorstation.org/typoasis/designers/klein07/text01/handmade.htm

Fonts

Figure 161. The FontSampler application

We will go into more details regarding assets and local files in an upcoming
chapter.

Note that Android does not seem to like all TrueType fonts. When Android
dislikes a custom font, rather than raise an Exception, it seems to substitute
Droid Sans (”sans”) quietly. So, if you try to use a different font and it does
not seem to be working, it may be that the font in question is incompatible
with Android, for whatever reason.

Here a Glyph, There a Glyph

TrueType fonts can be rather pudgy, particularly if they support an
extensive subset of the available Unicode characters. The Handmade
Typewriter font used above runs over 70KB; the DejaVu free fonts can run
upwards of 500KB apiece. Even compressed, these add bulk to your
application, so be careful not to go overboard with custom fonts, lest your
application take up too much room on your users’ phones.

599

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Fonts

Conversely, bear in mind that fonts may not have all of the glyphs that you
need. As an example, let us talk about the ellipsis.

Android's TextView class has the built-in ability to "ellipsize" text,
truncating it and adding an ellipsis if the text is longer than the available
space. You can use this via the android:ellipsize attribute, for example.
This works fairly well, at least for single-line text.

The ellipsis that Android uses is not three periods. Rather it uses an actual
ellipsis character, where the three dots are contained in a single glyph.
Hence, any font that you use that you also use the "ellipsizing" feature will
need the ellipsis glyph.

Beyond that, though, Android pads out the string that gets rendered on-
screen, such that the length (in characters) is the same before and after
"ellipsizing". To make this work, Android replaces one character with the
ellipsis, and replaces all other removed characters with the Unicode
character 'ZERO WIDTH NO-BREAK SPACE' (U+FEFF). This means the
"extra" characters after the ellipsis do not take up any visible space on
screen, yet they can be part of the string.

However, this means any custom fonts you use for TextView widgets that
you use with android:ellipsize must also support this special Unicode
character. Not all fonts do, and you will get artifacts in the on-screen
representation of your shortened strings if your font lacks this character
(e.g., rogue X's appear at the end of the line).

And, of course, Android's international deployment means your font must
handle any language your users might be looking to enter, perhaps through
a language-specific input method editor.

Hence, while using custom fonts in Android is very possible, there are
many potential problems, and so you must weigh carefully the benefits of
the custom fonts versus their potential costs.

600

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 43

More Development Tools

The Android SDK is more than a library of Java classes and API calls. It also
includes a number of tools to assist in application development. Eclipse, of
course, tends to dominate the discussion. However, that is not the only tool
at your disposal, so, let's take a quick tour of what else is available to you.

Hierarchy Viewer: How Deep Is Your Code?

Android comes with a Hierarchy Viewer tool, designed to help you visualize
your layouts as they are seen in a running activity in a running emulator.
So, for example, you can determine how much space a certain widget is
taking up, or try to find where a widget is hiding that does not appear on
the screen.

To use the Hierarchy Viewer, you first need to fire up your emulator, install
your application, launch your activity, and navigate to the spot you wish to
examine. Note that you cannot use Hierarchy Viewer with a production
Android device.

You can launch the Hierarchy Viewer via the hierarchyviewer program,
found in the tools/ directory in your Android SDK installation, or from
inside of Eclipse:

601

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Development Tools

Figure 162. Hierarchy Viewer main window

The roots of the table show the emulator instances presently running on
your development machine. The leaves represent applications running on
that particular emulator. Your activity will be identified by application
package and class (e.g., com.commonsware.android.files/...).

Where things get interesting, though, is when you choose a window and
click Load View Hierarchy. After a few seconds, the details spring into, er,
view:

602

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Development Tools

Figure 163. Hierarchy Viewer Layout View

The main area of the Layout View shows a tree of the various widgets and
stuff that make up your activity, starting from the overall system window
and driving down into the individual UI widgets that users are supposed to
interact with. This includes both widgets and containers defined by your
application and others that are supplied by the system, including the title
bar.

Clicking on one of the views adds more information to this perspective:

603

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Development Tools

Figure 164. Hierarchy Viewer View properties

Now, in the right region of the Viewer, we see properties of the selected
widget or container, plus timing details for how long it took to render that
container and its children.

Also, the widget is highlighted in red in the wireframe of the activity,
shown beneath the properties (by default, views are shown as white
outlines on a black background). This can help you ensure you have
selected the right widget, if, say, you have several buttons and cannot
readily tell from the tree what is what.

You can also:

• Save the tree diagram as a PNG file

• Save the UI as a Photoshop PSD file, with different layers for the
different widgets and containers

• Force the UI to repaint in the emulator or re-load the hierarchy, in
case you have made changes to a database or to the app's contents
and need a fresh diagram

604

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Development Tools

Back on the main screen, instead of clicking Load View Hierarchy, you
could have clicked Inspect Screenshot. This puts the Viewer in a whole new
perspective, called the Pixel Perfect View:

Figure 165. Hierarchy Viewer Pixel Perfect View

On the left, you see a tree representing the widgets and other Views in your
activity. In the middle, you see a zoomed view of your activity, shown at
normal size on the right.

The crosshairs overlaying the activity show the position being zoomed
upon — just click on a new area to change where what you are seeing.
There is a slider to control the level of zoom. Clicking on a pixel also
indicates the position and color of that pixel.

If you toggle the Auto Refresh checkbox in the toolbar, the Viewer will poll
and reload the UI from your activity periodically, with the frequency
controlled by another slider.

605

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Development Tools

DDMS: Under Android's Hood

Another tool in the Android developer's arsenal is the Dalvik Debug
Monitor Service (DDMS). This is a "Swiss army knife", allowing you to do
everything from browse log files, update the GPS location provided by
emulator, simulate incoming calls and messages, and browse the on-
emulator storage to push and pull files.

Eventually, this section will contain a complete overview of DDMS.
However, DDMS has a wide range of uses, so this section will gradually
expand over time to try to cover them all.

To launch DDMS, run the ddms program inside the tools/ directory in your
Android SDK distribution, or open the DDMS perspective in Eclipse. It will
initially display just a tree of emulators and running programs on the left:

606

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Development Tools

Figure 166. DDMS initial view

Clicking on an emulator allows you to browse the event log on the bottom
and manipulate the emulator via the tabs on the right:

607

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Development Tools

Figure 167. DDMS, with emulator selected

Logging

Rather than use adb logcat, DDMS lets you view your logging information
in a scrollable table. Just highlight the emulator or device you want to
monitor, and the bottom half of the screen shows the logs.

In addition, you can:

• Filter the Log tab by any of the five logging levels, shown as the V
through E toolbar buttons.

• Create a custom filter, so you can view only those tagged with your
application's tag, by pressing the + toolbar button and completing
the form (shown below). The name you enter in the form will be

608

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Development Tools

used as the name of another logging output tab in the bottom
portion of the DDMS main window.

• Save the log information to a text file for later perusal, or for
searching.

Figure 168. DDMS logging filter

File Push and Pull

While you can use adb pull and adb push to get files to and from an
emulator or device, DDMS lets you do that visually. Just highlight the
emulator or device you wish to work with, then choose Device|File
Explorer... from the main menu. That will bring up your typical directory
browser:

609

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Development Tools

Figure 169. DDMS File Explorer

Just browse to the file you want and click either the pull (left-most) or push
(middle) toolbar button to transfer the file to/from your development
machine. Or, click the delete (right-most) toolbar button to delete the file.

There are a few caveats to this:

• You cannot create directories through this tool. You will either need
to use adb shell or create them from within your application.

• While you can putter through most of the files on an emulator, you
can access very little outside of /sdcard on an actual device, due to
Android security restrictions.

Screenshots

To take a screenshot of the Android emulator or device, simply press
<Ctrl>-<S> or choose Device| Screen capture... from the main menu. This
will bring up a dialog box containing an image of the current screen:

610

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Development Tools

Figure 170. DDMS screen capture

From here, you can click [Save] to save the image as a PNG file somewhere
on your development machine, [Refresh] to update the image based on the
current state of the emulator or device, or [Done] to close the dialog.

Location Updates

To use DDMS to supply location updates to your application, the first thing
you must do is have your application use the gps LocationProvider, as that is
the one that DDMS is set to update.

Then, click on the Emulator Control tab and scroll down to the Location
Controls section. Here, you will find a smaller tabbed pane with three
options for specifying locations: Manual, GPX, and KML:

611

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Development Tools

Figure 171. DDMS location controls

The Manual tab is fairly self-explanatory: provide a latitude and longitude
and click the Send button to submit that location to the emulator. The
emulator, in turn will notify any location listeners of the new position.

Discussion of the GPX and KML options is reserved for a future edition of
this book.

Placing Calls and Messages

If you want to simulate incoming calls or SMS messages to the Android
emulator, DDMS can handle that as well.

612

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Development Tools

On the Emulator Control tab, above the Location Controls group, is the
Telephony Actions group:

Figure 172. DDMS telephony controls

To simulate an incoming call, fill in a phone number, choose the Voice
radio button, and click Call. At that point, the emulator will show the
incoming call, allowing you to accept it (via the green phone button) or
reject it (via the red phone button):

613

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Development Tools

Figure 173. Simulated incoming call

To simulate in an incoming text message, fill in a phone number, choose
the SMS radio button, enter a message in the provided text area, and click
Send. The text message will then appear as a notification:

614

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Development Tools

Figure 174. Simulated text message

And, of course, you can click on the notification to view the message in the
full-fledged Messaging application:

Figure 175. Simulated text message, in Messaging application

615

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Development Tools

Memory Management

DDMS also helps you diagnose issues related to how your application
makes use of memory, particularly heap space.

On the "Sysinfo" tab, you can see a pie chart of the overall memory
allocation for the emulator:

Figure 176. DDMS memory usage chart

On the "Allocation Tracker" tab, you can record each and every time your
code (or code you call inside of Android) allocates memory. Simply
highlight your application's process in the tree-table, then click the Start
Tracking button on the Allocation Tracker tab. When you want to see what
you have allocated since you clicked Start Tracking, click the Get
Allocations button, which will fill in a table showing each allocation, how
much memory it was, and where in the code the memory was allocated:

616

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Development Tools

Figure 177. DDMS allocation tracker

And, you can even dump the entire heap for your application via the Dump
HPROF option, available via a toolbar button (looks like a half-empty can
with a downward-pointing arrow to its right). The resulting HPROF file can
be used with MAT, an add-in for Eclipse, to see what objects are still on the
heap and who is causing them to stick around.

Before dumping the HPROF file, you may wish to force a garbage collection
run on your process – this can be done by clicking the toolbar button that
looks like a classic metal garbage can.

adb: Like DDMS, With More Typing

The Android Debug Bridge, or adb utility, serves two roles:

617

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Development Tools

1. Behind the scenes, it serves as a bridge between your
emulators/devices and the rest of the tools. For example, ADT,
Hierarchy Viewer, and DDMS all communicate with your emulator
via the adb bridge. This bridge comes in the form of a daemon
process, spawned the first time you try using any of those tools
since your last reboot.

2. It offers command-line equivalents for many features of the other
tools, notably DDMS.

Some of the things you can do with adb include:

• Start (adb start-server) or stop (adb kill-server) the
aforementioned daemon process

• List all of the recognized Android devices and emulators presently
visible (adb devices)

• Get access to a Linux shell inside your device or emulator (adb
shell)

• Install or uninstall Android applications on your device or emulator
(adb install)

• Copy files to (adb push) or from (adb pull) the emulator, much like
DDMS's File Explorer

• Examine LogCat (adb logcat)

618

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PART VII – Alternative Application
Environments

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 44

The Role of Alternative
Environments

You might think that Android is all about Java. The official Android
Software Development Kit (SDK) is for Java development, the build tools
are for Java development, the discussion groups and blog posts and, yes,
most books are for Java development. Heck, most of this book is about Java.

However (and with apologies to William Goldman), it just so happens that
Android is only mostly Java. There's a big difference between mostly Java
and all Java. Mostly Java is slightly not Java.

So, while Android's "sweet spot" will remain Java-based applications for the
near term, you can still create applications using other technologies. This
part of the book will take a peek at some of those alternatives.

This chapter starts with an examination of the pros and cons of Android's
Java-centric strategy. It then enumerates some reasons why you might want
to use something else for your Android applications. The downsides of
alternative Android application environments – lack of support and
technical challenges – are also discussed.

621

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Role of Alternative Environments

In the Beginning, There Was Java...

The core Android team made a fairly reasonable choice of language when
they chose Java. It is a very popular language, and in the mobile community
it had a clear predecessor in Java Micro Edition (J2ME). Lacking direct
access to memory addresses (so-called "pointers"), a Java-based application
will be less prone to developer errors leading to buffer overruns, resulting
in possible hacks. And there is a fairly robust ecosystem around Java, in
terms of educational materials, existing code bases, integrated development
environments (IDEs), and so on.

However, while you can program Android in the Java language, an Android
device does not run a Java application. Instead, your Java code is converted
into something that runs on the "Dalvik virtual machine". This is akin to
the technology used for regular Java applications, but Dalvik is specifically
tuned for Android's environment. Moreover, it limits the dependency of
Android on Java itself to a handful of programming tools, important as
Java's stewardship moves from Sun to Oracle to wherever.

That Dalvik virtual machine is also capable of running code from other
programming languages, a feature that makes possible much of what this
book covers.

...And It Was OK

No mobile development environment is perfect, and so the combination of
Java and Android has its issues.

At the time of this writing, Java, as implemented for the Dalvik virtual
machine, is interpreted, without any of the "just-in-time compiler" tricks
regular Java uses to boost performance. This is a bigger problem in mobile,
since the devices Android runs upon tend to be less powerful than your
average desktop, notebook, or Web server. Hence, there will be some things
you just can't do on Android with Java because it is too slow.

622

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://en.wikipedia.org/wiki/J2me

The Role of Alternative Environments

Java uses garbage collection to save people from having to keep track of all
of their memory allocations. That works for the most part, and it is
generally a boon to developer productivity. However, it is not a cure-all for
every memory and resource allocation problem. You can still have what
amounts to "memory leaks" in Java, even if the precise mechanics of those
leaks differ from the classic leaks you get in C, C++, etc.

Most importantly, though, not everybody likes Java. It could be because
they lack experience with it, or perhaps they have experience with it and
did not enjoy that experience. Certainly, Java is slowly being considered as a
language for big enterprise systems and, therefore, is not necessarily "cool".
Advocates of different languages will have their own pet peeves with Java as
well (e.g., to a Ruby developer, Java is really verbose).

So, while Java was not a bad choice for Android, it was not perfect, either.

Bucking the Trend

However, just because Java is the dominant way to build apps for Android,
that does not mean it is the only way, and for you, it may not even be the
best way.

Perhaps Java is not in your existing skill set. You might be a Web developer,
more comfortable with HTML, CSS, and Javascript. There are frameworks
to help you with that. Or, maybe you cut your teeth on server-side scripting
languages like Perl or Python – there are ways to sling that code on Android
as well. Or perhaps you already have a bunch of code in C/C++, such as
game physics algorithms, that would be painful to rewrite in Java – you
should be able to reuse that code too.

Even if you would be willing to learn Java, it may be that your inexperience
with Java and the Android APIs will just slow you down. You might be able
to get something built much more quickly with another framework, even if
you wind up replacing it with a Java-based implementation in the future.
Rapid development and prototyping is frequently important, to get early
feedback with minimal investment in time.

623

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Role of Alternative Environments

And, of course, you might just find Java programming to be irritating. You
would not be the first, nor the last, to have that sentiment. Particularly if
you are getting into Android as a hobby, rather than as part of your "day
job", having fun will be important to you, and you might not find Java to be
much fun.

Fortunately, Android is friendly towards alternative ways of building
applications, unlike some mobile platforms.

Support, Structure

However, "friendly" and "fully supported" are two different things.

Some alternatives to Java-based development are officially supported by the
core Android team, such as C/C++ development via the Native
Development Kit (NDK) and Web-style development via HTML5.

Some alternatives to Java-based development are supported by companies.
Adobe supports AIR, Nitobi supports PhoneGap, Rhomobile supports
Rhodes, and so on. Other alternatives are supported by standards bodies,
like the World Wide Web Consortium (W3C) supporting HTML5. Still
others are just tiny projects with only the backing of a couple of developers.

You will need to make the decision for yourself which of these levels of
support will meet your requirements. For many things, support is not much
of an issue, but there will always be cases where support becomes
paramount (e.g., enterprise application development).

Caveat Developer

Of course, going outside the traditional Java environment for Android
development has its issues, beyond just how much support might be
available.

624

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://daringfireball.net/2010/04/iphone_agreement_bans_flash_compiler

The Role of Alternative Environments

Some may be less efficient, in terms of processor time, memory, or battery
life, than will development in Java. C/C++, on the whole, is probably better
than Java, but HTML5 may be worse, for example. Depending on what you
are writing and how heavily it will be used will determine how critical that
inefficiency will be.

Some may not be available on all devices. Right now, Flash is the best
example of this – some devices offer some amount of Flash support, while
other devices have no Flash at all. Similarly, HTML5 support was only
added to Android in Android 2.0, so devices running older versions of
Android do not have HTML5 as a built-in option.

Every layer between you and officially supported environments makes it
that much more difficult for you to ensure compatibility with new versions
of Android, when they arise. For example, if you create an application using
PhoneGap, and a new Android version becomes available, there may be
incompatibilities that only the PhoneGap team can address. While they will
probably address those quickly – and they may provide some measure of
insulation to you from those incompatibilities – the response time is
outside of your control. In some cases, that is not a problem, but in other
cases, that might be bad for your project.

Hence, just because you are developing outside of Java does not mean
everything is perfect. You simply have to trade off between these problems
and the ones Java-based development might cause you. Where the balance
lies is up to each individual developer or firm.

625

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 45

HTML5

Prior to the current wave of interest in mobile applications, the technology
du jour was Web applications. A lot of attention was paid to AJAX, Ruby on
Rails, and other techniques and technologies that made Web applications
climb close to experience of a desktop application, and sometimes superior.

The explosion of Web applications eventually drove the next round of
enhancements to Web standards, collectively called HTML5. Android 2.0
added the first round of support for these HTML5 enhancements. Notably,
Android supports offline applications and Web storage, meaning that
HTML5 becomes a relevant technique for creating Android applications,
without dealing with Java.

Offline Applications

The linchpin for using HTML5 for offline applications – on Android or
elsewhere – is the ability for those applications to be used when there is no
connectivity, either due to problems on the client side (e.g., on an airplane
sans WiFi) or on the server side (e.g., Web server maintenance).

What Does It Mean?

Historically, Web applications have had this annoying tendency to require
Web servers. This led to all sorts of workarounds for offline use, up to and
including shipping a Web server and deploying it to the desktop.

627

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

HTML5

HTML5 solves this problem by allowing Web pages to specify their own
caching rules. A Web app can publish a "cache manifest", describing which
resources:

• Can be safely cached, such that if the Web server is unavailable, the
browser will just use the cached copy

• Cannot be safely cached, such that if the Web server is unavailable,
the browser should fail like it normally does

• Have a "fallback" resource, such that if the Web server is
unavailable, the cached fallback resource should be used instead

For mobile devices, this means that a fully HTML5-capable browser should
be able to load all its assets up front and keep them cached. If the user loses
connectivity, the application will still run. In this respect, the Web app
behaves almost identically to a regular app.

How Do You Use It?

For this chapter, we will use the Checklist "mini app" created by Alex
Gibson. While the most up-to-date version of this app can be found at the
MiniApps Web site, this chapter will review the copy found in
HTML5/Checklist of the book's source code repository. This copy is also
hosted online on the CommonsWare site, or via a shortened URL:
http://bit.ly/cw-html5.

About the Sample App

Checklist is, as the name suggests, a simple checklist application. When you
first launch it, the list will be empty:

628

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/ABJ/Checklist/
http://miniapps.co.uk/

HTML5

Figure 178. The Checklist, as initially launched

You can enter some text in the top field and click the Add button to add it
to the list:

629

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

HTML5

Figure 179. The Checklist, with one item added

You can "check off" individual items, which are then displayed in strike-
through:

630

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

HTML5

Figure 180. The Checklist, with one item marked as completed

You can also delete the checked entries (via the Delete Checked button) or
all entries (via the Delete All button), which will pop up a confirmation
dialog before proceeding:

631

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

HTML5

Figure 181. The Checklist's delete confirmation dialog

"Installing" Checklist on Your Phone

To access Checklist on your Android device, visit one of the URLs above for
the hosted edition using the Browser application – the shortened one may
be easiest to enter into the browser on the device. You can then add a
bookmark for it (More > Add bookmark from the browser's options menu)
to come back to it later.

You can even set up a shortcut for the bookmark on your home screen, if
you so choose – just long-tap on the background, choose Bookmark, then
choose the Checklist bookmark you set up before.

Examining the HTML

All of that is accomplished using just a handful of lines of HTML:

632

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

HTML5

<!DOCTYPE html>
<html lang="en" manifest="checklist.manifest">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Checklist</title>
<meta name="viewport"
 content="width=device-width; initial-scale=1.0; maximum-scale=1.0; user-
scalable=0;" />
<meta name="apple-mobile-web-app-capable" content="yes" />
<meta name="apple-mobile-web-app-status-bar-style" />
<link rel="apple-touch-startup-image" href="splashscreen.png" />
<link rel="stylesheet" href="styles.css" />
<link rel="apple-touch-icon-precomposed"
 href="apple-touch-icon-precomposed.png" />
</head>
<body>
<section>
 <header>
 <button type="button" id="sendmail">Mail</button>
 <h1>Checklist</h1>
 </header>
 <article>
 <form id="inputarea" onsubmit="addNewItem()">
 <input type="text" name="name" id="name" maxlength="75"
 autocorrect placeholder="Tap to enter a new item…" />
 <button type="button" id="add">Add</button>
 </form>
 <ul id="maillist">
 <li class="empty">Mail remaining items

 <p id="totals">Total: 0
 Remaining: 0</p>
 <ul id="checklist">
 <li class="empty">Loading…

 </article>
 <fieldset>
 <button type="button" id="deletechecked">Delete Checked</button>
 <button type="button" id="deleteall">Delete All</button>
 </fieldset>
</section>
<script src="main.js"></script>
</body>
</html>

For the purposes of offline applications, though, the key is the manifest
attribute of our html element:

<html lang="en" manifest="checklist.manifest">

633

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

HTML5

Here, we specify the relative path to a manifest file, indicating what the
rules are for caching various portions of this application offline.

Examining the Manifest

So, since the manifest is where all the fun is, here is what Checklist's
manifest looks like:

CACHE MANIFEST
#version 54
styles.css
main.js
splashscreen.png

The HTML5 manifest format is extremely simple. It starts with a CACHE
MANIFEST line, followed by a list of files (technically, relative URLs) that
should be cached. It also supports comments, which are lines beginning
with #.

The manifest can also have a NETWORK: line, followed by relative URLs that
should never be cached. Similarly, the manifest can have a FALLBACK: line,
followed by pairs of relative URLs: the URL to try to fetch off the network,
followed by the URL of a cached resource to use if the network is not
available.

In principle, the manifest should request caching for everything that the
application needs to run, though the page that requested the caching
(index.html in this case) is also cached.

Web Storage

Caching the HTML5 application's assets for offline use is all well and good,
but that will be rather limiting on its own. In an offline situation, the
application would not be able to use AJAX techniques to interact with a
Web service. So, if the application is going to be able to store information,
it will need to do so on the browser itself.

634

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

HTML5

Google Gears and related tools pioneered this concept and blazed the trail
for what is now variously called "Web Storage" or "DOM Storage" for
HTML5 applications. An HTML5 app can store data persistently on the
client, within client-imposed limits. That, in conjunction with offline asset
caching, means an HTML5 application can deliver far more value when it
lacks an Internet connection, or for data that just does not make sense to
store "in the cloud".

Note that, technically, Web Storage is not part of HTML5, but is a related
specification. However, it tends to get "lumped in with" HTML5 in common
conversation.

What Does It Mean?

On a Web Storage-enabled browser, your Javascript code will have access to
a localStorage object, representing your application's data. More accurately,
each "origin" (i.e., domain) will have a distinct localStorage object on the
browser.

The localStorage object is an "associative array", meaning you can work
with it either via numerical indexes or string-based keys at your discretion.
Values typically are strings. You can:

• Find out how many entries are in the array via length()

• Get and set items by key via getItem() and setItem()

• Get the key for a numerical index via key()

• Remove individual entries via removeItem() or remove all items via
clear()

This means you do not have the full richness of a SQL database, like you
might have with SQLite in a native Android application. But, for many
applications, this should suffice.

635

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

HTML5

How Do You Use It?

Checklist stores the list items as keys in the associative array, with a value
of 0 for a regular item and 1 for a deleted item. Here, we see the code for
putting a new item into the checklist:

try {
 localStorage.setItem(strippedString, data);
}
catch (e) {
 if (e == QUOTA_EXCEEDED_ERR) {
 alert('Quota exceeded!');
 }
}

Here is the code where those items are pulled back out of storage and put
into an array for sorting and, later, display as DOM elements on the Web
page itself:

/*get all items from localStorage and push them one by one into an array.*/
for (i = 0; i <= listlength; i++) {

 var item = localStorage.key(i);
 myArray.push(item);
}

/*sort the array into alphabetical order.*/
myArray.sort();

When the user checks the checkmark next to an item, the storage is
updated to toggle the checked setting persistently:

/*toggle the check flag.*/
if (target.previousSibling.checked) {
 data = 0;
}
else {
 data = 1;
}
/*save item in localStorage.*/
try {
 localStorage.setItem(name, data);
} catch (e) {

 if (e == QUOTA_EXCEEDED_ERR) {
 alert('Quota exceeded!');

636

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

HTML5

 }
}

Checklist also has code to delete items from storage, either all those
marked as checked:

/*remove every item from localStorage that has the data flag checked.*/
while (i <= localStorage.length-1) {

 var key = localStorage.key(i);
 if (localStorage.getItem(key) === '1') {
 localStorage.removeItem(key);
 }
 else { i++; }
}

...or all items:

/*deletes all items in the list.*/
deleteAll: function() {

 /*ask for user confirmation.*/
 var answer = confirm("Delete all items?");

 /*if yes.*/
 if (answer) {

 /*remove all items from localStorage.*/
 localStorage.clear();
 /*update view.*/
 checklistApp.getAllItems();
 }
 /*clear up.*/
 delete checklistApp.deleteAll;
},

Web SQL Database

Android's built-in browser also supports a "Web SQL Database" option, one
where you can use SQLite-style databases from Javascript. This adds a lot
more power than basic Web Storage, albeit at a complexity cost. It is also
not part of an active standard – the WHATWG team working on this
standard has set it aside for the time being.

637

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.w3.org/TR/webdatabase/

HTML5

You might consider evaluating Lawnchair, which is a Javascript API that
allows you to store arbitrary JSON-encoded objects. It will use whatever
storage options are available, and therefore will help you deal with cross-
platform variety. In particular, it supports the Google Gears facility found
in some older versions of Android.

Going To Production

Creating a little test application requires nothing magical. Presumably,
though, you are interested in others using your application – perhaps many
others. Classic Java-based Android applications have to deal with testing,
having the application digitally signed for production, distribution through
various channels (such as the Android Market), and updates to the
application by one means or another. Those issues do not all magically
vanish because HTML5 is used as the application environment. However,
HTML5 does change things significantly from what Java developers have to
do.

Testing

Since HTML5 works in other browsers, testing your business logic could
easily take advantage of any number of HTML and Javascript testing tools,
from Selenium to QUnit to Jasmine.

For testing on Android proper – to ensure there are no issues related to
Android's browser implementation – you can use Selenium's Android
Driver or Remote Control modes.

Signing and Distribution

Unlike native Android applications, you do not need to worry about signing
your HTML5 applications.

The downside of this is that there is no support for distribution of HTML5
applications through the Android Market, which today only supports native

638

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.artofsolving.com/node/48
http://code.google.com/p/selenium/wiki/AndroidDriver
http://code.google.com/p/selenium/wiki/AndroidDriver
http://jasmine.pivotallabs.com/
http://docs.jquery.com/Qunit
http://seleniumhq.org/
https://github.com/brianleroux/lawnchair

HTML5

Android apps. Users will have to find your application by one means or
another, visit it in the browser, bookmark the page, and possibly create a
home screen shortcut to that bookmark.

Updates

Unlike native Android applications, which by default must be updated
manually, HTML5 applications will be transparently updated the next time
they run the app while connected to the Internet. The offline caching
protocol will check the Web server for new editions of files before falling
back to the cached copies. Hence, there is nothing more for you to do other
than publish the latest Web app assets.

Issues You May Encounter

Unfortunately, nothing is perfect. While HTML5 may make many things
easier, it is not a panacea for all Android development problems.

This section covers some potential areas of concern you will want to
consider as you move forward with HTML5 applications for Android.

Android Device Versions

Not all Android devices support HTML5 – only those running Android 2.x
or higher. Ideally, therefore, you do a bit of "user-agent sniffing" on your
Web server and redirect older Android users to some other page explaining
the limitations in their device.

Here is the user-agent string for a Nexus One device running Android 2.1:

Mozilla/5.0 (Linux; U; Android 2.1-update1; en-us; Nexus One Build/ERE27)
AppleWebKit/530.17 (KHTML, like Gecko) Version/4.0 Mobile Safari/530.17

639

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

HTML5

As you can see, it is formatted like a typical modern user-agent string,
meaning it is quite a mess. It does indicate it is running Android 2.1-
update1.

Eventually, somebody will create a database of user-agent strings for
different device models, and from there we can derive appropriate regular
expressions or similar algorithms to determine whether a given device can
support HTML5 applications.

Screen Sizes and Densities

HTML5 applications can be run on a wide range of screen sizes, from QVGA
Android devices to 1080p LCDs and beyond. Similarly, screen densities may
vary quite a bit, so while a 48x48 pixel image on a smartphone may be an
appropriate size, it may be too big for a 1080p television, let alone a 24"
LCD desktop monitor.

Other than increasing the possible options on the low end of screen sizes,
none of this is unique to Android. You will need to determine how best to
design your HTML and CSS to work on a range of sizes and densities, even
if Android were not part of the picture.

Limited Platform Integration

HTML5, while offering more platform integration than ever before, does
not come close to covering everything an Android application might want
to be able to do. For example, an ordinary HTML5 application cannot:

• Launch another application

• Work with the contacts database

• Raise a notification

• Do work truly in the background (though "Web workers" may
alleviate this somewhat someday)

• Interact with Bluetooth devices

640

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

HTML5

• Record audio or video

• Use the standard Android preference system

• Use speech recognition or text-to-speech

• And so on

Many applications will not need these capabilities, of course. And, one can
expect that other application environments, like PhoneGap, will evolve into
"HTML5 Plus" for Android. That way, you could create a stock application
that works across all devices and an enhanced Android application that
leverages greater platform integration, at the cost of some additional
amount of programming.

Performance and Battery

There has been a nagging concern for some time that HTML-based user
interfaces are inefficient compared to native Android UIs, in terms of
processor time, memory, and battery. For example, one of the stated
reasons for avoiding BONDI-style Web widgets for the Android home
screen is performance.

Certainly, it is possible to design HTML5 applications that will suck down
the battery. For example, if you have a hunk of Javascript code running
every second indefinitely, that is going to consume a fair amount of
processor time. However, outside of that, it seems unlikely that an ordinary
application would be used so heavily as to materially impact battery life.
Certainly, more testing will need to be done in this area.

Also, an HTML5 application may be a bit slower to start up than are other
applications, if the Browser has not been used in a while, or if the network
connection is there but has minimal bandwidth to your server.

641

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://en.wikipedia.org/wiki/BONDI_(OMTP)

HTML5

Look and Feel

HTML5 applications can certainly look very slick and professional – after
all, they are built with Web technologies, and Web apps can look very slick
and professional.

However, HTML5 applications will not necessarily look like standard
Android applications, at least not initially. Some enterprising developers
will, no doubt, create some reusable CSS, Javascript, and images that will,
for example, mirror an Android native Spinner widget (a type of drop-down
control). Similarly, HTML5 applications will tend to lack options menus,
notifications, or other UI features that a native Android application may
well use.

This is not necessarily bad. Considering the difficulty in creating a very
slick-looking Android application, HTML5 applications may tend to look
better than their Android counterparts. After all, there are many more
people skilled in creating slick Web apps than are skilled in creating slick
Android apps.

However, some users may complain about the look-and-feel disparity, just
because it is different.

Distribution

HTML5 applications can be trivially added to a user's device – browse,
bookmark, and add a shortcut to the home screen.

However, HTML5 applications will not show up in the Android Market, so
users trained to look at the Market for available applications will not find
HTML5 applications, even ones that may be better than their native
counterparts.

It is conceivable that, someday, the Android Market will support HTML5
applications. It is also conceivable that, someday, Android users will tend to
find their apps by means other than searching the Android Market, and will

642

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

HTML5

be able to get their HTML5 apps that way. However, until one of those
becomes true, HTML5 applications may be less "discoverable" than their
native equivalents.

HTML5 and Alternative Android Browsers

While the built-in Android browser will be the choice of many Android
users, there are other browsers available. Here is how some of the better-
known alternatives stand in terms of HTML5 support.

Firefox Mobile

Firefox Mobile is presently in beta form. It supports offline caching and
local storage. However, it is unable to run the Checklist sample correctly at
this time, for reasons presently unknown.

Opera Mobile

Opera Mobile, also in beta, does not support local storage, rendering
Checklist moot. It also does not support offline caching at this time.

Dolphin Browser HD 4.0

Dolphin Browser HD 4.0 supports offline caching and local storage. While
there are slight rendering problems – perhaps CSS-related – in Checklist,
the application otherwise runs fine, even without an Internet connection.

HTML5: The Baseline

HTML5 is likely to become rather popular for conventional application
development. It gives Web developers a route to the desktop. It may be the
only option for Google's Chrome OS. And, with ever-improving support on
popular mobile devices – Android among them – developers will certainly
be enticed by another round of "write once, run anywhere" promises.

643

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

HTML5

It is fairly likely that, over time, HTML5 will be the #2 option for Android
application development, after the conventional Java application written to
the Android SDK. That will make HTML5 the baseline for comparing
alternative Android development options – not only will those options be
compared to using the SDK, they will be compared to using HTML5.

644

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 46

PhoneGap

PhoneGap is perhaps the original alternative application framework for
Android, arriving on the scene in early 2009. PhoneGap is open source,
backed by Nitobi, who offers a mix of open source and commercial
products, along with consulting and training services.

What Is PhoneGap?

As the PhoneGap About page puts it:

The PhoneGap mission is to Web-enable native device
functionality with open standards like HTML, CSS and
JavaScript so that you can focus on the app you're building,
not on authoring complex platform compatibility layers.

PhoneGap, today, focuses on bridging the gap between Web technologies
and native mobile development, with access to more features than HTML5
applications have.

What Do You Write In?

A PhoneGap application is made up of HTML, CSS, and JavaScript, no
different than a mobile Web site or HTML5 application, except that the

645

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.phonegap.com/about/
http://www.nitobi.com/

PhoneGap

Web assets are packaged with the application, rather than downloaded on
the fly.

A pre-installed PhoneGap application, therefore, can contain comparatively
large assets, such as complex JavaScript libraries, that might be too slow to
download over slower EDGE connections. However, PhoneGap will still be
limited by the speed of mobile devices and how quickly WebKit can load
and process those assets.

Also, development for WebKit-for-mobile has its differences over
development for WebKit-for-desktops, particularly with respect to touch
versus mouse events. You may want to develop using mobile layers of
JavaScript frameworks (e.g., jqTouch versus plain jQuery) where practical.

What Features Do You Get?

As with an HTML5 application, you get the basic capabilities of a Web
browser, including AJAX support. Beyond that, PhoneGap adds a number
of JavaScript APIs to allow you to get at the underlying features of the
Android platform. At the time of this writing, that includes:

• Accelerometer access, for detecting movement of the device

• Audio recording

• Camera access, for taking still pictures

• Database access, both to databases of your creation (SQLite) or
others built into Android (e.g., contacts)

• File system access, such as to the SD card or other external storage

• Geolocation, for determining where the device is

• Vibration, for shaking the phone (e.g., force-feedback)

Since some of these are part of the HTML5 specification (e.g., geolocation),
you have your choice of APIs. Also, this list changes over time, so you may
have access to more than what is described here.

646

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://jquery.com/
http://www.jqtouch.com/

PhoneGap

What Do Apps Look Like?

They will look like Web pages, more so than native Android apps. You can
use CSS and images to mimic the Android look and feel to some extent, but
only for those sorts of widgets that are readily able to be created in both
Android and HTML. For example, the Android Spinner widget – which
resembles a drop-down list – may be difficult to mimic in HTML.

Here is a screenshot of the example application that ships with PhoneGap:

Figure 182. The example application that comes with PhoneGap

How Does Distribution Work?

Distributing a PhoneGap application is pretty much identical to
distributing any other standard Android application. After testing, you will
create a standard APK file with the Android build tools, from an Android
project generated for you by PhoneGap. This project will contain the Java,
XML, and other necessary bits to wrap around your HTML, CSS, and

647

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PhoneGap

JavaScript to make up your application. Then, you digitally sign the
application and upload it to the Android Market or any other distribution
mechanism you wish to use.

What About Other Platforms?

PhoneGap is not just for Android. You can create PhoneGap applications
for iPhone, Blackberry, some flavors of Symbian, and Palm's WebOS. In
theory, at least, you can create one application using HTML, CSS,
JavaScript, and the PhoneGap JavaScript APIs, and have it run across many
devices.

There are a couple of limitations that will hamper your progress to that
goal:

1. The Web browsing component used by PhoneGap across all those
platforms is not identical. Even multiple platforms using WebKit
will have different WebKit releases, based upon what was available
when WebKit was integrated into a given device's firmware. Hence,
you will want to test and ensure your CSS, in particular, works as
you would expect on as many devices as possible.

2. Not all PhoneGap JavaScript APIs are available on all devices as yet,
due to a variety of factors (e.g., not exposed in the platform's native
APIs, lack of engineering time to hoist the capability into the
PhoneGap APIs). There is a table on the PhoneGap wiki that will
keep you apprised of what works and what does not across the
devices. You will want to restrict your feature use to match your
desired platforms, or restrict your platforms to match your desired
features.

Using PhoneGap

Now, let's look at more of the mechanics for using PhoneGap.

PhoneGap's installation and usage, as of the time of this writing, normally
requires an expert in Java-based Android development. You need to install a

648

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://wiki.phonegap.com/Roadmap

PhoneGap

whole bunch of tools, edit configuration files by hand, and so forth. If you
want to do all of that, documentation is available on the PhoneGap site.

If you are reading this chapter, there's a decent chance that you would
rather skip all of that. Hence, for many, the best answer is the
PhoneGap/Build service, still in private beta at the time of this writing.

Installation

The PhoneGap Web site will allow you to download the latest PhoneGap
tools as a ZIP archive. You can unpack those wherever it makes sense for
your development machine and platform.

For Android development, that is all of the PhoneGap-specific installation
you will need. However, you will need the Android SDK and related tools
(e.g., Eclipse, if you wish to use Eclipse) for setting up the project.

Creating and Installing Your Project

A PhoneGap Android project is, at its core, a regular Android project, which
you can create following the instructions outlined earlier in this book. To
convert the standard generated "Hello, World" application into a PhoneGap
project, you need to do the following:

1. From the Android/ directory of wherever you unZIPped the
PhoneGap ZIP file, copy the PhoneGap JAR file to the libs/
directory of your project. If you are using Eclipse, you will also need
to add it to your build path.

2. Create an assets/www/ directory in your project. Then, copy over the
PhoneGap JS file from the Android/ directory of wherever you
unZIPped the PhoneGap ZIP file.

3. Adjust the standard "Hello, World" activity to inherit from DroidGap
instead of Activity. This will require you to import
com.phonegap.DroidGap.

649

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://build.phonegap.com/

PhoneGap

4. In your activity's onCreate() method, replace setContentView() with
super.loadUrl("file:///android_asset/www/index.html");

5. In your manifest, add all of the permissions that PhoneGap
requests, listed later in this chapter.

6. Also in your manifest, add a suitable <supports-screens> element
based upon what screen sizes you are willing to test and support.

7. Also in your manifest, add android:configChanges="orientation|
keyboardHidden" to your <activity> element, as DroidGap handles
orientation-related configuration changes

At this point, you can create an assets/www/index.html file in your project
and start creating your PhoneGap application using HTML, CSS, and
Javascript. You will need to have a reference to the PhoneGap Javascript file
(e.g., <script type="text/javascript" charset="utf-8"

src="phonegap.0.9.4.js" />). When you want to test the application, you
can build and install it like any other Android application (e.g., ant clean
install if you are using the command line build process).

For somebody experienced in Android SDK development, setting this up is
not a big challenge.

PhoneGap/Build

PhoneGap/Build is a Tools-as-a-Service (TaaS) hosted approach to creating
PhoneGap projects. This way, all of the Android build process is handled
for you by PhoneGap-supplied servers. You just focus on creating your
HTML, CSS, and Javascript as you see fit.

As noted earlier, PhoneGap/Build is still in private beta at the time of this
writing, though hopefully it will be open to the public in the near future.

When you log into PhoneGap/Build, you are first prompted to create your
initial project, by supplying a name and the Web assets to go into the app:

650

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PhoneGap

Figure 183. Creating your first project in PhoneGap/Build

You will be able to add new projects later on via a New App button, which
gives you the same set of options.

Your choices for the assets are to upload a ZIP file containing all of them, or
to specify the URL to a public GitHub repository that PhoneGap/Build can
pull from. The latter tends to be more convenient, if you are used to using
Git for version control, and if your project is open source (and therefore has
a public repository).

Once you click the Upload button, the PhoneGap/Build server will
immediately start building your application for Android, plus Blackberry,
Symbian, and WebOS:

651

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PhoneGap

Figure 184. Building your first project in PhoneGap/Build

Each of the targets has its own file extension (e.g., apk for Android).
Clicking that link will let you download that file. Or, click on the name of
the project, and you get QR codes to enable downloads straight to your test
device:

Figure 185. Your project's QR codes in PhoneGap/Build

652

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PhoneGap

This page also gives you a link to update the app from its GitHub repo (if
you chose that option). Or, click Edit to specify more options, such as the
version of your application or its launcher icon:

Figure 186. Your project's settings in PhoneGap/Build

All in all, if you do not otherwise need the Android SDK and related tools
on your development machine, PhoneGap/Build certainly simplifies the
PhoneGap building process.

Note, though, that at the present time, Nitobi (the firm behind PhoneGap
and PhoneGap/Build) is planning on PhoneGap/Build to be a commercial
service for non-open-source applications, though rates have not yet been
announced at this time.

653

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PhoneGap

PhoneGap and the Checklist Sample

The beauty of PhoneGap is that it wraps around HTML, CSS, and
Javascript. In other words, you do not have to do much of anything
PhoneGap-specific to be able to take advantage of PhoneGap delivering to
you an APK suitable for installation on an Android device. That being said,
PhoneGap does expose more stuff to you than you can get from the
standards, if you need them and are willing to use proprietary PhoneGap
APIs for them.

Sticking to the Standards

Given an existing HTML5 application, all you need to do to make it be an
installable APK is wrap it in PhoneGap.

For example, to convert the HTML5 version of Checklist into an APK file,
you need to:

1. Follow the steps to create an empty PhoneGap project outlined
earlier in this chapter

2. Copy the HTML, CSS, Javascript, and images from the HTML5
project into the assets/www/ directory of the PhoneGap project (note
that you do not need things unique to HTML5, such as the cache
manifest)

3. Make sure that your HTML entry point filename matches the path
you used with the loadUrl() call in your activity (e.g., index.html)

4. Add a reference to the PhoneGap Javascript file from your HTML

5. Build and install the project

Here is the DroidGap activity for our app, from the PhoneGap/Checklist
project:

package com.commonsware.pg.checklist;

import android.app.Activity;
import android.os.Bundle;

654

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PhoneGap

import com.phonegap.DroidGap;

public class Checklist extends DroidGap {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 super.loadUrl("file:///android_asset/www/index.html");
 }
}

Here is the manifest, with all of the PhoneGap-requested settings added:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.pg.checklist"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:label="@string/app_name" android:icon="@drawable/cw">
 <activity android:name="Checklist"
 android:configChanges="orientation|keyboardHidden"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
 <supports-screens
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="true"
 android:resizeable="true"
 android:anyDensity="true"
 />
 <uses-permission android:name="android.permission.CAMERA" />
 <uses-permission android:name="android.permission.VIBRATE" />
 <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
 <uses-permission
android:name="android.permission.ACCESS_LOCATION_EXTRA_COMMANDS" />
 <uses-permission android:name="android.permission.READ_PHONE_STATE" />
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.RECEIVE_SMS" />
 <uses-permission android:name="android.permission.RECORD_AUDIO" />
 <uses-permission android:name="android.permission.MODIFY_AUDIO_SETTINGS" />
 <uses-permission android:name="android.permission.READ_CONTACTS" />
 <uses-permission android:name="android.permission.WRITE_CONTACTS" />
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
</manifest>

655

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PhoneGap

And here is the HTML – almost identical to the HTML5 original, removing
some HTML5 offline stuff (e.g., iPhone icons) and adding in the reference
to PhoneGap's Javascript file:

<!DOCTYPE html>
<html lang="en" manifest="checklist.manifest">
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title>Checklist</title>
 <meta name="viewport"
 content="width=device-width; initial-scale=1.0; maximum-scale=1.0; user-
scalable=0;" />
 <link rel="stylesheet" href="styles.css" />
 <script type="text/javascript" charset="utf-8"
src="phonegap.0.9.4.js"></script>
</head>
<body>
 <section>
 <header>
 <button type="button" id="sendmail">Mail</button>
 <h1>Checklist</h1>
 </header>
 <article>
 <form id="inputarea" onsubmit="addNewItem()">
 <input type="text" name="name" id="name" maxlength="75"
 autocorrect placeholder="Tap to enter a new item…"
/>
 <button type="button" id="add">Add</button>
 </form>
 <ul id="maillist">
 <li class="empty">Mail remaining
items

 <p id="totals">Total: <span
id="total">0
 Remaining: <span
id="remaining">0</p>
 <ul id="checklist">
 <li class="empty">Loading…

 </article>
 <fieldset>
 <button type="button" id="deletechecked">Delete Checked</button>
 <button type="button" id="deleteall">Delete All</button>
 </fieldset>
 </section>
 <script src="main.js"></script>
</body>
</html>

656

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PhoneGap

For many applications, this is all you will need – you are simply looking at
PhoneGap to give you something you can distribute on the Android
Market, on the iOS App Store, and so on.

Adding PhoneGap APIs

If you want to take advantage of more device capabilities, you can augment
your HTML5 application to use PhoneGap-specific APIs. These run the
gamut from telling you the device's model to letting you get compass
readings. Hence, their complexity will vary. For the purposes of this
chapter, we will look at some of the simpler ones.

Set up Device-Ready Event Handler

For various reasons, PhoneGap will not be ready to respond to all of its APIs
right away when your page is loaded. Instead, there is a deviceready event
that you will need to watch for in order to know when it is safe to use
PhoneGap-specific Javascript globals. The typical recipe is:

1. Add an onload attribute to your <body> tag, referencing a global
Javascript function (e.g., onLoad())

2. In onLoad(), use addEventListener() to register another global
Javascript function (e.g., onDeviceReady()) for the deviceready event

3. In onDeviceReady(), start using the PhoneGap APIs

Use What PhoneGap Gives You

PhoneGap makes a number of methods available to you through a series of
virtual Javascript objects. Here, "virtual" means that you cannot check to
see if the objects exist, but you can call methods and read properties on
them. So, for example, there is a device object that has a handful of useful
properties, such as phonegap to return the PhoneGap version and version to
return the OS version. These virtual objects are ready for use in or after the
deviceready event.

657

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PhoneGap

For example, here is a Javascript file (props.js from the
PhoneGap/ChecklistEx project) that implements an onLoad() function (to
register for deviceready) and an onDeviceReady() function (to use the device
object's properties):

// PhoneGap's APIs are not immediately ready, so set up an
// event handler to find out when they are ready

function onLoad() {
 document.addEventListener("deviceready", onDeviceReady, false);
}

// Now PhoneGap's APIs are ready

function onDeviceReady() {
 var element=document.getElementById('props');

 element.innerHTML='Model: '+device.name+'' +
 'OS and Version: '+device.platform +'
'+device.version+'' +
 'PhoneGap Version: '+device.phonegap+'';
}

The onDeviceReady() function needs a list element with an id of props. That,
plus loading this Javascript in the first place, will require some minor
modifications to our HTML:

<!DOCTYPE html>
<html lang="en" manifest="checklist.manifest">
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title>Checklist</title>
 <meta name="viewport"
 content="width=device-width; initial-scale=1.0; maximum-scale=1.0; user-
scalable=0;" />
 <link rel="stylesheet" href="styles.css" />
 <script type="text/javascript" charset="utf-8"
src="phonegap.0.9.4.js"></script>
 <script type="text/javascript" charset="utf-8" src="props.js"></script>
</head>
 <body onload="onLoad()">
 <section>
 <header>
 <button type="button" id="sendmail">Mail</button>
 <h1>Checklist</h1>
 </header>
 <article>
 <form id="inputarea" onsubmit="addNewItem()">
 <input type="text" name="name" id="name" maxlength="75"
 autocorrect placeholder="Tap to enter a new item…" />

658

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PhoneGap

 <button type="button" id="add">Add</button>
 </form>
 <ul id="maillist">
 <li class="empty">Mail remaining items

 <p id="totals">Total: 0
 Remaining: 0</p>
 <ul id="checklist">
 <li class="empty">Loading…

 </article>
 <fieldset>
 <button type="button" id="deletechecked">Delete Checked</button>
 <button type="button" id="deleteall">Delete All</button>
 </fieldset>
 <footer>
 <h2>Device Properties</h2>
 <ul id="props">
 </footer>
 </section>
 <script src="main.js"></script>
 </body>
</html>

The resulting app looks like:

Figure 187. The PhoneGap Checklist application with device properties

659

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PhoneGap

Obviously, reading a handful of properties is far simpler than, say, taking a
picture with the device's camera. However, the difference in complexity is
mostly in what PhoneGap's virtual Javascript objects give you and how you
can use them, more so than anything peculiar to Android.

Issues You May Encounter

PhoneGap is a fine choice for creating cross-platform applications.
However, it is not without its issues. Some of these issues may be resolved
in time; some may be endemic to the nature of PhoneGap.

Security

Android applications use a permission system to request access to certain
system features, such as making Internet requests or reading the user's
contacts. Applications must request these permissions at install time, so
the user can elect to abandon the installation if the requested permissions
seem suspect.

A general rule of thumb is that you should request as few permissions as
possible, and make sure that you can justify why you are requesting the
remaining permissions.

PhoneGap, for a new project, requests quite a few permissions:

• CAMERA

• VIBRATE

• ACCESS_COARSE_LOCATION

• ACCESS_FINE_LOCATION

• ACCESS_LOCATION_EXTRA_COMMANDS

• READ_PHONE_STATE

• INTERNET

• RECEIVE_SMS

• RECORD_AUDIO

660

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PhoneGap

• MODIFY_AUDIO_SETTINGS

• READ_CONTACTS

• WRITE_CONTACTS

• WRITE_EXTERNAL_STORAGE

• ACCESS_NETWORK_STATE

Leaving this roster intact will give you an application that can use every API
PhoneGap makes available to your Javascript...and an application that will
scare away many users. After all, it is unlikely that your application will be
able to use, let alone justify, all of these permissions.

It is certainly possible for you to trim down this list, by modifying the
AndroidManifest.xml file in the root of your PhoneGap project. However, you
will then need to thoroughly test your application to make sure you did not
get rid of a permission that you actually need. Also, it may be unclear to
you which permissions you can safely remove.

Eventually, the PhoneGap project may have tools to help guide you in the
choice of permissions, perhaps by statically analyzing your Javascript code
to see which PhoneGap APIs you are using. In the meantime, though,
getting the proper set of permissions will involve a lot of trial and error.

Screen Sizes and Densities

Normal Web applications primarily focus on screen resolution and window
sizes as their primary variables. However, mobile Web applications will not
have to worry about window sizes, as browsers and apps typically run full-
screen. Mobile Web applications will need to deal with physical size and
density, though – issues that are "off the radar" for traditional Web
development.

Netbooks can have screens that are 10" or smaller. Desktops can have
screens that are 24" or larger. On the surface, therefore, physical screen size
would seem to be something Web developers would need to address.
However, generally, screen resolution (in pixels) tracks well with physical

661

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PhoneGap

size in the netbook/notebook/desktop realm. That is because screen
density is fairly consistent across their LCDs, and that density is fairly low.

Smartphones, on the other hand, have several different densities, causing
the connection between resolution and size to be broken. Some low-end
phones, particularly with small (e.g., 3") LCDs, have densities on par with
nice monitors. Mid-range phones have twice the density (240dpi versus
120dpi). Apple's iPhone 4 has even higher density, and one can imagine that
there will soon be some Android devices with so-called "retina displays" as
well. Hence, an 800x480 resolution could be on a screen ranging anywhere
from 4" to 7", for example. Tablets add even more possible sizes to the mix.

This is compounded by the problems caused by touchscreens. A mouse can
get pixel-level precision in its clicks. Fingers are much less precise. Hence,
you tend to need to make your buttons and such that much bigger on a
touchscreen, so it can be "finger-friendly".

This causes some problems with scaling of assets, particularly images. What
might be "finger-friendly" on a low-density 3" device might be entirely too
small for a high-density 4" device.

Native Android applications have built-in logic for dealing with this issue,
in the form of multiple sets of "resources" (e.g., images) that can be
swapped in based upon device characteristics. Eventually, PhoneGap and
similar tools will need to provide relevant advice for their users for how to
create applications that can similarly adapt to circumstances.

Look and Feel

A Web app never quite looks like a native one. This is not necessarily a bad
thing. However, some users may find it disconcerting, particularly since
they will not understand why their newly-installed app (made with
PhoneGap, for example) would necessarily look substantially different than
any other similar app they may already have.

662

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PhoneGap

As HTML5 applications become more prominent on Android, this issue
should decline in importance. However, it is something to keep in mind for
the next year or two.

For More Information

At the time of this writing, there are no books available dedicated to
PhoneGap development. Also, it is still a fast-moving target, particularly as
it heads to Version 1.0. Hence, at the moment, the best information on
PhoneGap can be found on the PhoneGap site, including their API
documentation.

663

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://docs.phonegap.com/
http://docs.phonegap.com/
http://www.phonegap.com/

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 47

Other Alternative Environments

The alternative application environments described in the preceding
chapters are but the tip of the iceberg. Here, we will take a look at a few
other alternative application environments, from the growing flood of such
technologies.

Note that this area changes rapidly, and so the material in this chapter may
be somewhat out of date relative to the progress each of these technologies
has made.

Rhodes

Spiritually, Rhodes is similar to PhoneGap, in that you develop an Android
application whose user interface is defined via HTML, CSS, and Javascript.
The difference is that Rhodes bakes in a full Ruby environment, with a
Rails-esque framework. Your Ruby code generates HTML and such to be
"served" to an activity via a WebView widget, much like a server-side Ruby
Web app would generate HTML to be served to a standalone Web browser.

Similar to PhoneGap, you can either build the project on your development
machine or use their hosted build process. The latter is recommended,
partly because the requirements for local builds are higher than those for
PhoneGap – notably, Rhodes requires the Native Development Kit (NDK)
for building and linking the Ruby interpreter to your application.

665

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Other Alternative Environments

Rhodes winds up creating larger applications than does PhoneGap, due to
the overhead of the Ruby interpreter (~1.5MB). However, if you are used to
server-side Web development, Rhodes may be easier for you to pick up
than would PhoneGap.

Flash, Flex, and AIR

Adobe has been hard at work extending their Flash, Flex, and AIR
technologies to the mobile space. You can use Flex (the "Hero" edition) and
Flash Builder (the "Burrito" edition... begging the question of whether the
"hero" is hungry) to create Android APK files that can be distributed on the
Android Market and deployed to Android devices. Those devices will need
to have the AIR runtime installed – this is free, but a large download, and it
only works on Android 2.2 devices. The same projects can be repackaged
for iOS and the Blackberry Playbook tablet, and possibly future devices
down the road.

AIR does not have quite as tight of integration to the platform as does
PhoneGap (e.g., no access to the device's contacts), though one imagines
that this is an area on which Adobe will devote more resources over time.
And, Adobe is a large firm, with a large ecosystem behind it and many
existing Flash, Flex, and AIR developer resources to tap into.

JRuby and Ruboto

One of the most popular languages designed to run on the JVM – besides
Java itself – is JRuby. JRuby was quickly ported to run on Android, but with
some optimizations disabled, since JRuby is really running on the Dalvik
virtual machine that underlies the Android environment, not a classic Java
VM.

However, JRuby alone cannot create Android applications. As a scripting
language, there is no way for it to define an activity or other component –
those need to be registered in the application's manifest as regular Java
class files.

666

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Other Alternative Environments

This is where Ruboto comes in.

Ruboto is a framework for a generic JRuby/Android application. It provides
skeletal activities via a code generator and allows JRuby scripts to define
handlers for all of the lifecycle methods (e.g., onCreate()), plus define user
interfaces using JRuby code, etc. The result can be packaged up as an APK
file using supplied Rake script. The results can be uploaded to the Android
Market or distributed however else you desire.

MonoDroid

Mono is a re-implementation of C# and .NET for non-Windows
environments. Mono has had its fair share of controversies, mostly
stemming from Microsoft, such as whether Microsoft will someday squash
Mono over patent considerations.

MonoDroid has been in the works for some time. This would allow Mono
developers to target Android for their apps. In principle, one could develop
C# applications for Android this way.

While Mono itself is an open source project, "MonoDroid is a commercial
product...licensed on a per-developer basis", according to the Mono project.
This may come as a bit of a shock to those expecting Mono-on-Android to
remain open source.

MonoDroid, while eagerly anticipated, has not been released as of the time
of this writing, beyond a beta.

App Inventor

App Inventor is an Android application development tool made available
by Google, but outside of the normal Android developer site. App Inventor
was originally developed for use in education, but they have been inviting
others into their closed beta.

667

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Other Alternative Environments

App Inventor is theoretically a Web-based development tool. Here,
"theoretically" means that, in practice, users have to do a fair amount of
work outside of the browser to get everything set up:

• Have Java installed and functioning in the browser, capable of
running Java Web Start (.jnlp) applications

• Download and install a large (~55MB) client-side set of tools

• Have a phone and have it configured to work with App Inventor and
the Android SDK

Once set up, App Inventor gives you a drag-and-drop GUI editor:

Figure 188. The App Inventor "Designer" view

...and a "blocks" editor, where you attach behaviors to events (e.g., button
clicks) by snapping together various "blocks" representing events, methods,
and properties:

668

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Other Alternative Environments

Figure 189. The App Inventor "Blocks" view

While working in the GUI editor, you see what you are building live on an
attached phone and can be tested in real time. Later, when you are ready,
you can package the application into a standard APK file.

However, App Inventor is not really set up for production application use
today:

• You cannot distribute App Inventor apps on the Android Market

• It has more components aimed at "sizzle" (e.g., Twitter integration)
and fewer delivering capabilities that a typical modern app might
need (e.g., relational databases, lists)

• Only one developer at a time can work on a project

In the future, it is possible that App Inventor will become a solid option, or
that App Inventor will trigger other firms to create similar sorts of
programming-free development options for Android.

Titanium Mobile

Titanium Mobile's claim to fame is using Javascript to completely define the
user interface, eschewing HTML entirely. Rather, their Javascript library –
in addition to providing access to databases and platform capabilities – also

669

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Other Alternative Environments

lets you declare user interface widgets. Its layout capabilities, for
positioning said widgets, leaves a bit to be desired.

As of the time of this writing, Appcelerator – the creators of Titanium
Mobile – does not offer a cloud-based set of tools. Their Titanium tool has a
very slick-looking UI, but it still requires the Java SDK and Android SDK in
order to be able to build Android applications, making the setup a bit
daunting for some.

As of the time of this writing, Titanium Mobile supports development for
Android and iOS, with Blackberry support in a private beta.

Other JVM Compiled Languages

If your issue is less with regular Android development, but you just do not
like Java, any language that can generate compatible JVM bytecode should
work with Android. You would have to modify the build chain for that
other language to do the rest of the Android build process (e.g., generate
R.java from the resources, create the APK file in the end).

Scala and Clojure are two such languages, for which their respective
communities have put together instructions for using their languages for
Android development.

670

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PART VIII – The Ever-Evolving
Android

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 48

Dealing With Devices

Android is "free as in beer" for device manufacturers, as it is an open source
project. Hence, device manufacturers have carte blanche to do what they
want with Android as they put it on their devices. This means a breadth of
choices for device users, who will be able to have Android devices in all
shapes, sizes, and colors. This also means developers will have some device
differences and idiosyncrasies to take into account.

This chapter will give you some tips and advice for dealing with these
device-specific issues, to go along with the screen size material from the
previous chapter.

This App Contains Explicit... Instructions

Originally, the only Android device was the T-Mobile G1. Hence, if you were
writing an Android application, you could assume the existence of a
hardware QWERTY keyboard, a trackball for navigation, and so on. Now,
though, over one hundred other devices exist, many with different
hardware capabilities (e.g., no keyboard).

Ideally, your application can work regardless of the existence of various
types of hardware. Some applications, though, will be unusable without
certain hardware characteristics. For example, a full-screen game may rely
upon a hardware keyboard or trackball to indicate player actions – soft
keyboards and touchscreens may be insufficient.

673

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing With Devices

Fortunately, starting with Android 1.5, you can now add explicit
instructions, telling Android what you need, so your application is not
installed on devices lacking such hardware.

In addition to using the target ID system to indicate what level of device
your project is targeting, you can use a new AndroidManifest.xml element to
specify hardware that is required for your application to run properly. You
can add one or more <uses-configuration> elements inside the <manifest>
element. Each <uses-configuration> element specifies one valid
configuration of hardware that your application will work with. At the
present time, there are five possible hardware requirements you can specify
this way:

• android:reqFiveWayNav to indicate you need a 5-way navigation
pointing device of some form (e.g, android:reqFiveWayNav = "true")

• android:reqNavigation to restrict the 5-way navigation pointing
device to a specific type (e.g, android:reqNavigation = "trackball")

• android:reqHardKeyboard to specify if a hardware (physical) keyboard
is required (e.g, android:reqHardKeyboard = "true")

• android:reqKeyboardType, probably used in conjunction with
android:reqHardKeyboard, to indicate a specific type of hardware
keyboard that is required (e.g, android:reqKeyboardType = "qwerty")

• android:reqTouchScreen to indicate what type of touchscreen is
required, if any (e.g, android:reqTouchScreen = "finger")

Starting in Android 1.6, there is a similar manifest element, <uses-feature>,
which is designed to document requirements an application has of other
optional features on Android devices. For example, the following attributes
can be placed in a <uses-feature> element:

• android:glEsVersion indicates that your application requires
OpenGL, where the value of the attribute indicates what level of
OpenGL support (e.g., 0x00010002 for OpenGL 1.2 or higher)

• android:name = "android.hardware.camera" indicates that your
application needs a camera, while android:name =

674

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing With Devices

"android.hardware.camera.autofocus" indicates that your application
specifically needs an auto-focus camera

Each Android release adds more and more features you can require. These
requests will cause the Android Market – and other third-party markets,
one hopes – to filter your application out from devices for which it is
unsuitable.

The <uses-feature> element has an android:required attribute that you can
specify. By default, it is set to true, meaning you absolutely need this
feature. If you set it to false, you are advertising that you can take
advantage of the feature if it exists, but you do not absolutely need it. To
find out at runtime whether the feature is there, you can use the
hasSystemFeature() method on PackageManager to interrogate the device to
see if what you want is available.

Implied Feature Requests

If you have requested permissions like CALL_PHONE or SEND_SMS, unless you
take the proper steps, your application will not be available for the
Motorola XOOM, and presumably for other Android 3.0-based tablets.

Some permissions imply that you need certain hardware features – scroll
down to the “Permissions that Imply Feature Requirements” section on the
linked-to page to find the list.

The Android Market treats as though requesting a permission like
CALL_PHONE also requests:

<uses-feature ndroid:name="android.hardware.telephony" />

The XOOM does not have telephony — the first Android Market-compliant
device with that limitation. While it can have a data plan, it has no voice or
SMS capability, and so it is treated as not having
android.hardware.telephony. But, if you request permissions like CALL_PHONE,
the Android Market by default will assume you need

675

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://developer.android.com/guide/topics/manifest/uses-feature-element.html#market-feature-filtering

Dealing With Devices

android.hardware.telephony. As a result, you will be filtered out of the
Market for the XOOM.

The solution is simple: for any hardware features that might be implied by
permissions but that you do not absolutely need, manually add the
appropriate <uses-feature> element to your manifest with
android:required="false":

<uses-feature
 android:name="android.hardware.telephony"
 android:required="false"
/>

Then, before you try placing a phone call or sending an SMS or something,
use PackageManager and getSystemAvailableFeatures() to find out if
android.hardware.telephony is indeed available on the device. For example,
you might check for telephony early on and disable various menu choices –
buttons that might lead to the user to place a call or send an SMS.

Now, if your application absolutely needs telephony, then the implied
<uses-feature> will work, though you may wish to consider putting one in
explicitly. However, just bear in mind that this means your app will not
work on the XOOM or other tablets that lack telephony.

A Guaranteed Market

As mentioned in the introduction to the chapter, Android is open source.
Specifically, it is mostly available under the Apache Software License 2.0.
This license places few restrictions on device manufacturers. Therefore, it is
very possible for a device manufacturer to create a device that, frankly, does
not run Android very well. It might work fine for standard applications
shipped on the device but do a poor job of handling third-party
applications, like the ones you might write.

To help address this, Google has some applications, such as the Android
Market, that it has not released as open source. While these applications
are available to device manufacturers, the devices that run the Android

676

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing With Devices

Market are tested first, to help ensure that a user's experience with the
device will be reasonable.

A Google engineer cited one case where a device manufacturer was
readying a phone that had a QVGA screen, before the release of Android 1.6
where QVGA support was officially added to the platform. While that
manufacturer had arranged for the built-in applications to work acceptably
on the smaller-resolution screen, third party applications were a mess.
Google apparently declined to provide the Android Market to the
manufacturer for this device.

Hence, the existence of the Android Market on a device, beyond providing
a distribution means for your applications, also serves as a bit of a "seal of
approval" that the device should support well-written third-party
applications. Specifically, any device that has the Android Market:

• Will meet the criteria outlined in the Compatibility Definition
Document (CDD)

• Will have passed the Compatibility Test Suite (CTS)

Other Stuff That Varies

There are other things that are known to vary from device to device, such
as:

• What location technologies are available (GPS? Cell tower
proximity? Galileo?)

• What camera features are available (flash? auto-focus? sepia tone?)

• What sensors are available (accelerometer? gyroscope? barometer?)

The strategy for these is to interrogate the system to find out what the
possibilities are, then decide which to use, where the decision could be
made solely by you or with user input. For example, you can use Criteria to
determine which is the best location provider to use with LocationManager.

677

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://source.android.com/compatibility/index.html
http://source.android.com/compatibility/index.html

Dealing With Devices

Bugs, Bugs, Bugs

Unfortunately, devices inevitably have bugs. Some bugs are truly
accidental. Some are side-effects from changes the device manufacturer
made to achieve some business aims. Some are actually intentional, though
the engineers who implemented them may not have fully understood their
ramifications.

Unfortunately, there is not much one can do tactically about these bugs,
beyond try to work around them. The Build class, in the android.os
package, can tell you the make and model of the device that is running your
app. That, plus your own hard-won experience with certain problems, will
help you identify where you need to route around firmware damage.

Strategically, if you find something that is clearly a device bug, file an issue
to have this bug detected via the Compatibility Test Suite (CTS). The CTS is
supposed to filter out devices that cannot faithfully run Android
applications. However, the CTS has many holes, and device bugs slip
through. By improving the CTS, we can help prevent this sort of problem
from cropping up in the future. You can file this issue out on the Android
public issue tracker.

Device Testing

Ideally, you try to test your apps on a variety of hardware. This can get
expensive. Here are some options for trying to do it more cheaply:

• Sign up for DeviceAnywhere's independent developer plan, which is
a lower-cost way of being able to access their device farm for testing
from remote

• Some device manufacturers hold "device labs" at various events,
such as Motorola held at AnDevCon 2011

• Some carriers have perpetual device labs, such as Orange's
"developer centres"

678

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.orangepartner.com/site/enuk/mobile/support/developer_centres/p_developer_centres.jsp
http://www.orangepartner.com/site/enuk/mobile/support/developer_centres/p_developer_centres.jsp
https://www.deviceanywhere.com/Independent%20Developer/Independent%20Developer_virtual_developer_lab.html
http://b.android.com/
http://b.android.com/

Dealing With Devices

• You may be able to arrange short-term (e.g., 15 minute) device
swaps as part of a Meetup or Google Technology User Group with
fellow Android developers

679

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 49

Where Do We Go From Here?

Obviously, this book does not cover everything. And while your #1 resource
(besides the book) is going to be the Android SDK documentation, you are
likely to need information beyond what's covered in either of those places.

Searching online for "android" and a class name is a good way to turn up
tutorials that reference a given Android class. However, bear in mind that
tutorials written before late August 2008 are probably written for the M5
SDK and, as such, will require considerable adjustment to work properly in
current SDKs.

Beyond randomly hunting around for tutorials, though, this chapter
outlines some other resources to keep in mind.

Questions. Sometimes, With Answers.

The "official" places to get assistance with Android are the Android Google
Groups. With respect to the SDK, there are three to consider following:

• StackOverflow's android tag

• android-developers, for SDK questions and answers

• android-discuss, designed for free-form discussion of anything
Android-related, not necessarily for programming questions and
answers

681

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://groups.google.com/group/android-discuss
http://groups.google.com/group/android-developers
http://stackoverflow.com/questions/tagged/android

Where Do We Go From Here?

You might also consider:

• The Android tutorials and programming forums over at anddev.org

• The AndMob wiki

• The #android-dev IRC channel on freenode (irc.freenode.net)

• The Android board on JavaRanch

It is important, particularly for StackOverflow and the Google Groups, to
write well-written questions:

• Include relevant portions of the source code (e.g., the method in
which you are getting an exception)

• The stack trace from LogCat, if the problem is an unhandled
exception

• On StackOverflow, make sure your source code and stack trace are
formatted as source code; on Google Groups, consider posting long
listings on gist.github.com or a similar sort of code-paste site

• Explain thoroughly what you are trying to do, how you are trying to
do it, and why you are doing it this way (if you think your goal or
approach may be a little offbeat)

• On StackOverflow, respond to answers and comments with your
own comments, addressing the person using the @ syntax (e.g.,
@CommonsWare), to maximize the odds you will get a reply

• On the Google Groups, do not "ping" or reply to your own message
to try to elicit a response until a reasonable amount of time has
gone by (e.g., 24 hours)

Heading to the Source

The source code to Android is now available. Mostly this is for people
looking to enhance, improve, or otherwise fuss with the insides of the
Android operating system. But, it is possible that you will find the answers
you seek in that code, particularly if you want to see how some built-in
Android component "does it's thing".

682

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://gist.github.com/
http://www.coderanch.com/forums/f-93/Android
http://wiki.andmob.org/
http://anddev.org/

Where Do We Go From Here?

The source code and related resources can be found at
http://source.android.com. Here, you can:

• Download or browse the source code

• File bug reports against the operating system itself

• Submit patches and learn about the process for how such patches
get evaluated and approved

• Join a separate set of Google Groups for Android platform
development

Rather than download the multi-gigabyte Android source code snapshot,
you may wish to use Google Code Search instead. Just add the
android:package constraint to your search query, and it will only search in
Android and related projects.

Getting Your News Fix

Ed Burnette, a nice guy who happened to write his own Android book, is
also the manager of Planet Android, a feed aggregator for a number of
Android-related blogs. Subscribing to the planet's feed will let you monitor
quite a bit of Android-related blog posts, though not exclusively related to
programming.

To try to focus more on programming-related Android-referencing blog
posts, you can search DZone for "android" and subscribe to a feed based off
that search.

683

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.dzone.com/links/feed/search/android/rss.xml
http://www.planetandroid.com/
http://www.google.com/codesearch
http://source.android.com/community/index.html
http://source.android.com/submit-patches
http://source.android.com/report-bugs
http://git.source.android.com/
http://source.android.com/download
http://source.android.com/

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

Class...

AbsoluteLayout..197, 330

ActionEvent...67

ActionListener...67

Activity.....38, 81, 133, 158, 181, 225, 226, 232, 247,
260, 262, 271, 272, 274, 282, 283, 292, 335, 381,
417, 431, 432, 450, 458, 504, 533, 534, 546, 572,
647

Adapter..133, 152, 154, 451

AdapterView..154, 465

AdapterView.AdapterContextMenuInfo........218

AddStringsTask...269

AddStringTask...267, 269

AlertDialog.........................216, 226-228, 371, 375

AnalogClock...176, 186

android.text.Spanned.....................................300

AndroidHttpClient.........................487, 488, 500

Application..509

ArrayAdapter...132-136, 143, 153-156, 161, 163, 164,
167, 215, 217, 218, 267, 268, 374, 416, 466

ArrayList.....................................215, 416, 523, 525

AssetManager..596

AsyncTask. .262-265, 267-271, 275, 423, 425, 429,
467, 523, 528

AutoCompleteTextView..............85, 145, 147, 198

BasicResponseHandler....................................516

Binder.......................................508, 509, 522, 525

Box...93

BoxLayout..93

BroadcastReceiver....................282, 283, 510, 565

Build..676

Builder..226, 227, 424

Bundle.......233, 235, 238, 245, 247, 279, 288, 383,
396, 450

Button...71, 73-76, 80-82, 90, 97, 102, 103, 110, 111,
188, 189, 191, 192, 194, 228, 235, 301, 321, 322, 331,
377, 400, 405

ByteArrayResponseHandler............................516

Calendar...174

CheckBox...85, 88, 91

CheckBoxPreference.......................................434

CheckedTextView..197

Chronometer...177, 197

Class...405

685

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

ColorStateList..91, 92

CompoundButton...88

Configuration...250, 335

ConstantsBrowser..................................460, 466

Contacts.People..406

ContactsContract..405

ContactsContract.Contacts............................406

ContentManager...538

ContentValues...462, 463

Context132, 226, 271, 417, 422, 431, 432, 458, 490,
509, 523

ContextMenu..212, 222

ContextMenu.ContextMenuInfo....................212

CountriesFragment..................383, 388, 390-394

Country..386, 395

CountryAdapter.......................................383, 386

CountryListener...............................392, 394, 395

CountryWrapper...384

Criteria...563, 675

Cursor..............................424, 464, 465, 467, 493

CursorAdapter..465, 466

CWBrowser..293

DatabaseHelper.......................................458, 461

DateFormat..174

DatePicker...171

DatePickerDialog......................................171, 174

DefaultHttpClient............482, 487, 516, 525, 528

DetailsActivity...390, 395

DetailsFragment 381, 382, 388, 390, 391, 394, 395

DialogFragment..388

DialogPreference...451

DigitalClock...176

DisplayMetrics...336

Document..416

Double...287

DownloadDemo..491

Downloader.......................................514, 517, 520

DownloadManager..................488-491, 493, 500

DownloadManager.Query..............................493

DownloadManager.Request...................491, 492

Drawable....................149, 182, 245, 304, 539, 577

DrawerDemo..197

DroidGap...647, 648, 652

DynamicDemo..156, 157

EditPreferences.......................................434, 452

EditPreferencesHC..................................452, 453

EditText.....83, 108, 119, 120, 122, 125-127, 129, 145,
171, 235, 239, 317, 372-374, 377, 408

EditTextPreference..443

Environment....................................422, 423, 492

EU4You..............................340, 342, 353, 390-395

Exception...405, 528, 597

ExpandableListView..197

FakePlayer...521, 546, 547

FancyLists/ViewHolder...................................162

FetchForecastTask...................................528, 565

FieldDemo..119

File..421, 422, 492

FileOutputStream...................................428, 429

FlowLayout..94

686

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

FontSampler..596

Forecast.....................................485, 523-525, 528

Fragment............................379, 381-383, 388, 583

FragmentActivity............................389, 396, 582

FragmentManager...........................389, 391, 394

FragmentTransaction.......................379, 389, 391

FrameLayout.......................180, 181, 188, 194, 583

Gallery...131, 149, 197

GeoPoint..575

GradientDrawable...332

GridView...141, 142, 149

Handler.........234, 258-262, 270, 276, 511, 512, 518

HandOfCardsLayout..331

HelpActivity..287

HoneycombHelper...409

HorizontalScrollView.......................................118

HttpClient.......................482, 484, 486, 487, 500

HttpContext..487

HttpGet....................................482, 484, 516, 528

HttpPost..482

HttpRequest..482

HttpResponse..482

HttpUrlConnection..500

IconicAdapter..154, 155

ImageButton.................................81, 82, 304, 339

ImageSwitcher...198

ImageView. 81, 82, 155, 158, 161, 162, 164, 194, 304

IMEDemo1..127

IMEDemo2...127

InflationDemo...369

InputMethodManager.............................128, 375

InputStream...............................413, 416, 417, 485

InputStreamReader...417

Integer.. 167

Intent.....4, 179, 204, 240, 241, 279, 281, 283, 287,
291-293, 395, 405, 451, 500, 506-508, 510, 511,
516-518, 520, 522, 539, 566, 567, 588, 591

IntentService...............504, 514, 516, 517, 519, 520

Interpreter...474

ItemizedOverlay...............................576-578, 583

JButton...67, 68

JCheckBox...132

JComboBox...137

JLabel.. 132

JList... 132

JTabbedPane..180

JTable.. 132

LayoutInflater............................157, 158, 186, 383

LinearLayout.. . .93-98, 100, 102, 103, 109, 113, 152,
158, 167, 181, 194, 248, 250, 323, 374, 377, 392

List...213, 563

ListActivity. . .133-135, 181, 217, 265, 340, 383, 389,
397, 572

ListAdapter..161, 197, 383

ListCellRenderer..132

ListFragment....................379, 383, 386, 389, 405

ListPreference...443

ListView.....118, 129, 133, 135-138, 149, 151-154, 156,
159, 161, 163, 164, 213, 215, 218, 339-341, 378, 383,
386, 465, 466, 483, 572

Location.....................483, 523, 525, 529, 563-565

LocationListener.....................................564, 565

LocationManager.....................562-564, 566, 675

687

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

LocationProvider.............................562-564, 609

Map...431, 462

MapActivity.......................569, 572-574, 582-584

MapController...574, 575

MapFragment..583, 584

MapView. .488, 569, 571, 572, 574, 576, 579, 580,
582-585

MediaPlayer...520

Menu...210, 211, 220-222

MenuInflater...221, 222

MenuItem..............211, 212, 216, 218, 220, 221, 373

Message.......................258, 259, 261, 262, 511, 517

Messenger....................................511, 514, 517, 518

MultiAutoCompleteTextView.........................198

MyLocationOverlay.................................573, 579

NooYawk.............573, 576, 577, 579-581, 584, 585

NotAllThatStrict.....................................426, 428

Notification........232, 538-540, 542, 545-548, 550

NotificationManager.......................538, 543, 546

NotifyDemo...540

NotifyMessage...542

Now..75, 76

NowRedux...75

Object..245

OnCheckedChangeListener................85, 86, 100

OnClickListener..................................67, 68, 228

OnDateChangedListener.................................172

OnDateSetListener...................................172, 174

OnEditorActionListener.................374, 375, 408

OnItemSelectedListener.................................139

OnTimeChangedListener................................172

OnTimeSetListener..................................172, 174

OutputStream..417

OutputStreamWriter.......................................417

Overlay...576, 578

OverlayItem...576-579

PackageManager.....................................673, 674

Parcelable..511

PendingIntent....511, 539, 542, 549, 550, 565, 566

PlayerService..............................519-521, 546, 547

PlayingCardLayout...331

Preference...434, 451

PreferenceActivity..388, 432, 433, 437, 440, 446-
449, 452, 453

PreferenceCategory................................439, 440

PreferenceFragment........................388, 448-450

PreferenceManager...432

PreferenceScreen.....434, 439, 440, 446, 447, 451

ProgressBar. .171, 257, 259-261, 265, 269-271, 275,
276, 319, 324-326, 495

ProgressDialog...257

QuickContactBadge..198

RadioButton...............88, 90, 91, 93, 98, 100, 386

RadioGroup...............................88, 90, 93, 98-101

RandomAccessFile..428

RatingAdapter..167

RatingBar....................................164, 167, 168, 179

RelativeLayout 93, 104, 105, 107-110, 114, 194, 330,
331, 377

RemoteObjectException.................................517

Resources..305, 413, 450

688

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

ResponseHandler...516

RingtonePreference..434

RotationAsync..................................272, 274, 275

RotationAwareTask..........................272, 274, 275

RowModel..167

Runnable..................................258, 262, 264, 265

ScrollView...............................93, 115-118, 127, 128

SecurityException..553

SeekBar... 178

SensorManager..455

Service...............................504, 505, 519, 520, 546

ServiceConnection...................508, 509, 524, 532

SharedPreferences...................428, 432, 433, 443

SimpleCursorAdapter.....................................465

SimplePrefsDemo....................................435, 437

SitesOverlay...576-578

SlidingDrawer..193-197

SoftReference...510

Spanned...300

Spinner 137, 138, 145, 149, 154, 363, 368, 380, 640,
645

SQLiteDatabase...............................458, 460-462

SQLiteDatabase.CursorFactory......................467

SQLiteOpenHelper.................................458, 460

SQLiteQueryBuilder.......................................463

StackOverflowException................................400

State..532-534

Static..306

StaticDemo...155

StockPreferenceFragment.......................449-451

StrictForRealz..426-428

StrictMode..423-427, 500

StrictWrapper..426-428

String. .167, 215, 226, 227, 267, 288, 300, 302, 431,
450, 482, 516, 533

System.Settings..332

TabActivity..................................181, 182, 291, 293

TabHost..............180-183, 293, 294, 339, 340, 380

TabHost.TabContentFactory...................184, 186

TabHost.TabSpec...186

TableLayout..............93, 111-114, 122, 127, 378, 437

TableRow..111-113

TabSpec...182, 183

TabView...191, 292

TabWidget....................180, 181, 184, 188, 191, 363

TelephonyManager...588

TextSwitcher..198

TextView......74, 79-81, 83, 85, 88, 91, 92, 97, 108,
126, 133, 153, 155, 158, 162, 164, 167, 174, 189-191,
197, 209, 255, 270, 271, 316, 372, 596, 598

TextWatcher..145, 147

Thread..256

TimePicker...171, 172

TimePickerDialog...............................171, 172, 174

Toast225, 226, 228, 269, 369, 476, 484, 496, 497,
500, 518, 579

ToggleButton...198

tools/..16

Typeface...596

Uri......240, 241, 243, 247, 278, 279, 281, 285, 287,
289, 292, 405, 406, 492, 538, 588

VerifyError.......................................404, 408, 427

689

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

View. . .71, 75, 81, 90, 113, 117, 139, 151, 154-159, 161-
163, 168, 184, 186, 188, 212, 218, 219, 226, 262,
292, 381, 382, 407-409, 466, 603

View.OnClickListener.......................................81

ViewAnimator...189

ViewFlipper..........................188, 189, 191-193, 198

ViewGroup...378

ViewHolder.................................162-164, 167, 168

ViewHolderDemo..163

ViewSwitcher...198

Void..267-269

WeakReference..510

WeatherBinder.........................524, 525, 528, 529

WeatherDemo.................................484, 529, 535

WeatherListener..............................524, 525, 528

WeatherService..524, 528

WebKit...483, 484

WebSettings..206

WebView.....199-206, 292, 351, 353, 378, 379, 381,
382, 388-391, 488, 529, 533, 534, 552, 663

WebViewClient.......................................204, 205

WebViewFragment...388

XmlPullParser..305, 307

Command......................................

adb...615, 616

adb devices...25, 616

adb install...616

adb kill-server..616

adb logcat..498, 606, 616

adb pull..468, 607, 616

adb push..469, 607, 616

adb shell...468, 608, 616

adb start-server..616

android..9, 54

android create project..................37, 38, 280, 301

android list targets...31

android update project -pxxviii

ant..38, 40

ant -version..16

ant clean install..68, 648

ant jarcore..473

ddms..604

hierarchyviewer......................................400, 599

jarsigner..571

keytool..571

pdftk *.pdf cat output combined.pdf............xxiv

sqlite3..468

sudo service udev reload..................................26

zipalign..40

Constant...

ACCESS_COARSE_LOCATION.....................562

ACCESS_FINE_LOCATION............................562

ACTION_EDIT..278

ACTION_PICK..278, 288

ACTION_VIEW.......................................278, 287

ALTERNATIVE..279

DEFAULT...279

DELETE...462, 463

END_DOCUMENT...305

END_TAG..305

690

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

GET..482

HORIZONTAL..94

INSERT...457, 462, 463

INTEGER...457

LARGER...207

LAUNCHER..279, 281

LENGTH_LONG...226

LENGTH_SHORT...226

MAIN..281

NULL...462

PERMISSION_DENIED..................................555

PERMISSION_GRANTED...............................555

POST..482

R...75

RESULT_CANCELED.....................................288

RESULT_FIRST_USER....................................288

RESULT_OK..288

SELECT..457, 463

SMALLEST...207

START_TAG...305, 307

TEXT..305

UPDATE...462, 463

VERTICAL...94

WHERE...463, 464

_id...461

Method...

add().............................210, 211, 216, 217, 375, 576

addEventListener()...655

addMenu()..211

addPreferencesFromResource().....435, 448-451,
453

addProximityAlert().......................................566

addSubMenu()..211

addTab()..183, 186

addWord()..374, 375

afterTextChanged()..147

animateClose()..196

animateOpen()..196

animateToggle()..196

apply()..432

applyFormat()..302

attach()..274

beforeTextChanged().......................................147

bindService().............................505, 508, 509, 511

bindView()..466

boundCenterBottom()....................................577

buildForecasts()..484

cancel()..538

cancelAll()...538

canGoBack()..203

canGoBackOrForward().................................204

canGoForward()..203

check()..88, 90

checkCallingPermission()...............................555

chooseDate()..174

chooseTime()...174

clear()...432, 633

clearCache()..204

clearCheck()..88

691

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

clearHistory()..204

close()...............................196, 417, 429, 460, 465

commit()..432

create()...227

createDatabase()...468

createFromAsset()..596

createFromFile()...596

createItem()...577

createPendingResult()......................................511

createTabContent()...184

delete()..462, 463

detach()...274

doInBackground()....264, 265, 267-269, 274, 275

doTheDownload()...517

edit()..432

enableDefaults()...424

enablePersistentSelection()............................388

enqueue()...491, 493

execSQL()..460-463

execute()..263, 269, 482

findFragmentById()..394

findViewById()....75, 76, 91, 159, 161-163, 181, 183,
373, 374, 413, 574

finish()...233, 241

from()...383

fsync()..428, 429

generatePage()..485

get()...462

getActionView()..............................373, 376, 408

getActivity()...383, 539

getAddActionView()......................................409

getAltitude()..564

getApplicationContext().........................509, 523

getArguments()...450

getAsInteger()...462

getAssets()...596

getAsString()...462

getAttributeCount()..307

getAttributeName()..307

getBearing()...564

getBestProvider()..563

getBoolean()..432

getBroadcast(..565

getBroadcast()...539

getCallState()..588

getCheckedItemPositions().............................137

getCheckedRadioButtonId()............................88

getColumnIndex()..465

getColumnNames()..465

getController()..574

getCount()...465

getData()...241, 516

getDefaultSharedPreferences()..............432, 433

getExternalFilesDir()......................................422

getExternalStorageDirectory().......................422

getExternalStoragePublicDirectory()....422, 492

getExternalStorageState()..............................422

getFilesDir()...421

getForecast()..523, 525

getFragmentManager()..................................394

692

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

getIdentifier()...450, 451

getInt()..465

getItem()..633

getItemId()...216

getLastKnownPosition().................................563

getLastNonConfigurationInstance().....247, 274,
534

getLatitude()...483

getLayoutInflater()...................................158, 383

getListView()..135

getLongitude()..483

getMeMyCurrentLocationNow()...................564

getMenuInfo()...212, 218

getNetworkType()...588

getOverlays()...576

getPackageName()..450

getParent()...91

getPhoneType()...588

getPreferences().......................................431, 432

getProgress()..179, 257

getProviders()..563

getReadableDatabase()..................................460

getResources()..413, 450

getRootView()..91

getSettings()..206

getSharedPreferences()...........................431, 432

getSpeed()...564

getString().......................................299, 302, 465

getStringArray()..311

getSubscriberId()..588

getSupportFragmentManager().....................394

getSystemAvailableFeatures()........................674

getSystemService()..................................490, 491

getTag()..162-164, 167

getText()..300

getView().154, 155, 159-161, 163, 167, 382, 451, 466

getWriteableDatabase().................................460

getXml()...305

goBack()...203

goBackOrForward()................................203, 204

goForward()...203

handleError()..528

handleMessage()..............................259, 260, 512

hasAltitude()...564

hasBearing()..564

hasSpeed()...564

hasSystemFeature()...673

hideSoftInputFromWindow().........................129

incrementProgressBy()...................................257

init()...426, 427

initAdapter()...215, 217

insert()...460, 462

isAfterLast()..465

isChecked()...85, 88

isConfigurationChanging................................535

isEnabled()...91

isFinishing()...534

isFocused()...91

isRouteDisplayed()..................................573, 574

key()...633

693

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

length()..633

loadData()..202

loadHeadersFromResource().................448, 449

loadTime()...205

loadUrl()...................................200, 202, 382, 652

lock().. 196

makeText()..226

Menu#setGroupCheckable()...........................211

MenuItem#setCheckable()..............................211

mkdirs()...492

moveToFirst()..465

moveToNext()...465

newCursor()..467

newInstance()...487

newTabSpec()...182, 183

newView()...466

next()..305

notify()...538, 546

notifyMe()..542

obtainMessage()......................................258, 259

onActivityCreated()........................383, 396, 584

onActivityResult().....................241, 287, 288, 511

onBind()...................................505, 508, 520, 529

onCheckedChanged()...............................86, 100

onClick()..68, 256

onConfigurationChanged().............247, 250, 251

onContextItemSelected()........................212, 222

onContextMenuSelected()..............................218

onCountrySelected().......................388, 393, 395

onCreate()....67, 68, 74, 75, 90, 99, 200, 210, 215,
232-235, 243, 244, 256, 274, 275, 302, 373, 380,
382, 383, 394, 396, 416, 424, 426, 427, 438, 449,
458, 460, 461, 484, 491, 505, 509, 516, 517, 520,
522, 525, 529, 534, 543, 546, 584, 647, 665

onCreateContextMenu()...................212, 217, 222

onCreateOptionsMenu()...210, 211, 215, 222, 369,
373, 380, 407, 408

onCreatePanelMenu()......................................211

onCreateView()................................381, 382, 583

onDestroy()......233, 382, 484, 505, 509, 516, 520,
525, 529, 534

onDeviceReady().....................................655, 656

onDowngrade()...461

onHandleIntent().....................................516, 517

onListItemClick().....134, 167, 256, 383, 388, 393,
397, 465

onLoad()..655, 656

onLoadHeaders()..449

onLocationChanged().....................................565

onOpen()...460

onOptionsItemSelected()...210, 211, 213, 216, 222,
369, 380

onPageStarted()..204

onPause()..................234, 283, 382, 419, 505, 579

onPostExecute().......................265, 268, 275, 528

onPreExecute()..265

onPrepareOptionsMenu()...............................210

onProgressUpdate()........................265, 267, 268

onRatingChanged()...167

onReceive()..282

onReceivedHttpAuthRequest().....................204

onRestart()...233

onRestoreInstanceState().......................235, 396

694

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

onResume()......233, 234, 282, 382, 419, 438, 483,
505, 579

onRetainNonConfigurationInstance(). .247, 253,
274, 275, 396, 397, 509, 523, 524, 533, 535

onSaveInstanceState().....233, 235, 242, 243, 253,
396

onServiceConnected()....................................508

onServiceDisconnected()...............................509

onStart()..233, 261, 382

onStartCommand().........................505, 507, 520

onStop()..233, 261, 382

onTap()..578

onTextChanged()...147

onTooManyRedirects()...................................204

onUpgrade()....................................458, 460, 461

open()... 196

openFileInput().................................417, 419, 421

openFileOuptut()..421

openFileOutput()..............................417, 419, 421

openRawResource()...413

play()..520, 547

populate()..577

post()..262

postDelayed()..262

publishProgress()............................265, 267, 268

query().....................................463, 464, 492, 493

queryWithFactory()..467

rawQuery()..463

rawQueryWithFactory().................................467

registerForContextMenu()..............................212

registerReceiver().....................................282, 510

reload()..203

remove()..432

removeItem()...633

removeProximityAlert().................................566

removeUpdates()..565

requery()..465

requestFocus()...91

requestLocationUpdates()......................564, 565

restoreMe()......................................243, 244, 247

runOnUiThread()...262

send()..511

sendBroadcast().......................................510, 555

sendEmptyMessage()......................................259

sendMessage()...258

sendMessageAtFrontOfQueue()....................258

sendMessageAtTime()....................................258

sendMessageDelayed()...................................259

set()..476

setAccuracy()...563

setAdapter().................................133, 138, 141, 145

setAllowedNetworkTypes()............................492

setAllowedOverRoaming()............................492

setAlphabeticShortcut()...................................211

setAltitudeRequired().....................................563

setCellRenderer()...132

setCenter()...575

setChecked()...85, 90

setChoiceMode()..135

setColumnCollapsed().....................................114

setColumnShrinkable()....................................114

695

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

setColumnStretchable()...................................114

setContent()..182-184

setContentView()...................67, 75, 91, 394, 647

setCostAllowed()...563

setCurrentTab()...183

setDefaultFontSize().......................................207

setDescription()..492

setDestinationInExternalPublicDir()............492

setDropDownViewResource()........................138

setDuration()...226

setEnabled()..91, 221

setFantasyFontFamily()..................................206

setForeground()..546

setGravity()...96

setGroupCheckable()......................................210

setGroupEnabled()..221

setGroupVisible()...221

setHasOptionsMenu()....................................380

setIcon()...227

setIndeterminate()..257

setIndicator()..182, 183

setItem()..633

setItemChecked()...137

setJavaScriptCanOpenWindowsAutomatically(
)..207

setJavaScriptEnabled()....................................207

setLatestEventInfo()................................539, 542

setListAdapter().......................................134, 383

setMax()...179, 257, 261

setMessage()..227

setNegativeButton()..227

setNeutralButton()..227

setNumericShortcut()......................................211

setOnClickListener()..67

setOnEditorActionListener()..................126, 374

setOnItemSelectedListener().............133, 138, 141

setOnSeekBarChangeListener().....................179

setOrientation()..94

setPadding()..90

setPositiveButton()...227

setProgress()..257

setQwertyMode()...211

setResult()...288, 511

setTag()...162-164, 167

setText()...68, 255

setTextColor()..91

setTextSize()..207

setTitle()..227, 492

setTypeface()...72, 596

setup()..181-183

setUserAgent()..207

setView()..226

setVisible()...221

setVisibleInDownloadsUi()............................500

setWebViewClient().......................................204

setZoom()..575

shouldOverrideUrlLoading().................204, 205

show()...226-228

showMe()..289

showNext()..189

696

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

size()...577

start().. 177

startActivity()...240, 241, 287, 397, 451, 506, 588,
591

startActivityForResult().. . .240-242, 287, 288, 511

startDownload()..491

startForeground()............................520, 546, 547

startPlayer()...522

startService() 505-508, 511, 514, 516, 517, 519, 520,
522

stop()...177, 520, 547

stopForeground()....................................546-548

stopPlayer()...522

stopSelf()...508

stopService()....................................507, 509, 522

switch()...211

toggle()...85, 88, 196

toggleSatellite()...580

toString()..132

unbindService()......................................508, 509

unlock()..196

unregisterReceiver().......................................283

update()...462, 463

updateForecast().....................................483, 528

updateLabel()...174

updateTime()..67, 68

valueOf()...92

Property...

android:autoText...83

android:capitalize...83

android:collapseColumns................................114

android:columnWidth.....................................141

android:completionThreshold........................145

android:digits..83

android:drawSelectorOnTop...................138, 149

android:horizontalSpacing..............................141

android:id.........................73, 74, 88, 105, 181, 182

android:label...42

android:layout_above......................................106

android:layout_alignBaseline.........................107

android:layout_alignBottom..........................106

android:layout_alignLeft................................106

android:layout_alignParentBottom................105

android:layout_alignParentLeft......................105

android:layout_alignParentRight...................105

android:layout_alignParentTop......................105

android:layout_alignRight..............................107

android:layout_alignTop..........................106, 107

android:layout_below.....................................106

android:layout_centerHorizontal...................105

android:layout_centerInParent......................105

android:layout_centerVertical........................105

android:layout_column....................................112

android:layout_gravity.....................................96

android:layout_height................................73, 95

android:layout_span...112

android:layout_toLeftOf.................................106

android:layout_toRightOf..............................106

android:layout_weight.....................................95

android:layout_width...........................73, 95, 98

697

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

android:manifest...41

android:name.....................................42, 505, 552

android:nextFocusDown..................................90

android:nextFocusLeft.....................................90

android:nextFocusRight...................................90

android:nextFocusUp.......................................90

android:numColumns......................................141

android:orientation..94

android:permission.................................506, 554

android:shrinkColumns...................................114

android:singleLine..83

android:spacing...149

android:spinnerSelector..................................149

android:src..82

android:stretchColumns..................................113

android:stretchMode.......................................141

android:text...73, 79

android:textColor.......................................80, 85

android:textStyle...79, 83

android:typeface...79

android:verticalSpacing...................................141

android:visibility...90

698

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

	The Busy Coder's Guide to Android Development

	Welcome to the Book!
	Warescription
	Book Bug Bounty
	Source Code And Its License
	Creative Commons and the Four-to-Free (42F) Guarantee
	Acknowledgments
	The Big Picture
	What Androids Are Made Of
	Activities
	Services
	Content Providers
	Intents

	Stuff At Your Disposal
	Storage
	Network
	Multimedia
	GPS
	Phone Services

	The Big Picture...Of This Book

	How To Get Started
	Step #1: Java
	Install the JDK
	Learn Java

	Step #2: Install the Android SDK
	Install the Base Tools
	Install the SDKs and Add-Ons

	Step #3: Install the ADT for Eclipse
	Step #4: Install Apache Ant
	Step #5: Set Up the Emulator
	Step #6: Set Up the Device
	Windows
	OS X and Linux

	Your First Android Project
	Step #1: Create the New Project
	Eclipse
	Command Line

	Step #2: Build, Install, and Run the Application in Your Emulator or Device
	Eclipse
	Command Line

	Examining Your First Project
	Project Structure
	Root Contents
	The Sweat Off Your Brow
	And Now, The Rest of the Story
	What You Get Out Of It

	Inside Your Manifest
	In The Beginning, There Was the Root, And It Was Good
	An Application For Your Application

	A Bit About Eclipse
	What the ADT Gives You
	Coping with Eclipse
	How to Import a Non-Eclipse Project
	How to Get To DDMS
	How to Create an Emulator
	How to Run a Project
	How Not to Run Your Project

	Alternative IDEs
	More on the Tools
	IDEs...And This Book

	Enhancing Your First Project
	Supporting Multiple Screens
	Specifying Versions

	Rewriting Your First Project
	The Activity
	Dissecting the Activity
	Building and Running the Activity
	About the Remaining Examples

	Using XML-Based Layouts
	What Is an XML-Based Layout?
	Why Use XML-Based Layouts?
	OK, So What Does It Look Like?
	What's With the @ Signs?
	And We Attach These to the Java...How?
	The Rest of the Story

	Employing Basic Widgets
	Assigning Labels
	Button, Button, Who's Got the Button?
	Fleeting Images
	Fields of Green. Or Other Colors.
	Just Another Box to Check
	Turn the Radio Up
	It's Quite a View
	Padding
	Other Useful Properties
	Useful Methods
	Colors

	Working with Containers
	Thinking Linearly
	Concepts and Properties
	Example
	The Box Model

	All Things Are Relative
	Concepts and Properties
	Example
	Overlap

	Tabula Rasa
	Concepts and Properties
	Example

	Scrollwork

	The Input Method Framework
	Keyboards, Hard and Soft
	Tailored To Your Needs
	Tell Android Where It Can Go
	Fitting In
	Jane, Stop This Crazy Thing!

	Using Selection Widgets
	Adapting to the Circumstances
	Using ArrayAdapter

	Lists of Naughty and Nice
	Selection Modes

	Spin Control
	Grid Your Lions (Or Something Like That...)
	Fields: Now With 35% Less Typing!
	Galleries, Give Or Take The Art

	Getting Fancy With Lists
	Getting To First Base
	A Dynamic Presentation
	Inflating Rows Ourselves
	A Sidebar About Inflation
	And Now, Back To Our Story

	Better. Stronger. Faster.
	Using convertView
	Using the Holder Pattern

	Interactive Rows

	Still More Widgets and Containers
	Pick and Choose
	Time Keeps Flowing Like a River
	Seeking Resolution
	Putting It On My Tab
	The Pieces
	Wiring It Together
	Adding Them Up

	Flipping Them Off
	Getting In Somebody's Drawer
	Other Good Stuff

	Embedding the WebKit Browser
	A Browser, Writ Small
	Loading It Up
	Navigating the Waters
	Entertaining the Client
	Settings, Preferences, and Options (Oh, My!)

	Applying Menus
	Flavors of Menu
	Menus of Options
	Menus in Context
	Taking a Peek
	Yet More Inflation
	Menu XML Structure
	Menu Options and XML
	Inflating the Menu

	In the Land of Menus and Honey

	Showing Pop-Up Messages
	Raising Toasts
	Alert! Alert!
	Checking Them Out

	Handling Activity Lifecycle Events
	Schroedinger's Activity
	Life, Death, and Your Activity
	onCreate() and onDestroy()
	onStart(), onRestart(), and onStop()
	onPause() and onResume()

	The Grace of State

	Handling Rotation
	A Philosophy of Destruction
	It's All The Same, Just Different
	Picking and Viewing a Contact
	Saving Your State

	Now With More Savings!
	DIY Rotation
	...But Google Does Not Recommend This

	Forcing the Issue
	Making Sense of it All

	Dealing with Threads
	The Main Application Thread
	Making Progress with ProgressBars
	Getting Through the Handlers
	Messages
	Runnables

	Where, Oh Where Has My UI Thread Gone?
	Asyncing Feeling
	The Theory
	AsyncTask, Generics, and Varargs
	The Stages of AsyncTask
	A Sample Task

	Threads and Rotation
	Manual Activity Association
	Flow of Events
	Why This Works

	And Now, The Caveats

	Creating Intent Filters
	What's Your Intent?
	Pieces of Intents
	Intent Routing

	Stating Your Intent(ions)
	Narrow Receivers
	The Pause Caveat

	Launching Activities and Sub-Activities
	Peers and Subs
	Start 'Em Up
	Make an Intent
	Make the Call

	Tabbed Browsing, Sort Of

	Working with Resources
	The Resource Lineup
	String Theory
	Plain Strings
	String Formats
	Styled Text
	Styled Text and Formats

	Got the Picture?
	XML: The Resource Way
	Miscellaneous Values
	Dimensions
	Colors
	Arrays

	Different Strokes for Different Folks
	RTL Languages: Going Both Ways

	Defining and Using Styles
	Styles: DIY DRY
	Elements of Style
	Where to Apply a Style
	The Available Attributes
	Inheriting a Style
	The Possible Values

	Themes: Would a Style By Any Other Name...

	Handling Multiple Screen Sizes
	Taking the Default
	Whole in One
	Don't Think About Positions, Think About Rules
	Consider Physical Dimensions
	Avoid "Real" Pixels
	Choose Scalable Drawables

	Tailor Made, Just For You (And You, And You, And...)
	<supports-screens>
	Resources and Resource Sets
	Finding Your Size

	Ain't Nothing Like the Real Thing
	Density Differs
	Adjusting the Density

	Ruthlessly Exploiting the Situation
	Replace Menus with Buttons
	Replace Tabs with a Simple Activity
	Consolidate Multiple Activities

	Example: EU4You
	The First Cut
	Fixing the Fonts
	Fixing the Icons
	Using the Space
	What If It Is Not a Browser?

	Introducing the Honeycomb UI
	Why Honeycomb?
	What the User Sees
	The Holographic Theme
	Dealing with the Rest of the Devices

	Using the Action Bar
	Enabling the Action Bar
	Promoting Menu Items to the Action Bar
	Responding to the Logo
	Adding Custom Views to the Action Bar
	Defining the Layout
	Putting the Layout in the "Menu"
	Getting Control of User Input

	Don't Forget the Phones!

	Fragments
	Introducing Fragments
	The Problem
	The Fragments Solution
	The Android Compatibility Library

	Creating Fragment Classes
	General Fragments
	ListFragment
	Other Fragment Base Classes

	Fragments, Layouts, Activities, and Multiple Screen Sizes
	EU4You
	DetailsActivity

	Fragments and Configuration Changes
	Designing for Fragments

	Handling Platform Changes
	Things That Make You Go "Boom"
	View Hierarchy
	Changing Resources

	Handling API Changes
	Minimum, Maximum, Target, and Build Versions
	Detecting the Version
	Wrapping the API

	Patterns for Honeycomb
	The Action Bar
	Writing Tablet-Only Apps

	Accessing Files
	You And The Horse You Rode In On
	Readin' 'n Writin'
	External Storage: Giant Economy-Size Space
	Where to Write
	When to Write

	StrictMode: Avoiding Janky Code
	Setting up Strict Mode
	Seeing It In Action
	Development Only, Please!
	Conditionally Being Strict

	Linux Filesystems: You Sync, You Win

	Using Preferences
	Getting What You Want
	Stating Your Preference
	Introducing PreferenceActivity
	Letting Users Have Their Say
	Adding a Wee Bit O' Structure
	The Kind Of Pop-Ups You Like
	Preferences via Fragments
	The Honeycomb Way
	Adding Backwards Compatibility

	Managing and Accessing Local Databases
	A Quick SQLite Primer
	Start at the Beginning
	Setting the Table
	Makin' Data
	What Goes Around, Comes Around
	Raw Queries
	Regular Queries
	Using Cursors
	Custom CursorAdapters
	Making Your Own Cursors

	Flash: Sounds Faster Than It Is
	Data, Data, Everywhere

	Leveraging Java Libraries
	Ants and Jars
	The Outer Limits
	Following the Script
	Reviewing the Script

	Communicating via the Internet
	REST and Relaxation
	HTTP Operations via Apache HttpClient
	Parsing Responses
	Stuff To Consider
	AndroidHttpClient

	Leveraging Internet-Aware Android Components
	Downloading Files

	Continuing Our Escape From Janky Code

	Services: The Theory
	Why Services?
	Setting Up a Service
	The Service Class
	Lifecycle Methods
	Manifest Entry

	Communicating To Services
	Sending Commands with startService()
	Binding with bindService()

	Communicating From Services
	Callback/Listener Objects
	Broadcast Intents
	Pending Results
	Messenger
	Notifications

	Basic Service Patterns
	The Downloader
	The Design
	The Service Implementation
	Using the Service

	The Music Player
	The Design
	The Service Implementation
	Using the Service

	The Web Service Interface
	The Design
	The Rotation Challenge
	The Service Implementation
	Using the Service

	Alerting Users Via Notifications
	Notification Configuration
	Hardware Notifications
	Icons

	Notifications in Action
	Staying in the Foreground
	FakePlayer, Redux

	Notifications and Honeycomb

	Requesting and Requiring Permissions
	Mother, May I?
	Halt! Who Goes There?
	Enforcing Permissions via the Manifest
	Enforcing Permissions Elsewhere

	May I See Your Documents?
	New Permissions in Old Applications
	Permissions: Up Front Or Not At All

	Accessing Location-Based Services
	Location Providers: They Know Where You're Hiding
	Finding Yourself
	On the Move
	Are We There Yet? Are We There Yet? Are We There Yet?
	Testing...Testing...

	Mapping with MapView and MapActivity
	Terms, Not of Endearment
	Piling On
	The Key To It All
	The Bare Bones
	Optional Maps

	Exercising Your Control
	Zoom
	Center

	Layers Upon Layers
	Overlay Classes
	Drawing the ItemizedOverlay
	Handling Screen Taps

	My, Myself, and MyLocationOverlay
	Rugged Terrain
	Maps and Fragments
	Limit Yourself to Android 3.0
	Use onCreateView() and onActivityCreated()
	Host the Fragment in a MapActivity

	Handling Telephone Calls
	Report To The Manager
	You Make the Call!
	No, Really, You Make the Call!

	Fonts
	Love The One You're With
	Here a Glyph, There a Glyph

	More Development Tools
	Hierarchy Viewer: How Deep Is Your Code?
	DDMS: Under Android's Hood
	Logging
	File Push and Pull
	Screenshots
	Location Updates
	Placing Calls and Messages
	Memory Management

	adb: Like DDMS, With More Typing

	The Role of Alternative Environments
	In the Beginning, There Was Java...
	...And It Was OK
	Bucking the Trend
	Support, Structure
	Caveat Developer

	HTML5
	Offline Applications
	What Does It Mean?
	How Do You Use It?

	Web Storage
	What Does It Mean?
	How Do You Use It?
	Web SQL Database

	Going To Production
	Testing
	Signing and Distribution
	Updates

	Issues You May Encounter
	Android Device Versions
	Screen Sizes and Densities
	Limited Platform Integration
	Performance and Battery
	Look and Feel
	Distribution

	HTML5 and Alternative Android Browsers
	Firefox Mobile
	Opera Mobile
	Dolphin Browser HD 4.0

	HTML5: The Baseline

	PhoneGap
	What Is PhoneGap?
	What Do You Write In?
	What Features Do You Get?
	What Do Apps Look Like?
	How Does Distribution Work?
	What About Other Platforms?

	Using PhoneGap
	Installation
	Creating and Installing Your Project
	PhoneGap/Build

	PhoneGap and the Checklist Sample
	Sticking to the Standards
	Adding PhoneGap APIs

	Issues You May Encounter
	Security
	Screen Sizes and Densities
	Look and Feel

	For More Information

	Other Alternative Environments
	Rhodes
	Flash, Flex, and AIR
	JRuby and Ruboto
	MonoDroid
	App Inventor
	Titanium Mobile
	Other JVM Compiled Languages

	Dealing With Devices
	This App Contains Explicit... Instructions
	Implied Feature Requests

	A Guaranteed Market
	Other Stuff That Varies
	Bugs, Bugs, Bugs
	Device Testing

	Where Do We Go From Here?
	Questions. Sometimes, With Answers.
	Heading to the Source
	Getting Your News Fix

