ersion

The Busy Codetr’s
Guide to

Android™

Development

Mark L. Murphy

The Busy Coder's Guide to Android
Development

by Mark L. Murphy

CoMMONSWARE

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Busy Coder's Guide to Android Development
by Mark L. Murphy

Copyright © 2008-201 CommonsWare, LLC. All Rights Reserved.
Printed in the United States of America.

CommonsWare books may be purchased in printed (bulk) or digital form for educational or
business use. For more information, contact direct@commonsware.com.

Printing History:
Jan 2011: Version 3.4 ISBN: 978-0-9816780-0-9

The CommonsWare name and logo, “Busy Coder's Guide”, and related trade dress are
trademarks of CommonsWare, LLC.

All other trademarks referenced in this book are trademarks of their respective firms.

The publisher and author(s) assume no responsibility for errors or omissions or for damages
resulting from the use of the information contained herein.

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Table of Contents

Welcome to the Warescription!...........coveeiriiueiiiinnnnneeeciiieniniinnnnnnn, xix
g 3 xxi
Welcome to the BOOK!........cceiuirieiinieeeieeceeteeeee et Xxi
WareSCIIPLION. ..ceeutieuiieieeieeteete ettt et st ettt e e st e st esmbeesemeeeenas xxi
BOOK BUZ BOUNLY....ceiiiiriiiiieicteeeitee ettt xxii
Source Code And IS LIiCENSE.......cceevvevuerrereeienieseeeesieseeeeee e seee e xxiii
Creative Commons and the Four-to-Free (42F) Guarantee................. XXiV
ACKNOWIEAGMENLS.....ccueoiiieiiriirierieieteeei ettt st XXV
The Big Picture......ccccoovueiiiiiiiiiiiiiiiiiiineeccinnneeccennneeee e sssssnnseeeees 1
What Androids Are Made Of........ccccceeieiireeieninireeeeeeeeeeeeesee e 3
ACEIVITIES. ...ttt ettt e et et e st e sttt e e s e esee e e e senreeeeenn 3

T3 e ERRURN 4
CoNtent PrOVIAEIS.......cccueevieieeiieieetieeecee ettt re e s vaee s 4

=) o3PS 4

Stuff At Your Disposal.......ccceeeriiiieriniiienineeeeiesieseeteiesee e ee e 4
SEOTAG. .ttt e e 4
INEEWOTK. ..ttt sttt et 5
MUTEMEIA. ettt et es 5

GP Sttt e e s s b aa e e e e nrreee s 5

iii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PRONE SEIVICES....ccueeeieiiiieeieieteeeetestesteeteste e e e tesse s e e e esesseeseesseenneeas 5

The Big Picture...Of This BOOK.......c.ccceeirirerninirenreecnceneeneneneen 6
HOW TO Get Started........ceeeeeeeeeiiiiiiiiiiiiiiiiiiiiiinisssssssssssssnnssnssssssssssssnnssssses 7
SEEP H1: JAVA.utttitiitieteeteee ettt st 7
Install the JDK ..ottt e e e 8

| =14 o 1) -\ D USRI 8

Step #2: Install the Android SDK.........ccccveveveeirnienieieiereeeeeesee e 9
Install the Base TOOIS.......cccuveeiererireeeeeseceeeee e 9

Install the SDKs and Add-Ons........cecceeveverereenieneneeieneeeeeeseesee e 9

Step #3: Install the ADT for EclipSe.......cccccuveerievienienieiereneeceeee e 13
Step #4: Install APache ANt......cccevieiierinieiiererieeeeeeeee e 15
Step #5: Set Up the EMUlator........ccccocveveririesiineneeeeeeeeeee e 16
Step #6: Set Up the DeviCe.......cocevirviireriiiiineeieieneseeteeseeeesee e 23
WIANAOWS...ecntieteeiiecieeieec ettt ettt te e s e e e e s e e s seessaessaeeanaeeennnneas 24

OS X and LiNUXu.couceeverereerienienenteniesenteseesieseestessesseesteseessesseessessesneens 25

Your First ANdroid Project...........eeeeeeeeeeeeeeiiiiiiiiiiniinininininiinnneeeennnee. 27
Step #1: Create the New Project.......ccceceveeervieneneniienienenieieneseeeeneee 27
ECliPSE..iiiieiiiiee ettt sttt st 27
CommMaANd LINE.....ccoooieieieiieeieceeeeeeeeeee e ste st eeaesse e a e aeeseneens 31

Step #2: Build, Install, and Run the Application in Your Emulator or

DIBVICE. ittt ettt ettt ettt st e s s e e e e e s e araaeeeas 32
ECliPSE.iiiieitieeee ettt 32
(@0) 10 00 F=1 3 e B 5 1 o <3S 33

Examining Your First Project..............ccoviiiiiiiiiiiiiiiiiiiiiiinnnnnnnnnnnniiinnnnn, 37

Project SEIUCEUTE.....c.eiiiiiiiriereeeeeeeree ettt s 37
ROOE COMEENLES. ..uuviiriieriieeiieriieetesrteerteeereeseeesreesbeessaesbaesssnnneaeess 37
The Sweat Off YOUT BIOW....cceecveiirieieieeeceeeeceetee e 38

iv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

And Now, The Rest of the Story........ocevevievereneneniriirereceeeen 39

What You Get Out Of Tt..ueooueeieeieecieeeieeeeeeeeeeeere et 40

Inside YOUTr ManifeSt......c.ccciecuiecieecieeiecieecieete et et ete et ereeeeereeevaeeeveeas 40

In The Beginning, There Was the Root, And It Was Good............... 41

An Application For Your Application.........ccceceevvevererceesienenrerseennenns 42

A Bit About Eclipse........uuueiiiiiiiineeiiiiiiiiietiiiniinneecensscees 45
What the ADT GIVES YOU...cccevciiriireieieiereeteiesieeeeee st seeeesee s see e 45
Coping With EClIPSe.....coeveruirieiiiieireeteeeieeeet et 46
How to Import a Non-Eclipse Project........c.ccccceeveeveevenenveeceenenneenne. 46

How to Get To DDMS.......eiiiee ettt 51

How to Create an EMulator........ccccocveveverienienenierienenceeeseseseeeen 53

How to RUN @ PToject......c.coiiiiiiiiiiiiieieeeeeteeteeteee e 54

How Not to Run Your Project......c.c.cceeceeeeeeneennienneeniieeeeeeeeenee 55
AlLernative IDES......cccuivirieierieneeeeierieee ettt ettt ne s 55
IDEs...ANd This BOOK.....ccceectrtiriiniirtiienientrteesesteesest et 56
Enhancing Your First Project...........uueciiiiiiineeeciiniiinnneeeccenniinnnneeeeenees 59
Supporting Multiple SCreens...........cocvveverieririerienenenieeeeesese e 59
SPeCIfying VEISIONS....cc.cetriiriiriieienieniintetenie st etesie sttt s eeesaeeseeesaeeas 60
Rewriting Your First Project.........ccccccvviiiiiiiiiiiinnnnnnnnnnnnnnnnnncincnennnnn, 65
THE ACHIVIEY ..veitiieierieeteiese ettt ettt et ae s ettt e e e s bees 65
Dissecting the ACHIVILY......coevuerieririririerieieteeeese ettt 66
Building and Running the ACtivity.......cccceceevervienenierrienenenieereenieeneene 68
About the Remaining EXamples.........cccoeererrennennennenneneeneeneenees 69
Using XML-Based Layouts.......cccoueeeriueeiininneeniinnecnnnneeesinnnnneeeeeceeeenens 71
What Is an XML-Based Layout?..........ccceceverenienenenenenienieceesesesie e 71
Why Use XML-Based Layouts?.........ccccevererienieninenenenieieeseseeneeseeeeaeene 72
OK, So What Does It Look LiKe?........ccccceveevierererrienenereeeeseeeecee e 73

v

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

What's With the @ Signs?.......cccoeveveviriininineerreeeeee e 74

And We Attach These to the Java..HOW?.......cccocoveeeeceiciceeeereeeeeee e, 74
The Rest Of the StOTY......ocieieuiririeieneeeeeeeeee e 75
Employing Basic Widgets........cccooeiiviuiiiiiiniiininneiinnnnecininneecnnnneeeenens 79
Assigning Labels.........cocoiiiiriiiniieieeee e 79
Button, Button, Who's Got the Button?..........cccccceeeevvvuvieceeecereeeeee e 80
Fleeting ImMages.ccceerueruerierirenienieieeee ettt 81
Fields of Green. Or Other Colors........cceceecierirerieriereeeeieie e see e 83
Just Another Box t0 ChecK.......coovveeieiiineniesierereeeesee et 85
Turn the Radio Up....ceeeeiecienieieeeceeeeeeeeseeeee et 88
[t'S QUILE @ VIEW..utiiiiirieiiieeteteseee ettt sttt s st e st e s esaeeens 90
Padding....cc.eouereeieieeeieeeee et 90
Other Useful Properties.........c.ccoceverirrienenerienieneneesieeseeseeesiee e 90
Useful Methods........coevirierienieieieeeeeeeeetee et 01
(@0} o) =TSR PUPSTRPI 91
Working with Containers.......cccooovueeeiiiiiiiiineeciiiiiiinineeecnneeeecenees 93
Thinking Linearly........ccocoeeieieininineeeeeeeeseee e 94
Concepts and Properties.........cocueeecierererienieneniennienesneeseesseeeseeennns 94
EXQMIPIE...iiiiiiiieieieesee ettt 97
The Box Model......coooioiriniiiiiiineeicieenceccteeee e 102

All Things Are Relative.........cocvirierienieininenesieeeeneneeeeeeee e 104
Concepts and Properties........cc.ccveeeeriereneeneenienenieenieneneesseeeseeesnees 104
EXQMIPIE...iiiiiiiiiiieeee et 107
OVETIAP. .. ettt sttt sttt ettt e sseesaeens 109
Tabula RaASa....ccuieieieiieieieeeee ettt st re e 111
Concepts and Properties.........ccoueceerererienieinenienenieneneesieseeseeee s 12
EXQIMPIE...ctiieieieitiiieteiere ettt ettt et e e se e e et e snaeeseesnneens 114

Vi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

SCIOIIWOTK ...ttt ereas 115

Using Selection Widgets........ccccevvvvvvueeiiiiiiiiiineeeiiniinnininneinnenieceeeeneeeen 119
Adapting to the CirCUmStances...........coeveeeeeeerenieniereneneneeseeee e 19
USINgG AITayAdQPLer.....c.coeeueriiieieirienieniertetee ettt 120

Lists of Naughty and Nice.......ccccceveririneniiininineeeeeeeneeeeeeeeeee 121
Selection MOdES.........oceeieierienieeeiesieeee et sae e e e e e aeessaeens 123

SPIN CONLIOL ettt st sae et esaae s 125
Grid Your Lions (Or Something Like That...)....ccccccoceeirennenirieieieene 129
Fields: Now With 35% Less Typingl.......ccccccevrerenenenenneneneneeeeeenes 133
Galleries, GIVe OF TaKe THe ATt 137
Getting Fancy With LiStS........ccciviiinieeiiiiniiiniecciinniineeecennninneeeeceeeee 139
Getting To FIirst Base......cccoveeierieniinieeeeeeeeceeseerceeeee e 139

A Dynamic Presentation.........ccoceeeeeereieineerenieenieeeieeeiee e esieessneeeee e 142
Inflating ROWS OUISELVES........ccceeruirierieirinircceeneseeeeeeeee e 144

A Sidebar About Inflation..........cccceeeieeeiieciiecieeeeeeeeece e 144

And Now, Back To OUr StOry......ccceeerievienenieieneneneeeeesee e 146

Better. Stronger. Faster.......ociivirerieriieeeeeeeee e 147
USING CONVETTVIOW.....eiiiiiiiiiiieiieiiteeteeteerete ettt 147

Using the Holder Pattern.........coccoevevieiineninenieineneseneseeeeeeeeeen 149
INtEractive ROWS.....cciveiiiiiiiiieiiiieecitte sttt st vre e e e e e s 152
Still More Widgets and CONtainers.........cccevvueeeerriiiiiinneeeeneeeeeeeeeeeeenens 159
Pick and ChOOSe........cocuieiieieeieeeeeee e e e s e e e e e 159
Time Keeps Flowing Like @ RiVer.........ccocevevinieiiniiniinineneneneeceeee 164
Seeking ReSOIULION.........ccvviririirieieieeeesee et s 166
Putting It On My Tab.......ccoiiriiriieereeeeenenecsreereeseeeeeeens 167
The PIECES.....ivuiieieieeeeeeeee ettt 168
WIiring It TOether.......coeviviiiiiirireeeeeeee e 169

vii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Flipping Them Off.........ccocririninieieeee ettt 176
Getting In Somebody's Drawer........ccecceeeuerierierinenenenieseeeesesesee e 181
Other Good Stuff.........cooeiririeiiieee e e 185
The Input Method Framework..........cccccceeeeiiiiiineeciiiiiiiineeeeeneeeeenennne. 187
Keyboards, Hard and Soft...........ceceveruenirininininieiercneeeeeeeceeeene 187
Tailored To YOUT Needs......c.coevuevirireniinieieieeneniesieteeeeeeeee e 188
Tell Android Where It Can GO.......ccecvevverereesiereeieiereeeeeesee e see e 192
FIEENE TNttt e 194
Jane, Stop This Crazy Thing!........ccceceerinenenninnerereeeseree e 196
APPLYIng MenuUsS......cccovuueiiiiiiiiiuueeeiiniiinneeeeenneeecessssssssssssssssssssssees 199
FIavors Of MENU.....cc.ceviciererieierienieeeesiese st seese e ste et esaesee e eaesee e 199
MeNUS Of OPLIONS.evuiruirierierirterenertete ettt sttt see st e seeseesreeseeas 200
Menus iN CONEEXE.....cocerriirriiiieierieetteetere ettt eeeseneee e sree e 202
Taking @ Peek.......ooeriiiiiiiieieieeteteeseeeee et 203
Yet More Inflation.........cocoevieineninicieirneeeeee e 208
Menu XML SETUCLUTE......cccveieieeeieeeieesieeeieesriee e esreeseeeeeeessesnees 209

Menu Options and XML.......ccccoecerveerenerienieneneetesieeneeeieeseesseeens 210
Inflating the MenU.........coeeueviiirininenieteeeseeeteeee et 21

210 3 LN 215
Love The One You're With........cccecerieiecienieieeieeceeeeiese e 215
Here a Glyph, There a Glyph.......ccccocevinienieinininieceeseeeeee e 219
Embedding the WebKit BrowSer...........ccoovueiiiiueiininnecininneecccieninennnn. 221
A Browser, WTIt SINall.......ooooeiiiiiieeieeeeeeeeee ettt e eeeaeeeesnee e e e 221
LoAding It UP..ccoueerieirecrieertcieeeeeeeeee et 224
Navigating the Waters.......ccccevevererienieininenierieneee et ee e 225
Entertaining the Clent........ccccocviriiiiiinenieceeeeee e 226

viii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Settings, Preferences, and Options (Oh, My!).....cccoceevevrerenecneneenenn 228

Showing Pop-Up MesSSages........cccceeerrieiiiineeeiiiiiisisnnnnesesssnnsssssessesnsennes 231
RAISING TOASES..ccuveetieiieiieieeeeeeteee ettt e s 231
ALETE! ALETt ..ttt ettt s e v s 232
Checking Them OUt......cc.coeverieririnininereeeeeneseetete et 233

Handling Activity Lifecycle Events.........cccccceviiivvnnnnnnniiniiiiccncnnne. 237
Schroedinger's ACHIVILY......coererierirerinierieeeenenee et 237
Life, Death, and Your ACtiVity.......cceceeeeerenenienineneneneneeseese e 238

onCreate() and oNDEStIOY()....ceevevrerererierierieeeeresieseeeeeeseeesaeeneas 238
onStart(), onRestart(), and oNStOP().....ccuecveeeerrerrereecirereeseesienenns 239
onPause() and oNRESUME()......ccveveeereirieinieerieeieeeeeee e 239
The Grace of StAte.......ccceeiuieiiieiiecieeteecreece ettt e et e e rae e e reeeeaes 240

Handling Rotation...........ueeeiiiiiiinneeiiiiiiiinnecccininneeccnncsneeeesseeeeene. 243
A Philosophy of DeStruction.........ccceeeeeeeierereesieneneeeeseeseeseeeeneesesnees 243
It's All The Same, Just Different........ccccceeeveeeeeiescienieseeseeeeeeeeee s 244

Picking and Viewing @ COntact.......ccccecevveererereerieneneesieneneeseeenne 246
Saving YOur State.......coceerieniinienieieeetestetete ettt 248
Now With More Savings!........ccceceeiererinieiieneneeterieseseeteseeseeeseeseeens 251
DIY ROtAtioN...cuveieeiieeriieiiieiiesieessieeeiessteeesiessseessseessseessseessssessseesssseessns 253
...But Google Does Not Recommend This..........cccceveerenerenrenenenne 256
FOrcing the ISSUE.......cccvivuirierieiiirireeeteeee ettt 257
Making Sense of it All........cccoverievirinininieiereeeeeese e 259

Dealing with Threads.........ccccoovuvivviuiiiiiiiiiiiiniiininiiiineeccnecneneee 261
The Main Application Thread..........ccoceveverienierinieninireeeereee e 261
Making Progress with ProgressBars..........coccoeveverenenenienniniensieneenene 263
Getting Through the Handlers.........cccocoveiineienineencinccneceeeeene 264

IMESSQEES.....veereeeierieereeieenieesreee et e sste st e s e saeesree s e s e e s e e sareeesane 264
ix

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

RUNDIADIES. ...t e et e e e e e e e e e e e e aaaaeaeaeens 268

Where, Oh Where Has My Ul Thread Gone?..........ccocccveveneeneeennnne 268
Asyncing Feeling........coceviveviiinininiieieneeete et 268
The TREOTY..c.ioieieieeeee ettt s 269
AsyncTask, Generics, and Varargs........cccececeeeeveneeneenenenenenenseennens 270

The Stages of ASYNCTasK.......ccecereruerienienierinenenieneeseee st 270

A SaMPIE TaSK....cueoieieierieeeeereeeeeeeee et 271
Threads and ROTAtiON..........ccueeiiiieeieeiieciecteeeteeee et s 276
Manual Activity ASSOCIAtION.....cecuerverrereeieriereerterieseetesieseeeeseesaaeas 277

FLOW Of EVENLS....c..cotiiiiriiniiieteieceeeeete ettt 280

WHhy This WOTKS......coctiiiiriieieiinierteceieeee et 281

ADNA NOW, THE CaVOALS.....eeeeeeeeeeeee e e e e e e e e e eeeeeeeeaaeeas 282
Creating Intent Filters.........ccouuueiiiiiiiiiueeiiiniiiinneeciinniineeeeeceeeeeeeeee 283
What's YOUT INTENE?......coiiiieiiiieciieeieceeeteeeeeee et te e e sre e e eaeeeerneaenes 284
Pieces Of INTENES......ccceeciieiieieeieeie ettt e e e e 284

Intent ROULING.....coouiiiiiiiieeieeeeeeteeee ettt 285
Stating Your INtent(10MS)......eceevereriererirrerinrerisieeeieesieesseseseeessesessesensenns 286
INAITOW RECEIVETS...c.ueiiiiiiiiiiiiieeee ettt ettt ettt e st ree e 288
The Pause Caveat.........cceeuereeeecierieeiecienieeeetesseseesessessesssessessesseessessensns 289
Launching Activities and Sub-Activities.........ccccoovueiriineeiriirnnneeeccenen. 201
Peers and SUDS........ccociiiieieeeceeeee e e 202
Start "EM UP.ucoiiieiieeiierieeeeteseeeet sttt ettt et st sbessaee e 202
Make an INEENL.......cceecverieeeeeieieeeeeeteree et se e e e e e aeeseaeeens 202

Make the Call.......cccueoiieeeieieeeeeeeeeeee e e 293
Tabbed Browsing, Sort Of..........cccoevevrirnennernerneneeneereecneeenene 297
AccesSing Files......uuiiiiiiiiiiieeiiiiniiiieitiiiieeccenneceeeeeeeeeeeeee e 305
You And The Horse You Rode In On.......ccceecveveeeecieneneeieseseeeeeene 305

X

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Readin' ' WItINcoieiicieeeeeeeeeee ettt s 309

External Storage: Giant Economy-Size Space.......c..ccceeeevvervieneenieneennen. 313
WHeETe tO WIILe.....oouieeieieieeeeierteeeetee ettt et esee s beennaeen 314
WHheEN t0 WIILe.....ocuieeieieieeeeeeetete ettt seae e beenaeens 314

StrictMode: Avoiding Janky Code.........cccecrirenenennnnieninenieneeeeeee 315
Setting up Strict Mode.......cccoveverienienieiinirerereeeeeeeseee e 316
Seeing It In ACHION.c..cooiiriirieieeeeeeeee e 316
Development Only, Please!........cccccocrerenenniinieneneneeeneenceenen 317

Linux Filesystems: You Sync, YOu Win.......ccoceeceevenereenieneneerieneneenneens 317

Working with Resources..........oueeiiiiiiiineeeiiiniiiieeeciinniineecceenneenn. 319

The Resource LINEUP.......cceeveeriererieiienieneeteieseeteeeseese et s saeseesaeas 319

SEING TREOTY.c..eviieieiieieeee ettt s 320
Plain StriNGS.....coeveeriininieieiereeteeseet ettt s 320
String FOImMats.....coceviiriiiiiiienereeeeeee et 321
SEYLEA TEXL.ueuieiiieeieieieeteeee ettt st s 321
Styled Text and FOrmats.......cccevererrienereriienieneetereseeseesee e 322

GOt the PiCtUT?......eeeeeieeeeeeeeee ettt te et sreesse e snrae s sneeenns 326

XML: The ReSOUICE WaY......ccceviririienienirienieniesteniesieseeneeseesseeeessseesaeeas 327

Miscellaneous Values..........cceceeverieeieienieceeeeseseeeee et 330
DIIMENSIONS. .. ttiieuiiieieiieeeiriteeeeteeeesteeessteeessreeessaseesssssaessssssnnsssseeeees 331
(@] (o) TSRS 331
ATTAYS ettt ettt ettt et e st st e st e st e st e s bt e s bt e s bt e s bt e s beenbeeens 332

Different Strokes for Different Folks..........cccoevvvevieienieceeiinieiecieeeeens 333

RTL Languages: Going Both Ways........cccceceevevivininienenininiencenieeeeneens 338

Using Preferences..........couiiiiineiiininieiininniinnnnncennnneeeeeceeeenennns 341
Getting What YOU Want......c.cceeveeieinininenieieteenesieteesese e 341
Stating Your Preference.........occocevevevinenenenieineneseeeeeseseseeeeeeeees 342

Xi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

And Now, a Word From Our Framework.........cccceceeevievervenenenenenneenen. 343

Letting Users Have Their Say.......coceeevererinenieneinenerieieeeesceieeee e 344
Adding a Wee Bit O' StIUCLUTE.......cc.eouerueirirerierieteeeeeesieseeeeeeee e 349
The Kind Of Pop-Ups You LiKe.......ccccceveviririnineneiiinenieneeeeeeeeeenee 352
Managing and Accessing Local Databases..........ccccccueeeiiviiiinneecenennnnes 357
A Quick SQLIte Primer.......ccecevuerieierierieierieseeeestesieeeeeseeesaeesreessaeeneas 359
Start at the Beginning........cccceoceeruerierenineneneeeeeenesereeeeeeesee e 359
Setting the Table........ccocviririiirreee e 362
MaKiN' DAta....ceeeeeeierienerierienertesee ettt e st eeseessee e seesaeeeneas 363
What Goes Around, Comes Around..........ccceeereeeerieneessueeseessreeneennnes 365
RaW QUETIES....c..eiiiiiiieiietetete ettt ettt 365
Regular QUETIES.....cc.cruerviieieieiinieieteeeee et 366
Building with Builders..........ccccocuevininiiniininiieecceeeceeeeee 366

USING CUISOTS..ccuiiriiiiiiiiereeneeeeeeteste st sreeeeneeesneee e 368
Custom CUTrSOTAAAPLETS....co.eevueriereierierieetetenteeeestesieeeeteseeeseesseeenas 369
Making Your OWN CUTSOTS....cc.ceveriererienienienieeteniesieeeeneesseseessseesnes 370

Flash: Sounds Faster Than Tt IS........ccccceeiiiieiecienieceeieeceeeeee e 370
Data, Data, Everywhere.........cccocvviivinininienineteeseseeeseeeee e 371
Leveraging Java Libraries..........ccccovveiiiinuiiinineciinineiininnecinnneeccnineee. 373
ANLES AN JATS.c.eviiiiiciieieeie ettt e e a e e e reesra e baeeneenns 373
The OUter LIMItS......c.ccovieveieeeereereeeeeeeceeceeete et eeeeereeeereeesreeeereeeeneees 374
Following the SCript.......cccverierieiirirenieieieereseste et 375
Reviewing the SCriPt......cccceiririnienieieirereseteeeeetee e 380
Communicating via the Internet..........ccooceeevivueiiriinneeeieiiiiiiiiinnnnnnne 383
REST and RelaXation.........ccccveeeecieniesieierieseeeesieseseeeeseesveeseee e eseneens 383
HTTP Operations via Apache HttpClient..........cceceeeveerenereeeennene 384
Parsing ReSPOMnSes.........covuereieiernerniiiieeeercreceeee et 386

Xii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

StUff TO CONSIALT......visveeeeeieieetieteierte et sae e e e re e e e sseeens 388

ANdroidHttPCHENT....c..oiiiriirieieieteerereteeeeese et 389
Leveraging Internet-Aware Android Components..........cccceevuevuerueennen. 390
Downloading Files........c.cceviiirinenieniiineneeieeeeeeeee et 390
Services: The Theory.........cciiiiiiueiiiiiiiiiiieeciiiieeecccneeec e 405
WY SEIVICES?.....ciiieiiieiirieriertete ettt ettt et e sae e e 405
Setting UpP @ SeIVICE.....cociiviriieiieieeieeeteeere ettt s 406
The Service Class.......cciecuieiieirieerieeieecieeereeere et ecte et eere e reeseeesreeereenes 406
Lifecycle Methods.........coceecvereririeniererieieeeeeeeeee e 407
Manifest ENtry....c.oceirerineinineeeeeneseete et 407
Communicating To SeIVICeS......cccoviieieeriieeiieniieeeeeee et 408
Sending Commands with startService()......c.cccceevereereeneesenenenenne. 408
Binding with bindService().......ceeueerirerierererieieieerieesieesseeeeesesenns 410
Communicating From Services.........ccccvvervirviniinninniniinceeeeeeeeeee 411
Callback/Listener ODbJECtS.......cocuevuerererrierenirienenenteneseseeseesieseeens 411
Broadcast INEENES.......cccueeiieiieieiieceeeeeeee ettt e s seeeeevaeeeereeeas 412
Pending ReSUILS.......ccceirierieieirireeee e 413
IMIESSEIIZET ...ccnuveeureeerteeiteeite ettt et et e st et e st e et e sreesbeesabeeeesenneeas 413
INOEIICALIONS. .. evieeeeiesreeteeieste sttt e e te e e e e steste e e e aessesseesaesessaesaenseenns 414
Basic Service Patterns........coiiiiiimmmuuniiiiiiiininiiiiiiinnnnnenecnasseennneens 415
The DOWNIOAET......ccuccuieieieiieeeee ettt e ve e 415
The DSIGN...cviieieiriirieieiete ettt ettt sttt sa et e 415
The Service Implementation..........coceeveveeverererenienenieeneeneeree e 416
USING the ServiCe......coivivirierieiiiriereiete ettt 419
The MUSIC Player.......cocceirerieiriririeieeeeeeeeete et 420
The DeSIGN...ccuirieieieiirierieietete ettt ettt 420
The Service Implementation.........ccecvecereereerierieeseerieseseeseeseseeeeenns 421
xiii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using the Service........cccoeorevniinieneieeeeeeeeereeeeesee e 422

The Web Service INterface.........coeevveeeieeeecveeeeceeeeeeeeceeeeeeee e e 424
The DeSIGN...cueruiieiiirienietetete ettt 424

The Rotation Challenge..........cccocevevenieninininineniereneseseee e 425

The Service Implementation..........cceeceeeuereeeeriereneeseesesseeeseeeeeenns 425

Using the Service........cccoivveeninicneieeeeeeeeeeeeneenre e 429
Simplification Strate@ies.........ccceeveerrererenieniereeeneseseneeee e 437
Alerting Users Via Notifications.........cccceeevvueeeiiiiiiiiineecienininnininnnnnnne. 439
Notification Configuration.........cccceceeeruerierreneneneneeneneeseeeeeeeseee 439
Hardware NotifiCations..........cceeeueeeveeiiiecieecieecieeieecteeere e esreeeeaeeeeas 440

a0 3 =S URRRUPUPRRRRIN 441
NOtifications IN ACHON......ccuicierrierrieerieeeeee et et eeteesreesreesre e e esreeseeeneees 442
Staying in the Foreground...........coccevuevereriienenenienieneneseeesee e 447
FakePlayer, RedUX.......ccccereririieniirieieiereeee ettt 448
Requesting and Requiring Permissions.......ccccecceevvvueeeecciiiiniiiiinnnnnes 451
MoOther, May L7.......ocoiiieieieeeeeneee ettt 452
Halt! Who G0es There?.........occevcieeiieieeieeieeieeieeie et re e e eee e 453
Enforcing Permissions via the Manifest...........coceeeevenerveenenenneenne 454
Enforcing Permissions Elsewhere...........ccocooveveniiiininineninninieenn, 455

May [See Your Documents?.........ccocueeierieniieniensienieeteeieeie e 455
Accessing Location-Based Services........ccccovveevveeiiiriiiiiineneecineiisnnnneeene 459
Location Providers: They Know Where You're Hiding........ccccccoeueeneee. 460
FInding Yourself........ccocoirininieinineeete ettt 460

ON the MOVE.....cveeieeteeeteeeteeceeeteeete et eteeete et eereeeteeeteeeseesareeeaseeensneeen 462
Are We There Yet? Are We There Yet? Are We There Yet?................. 464
TeSting... TESHINE...ccceevuerierieeiieteeteete ettt see sttt ste e et e et e s 465

Xiv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Mapping with MapView and MapACtivity.......cccccveeiivvuennneennnnnnnnnennne 467

Terms, Not of ENdearment..........c..coveevieereeneenienreenreenrecereenreeereeeeveee e 467
PiliNg OMN..ceciiiiieieieeeeee ettt sttt 468
The Key To It All....cuoiiieieieiieeieteeee ettt 468
The Bare BONES.......c..ooveeiiieiiiieeiieeteeeeeeeecteeeee ettt ettt 470
OPHIONAl Maps....ccoeirieirieirieineeneeneeeseeeseeeseeesee e snesne e 472
Exercising Your CONtrol.........cccocecrerenennnnnenenieeeeceesesee e 472
/003 1 s VU 473
Q=S 31 <) USRS 473
RUGZEA TOITAIN. ..c..eouiiiieieiieieeteieeteeet ettt ettt st 474
Layers UPOn Layers......ccccceeieeiieriieniieeteeeeeeeteeseeeeiee st e s seieeee e s 474
OVerlay Classes......cccveruerieierienieienieneetereeseeeeeesseseesessesseeneesseeenes 475
Drawing the ItemizedOverlay.........ccccocerveneninvienieninierererceeeee 475
Handling Screen Taps......cccceeverievireninenienienieenesiesieeeeeesee e 477
My, Myself, and MyLocationOverlay..........ccccevueviererrersieneniennieeneenieenne 477
RUZEEA TOITAIN.....coueeeieieierieeieieeete ettt sttt st saae st 479
Handling Telephone Calls.........ccccocueirviuiiiiiineiiniinecininneccnninnneneeeceens 481
Report To The Manager.........cocevereeernienenenierieneseeeesiese st seeseesseeeens 482
You Make the Calll........cceouieieiiiieeeeceeeee et 482
No, Really, You Make the Calll........ccoceviriiinininiiininieereeeeeeeeeenn 485
More Development TOOIS........ccccovveiiiiiiiiiiieeieiiniiiiieeeeinniceeeeeeeeees 487
Hierarchy Viewer: How Deep Is Your Code?.........ccocvvervienenneensuennnenne 487
DDMS: Under Android's HOOd.........cccecuevueeeecienieeieieiesecieeee e 492
LOGEINEG. ...ttt ettt ettt ettt ettt e et e s 494
File Push and Pull..........c.ccooiiieiinieieeeeeeeeeeeee e 495
SCIEENSNOLS.cvieeieieciieiteteceeee ettt et et e e e reens 496
LoCation UPAAtes........cccevereerierieeeenienieeeeiesieseesessessesssessseessessseenns 497
xv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Placing Calls and MeSSages.........cocevueeruererienienieirenienienieneeeeeeseeene 498

Memory Management........ccocveeveerreereieenerenieeneee e e ssee e e 502
adb: Like DDMS, With More Typing.......ccccecceveveriererreneneneneenenseeneens 503
Handling Multiple Screen Sizes...........cccooveiivinueiinineiinineeenninneceenen. 507
Taking the Default.......c.cocceeririnieininieeeeeeeeeeeeeeene 508
WHhOIE in One....c.oouiiiiiiriirieeeteeeee ettt 509
Don't Think About Positions, Think About Rules........ccccevveeeeee..... 510
Consider Physical Dimensions..........cecceeveeverenenienienieneenieeieneeneenes 511
Avoid "Real"” PiXels......ccceveririierinerieereeeeeete e 511
Choose Scalable Drawables............cccevirirrienereerierieneeeeseseesee e 512
Tailor Made, Just For You (And You, And You, And...).....ccceeeveerrennennen. 512
<SUPPOTES-SCICEIISS.c..veeutueeeneeeuetesestesestesentesentesetssenteseententensensensens 513
Resources and ReSOUTCE Sets.........cceverirvienenerieenienensieenieeieeseens 514
FINAING YOUT SIZ€....cucouiriiriiieiiieiniieccteteenieeteteeeeee e 515
Ain't Nothing Like the Real Thing.........cccccevvervieneneniiiniininieieneeieeen, 516
Density Differs.......ccccereririenenineesiereseetereseeee e 516
Adjusting the Density.......cccceevvereeirerenienieieenesesenteeeeeee e esee e 517
Accessing Actual DeVICes.........cecuevuerereenienenieienieneetesie e esee e 518
Ruthlessly Exploiting the Situation..........cccecveveecererenieneeneesieneeneeeeneen 519
Replace Menus with BUttons...........cceeeeervieneniensienenienienenesceeene 520
Replace Tabs with a Simple Activity.......ccceerevererererenennercneeneenes 520
Consolidate Multiple ACtiVities........cccceeververriereriersieenieeseenieenee e 521
Example: EUZYOU....cccociiiiiriiieieineneetetetetse ettt st 521
THe FITSt ClUL...uecviiieeieieieceeeeies et ve et et ve et e sae e e sere e saeennaas 522
Fixing the FONLS......cocoviiiiiiiiiieecteteeeeeeeesee et 528
Fixing the ICOMNS......coiveriiiiririreee e 531
Using the SPace.......coovevieiiininineeeeee e 531
xvi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

What If It Is Not @ BrOWSer?.......ccceeveievierieieeceeeeieseeee e 534

Dealing With Devices........cccovvveiiiiiiiiiiinniiiiniiiinneeeeinnisiineeessssssssssenees 537
This App Contains Explicit...INStructions.........ccccceeeeeevereserseeresseeeseeenns 537

A Guaranteed Market..........ccceceeeuerieeeciniieeeieseseeeee et 539
Some Down and Dirty Details.......ccccooeeeveniiieninineneneneneseeseeieeeee 539
ARCHOS 5 Android Internet Tablet..........ccceveveveriienienenseneenenne 540
Motorola CLIQ/DEXTooiioieiiecieeieeeieecte ettt eteesieeeveeeeveeesveeenn 541
Motorola DROID/MileStone..........ccecueeverereeseesiereeeesieneeeeseeseeeeeas 541
Motorola BACKFLIP.......c.ccoetirireeteiereeeetesieee et 542
Handling Platform Changes........cccccovvueeiiiiiiiinnneiiiiniiinineeccenincinnnnne. 543
Brand Management..........coccecuerereerieneneeieniesieseestesseseessesseessseesseessseenne 543
More Things That Make You Go "Boom".........ccceereriennvenneeneenieneenen. 544
View Hierarchy.......cooccocevenieieninieieeeeceeescee et e 544
Changing ReSOUTICES........c.ceevuirierieireninieieeeeeee ettt 545
Handling API Changes.........ccccevuerereriienenentenieneeeenteseeeeseeseeesieesveenas 545
Minimum, Maximum, Target, and Build Versions...........c.ccccecuenne 546
Detecting the Version......c..ccocevceevierenernienenineesieseseetenieseeeeseeene 548
Where Do We Go From Here?..........ccccccviiiiiiiiiiiiiiiiiiiinnnninnnninenneneneees 551
Questions. Sometimes, With ANSWETS.........ccceeeeeeviereerieenieeieeeie e 551
Heading to the SOUTCE........c.coeriiiiriirireeerteeee e 552
Getting YOUT NeWs FiXu...ocoiiiiiiiiiiieiieieieeeeeeeeeeeceee e 553

xvii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Welcome to the Warescription!

We hope you enjoy this ebook and its updates - subscribe to the
Warescription newsletter on the Warescription site to learn when new
editions of this book, or other books, are available.

All editions of CommonsWare titles, print and ebook, follow a software-
style numbering system. Major releases (1.0, 2.0, etc.) are available in both
print and ebook; minor releases (0.1, 0.9, etc.) are available in ebook form
for Warescription subscribers only. Releases ending in .9 are "release
candidates” for the next major release, lacking perhaps an index but
otherwise being complete.

Each Warescription ebook is licensed for the exclusive use of its subscriber
and is tagged with the subscriber's name. We ask that you not distribute
these books. If you work for a firm and wish to have several employees have
access, enterprise Warescriptions are available. Just contact us at
enterprise@commonsware.com.

Also, bear in mind that eventually this edition of this title will be released
under a Creative Commons license - more on this in the preface.

Remember that the CommonsWare Web site has errata and resources (e.g.,
source code) for each of our titles. Just visit the Web page for the book you
are interested in and follow the links.

You can search through the PDF using most PDF readers (e.g., Adobe
Reader). If you wish to search all of the CommonsWare books at once, and

Xix

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

mailto:enterprise@commonsware.com
http://wares.commonsware.com/

your operating system does not support that directly, you can always
combine the PDFs into one, using tools like PDF Split-And-Merge or the
Linux command pdftk *.pdf cat output combined.pdf.

XX

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.pdfsam.org/

Preface

Welcome to the Book!

Thanks!

Thanks for your interest in developing applications for Android!
Increasingly, people will access Internet-based services using so-called
"non-traditional" means, such as mobile devices. The more we do in that
space now, the more that people will help invest in that space to make it
easier to build more powerful mobile applications in the future. Android is
new - Android-powered devices appeared on the scene first in late 2008 -
but it likely will rapidly grow in importance due to the size and scope of the
Open Handset Alliance.

And, most of all, thanks for your interest in this book! I sincerely hope you
find it useful and at least occasionally entertaining.

Warescription

This book will be published both in print and in digital (ebook) form. The
ebook versions of all CommonsWare titles are available via an annual
subscription - the Warescription.

The Warescription entitles you, for the duration of your subscription, to
ebook forms of all CommonsWare titles, not just the one you are reading.

XXi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Presently, CommonsWare offers PDF and Kindle; other ebook formats will
be added based on interest and the openness of the format.

Each subscriber gets personalized editions of all editions of each title: both
those mirroring printed editions and in-between updates that are only
available in ebook form. That way, your ebooks are never out of date for
long, and you can take advantage of new material as it is made available
instead of having to wait for a whole new print edition. For example, when
new releases of the Android SDK are made available, this book will be
quickly updated to be accurate with changes in the APIs.

From time to time, subscribers will also receive access to subscriber-only
online material, both short articles and not-yet-published new titles.

Also, if you own a print copy of a CommonsWare book, and it is in good
clean condition with no marks or stickers, you can exchange that copy for a
discount off the Warescription price.

If you are interested in a Warescription, visit the Warescription section of
the CommonsWare Web site.

You can find out when new releases of this book are available via:

« The cw-android Google Group, which is also a great place to ask
questions about the book and its examples

« The commonsguy Twitter feed

« The Warescription newsletter, which you can subscribe to off of
your Warescription page

Book Bug Bounty

Find a problem in one of our books? Let us know!

Be the first to report a unique concrete problem in the current digital
edition, and we'll give you a coupon for a six-month Warescription as a
bounty for helping us deliver a better product. You can use that coupon to
get a new Warescription, renew an existing Warescription, or give the

xXii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://wares.commonsware.com/
http://twitter.com/commonsguy
http://groups.google.com/group/cw-android
http://commonsware.com/warescription.html

coupon to a friend, colleague, or some random person you meet on the
subway.

By "concrete" problem, we mean things like:

« Typographical errors

« Sample applications that do not work as advertised, in the
environment described in the book

« Factual errors that cannot be open to interpretation

By "unique", we mean ones not yet reported. Each book has an errata page
on the CommonsWare Web site; most known problems will be listed there.
One coupon is given per email containing valid bug reports.

We appreciate hearing about "softer" issues as well, such as:

« Places where you think we are in error, but where we feel our
interpretation is reasonable

« Places where you think we could add sample applications, or
expand upon the existing material

« Samples that do not work due to "shifting sands" of the underlying
environment (e.g., changed APIs with new releases of an SDK)

However, those "softer" issues do not qualify for the formal bounty
program.

Be sure to check the book's errata page, though, to see if your issue has
already been reported.

Questions about the bug bounty, or problems you wish to report for bounty
consideration, should be sent to bounty@commonsware.com.

Source Code And Its License

The source code samples shown in this book are available for download
from the book's GitHub repository. All of the Android projects are licensed
under the Apache 2.0 License, in case you have the desire to reuse any of it.

XXili

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.apache.org/licenses/LICENSE-2.0.html
http://github.com/commonsguy/cw-android
mailto:bounty@commonsware.com
http://commonsware.com/Android/errata

If you wish to use the source code from the CommonsWare Web site, bear
in mind a few things:

1. The projects are set up to be built by Ant, not by Eclipse. If you wish
to use the code with Eclipse, you will need to create a suitable
Android Eclipse project and import the code and other assets.

2. You should delete build.xml, then run android update project
-p ... (where ... is the path to a project of interest) on those
projects you wish to use, so the build files are updated for your
Android SDK version.

Creative Commons and the Four-to-Free
(42F) Guarantee

Each CommonsWare book edition will be available for use under the
Creative Commons Attribution-Noncommercial-ShareAlike 3.0 license as of
the fourth anniversary of its publication date, or when 4,000 copies of the
edition have been sold, whichever comes first. That means that, once four
years have elapsed (perhaps sooner!), you can use this prose for non-
commercial purposes. That is our Four-to-Free Guarantee to our readers
and the broader community. For the purposes of this guarantee, new
Warescriptions and renewals will be counted as sales of this edition,
starting from the time the edition is published.

This edition of this book will be available under the aforementioned
Creative Commons license on 1 January 2015. Of course, watch the
CommonsWare Web site, as this edition might be relicensed sooner based
on sales.

For more details on the Creative Commons Attribution-Noncommercial-
ShareAlike 3.0 license, visit the Creative Commons Web site.

Note that future editions of this book will become free on later dates, each
four years from the publication of that edition or based on sales of that
specific edition. Releasing one edition under the Creative Commons license
does not automatically release all editions under that license.

xXXiv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://creativecommons.org/licenses/by-nc-sa/3.0/

Acknowledgments

I would like to thank the Android team, not only for putting out a good
product, but for invaluable assistance on the Android Google Groups.

Some of the icons used in the sample code were provided by the Nuvola
icon set.

XXV

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.icon-king.com/?p=15

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PART | - Core Concepts

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 1

The Big Picture

Android is everywhere. Phones. Tablets. TVs and set-top boxes powered by
Google TV. Soon, Android will be in cars and all sort of other places as well.

However, the general theme of Android devices will be smaller screens
and/or no hardware keyboard. And, by the numbers, Android will probably
be most associated with smartphones for the foreseeable future.

For developers, this has benefits and drawbacks.

On the plus side, Android-style smartphones are sexy. Offering Internet
services over mobile devices dates back to the mid-1990's and the Handheld
Device Markup Language (HDML). However, only in recent years have
phones capable of Internet access taken off. Now, thanks to trends like text
messaging and to products like Apple's iPhone, phones that can serve as
Internet access devices are rapidly gaining popularity. So, working on
Android applications gives you experience with an interesting technology
(Android) in a fast-moving market segment (Internet-enabled phones),
which is always a good thing.

The problem comes when you actually have to program the darn things.

Anyone with experience in programming for PDAs or phones has felt the
pain of phones simply being small in all sorts of dimensions:

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Big Picture

+ Screens are small (you will not get comments like, "is that a 24-inch
LCD in your pocket, or...?")

« Keyboards, if they exist, are small

Pointing devices, if they exist, are annoying (as anyone who has lost
their stylus will tell you) or inexact (large fingers and "multi-touch”
LCDs can sometimes be...problematic)

« CPU speed and memory are tight compared to desktops and servers
you may be used to

« Andsoon

Moreover, applications running on a phone have to deal with the fact that
they're on a phone.

People with mobile phones tend to get very irritated when those phones do
not work. Similarly, those same people will get irritated at you if your
program "breaks" their phone:

« ...by tying up the CPU such that calls can't be received

« ...by not working properly with the rest of the phone's OS, such that
your application does not quietly fade to the background when a
call comes in or needs to be placed

« ..by crashing the phone's operating system, such as by leaking
memory like a sieve

Hence, developing programs for a phone is a different experience than
developing desktop applications, Web sites, or back-end server processes.
You wind up with different-looking tools, different-behaving frameworks,
and "different than you are used to" limitations on what you can do with
your program.

What Android tries to do is meet you halfway:

+ You get a commonly-used programming language (Java) with some
commonly used libraries (e.g., some Apache Commons APIs), with
support for tools you may be used to (Eclipse)

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Big Picture

« You get a fairly rigid and uncommon framework in which your
programs need to run so they can be "good citizens" on the phone
and not interfere with other programs or the operation of the phone
itself

As you might expect, much of this book deals with that framework and how
you write programs that work within its confines and take advantage of its
capabilities.

What Androids Are Made Of

When you write a desktop application, you are "master of your own
domain". You launch your main window and any child windows - like
dialog boxes - that are needed. From your standpoint, you are your own
world, leveraging features supported by the operating system, but largely
ignorant of any other program that may be running on the computer at the
same time. If you do interact with other programs, it is typically through an
API, such as using JDBC (or frameworks atop it) to communicate with
MySQL or another database.

Android has similar concepts, but packaged differently, and structured to
make phones more crash-resistant.

Activities

The building block of the user interface is the activity. You can think of an
activity as being the Android analogue for the window or dialog in a
desktop application, or the page in a classic Web app. Android is designed
to support lots of cheap activities, so you can allow users to keep clicking to
bring up new activities and tapping the BACK button to back up, just like
they do in a Web browser.

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Big Picture

Services

Activities are short-lived and can be shut down at any time. Services, on the
other hand, are designed to keep running, if needed, independent of any
activity. You might use a service for checking for updates to an RSS feed, or
to play back music even if the controlling activity is no longer operating.
You will also use services for scheduled tasks ("cron jobs") and for exposing
custom APIs to other applications on the device, though those are relatively
advanced capabilities.

Content Providers

Content providers provide a level of abstraction for any data stored on the
device that is accessible by multiple applications. The Android
development model encourages you to make your own data available to
other applications, as well as your own - building a content provider lets
you do that, while maintaining complete control over how your data gets
accessed.

Intents

Intents are system messages, running around the inside of the device,
notifying applications of various events, from hardware state changes (e.g.,
an SD card was inserted), to incoming data (e.g., an SMS message arrived),
to application events (e.g., your activity was launched from the device's
main menu). Not only can you respond to an Intent, but you can create
your own, to launch other activities, or to let you know when specific
situations arise (e.g., raise such-and-so Intent when the user gets within 100
meters of this-and-such location).

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Big Picture

Stuff At Your Disposal

Storage

You can package data files with your application, for things that do not
change, such as icons or help files. You also can carve out a small bit of
space on the device itself, for databases or files containing user-entered or
retrieved data needed by your application. And, if the user supplies bulk
storage, like an SD card, you can read and write files on there as needed.

Network

Android devices will generally be Internet-ready, through one
communications medium or another. You can take advantage of the
Internet access at any level you wish, from raw Java sockets all the way up
to a built-in WebKit-based Web browser widget you can embed in your
application.

Multimedia

Android devices have the ability to play back and record audio and video.
While the specifics may vary from device to device, you can query the
device to learn its capabilities and then take advantage of the multimedia
capabilities as you see fit, whether that is to play back music, take pictures
with the camera, or use the microphone for audio note-taking.

GPS

Android devices will frequently have access to location providers, such as
GPS, that can tell your applications where the device is on the face of the
Earth. In turn, you can display maps or otherwise take advantage of the
location data, such as tracking a device's movements if the device has been
stolen.

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Big Picture

Phone Services

And, of course, Android devices are typically phones, allowing your
software to initiate calls, send and receive SMS messages, and everything
else you expect from a modern bit of telephony technology.

The Big Picture...Of This Book

Here is what's coming in the rest of this book:

The next two chapters are designed to get you going quickly with the
Android environment, through a series of step-by-step, tutorial-style
instructions for setting up the tools you need, creating your first project,
and getting that first project running on the Android emulator.

The three chapters that follow try to explain a bit more about what just
happened in those first two chapters. We examine the Android project that
we created, talk a bit more about Eclipse, and discuss some things we could
add to the project to help it run on more devices and such.

The bulk of the book is exploring various capabilities of the Android APIs -
how to create components like activities, how to access the Internet and

local databases, how to get your location and show it on a map, and so
forth.

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 2

How To Get Started

Without further ado, let us get you set up with the pieces and parts
necessary to build an Android app.

If you would prefer not to install all of this software on your development
machine, you can download a Ubuntu VirtualBox image that contains
everything described below. Note that this image is 1.6GB and therefore
may take some time to download. This image will be updated periodically
to reflect newer editions of the Android SDK and development tools. The
user account is android with a password of bugdroid.

NOTE: the instructions presented here are accurate as of the time of this
writing. However, the tools change rapidly, and so these instructions may
be out of date by the time you read this. Please refer to the Android
Developers Web site for current instructions, using this as a base guideline
of what to expect.

Step #1: Java

When you write Android applications, you typically write them in Java
source code. That Java source code is then turned into the stuff that
Android actually runs (Dalvik bytecode in an APK file).

Hence, the first thing you need to do is get set up with a Java development
environment and be ready to start writing Java classes.

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://developer.android.com/
http://developer.android.com/
http://misc.commonsware.com/AndDev-VBox.zip

How To Get Started

Install the JDK

You need to obtain and install the official Sun/Oracle Java SE SDK (JDK).
You can obtain this from the Oracle Java Web site for Windows and Linux,
and presumably from Apple for OS X. The plain JDK (sans any "bundles")
should suffice. Follow the instructions supplied by Oracle or Apple for
installing it on your machine. At the time of this writing, Android supports
Java 5 and Java 6, the latter being the now-current edition.

Alternative Java Compilers

In principle, you are supposed to use the official Sun/Oracle Java SE SDK.
In practice, it appears that OpenJDK also works, at least on Ubuntu.
However, the further removed you get from the official Sun/Oracle
implementation, the less likely it is that it will work. For example, the GNU
Compiler for Java (GCJ) may not work with Android.

Learn Java

This book, like most books and documentation on Android, assumes that
you have basic Java programming experience. If you lack this, you really
should consider spending a bit of time on Java fundamentals, before you
dive into Android. Otherwise, you may find the experience to be
frustrating.

If you are in need of a crash course in Java to get involved in Android
development, here are the concepts you need to succeed, presented in no
particular order:

- Language fundamentals (flow control, etc.)
« Classes and objects

« Methods and data members

+ Public, private, and protected

« Static and instance scope

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.oracle.com/technetwork/java/index.html

How To Get Started

« Exceptions

« Threads and concurrency control
« Collections

+ Generics

« FileI/O

+ Reflection

« Interfaces

Step #2: Install the Android SDK

The Android SDK gives you all the tools you need to create and test
Android applications. It comes in two parts: the base tools, plus version-
specific SDKs and related add-ons.

Install the Base Tools

The Android developer tools can be found on the Android Developers Web
site. Download the ZIP file appropriate for your platform and unZIP it in
some likely spot - there is no specific path that is required. Windows users
also have the option of running a self-installing EXE file.

Install the SDKs and Add-Ons

Inside the tools/ directory of your Android SDK installation from the
previous step, you will see an android batch file or shell script. If you run
that, you will be presented with the Android SDK and AVD Manager:

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html

How To Get Started

Oc Android SDK and AVD Manager

Virtual devices List of existing Android Virtual Devices located at /home/android/.android/avc
Installed packages |W
Available packages —
Settings

About

Refresh

~ A valid Android Virtual Device. =3 A repairable Android Virtual Device.
* An Android Virtual Device that failed to load. Click 'Details' to see the erro

Figure 1. Android SDK and AVD Manager

At this point, while you have some of the build tools, you lack the Java files
necessary to compile an Android application. You also lack a few additional
build tools, plus the files necessary to run an Android emulator.

To address this, click on the Available Packages option on the left. This
brings up a tree:

Android SDK and AVD Manager

Virtual devices SDK Location: /home/android/android-sdk-linux_86

Installed packages || paciages available for download
.
Settings >
About

ndroid Repository
hird party Add-ons

Description

Add Add-on Site... & Diz | Refresh

Figure 2. Android SDK and AVD Manager Available Packages

10

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

How To Get Started

Open the Android Repository branch of the tree. After a short pause, you
will see a screen similar to this:

Virtual devices SDK Location: fhome/android/android-sdk-linux_86

Installed packages | pacpages available for download

Available packages g jEE

Settings 2 SDK Platform Android 2.2, API 8, revision 2
About 3 SDK Platform Android 2.1, APl 7, revision 2
3 SDK Platform Android 1.6, APl 4, revision 3
3 SDK Platform Android 1.5, APl 3, revision 4

» [& samples for SDK API 8, revision 1
» 1 & samples for SDK API 7, revision 1
B [& Third party Add-ons

Description

Add Add-on Site... & Dis |Refresh

Figure 3. Android SDK and AVD Manager Available Android Packages

You will want to check the following items:
"SDK Platform" for all Android SDK releases you want to test
against

+ "Documentation for Android SDK" for the latest Android SDK
release

« "Samples for SDK" for the latest Android SDK release, and perhaps
for older releases if you wish

Then, open the Third-Party Add-Ons branch of the tree. After a short
pause, you will see a screen similar to this:

11

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

How To Get Started

Virtual devices SDK Location: /nome/android/android-sdk-linux_86
Installed packages | packages available for download
Available packages SDK Platform Android 2.1, API 7, revision 2
Settings > SDK Platform Android 1.6, API 4, revision 3
About > SDK Platform Android 1.5, API 3, revision 4
» 1 & Ssamples for SDK API 8, revision 1
» [& samples for SDK API 7, revision 1
= Third party Add-ons
» [i@ Google Inc. add-ons (dl-ssl.google.com)
» [i@ Samsung Electronics add-ons (innovator.samsungmobile.com)

Description

Add Add-on Site... & Dis |Refresh

Figure 4. Android SDK and AVD Manager Available Third-Party Add-Ons

Fold open the "Google Inc. add-ons" branch, which will display something
like this:

Virtual devices SDK Location: /fhome/android/android-sdk-linux_86
Installed packages | | p5ckages available for download
Available packages | & hird party Add-ons
Settings v (1@ Google Inc. add-ons (dl-ssl.google.com)
About » | & Google APIs by Google Inc., Android API 8, revision 2
» [i Google APIs by Google Inc., Android API 7, revision 1
» [& Google APIs by Google Inc., Android APl 4, revision 2
» [& Google APIs by Google Inc., Android API 3, revision 3
» [@ Google Market Licensing package, revision 1
» @ Samsung Electronics add-ons (innovator.samsungmobile.com)

Description

Add Add-on Site... & Di: | Refresh

Figure 5. Android SDK and AVD Manager Available Google Add-Ons

Most likely, you will want to check the "Google APIs by Google Inc." items
that match up with the SDK versions you selected in the Android
Repository branch. The "Google APIs" include support for Google Maps,
both from your code and in the Android emulator.

12

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

How To Get Started

When you have checked all of the items you want to download, click the
Install Selected button, which brings up a license confirmation dialog:

@ cChoose Packages to Install

Packages Package Description & License
~ Package Description
? Google APIs by Google Inc., Andry Android SDK Platform 2.2 r1

Revision 2

Dependencies
This package is a dependency for:

- Google APIs by Google Inc., Android API 8, revision
2

® Accept Reject Accept All

| Install | Cancel

Figure 6. Android SDK and AVD Manger Installing Packages

Review and accept the licenses, then click the Install button. At this point,
this is a fine time to go get lunch. Or, perhaps dinner. Unless you have a
substantial Internet connection, downloading all of this data and
unpacking it will a fair bit of time.

When the download is complete, you can close up the SDK and AVD
Manager if you wish, though we will use it to set up the emulator in a later
step of this chapter.

Step #3: Install the ADT for Eclipse

If you will not be using Eclipse for your Android development, you can skip
to the next section.

If you have not yet installed Eclipse, you will need to do that first. Eclipse
can be downloaded from the Eclipse Web site. The "Eclipse IDE for Java
Developers" package will work fine.

13

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.eclipse.org/downloads/

How To Get Started

Next, you need to install the Android Developer Tools (ADT) plug-in. To do
this, go to Help | Install New Software... in the Eclipse main menu. Then,
click the Add button to add a new source of plug-ins. Give it some name
(e.g., Android) and supply the following URL: https://dl-
ssl.google.com/android/eclipse/. That should trigger Eclipse to download
the roster of plug-ins available from that site:

Available Software
Check the items that you wish to install. j._‘-

Work with: |Android - https://dl-ssl.google.com/android/eclipse/ v Add...

Find more software by working with the "Available Software Sites" preferences.
&

Name Version

¥ [i Developer Tools

4+ Android DDMS 8.0.1.v201012062107-82219
4+ Android Development Tools 8.0.1.v201012062107-82219
4+ Android Hierarchy Viewer 8.0.1.v201012062107-82219
Select All Deselect All
Details
& show only the latest versions of available software Hide items that are already installed
& Group items by category What is already installed?

[contact all update sites during install to find required software

@ Cancel

Figure 7. Eclipse ADT plug-in installation

Check the checkbox to the left of "Developer Tools" and click the Next
button. Follow the rest of the wizard to review the tools to be downloaded
and their respective license agreements. When the Finish button is
enabled, click it, and Eclipse will download and install the plug-ins. When
done, Eclipse will ask to restart - please let it.

Then, you need to teach ADT where your Android SDK installation is from
the preceding section. To do this, choose Window | Preferences from the

14

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

How To Get Started

Eclipse main menu (or the equivalent Preferences option for OS X). Click
on the Android entry in the list on the left:

© Preferences

I @ value must be an existing directory S -

General
Android

Ant

Help
Install/Update
Java
Run/Debug
Tasks

Team

Android Preferences

SDK Location: Browse...

Note: The list of SDK Targets below is only reloaded once you hit *Apply' or 'OK".

¥ ¥ ¥ ¥ ¥ ¥V ¥V ¥V ¥ ¥

Usage Data Collecto
Validation
» XML

Restore Defaults

=
@ Cancel

Figure 8. Eclipse ADT configuration

Then, click the Browse... button to find the directory where you installed
the SDK. After choosing it, click Apply on the Preferences window, and you
should see the Android SDK versions you installed previously. Then, click
OK, and the ADT will be ready for use.

Step #4: Install Apache Ant

If you will be doing all of your development from Eclipse, you can skip to
the next section.

If you wish to develop using command-line build tools, you will need to
install Apache Ant. You may have this already from previous Java
development work, as it is fairly common in Java projects. However, you

15

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

How To Get Started

will need Ant version 1.8.1, so double-check your current copy (e.g., ant
-version) to ensure you are on the proper edition.

If you do not have Ant, you can obtain it from the Apache Ant Web site.
They have full installation instructions in the Ant manual, but the basic
steps are:

1. Unpack the ZIP archive wherever it may make sense on your
machine

2. Add a JAVA_HOME environment variable, pointing to where your JDK
is installed, if you do not have one already

3. Add an ANT_HOME environment variable, pointing to the directory
where you unpacked Ant in the first step above

4. Add $IAVA_HOME/bin and $ANT_HOME/bin to your PATH

5. Run ant -version to confirm that Ant is installed properly

Step #5: Set Up the Emulator

The Android tools include an emulator, a piece of software that pretends to
be an Android device. This is very useful for development - not only does it
mean you can get started on Android without a device, but the emulator
can help test device configurations that you do not own.

The Android emulator can emulate one or several Android devices. Each
configuration you want is stored in an "Android Virtual Device", or AVD.

The SDK and AVD Manager, which you used to download the SDK
components earlier in this chapter, is where you create these AVDs.

If you do not have the SDK and AVD Manager running, you can run it via
the android command from your SDK's tools/ directory, or via Window |
SDK and AVD Manager from Eclipse. It starts up on a screen listing the
AVDs you have available - initially, the list will be empty:

16

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://ant.apache.org/manual/installlist.html
http://ant.apache.org/bindownload.cgi

How To Get Started

Oc Android SDK and AVD Manager

Virtual devices List of existing Android Virtual Devices located at /home/android/.android/avc
Installed packages |W
Available packages —_—]
Settings

About

Refresh

~ A valid Android Virtual Device. =3 A repairable Android Virtual Device.
* An Android Virtual Device that failed to load. Click 'Details' to see the erro

Figure 9. Android SDK and AVD Manager

Click the New... button to create a new AVD file. This brings up a dialog
where you can configure what this AVD should look and work like:

Name: [|]
Target: | 2|
SD Card: .
® size: | | [miB <]
O File:
skin: P
@ Built-in:
O Resolution: X
Hardware: ——
Property Value | New... |
| cancel |

Figure 10. Adding a New AVD

17

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

How To Get Started

You need to provide the following:

« A name for the AVD. Since the name goes into files on your
development machine, you will be limited by filename conventions
for your operating system (e.g., no backslashes on Windows).

« The Android version you want the emulator to run (a.k.a., the
"target"). Choose one of the SDKs you installed via the drop-down
list. Note that in addition to "pure" Android environments, you will
have options based on the third-party add-ons you selected. For
example, you probably have some options for setting up AVDs
containing the Google APIs, and you will need such an AVD for
testing an application that uses Google Maps.

« Details about the SD card the emulator should emulate. Since
Android devices invariably have some form of "external storage”,
you probably want to set up an SD card, by supplying a size in the
associated field. However, since a file will be created on your
development machine of whatever size you specify for the card, you
probably do not want to create a 2GB emulated SD card. 32MB is a
nice starting point, though you can go larger if needed.

« The "skin" or resolution the emulator should run in. The skin
options you have will depend upon what target you chose. The skins
let you choose a typical Android screen resolution (e.g., WVGA8o0
for 800x480). You can also manually specify a resolution when you
want to test a non-standard configuration.

You can skip the "Hardware" section for now, as changing those settings is
usually only required for advanced configurations.

The resulting dialog might look something like this:

18

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

How To Get Started

Name: |2.3-WVGA800

Target: Google APIs (Google Inc.) - APl Levels 2

SD Card: . S ——|
® Size: |32 [|miB 2
O File:

skin: i o ; 7
@ Built-in: \WVGAB00]
O Resolution: X

Hardware:
Property Value New...

Abstracted LCD densi 240
Max VM applicationF: 24

| Create AVD | Cancel

Figure 11. Adding a New AVD (continued)

Click the Create AVD button, and your AVD stub will be created.

To start the emulator, highlight it in the list and click Start... You can skip
the launch options for now and just click Launch. The first time you launch
a new AVD, it will take a long time to start up. The second and subsequent
times you start the AVD, it will come up a bit faster, and usually you only
need to start it up once per day (e.g., when you start development). You do
not need to stop and restart the emulator every time you want to test your
application, in most cases.

The emulator will go through a few startup phases, first with a plain-text
"ANDROID" label:

19

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

How To Get Started

O00 0

°(@&°
(2 N0 Q)

ANDRODID

1 |2 03 |a|s J6 |7 [8 |o o |
o Jw [e |r [1 |y Ju[s Jo e |
I O P P P P P
2]z [x Jc v |e v [w|. |&)
2 S 7 P

Figure 12. Android emulator, initial startup segment

...then a graphical Android logo:

20

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

How To Get Started

O00 0

°(@&°
(2 N0 Q)

1 |2 03 |a|s J6 |7 [8 |o o |
o Jw [e |r [1 |y Ju[s Jo e |
I O P P P P P
2]z [x Jc v |e v [w|. |&)
2 S 7 P

Figure 13. Android emulator, secondary startup segment

before eventually landing at the home screen (the first time you run the
AVD, shown below) or the keyguard:

21

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

How To Get Started

Figure 14. Android home screen

If you get the keyguard (shown below), press the MENU button, or slide the
green lock on the screen to the right, to get to the emulator's home screen:

22

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

How To Get Started

10:48

Android

10:48..

Sunday, December 26
€ Charging (50%)

Figure 15. Android keyguard

Step #6: Set Up the Device

You do not need an Android device to get started in Android application
development. Having one is a good idea before you try to ship an
application (e.g., upload it to the Android Market). And, perhaps you
already have a device — maybe that is what is spurring your interest in
developing for Android.

The first step to make your device ready for use with development is to go
into the Settings application on the device. From there, choose
Applications, then Development. That should give you a set of checkboxes
of development-related options to consider:

23

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

How To Get Started

all @ 09:51

USB debugging

Debug mode when USB is connected

Stay awake

Screen will never sleep while charging

Allow mock locations
Allow mock locations

Figure 16. Android device development settings

Generally, you will want to enable USB debugging, so you can use your
device with the Android build tools. You can leave the other settings alone
for now if you wish, though you may find the "Stay awake" option to be
handy, as it saves you from having to unlock your phone all of the time
while it is plugged into USB.

Next, you need to get your development machine set up to talk to your
device. That process varies by the operating system of your development
machine, as is covered in the following sections.

Windows

When you first plug in your Android device, Windows will attempt to find a
driver for it. It is possible that, by virtue of other software you have
installed, that the driver is ready for use. If it finds a driver, you are
probably ready to go.

24

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

How To Get Started

If the driver is not found, here are some options for getting one.

Windows Update

Some versions of Windows (e.g., Vista) will prompt you to search Windows
Update for drivers. This is certainly worth a shot, though not every device
will have supplied its driver to Microsoft.

Standard Android Driver

In your Android SDK installation, you will find a google-usb_driver
directory, containing a generic Windows driver for Android devices. You
can try pointing the driver wizard at this directory to see if it thinks this
driver is suitable for your device.

Manufacturer-Supplied Driver

If you still do not have a driver, search the CD that came with the device (if
any) or search the Web site of the device manufacturer. Motorola, for
example, has drivers available for all of their devices in one spot for
download.

OS X and Linux

Odds are decent that simply plugging in your device will "just work". You
can see if Android recognizes your device via running adb devices in a shell
(e.g., OS X Terminal), where adb is in your platform-tools/ directory of your
SDK. If you get output similar to the following, Android detected your
device:

List of devices attached
HT9CPP809576 device

If you are running Ubuntu (or perhaps other Linux variants), and this
command did not work, you may need to add some udev rules. For example,

25

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://developer.motorola.com/docstools/USB_Drivers/

How To Get Started

here is a 51-android.rules file that will handle the devices from a handful of
manufacturers:

SUBSYSTEM=="usb", SYSFS{idVendor}=="0@bb4", MODE="0666"

SUBSYSTEM=="usb", SYSFS{idVendor}=="22b8", MODE="0666"

SUBSYSTEM=="usb", SYSFS{idVendor}=="18d1", MODE="0666"

SUBSYSTEMS=="usb", ATTRS{idVendor}=="18d1", ATTRS{idProduct}=="0c01",
MODE="0666", OWNER="[me]"

SUBSYSTEM=="usb", SYSFS{idVendor}=="19d2", SYSFS{idProduct}=="1354", MODE="0666"
SUBSYSTEM=="usb", SYSFS{idVendor}=="04e8", SYSFS{idProduct}=="681c", MODE="0666"

Drop that in your /etc/udev/rules.d directory on Ubuntu, then either
reboot the computer or otherwise reload the udev rules (e.g., sudo service
udev reload). Then, unplug and re-plug in the device and see if it is
detected.

26

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 3
Your First Android Project

Now that you have the Android SDK, it is time to make your first Android
project. The good news is that this requires zero lines of code - Android's
tools create a "Hello, world!" application for you as part of creating a new
project. All you need to do is build it, install it, and see it come up on your
emulator or device.

Step #1: Create the New Project

Android's tools can create a complete skeleton project for you, with
everything you need for a complete (albeit very trivial) Android application.
The only real difference comes from whether you are using Eclipse or the
command line.

Eclipse

From the Eclipse main menu, choose File | New | Project..., and this will
bring up a list of project types to choose from. Fold open the Android
option and click on Android Project:

27

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Your First Android Project

™ New Project

Select a wizard

Wizards:

b (= General
¥ = Android

Ji Android Test Project
» (= CVS
> =]ava
* = Examples

@ < Back Next > || cancel | Finish

Android Project

Figure 17. Eclipse New Project Wizard

Press Next to advance the wizard to the main Android project page:

28

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Your First Android Project

@ New Android Project

New Android Project

@ Project name must be specified

Project name:

Contents
@ Create new project in workspace
Create project from existing source

& Use default location

Create project from existing sample

Samples:
Build Target
Target Name Vendor Platform API Levt
Android 2.3 Android Open Source Project 2.3 9
Google APIs Google Inc. 2.3 9
Properties

Application name:
Package name:
B Create Activity:

Min SDK Version:

@) < Back Cancel

Figure 18. Eclipse New Project Wizard, Android Project

Fill in the following:

« The name of the project (e.g., Now)

+ The Android SDK you wish to compile against (e.g., Google APIs for
Android 2.3)

« The name of the Java package in which this project goes (e.g.,
com.commonsware.android.skeleton)

29

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Your First Android Project

The name of the initial activity to create (e.g., Now)

@ New Android Project

New Android Project

Project name: |Now

Contents

[Use default location

Creates a new Android Project resource.

@® Create new project in workspace

Create project from existing source

Create project from existing sample

Samples:
Build Target
Target Name Vendor Platform API Levt
Android 2.3 Android Open Source Project 2.3 9
& Google APIs Google Inc. 2.3 9
Android + Google APIs
Properties
Application name:
Package name: com.commonsware.android.skeleton
[Create Activity: |Now
Min SDK Version:
@ < Back Next > cancel | Finish J

Figure 19. Eclipse New Project Wizard, Android Project (continued)

At this point, clicking Finish will create your Eclipse project.

Subscribe to updates at http://commonsware.com

30

Special Creative Commons BY-NC-SA 3.0 License Edition

Your First Android Project

Command Line

Here is a sample command that creates an Android project from the
command line:

android create project --target "Google Inc.:Google APIs:7" --path Skeleton/Now
--activity Now --package com.commonsware.android.skeleton

This will create an application skeleton for you, complete with everything
you need to build your first Android application: Java source code, build
instructions, etc. However, you are probably going to need to customize
this somewhat. Here are what those command-line switches mean:

« --target indicates what version of Android you are "targeting" in
terms of your build process. You need to supply the ID of a target
that is installed on your development machine, one you
downloaded via the SDK and AVD Manager. You can find out what
targets are available via the android 1ist targets command.
Typically, your build process will target the newest version of
Android that you have available.

« --path indicates where you want the project files to be generated.
Android will create a directory if the one you name does not exist.
For example, in the command shown above, a Skeleton/Now/
directory will be created (or used if it exists) underneath the current
working directory, and the project files will be stored there.

« --activity indicates the Java class name of your first activity for this
project. Do not include a package name, and the name has to meet
Java class naming conventions.

« --package indicates the Java package in which your first activity will
be located. This package also uniquely identifies your project on any
device on which you install it, and this package also needs to be
unique on the Android Market if you plan on distributing your
application there. Hence, typically, you construct your package
based on a domain name you own (e.g.,
com.commonsware.android.skeleton), to reduce the odds of an
accidental package name collision with somebody else.

31

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Your First Android Project

For your development machine, you will need to pick a suitable target, and
you may wish to change the path. The activity and package you can leave
alone for now.

Step #2: Build, Install, and Run the
Application in Your Emulator or Device

Having a project is nice and all, but it would be even better if we could
build and run it, whether on the Android emulator or your Android device.
Once again, the process differs somewhat depending on whether you are
using Eclipse or not.

Eclipse

With your project selected in the Package Explorer pane, click the green
"play” button in the Eclipse toolbar to run your project. The first time you

"

do this, you will have to go through a few steps to set up a "run
configuration”, so Eclipse knows what you want to do.

First, in the "Run As" list, choose "Android Application":

Select a way to run 'Now":

)

Ji Android JUnit Test
E Java Applet

1 Java Application
Ju JUnit Test

Description
Runs an Android Application

@ Cancel | OK |

Figure 20. Eclipse "Run As" List

32

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Your First Android Project

If you have more than one emulator AVD or device available, you will then
get an option to choose which you wish to run the application on.
Otherwise, if you do not have a device plugged in, the emulator will start up
with the AVD you created earlier. Then, Eclipse will install the application

on your device or emulator and start it up.

Command Line

For developers not using Eclipse, in your terminal, change into the

Skeleton/Now directory, then run the following command:

|ant clean install

The Ant-based build should emit a list of steps involved in the installation

process, which look like this:

Buildfile: /home/some-balding-guy/projects/Skeleton/Now/build.xml

[setup] Android SDK Tools Revision 8

[setup] Project Target: Google APIs

[setup] Vendor: Google Inc.

[setup] Platform Version: 2.1-updatel

[setup] API level: 7

[setup]

[setup] ------------------

[setup] Resolving library dependencies:

[setup] No library dependencies.

[setup]

[setup] ------------------

[setup]

[setup] WARNING: No minSdkVersion value set. Application will install on all
Android versions.

[setup]

[setup] Importing rules file: tools/ant/main_rules.xml

clean:
[delete] Deleting directory /home/some-balding-guy/projects/Skeleton/Now/bin

-debug-obfuscation-check:
-set-debug-mode:
-compile-tested-if-test:
-dirs:

[echo] Creating output directories if needed...
[mkdir] Created dir: /home/some-balding-guy/projects/Skeleton/Now/bin

33

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Your First Android Project

[mkdir] Created dir: /home/some-balding-guy/projects/Skeleton/Now/gen
[mkdir] Created dir: /home/some-balding-guy/projects/Skeleton/Now/bin/classes

-pre-build:

-resource-src:
[echo] Generating R.java / Manifest.java from the resources...

-aidl:
[echo] Compiling aidl files into Java classes...

-pre-compile:

compile:

[javac] /opt/android-sdk-linux/tools/ant/main_rules.xml:361: warning:
'includeantruntime' was not set, defaulting to build.sysclasspath=1last; set to
false for repeatable builds

[javac] Compiling 2 source files to /home/some-balding-
guy/projects/Skeleton/Now/bin/classes

-post-compile:
-obfuscate:

-dex:
[echo] Converting compiled files and external libraries into /home/some-
balding-guy/projects/Skeleton/Now/bin/classes.dex...

-package-resources:
[echo] Packaging resources
[aapt] Creating full resource package...

-package-debug-sign:
[apkbuilder] Creating Now-debug-unaligned.apk and signing it with a debug key...

debug:

[echo] Running zip align on final apk...

[echo] Debug Package: /home/some-balding-guy/projects/Skeleton/Now/bin/Now-
debug.apk

BUILD SUCCESSFUL
Total time: 4 seconds

Note the BUILD successruL at the bottom - that is how you know the
application compiled successfully.

When you have a clean build, in your emulator or device, open up the
application launcher, typically found at the bottom of the home screen:

34

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Your First Android Project

M@ 4:04pPm

P m e &

Alarm Clock APIDemos Browser Calculator

w mE R

Camera Contacts Custom Dev Tools

Locale

8325 ®

Email Gallery stures Messaging

© A P =

Music Now Phone Settings

Figure 21. Android emulator application launcher

Notice there is an icon for your Now application. Click on it to open it and
see your first activity in action. To leave the application and return to the
launcher, press the "BACK button", located to the right of the [MENU]
button, and looks like an arrow pointing to the left.

35

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 4
Examining Your First Project

The previous chapter stepped you through creating a stub project. Now, let
us take a peek at what is inside of this project, so you understand what
Android gives you at the outset and what the roles are for the various
directories and files.

Project Structure

The Android build system is organized around a specific directory tree
structure for your Android project, much like any other Java project. The
specifics, though, are fairly unique to Android and what it all does to
prepare the actual application that will run on the device or emulator.
Here's a quick primer on the project structure, to help you make sense of it
all, particularly for the sample code referenced in this book.

Root Contents

When you create a new Android project (e.g., via android create project),
you get several items in the project's root directory, including:

+ AndroidManifest.xml, which is an XML file describing the application
being built and what components - activities, services, etc. — are
being supplied by that application

« bin/, which holds the application once it is compiled

37

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Examining Your First Project

« 1libs/, which holds any third-party Java JARs your application
requires

« res/, which holds "resources", such as icons, GUI layouts, and the
like, that get packaged with the compiled Java in the application

« src/, which holds the Java source code for the application

In addition to the files and directories shown above, you may find any of
the following in Android projects:

« assets/, which hold other static files you wish packaged with the
application for deployment onto the device

« gen/, where Android's build tools will place source code that they
generate

+ build.xml and *.properties, which are used as part of the Ant-based
command-line build process, if you are not using Eclipse

+ proguard.cfg, which is used for integration with ProGuard for
obfuscating your Android code

The Sweat Off Your Brow

When you created the project (e.g., via android create project), you
supplied the fully-qualified class name of the "main" activity for the
application (e.g., com.commonsware.android.SomeDemo). You will then find that
your project's src/ tree already has the namespace directory tree in place,
plus a stub Activity subclass representing your main activity (e.g.,
src/com/commonsware/android/SomeDemo.java). You are welcome to modify
this file and add others to the src/ tree as needed to implement your
application.

The first time you compile the project (e.g., via ant), out in the "main"
activity's namespace directory, the Android build chain will create R.java.
This contains a number of constants tied to the various resources you
placed out in the res/ directory tree. You should not modify R.java yourself,
letting the Android tools handle it for you. You will see throughout many of

38

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://proguard.sourceforge.net/

Examining Your First Project

the samples where we reference things in Rr.java (e.g., referring to a layout's
identifier via R.layout.main).

And Now, The Rest of the Story

You will also find that your project has a res/ directory tree. This holds
"resources" — static files that are packaged along with your application,
either in their original form or, occasionally, in a preprocessed form. Some
of the subdirectories you will find or create under res/ include:

+ res/drawable/ for images (PNG, JPEG, etc.)
+ res/layout/ for XML-based Ul layout specifications
« res/menu/ for XML-based menu specifications

« res/raw/ for general-purpose files (e.g,. an audio clip, a CSV file of
account information)

+ res/values/ for strings, dimensions, and the like

« res/xml/ for other general-purpose XML files you wish to ship

Some of the directory names may have suffixes, like res/drawable-hdpi/.
This indicates that the directory of resources should only be used in certain
circumstances - in this case, the drawable resources should only be used on
devices with high-density screens.

We will cover all of these, and more, in later chapters of this book.

In your initial project, you will find:

. res/drawable-hdpi/icon.png, res/drawable-1dpi/icon.png, and
res/drawable-mdpi/icon.png, which are three renditions of a
placeholder icon for your application for high-, low-, and medium-
density screens, respectively

+ res/layout/main.xml, which contains an XML file that describes the
very simple layout of your user interface

39

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Examining Your First Project

« res/values/strings.xml, which contains externalized strings, notably
the placeholder name of your application

What You Get Out Of It

When you compile your project (via ant or the IDE), the results go into the
bin/ directory under your project root. Specifically:

« bin/classes/ holds the compiled Java classes

« bin/classes.dex holds the executable created from those compiled
Java classes

+ bin/yourapp.ap_ holds your application's resources, packaged as a
ZIP file (where yourapp is the name of your application)

+ bin/yourapp-*.apk is the actual Android application (where * varies)

The .apk file is a ZIP archive containing the .dex file, the compiled edition
of your resources (resources.arsc), any un-compiled resources (such as
what you put in res/raw/) and the AndroidManifest.xml file. If you build a
debug version of the application - which is the default - you will have
yourapp-debug.apk and yourapp-debug-aligned.apk as two versions of your
APK. The latter has been optimized with the zipalign utility to make it run
faster.

Inside Your Manifest

The foundation for any Android application is the manifest file:
AndroidManifest.xml in the root of your project. Here is where you declare
what is inside your application - the activities, the services, and so on. You
also indicate how these pieces attach themselves to the overall Android
system; for example, you indicate which activity (or activities) should
appear on the device's main menu (a.k.a., launcher).

When you create your application, you will get a starter manifest generated
for you. For a simple application, offering a single activity and nothing else,
the auto-generated manifest will probably work out fine, or perhaps require

40

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Examining Your First Project

a few minor modifications. On the other end of the spectrum, the manifest
file for the Android API demo suite is over 1,000 lines long. Your production
Android applications will probably fall somewhere in the middle.

In The Beginning, There Was the Root, And It Was
Good

The root of all manifest files is, not surprisingly, a manifest element:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.search">

</manifest>

Note the namespace declaration. Curiously, the generated manifests only
apply it on the attributes, not the elements (e.g., manifest, not
android:manifest). However, that pattern works, so unless Android changes,
stick with their pattern.

The biggest piece of information you need to supply on the manifest
element is the package attribute (also curiously not-namespaced). Here, you
can provide the name of the Java package that will be considered the "base"
of your application. Then, everywhere else in the manifest file that needs a
class name, you can just substitute a leading dot as shorthand for the
package. For example, if you needed to refer to
com.commonsware.android.search.Snicklefritz in this manifest shown above,
you could just use .Snicklefritz, since com.commonsware.android.search is
defined as the application's package.

As noted in the previous chapter, your package also is a unique identifier
for your application. A device can only have one application installed with a
given package, and the Android Market will only list one project with a
given package.

Your manifest also specifies android:versionName and android:versionCode
attributes. These represent the versions of your application. The
android:versionName value is what the user will see in the Applications list in

41

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Examining Your First Project

their Settings application. Also, the version name is used by the Android
Market listing, if you are distributing your application that way. The version
name can be any string value you want. The android:versionCode, on the
other hand, must be an integer, and newer versions must have higher
version codes than do older versions. Android and the Android Market will
compare the version code of a new APK to the version code of an installed
application to determine if the new APK is indeed an update. The typical
approach is to start the version code at 1 and increment it with each
production release of your application, though you can choose another
convention if you wish.

An Application For Your Application

In your initial project's manifest, the only child of the <manifest> element is
an <application> element. The children of the <application> element
represent the core of the manifest file.

One attribute of the <application> element that you may need in select
circumstances is the android:debuggable attribute. This needs to be set to
true if you are installing the application on an actual device and you are
using Eclipse (or another debugger) and if your device precludes debugging
without this flag. For example, the Nexus One requires android:debuggable
= "true", according to some reports.

By default, when you create a new Android project, you get a single
<activity> element inside the <application> element:

<?xml version="1.0"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.skeleton">
<application>
<activity android:name=".Now" android:label="Now">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>
</activity>
</application>
<supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

42

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Examining Your First Project

This element supplies android:name for the class implementing the activity,
android:label for the display name of the activity, and (frequently) an
<intent-filter> child element describing under what conditions this
activity will be displayed. The stock <activity> element sets up your activity
to appear in the launcher, so users can choose to run it. As we'll see later in
this book, you can have several activities in one project, if you so choose.

43

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 5

A Bit About Eclipse

Eclipse is an extremely popular IDE, particularly for Java development. It is
also designed to be extensible via a add-in system. To top it off, Eclipse is
open source. That combination made it an ideal choice of IDE to get
attention from the core Android developer team.

Specifically, to go alongside the Android SDK, Google has published some
add-ins for the Eclipse environment. Primary among these is the Android
Developer Tools (ADT) add-in, which gives the core of Eclipse awareness of
Android.

What the ADT Gives You

The ADT add-in, in essence, takes regular Eclipse operations and extends
them to work with Android projects. For example, with Eclipse, you get:

« New project wizards to create regular Android projects, Android
test projects, etc.

« The ability to run an Android project just like you might run a
regular Java application - via the green Run button in the toolbar —
despite the fact that this really involves pushing the Android
application over to an emulator or device, possibly even starting up
the emulator if it is not running

+ Tooltip support for Android classes and methods

« Andsoon

45

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Bit About Eclipse

In addition, the latest version of the ADT provides you with preliminary
support for drag-and-drop GUI editing. While this book will focus on the
XML files that Eclipse will generate, Eclipse now lets you assemble those
XML files by dragging Ul components around on the screen, adjusting
properties as you go. Drag-and-drop GUI editing is fairly new, and so there
may be a few rough edges for a while as the community and Google identify
the problems and limitations with the current implementation.

Coping with Eclipse
Eclipse is a powerful tool. Like many powerful tools, Eclipse is sometimes

confounding. Determining how to solve some specific development
problem can be a challenge, exacerbated by the new-ness of Android itself.

This section offers some tips for handling some common issues in using
Eclipse with Android.

How to Import a Non-Eclipse Project

Not all Android projects ship with Eclipse project files, such as the sample
projects associated with this book. However, these can still be easily added
to your Eclipse workspace, if you wish. Here is how to do it!

First, choose File > New > Project... from the Eclipse main menu:

46

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Bit About Eclipse

= Java - Eclipse
Edit Run Source Refactor Mavigate Search Project Window Help
MNew Alt+Shift+N v | 2% Java Project |
Open File... T Project..
Close Ctrl+W | B Package
Close All Ctrl+Shift+W | (& Class
Save Curles | @ Interface
Save As... L SllEr
Save Al CtrisShiftss | & Annotation
vt
Revert &% Source Folder
150 Java Working Set
Move... O Folder
Rename... F2 % File
2l | |Refresh F5 | 2 Untitled Text File
Convert Line Delimiters To [E¢ JUnit Test Case
Print... Ctl«P | [0 Task
Switch Workspace v [Example.
e = Other.. Ctrl+N
g2y Import..
gy Export...
Properties Alt+Enter
Exit

Figure 22. File menu in Eclipse

Then, choose Android > Android Project from the tree of available project
types:

47

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Bit About Eclipse

= New Project = @

Select a wizard

Wizards:
type filter text

. = General
4 = Android
% Android Project
J,‘G Android Test Project
> = CV5
. = Java
. = Examples

'/:?' < Bac Mext = Finish Cancel

Figure 23. New project wizard in Eclipse

Note: if you do not see this option, you have not installed the Android
Developer Tools.

Then, in the next page of the project creation wizard, choose the "Create
project from existing source" radio button, click the [Browse...] button, and
open the directory containing your project's AndroidManifest.xml file. This
will populate most of the rest of this screen, though you may need to also
specify a build target from the table:

48

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Bit About Eclipse

<= New Android Project

New Android Project
3 An SDK Target must be specified.

Project name: CrudeBench

Contents
Create new project in workspace
@ Create project from existing source

Use default location

Create project from existing sample

Samples: | Please select a target.

Location: C:\Users\CommeonsWare\Desktophcommonsguy-crudeb Browse.

Build Target
Target Name Vendor Platform APL.. =
Android 2.2 Android Open Source Project 22 8
Google APIs Googlelnc, 22 8 -

Standard Android platform 2.2

Properties
Application name: | CrudeBench

Package name: COM.COMMONSW

Create Activity: leBench

Min SDK Version:

< Back

lext » Finish Cancel

Figure 24. Android project wizard in Eclipse

Then, click [Finish]. This
project in your workspace:

will return you to Eclipse, with the imported

Subscribe to updates at http://commonsware.com

49

Special Creative Commons BY-NC-SA 3.0 License Edition

A Bit About Eclipse

Next, right-click over the project name, and choose Build Path > Configure

(2 Package

Exp &3

4 ‘,% CrudeBench

T ope

G& gen :::'E"“E"*."-'.EC! Java Files]

=i, Android 2.2
G@ assets

]

= res

) AndroidManifest.xmil

build.properties

2| build.xml

default.properties
LICEMSE
README.markdown

Tg Hierarchy

8

=

Figure 25. Android project tree in Eclipse

Build Path from the context menu:

[# Package E

a|7= Crude
» T8 g
.2 ge
. E Ar
= as

. B2 ref
a) Ar
by
£ by
de
L1

RE

% LI

R L
Mew

Go Into

Open in New Window
Open Type Hierarchy
Show In

Copy
Copy Qualified Name
Paste

Delete

Remove from Context
Build Path

Source

Refactor

Import...
Export...

Refresh

Ctrl+Alt+5hift+Down

F4
AltShift~W »

Ctrl+C

Ctrl+V
Delete

b dm
Alt+Shift+5 » | Y
Alt+Shift+T »

F5 | e

Link Source...

Mew Source Folder..,

Use as Source Folder
Add External Archives...
Add Libraries...

Configure Build Path...

Figl.ire 26. Project context menu in Eclipse

Subscribe to updates at http://commonsware.com

50

Special Creative Commons BY-NC-SA 3.0 License Edition

A Bit About Eclipse

This brings up the build path portion of the project properties window:

~ Properties for CrudeBench = @

Java Build Path MR
Resource
Android [Source | 1= Projects | = Libraries % Order and Export
Builders Build class path order and exported entries:
Java Build Path (Exported entries are contributed to dependent projects)
Java Code Style [#2CrudeBench/src Up
Java Compiler 2 CrudeBench/gen —————————————
Java Editor = Android 2.2 Down
Javadoc Location
Project References T
Run/Debug Settings -
Task Repository Bottom
Task Tags
WValidation Select All
WikiText ——

Deselect All
‘i?' [QK] | Cancel

Figure 27. Project properties window in Eclipse

If the Android JAR is not checked (see the Android 2.2 entry in the above
image), check it, then close the properties window. At this point, your
project should be ready for use.

How to Get To DDMS

Many times, you will be told to take a look at something in DDMS, such as
the LogCat tab to examine Java stack traces. In Eclipse, DDMS is a
perspective. To open this perspective in your workspace, choose Window >
Open Perspective > Other... from the main menu:

51

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Bit About Eclipse

i Mew Window o o v -
Mew Editor
Open Perspective r ﬁ? Debug
Show View v | &) Java Browsing
Customize Perspective... Other...

Save Perspective As...
Reset Perspective...
Close Perspective

Close All Perspectives
Mavigation *

Android SDK and AVD Manager

Preferences

Figure 28. Perspective menu in Eclipse

Then, in the list of perspectives, choose DDMS:

52

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Bit About Eclipse

= Open Perspective = @

Eacvs Repositery Exploring
DDMS
ﬁﬁ'«Debug
&) Java (default)
S\JJa\ra Browsing
?gJJa\ra Type Hierarchy
') Planning

5 Resource
£0Team Synchronizing
X XML

OFK Cancel

Figure 29. Perspective roster in Eclipse

This will add the DDMS perspective to your workspace and open it in your
Eclipse IDE.

DDMS is covered in greater detail in a later chapter of this book.

How to Create an Emulator

By default, your Eclipse environment has no Android emulators set up. You
will need one before you can run your project successfully.

To do this, first choose Window > Android SDK and AVD Manager from the
main menu:

53

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Bit About Eclipse

Mew Window
Mew Editor

5 E itor]
Open Perspective |
Show View k

Customize Perspective...
Save Perspective As...
Feset Perspective...
Close Perspective

Close All Perspectives
Mavigation b

Android 5DK and AVD Manager

Preferences

Figure 30. Android AVD Manager menu option in Eclipse

That brings up the same window as you can get by running android from
the command line.

How to Run a Project

Given that you have an AVD defined, or that you have a device set up for
debugging and connected to your development machine, you can run your
project in the emulator.

First, click the Run toolbar button, or choose Project > Run from the main
menu. This will bring up the "Run As" dialog the first time you run the
project:

54

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Bit About Eclipse

= Run As = @

Select a way to run 'CrudeBench’:

[T Android Application
Ji Android JUnit Test
5] Java Applet

[Java Application
JuIUnit Test

Description

'/:? Ok Cancel

Figure 31. Android AVD Manager menu option in Eclipse

Choose Android Application and click OK. If you have more than one AVD
or device available, you will be presented with a window where you choose
the desired target environment. Then, the emulator will start up to run
your application. Note that you will need to unlock the lock screen on the
emulator (or device) if it is locked.

How Not to Run Your Project

When you go to run your project, be sure to not have an XML file be the
active tab in the editor. Attempting to "run" this will result in a .out file
being created in whatever directory the XML file lives in (e.g.,
res/layout/main.xml.out). To recover, simply delete the offending .out file
and try running again, this time with a Java file as the active tab.

Alternative IDEs

If you really like Eclipse and the ADT, you may want to consider
MOTODEYV Studio for Android. This is another set of add-ins for Eclipse,

55

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://developer.motorola.com/docstools/motodevstudio/

A Bit About Eclipse

augmenting the ADT and offering a number of other Android-related
development features, including:

« More wizards for helping you create Android classes

- Integrated SQLite browsing, so you can manipulate a SQLite
database in your emulator right from your IDE

« More validators to check for common bugs, and a library of code
snippets to have fewer bugs at the outset

« Assistance with translating your application to multiple languages

+ And much more

While MOTODEYV Studio for Android is published by Motorola, you can
use it to build applications for all Android devices, not only those
manufactured by Motorola themselves.

Other IDEs are slowly getting their equivalents of the ADT, albeit with
minimal assistance from Google. For example, Intelli]'s IDEA has a module
for Android - originally commercial, it is part of the open source
community edition of IDEA as of version 10.

And, of course, you do not need to use an IDE at all. While this may sound
sacrilegious to some, IDEs are not the only way to build applications. Much
of what is accomplished via the ADT can be accomplished through
command-line equivalents, meaning a shell and an editor is all you truly
need. For example, the author of this book does not presently use an IDE
and has no intention of adopting Eclipse any time soon.

IDEs...And This Book

You are welcome to use Eclipse as you work through this book. You are
welcome to use another IDE if you wish. You are even welcome to skip the
IDE outright and just use an editor.

This book is focused on demonstrating Android capabilities and the APIs
for exploiting those capabilities. It is not aimed at teaching the use of any

56

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Bit About Eclipse

one IDE. As such, the sample code shown should work in any IDE,
particularly if you follow the instructions for importing non-Eclipse
projects into Eclipse supplied above.

57

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 6
Enhancing Your First Project

The AndroidManifest.xml file that Android generated for your first project
gets the job done. However, for a production application, you may wish to
consider adding a few attributes and elements, such as those described in
this chapter.

Supporting Multiple Screens

Android devices come with a wide range of screen sizes, from 2.8" tiny
smartphones to 46" Google TVs. Android divides these into four buckets,
based on physical size and the distance at which they are usually viewed:

« Small (under 3")
« Normal (3" to around 4.5")
+ Large (4.5" to around 10")

+ Extra-large (over 10")

By default, your application will not support small screens, will support
normal screens, and may support large and extra-large screens via some
automated conversion code built into Android.

To truly support all the screen sizes you want, you should consider adding a
<supports-screens> element. This enumerates the screen sizes you have
explicit support for. For example, if you want to support small screens, you

59

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Enhancing Your First Project

will need the <supports-screens> element. Similarly, if you are providing
custom UI support for large or extra-large screens, you will want to have
the <supports-screens> element. So, while the starting manifest file works,
handling multiple screen sizes is something you will want to think about.

Much more information about providing solid support for all screen sizes
can be found later in this book.

Specifying Versions

As was noted in the previous chapter, your manifest already contains some
version information, about your own application's version. However, you
probably want to add a <uses-sdk> element as a child of the <manifest>
element to your AndroidManifest.xml file, to specify what versions of
Android you are supporting. By default, your application is assumed to
support every Android version from 1.0 to the current 2.3 and onward to
any version in the future. Most likely, that is not what you want.

The most important attribute for your «<uses-sdk> element is
android:minSdkversion. This indicates what is the oldest version of Android
you are testing with your application. The value of the attribute is an
integer representing the Android SDK version:

+ Androidi1o=1

« Androidi11=2

« Android15=3

+ Android 1.6 = 4

+ Android2.0=5

+ Android 2.01=6
+ Android 21=7

« Android2.2=8

« Android23=9

60

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Enhancing Your First Project

So, if you are only testing your application on Android 2.1 and newer
versions of Android, you would set your android:minSdkVersion to be 7.

You may also wish to specify an android:targetSdkversion attribute. This
indicates what version of Android you are thinking of as you are writing
your code. If your application is run on a newer version of Android,
Android may do some things to try to improve compatibility of your code
with respect to changes made in the newer Android. So, right now, you
might specify android:targetSdkversion="9", indicating you are writing your
application with Android 2.3 in mind - if your app someday is run on an
Android 3.0 device, Android may take some extra steps to make sure your
2.3-centric code runs correctly on the 3.0 device.

61

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PART Il - Activities

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 7
Rewriting Your First Project

The project you created in a previous chapter was just the default files
generated by the Android build tools - you did not write any Java code
yourself. In this chapter, we will modify that project to have a somewhat
more interactive sample. Along the way, we will examine the basic Java
code that makes up an Android activity.

NOTE: The instructions in this chapter assume you followed the original
instructions in terms of the names of packages and files. If you used
different names back then, you will need to adjust the following steps to
match.

The Activity

Your project's src/ directory contains the standard Java-style tree of
directories based upon the Java package you chose when you created the
project (e.g., com.commonsware.android results in
src/com/commonsware/android/). Inside the innermost directory you should
find a pre-generated source file named Now.java, which is where your first
activity will go.

Open Now. java in your editor and paste in the following code:

package com.commonsware.android.skeleton;

import android.app.Activity;

65

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Rewriting Your First Project

import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import java.util.Date;

public class Now extends Activity implements View.OnClickListener {
Button btn;

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

btn=new Button(this);
btn.setOnClickListener(this);
updateTime();
setContentView(btn);

}

public void onClick(View view) {
updateTime();

private void updateTime() {
btn.setText(new Date().toString());
}
}

Or, if you download the source files off the Web site, you can just use the
Skeleton/Now project directly.

Dissecting the Activity

Let's examine this Java code piece by piece:

package com.commonsware.android.skeleton;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import java.util.Date;

The package declaration needs to be the same as the one you used when
creating the project. And, like any other Java project, you need to import
any classes you reference. Most of the Android-specific classes are in the
android package.

66

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/Android/

Rewriting Your First Project

Remember that not every Java SE class is available to Android programs!
Visit the Android class reference to see what is and is not available.

public class Now extends Activity implements View.OnClickListener {
Button btn;

Activities are public classes, inheriting from the android.app.Activity base
class. In this case, the activity holds a button (btn). Since, for simplicity, we
want to trap all button clicks just within the activity itself, we also have the
activity class implement onClickListener.

@Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

btn=new Button(this);
btn.setOnClickListener(this);
updateTime();
setContentView(btn);

The oncreate() method is invoked when the activity is started. The first
thing you should do is chain upward to the superclass, so the stock Android
activity initialization can be done.

In our implementation, we then create the button instance (new
Button(this)), tell it to send all button clicks to the activity instance itself
(via setonClickListener()), call a private updateTime() method (see below),
and then set the activity's content view to be the button itself (via
setContentView()).

We will discuss that magical Bundle icicle in a later chapter. For the
moment, consider it an opaque handle that all activities receive upon
creation.

public void onClick(View view) {
updateTime();
}

In Swing, a JButton click raises an Actionkvent, which is passed to the
ActionListener configured for the button. In Android, a button click causes

67

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://code.google.com/android/reference/packages.html

Rewriting Your First Project

onClick() to be invoked in the onClickListener instance configured for the
button. The listener is provided the view that triggered the click (in this
case, the button). All we do here is call that private updateTime() method:

private void updateTime() {
btn.setText(new Date().toString());

}

When we open the activity (onCreate()) or when the button is clicked
(onClick()), we update the button's label to be the current time via
setText(), which functions much the same as the JButton equivalent.

Building and Running the Activity

To build the activity, either use your IDE's built-in Android packaging tool,
or run ant clean install in the base directory of your project, as was
described in a previous chapter. Then, run the activity - it should be
automatically launched for you if you are using Eclipse, else find the
activity in the home screen launcher. You should see an activity akin to:

| EhMl & 9:59 Pm |

Tue Aug 19 21:59:51 GMT+00:00 2008

el
Figure 32. The Now demonstration activity

68

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Rewriting Your First Project

Clicking the button - in other words, pretty much anywhere on the phone's
screen — will update the time shown in the button's label.

Note that the label is centered horizontally and vertically, as those are the
default styles applied to button captions. We can control that formatting,
which will be covered in a later chapter.

After you are done gazing at the awesomeness of Advanced Push-Button
Technology™, you can click the back button on the emulator to return to
the launcher.

About the Remaining Examples

The chapters so far have given you some steps to work through yourself. If
you like that style of learning, you may wish to read Android Programming
Tutorials, by the author of this book. That book contains over 40 tutorials
with step-by-step instructions, so you can learn by doing. If you obtained
this book on the Warescription plan, you already have access to Android
Programming Tutorials - just download that book and go!

The rest of the chapters in this book present existing sample code, which
you can download if you wish. You are also welcome to key or paste in the
sample code from the book, though that is not the expectation.

69

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/warescription
http://commonsware.com/AndTutorials
http://commonsware.com/AndTutorials

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 8
Using XML-Based Layouts

While it is technically possible to create and attach widgets to our activity
purely through Java code, the way we did in the preceding chapter, the
more common approach is to use an XML-based layout file. Dynamic
instantiation of widgets is reserved for more complicated scenarios, where
the widgets are not known at compile-time (e.g., populating a column of
radio buttons based on data retrieved off the Internet).

With that in mind, it's time to break out the XML and learn how to lay out
Android activity views that way.

What Is an XML-Based Layout?

As the name suggests, an XML-based layout is a specification of widgets'
relationships to each other - and to containers - encoded in XML format.
Specifically, Android considers XML-based layouts to be resources, and as
such layout files are stored in the res/layout directory inside your Android
project.

Each XML file contains a tree of elements specifying a layout of widgets and
containers that make up one view. The attributes of the XML elements are
properties, describing how a widget should look or how a container should
behave. For example, if a Button element has an attribute value of
android:textStyle = "bold", that means that the text appearing on the face
of the button should be rendered in a boldface font style.

71

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using XML-Based Layouts

Android's SDK ships with a tool (aapt) which uses the layouts. This tool
should be automatically invoked by your Android tool chain (e.g., Eclipse,
Ant's build.xml). Of particular importance to you as a developer is that aapt
generates the R.java source file within your project's gen/ directory,
allowing you to access layouts and widgets within those layouts directly
from your Java code, as will be demonstrated later in this chapter.

Why Use XML-Based Layouts?

Most everything you do using XML layout files can be achieved through
Java code. For example, you could use setTypeface() to have a button
render its text in bold, instead of using a property in an XML layout. Since
XML layouts are yet another file for you to keep track of, we need good
reasons for using such files.

Perhaps the biggest reason is to assist in the creation of tools for view
definition, such as a GUI builder in an IDE like Eclipse or a dedicated
Android GUI designer like DroidDraw. Such GUI builders could, in
principle, generate Java code instead of XML. The challenge is re-reading
the definition in to support edits - that is far simpler if the data is in a
structured format like XML than in a programming language. Moreover,
keeping the generated bits separated out from hand-written code makes it
less likely that somebody's custom-crafted source will get clobbered by
accident when the generated bits get re-generated. XML forms a nice
middle ground between something that is easy for tool-writers to use and
easy for programmers to work with by hand as needed.

Also, XML as a GUI definition format is becoming more commonplace.
Microsoft's XAML, Adobe's Flex, Google's GWT, and Mozilla's XUL all take
a similar approach to that of Android: put layout details in an XML file and
put programming smarts in source files (e.g., Javascript for XUL). Many
less-well-known GUI frameworks, such as ZK, also use XML for view
definition. While "following the herd" is not necessarily the best policy, it
does have the advantage of helping to ease the transition into Android from
any other XML-centered view description language.

72

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.zkoss.org/
http://www.mozilla.org/projects/xul/
http://www.adobe.com/products/flex/
http://windowssdk.msdn.microsoft.com/en-us/library/ms752059.aspx
http://droiddraw.org/

Using XML-Based Layouts

OK, So What Does It Look Like?

Here is the Button from the previous chapter's sample application,
converted into an XML layout file, found in the Layouts/NowRedux sample
project:

<?xml version="1.0" encoding="utf-8"?>

<Button xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/button”
android:text=""
android:layout_width="fill_parent"
android:layout_height="fill parent"/>

The class name of the widget - Button - forms the name of the XML
element. Since Button is an Android-supplied widget, we can just use the
bare class name. If you create your own widgets as subclasses of
android.view.View, you would need to provide a full package declaration as
well (e.g., com.commonsware.android.MyWidget).

The root element needs to declare the Android XML namespace:

|xmlns:android="http://schemas.android.com/apk/res/android" |

All other elements will be children of the root and will inherit that
namespace declaration.

Because we want to reference this button from our Java code, we need to
give it an identifier via the android:id attribute. We will cover this concept
in greater detail later in this chapter.

The remaining attributes are properties of this Button instance:

+ android:text indicates the initial text to be displayed on the button
face (in this case, an empty string)

+ android:layout_width and android:layout_height tell Android to have
the button's width and height fill the "parent”, in this case the entire
screen - these attributes will be covered in greater detail in a later
chapter

73

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using XML-Based Layouts

Since this single widget is the only content in our activity's view, we only
need this single element. Complex views will require a whole tree of
elements, representing the widgets and containers that control their
positioning. All the remaining chapters of this book will use the XML layout
form whenever practical, so there are dozens of other examples of more
complex layouts for you to peruse.

What's With the @ Signs?

Many widgets and containers only need to appear in the XML layout file
and do not need to be referenced in your Java code. For example, a static
label (Textview) frequently only needs to be in the layout file to indicate
where it should appear. These sorts of elements in the XML file do not need
to have the android:id attribute to give them a name.

Anything you do want to use in your Java source, though, needs an
android:id.

The convention is to use @+id/... as the id value, where the ... represents
your locally-unique name for the widget in question, for the first
occurrence of a given id value in your layout file. The second and
subsequent occurrences in the same layout file should drop the + sign - a
feature we will use in an upcoming chapter. In the XML layout example in
the preceding section, @+id/button is the identifier for the Button widget.

Android provides a few special android:id values, of the form
@android:id/... — we will see some of these in various chapters of this book.

And We Attach These to the Java...How?

Given that you have painstakingly set up the widgets and containers for
your view in an XML layout file named main.xml stored in res/layout, all you
need is one statement in your activity's onCreate() callback to use that
layout:

|setContentView(R.layout.main); |

74

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using XML-Based Layouts

This is the same setContentview() we used earlier, passing it an instance of a
view subclass (in that case, a Button). The Android-built view, constructed
from our layout, is accessed from that code-generated R class. All of the
layouts are accessible under R.layout, keyed by the base name of the layout
file - res/layout/main.xml results in R.layout.main.

To access our identified widgets, use findviewById(), passing it the numeric
identifier of the widget in question. That numeric identifier was generated
by Android in the R class as R.id.something (where something is the specific
widget you are seeking). Those widgets are simply subclasses of View, just
like the Button instance we created in the previous chapter.

The Rest of the Story

In the original Now demo, the button's face would show the current time,
which would reflect when the button was last pushed (or when the activity
was first shown, if the button had not yet been pushed).

Most of that logic still works, even in this revised demo (NowRedux).
However, rather than instantiating the Button in our activity's onCreate()
callback, we can reference the one from the XML layout:

package com.commonsware.android.layouts;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import java.util.Date;

public class NowRedux extends Activity
implements View.OnClickListener {
Button btn;

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

setContentView(R.layout.main);
btn=(Button)findvViewById(R.id.button);

btn.setOnClickListener(this);
updateTime();

75

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using XML-Based Layouts

}

public void onClick(View view) {
updateTime();
}

private void updateTime() {
btn.setText(new Date().toString());
}

}

The first difference is that rather than setting the content view to be a view
we created in Java code, we set it to reference the XML layout
(setContentview(R.layout.main)). The R.java source file will be updated
when we rebuild this project to include a reference to our layout file (stored
as main.xml in our project's res/layout directory).

The other difference is that we need to get our hands on our Button
instance, for which we use the findviewById() call. Since we identified our
button as @+id/button, we can reference the button's identifier as
R.id.button. Now, with the Button instance in hand, we can set the callback
and set the label as needed.

The results look the same as with the original Now demo:

76

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using XML-Based Layouts

ChHl & 10:33PM
NowRedux

Tue Aug 19 22:32:29 GMT+00:00 2008

-,
Figure 33. The NowRedux sample activity

77

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 9
Employing Basic Widgets

Every GUI toolkit has some basic widgets: fields, labels, buttons, etc.
Android's toolkit is no different in scope, and the basic widgets will provide
a good introduction as to how widgets work in Android activities.

Assigning Labels

The simplest widget is the label, referred to in Android as a Textview. Like
in most GUI toolkits, labels are bits of text not editable directly by users.
Typically, they are used to identify adjacent widgets (e.g., a "Name:" label
before a field where one fills in a name).

In Java, you can create a label by creating a Textview instance. More
commonly, though, you will create labels in XML layout files by adding a
Textview element to the layout, with an android:text property to set the
value of the label itself. If you need to swap labels based on certain criteria,
such as internationalization, you may wish to use a string resource
reference in the XML instead, as will be described later in this book.

Textview has numerous other properties of relevance for labels, such as:

+ android:typeface to set the typeface to use for the label (e.g.,
monospace)

+ android:textStyle to indicate that the typeface should be made bold
(bold), italic (italic), or bold and italic (bold_italic)

79

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

+ android:textColor to set the color of the label's text, in RGB hex
format (e.g., #FFeeee for red)

For example, in the Basic/Label project, you will find the following layout
file:

<?xml version="1.0" encoding="utf-8"?>

<TextView xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="You were expecting something profound?"

/>

Just that layout alone, with the stub Java source provided by Android's
project builder (e.g., android create project), gives you:

Ml @ 12:56 PM

Figure 34. The LabelDemo sample application

Button, Button, Who's Got the Button?

We've already seen the use of the Button widget in the previous two
chapters. As it turns out, Button is a subclass of Textview, so everything

80

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

discussed in the preceding section in terms of formatting the face of the
button still holds.

However, Android 1.6 added a new feature for the declaration of the "on-
click” listener for a Button. In addition to the classic approach of defining
some object (such as the activity) as implementing the
View.OnClickListener interface, you can now take a somewhat simpler
approach:

« Define some method on your Activity that holds the button that
takes a single view parameter, has a void return value, and is public

« In your layout XML, on the Button element, include the
android:onClick attribute with the name of the method you defined
in the previous step

For example, we might have a method on our Activity that looks like:

public void someMethod(View theButton) {
// do something useful here
}

Then, we could use this XML declaration for the Button itself, including
android:onClick:

<Button
android:onClick="someMethod"

/>

This is enough for Android to "wire together" the Button with the click
handler.

Fleeting Images

Android has two widgets to help you embed images in your activities:
Imageview and ImageButton. As the names suggest, they are image-based
analogues to TextVview and Button, respectively.

81

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

Each widget takes an android:src attribute (in an XML layout) to specify
what picture to use. These usually reference a drawable resource, described
in greater detail in the chapter on resources.

ImageButton, a subclass of Imageview, mixes in the standard Button behaviors,
for responding to clicks and whatnot.

For example, take a peek at the main.xml layout from the Basic/ImageView
sample project:

<?xml version="1.0" encoding="utf-8"?>

<ImageView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/icon"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:adjustViewBounds="true"
android:src="@drawable/molecule”
/>

The result, just using the code-generated activity, is simply the image:

Chil @ 12:50 Pm

ImageViewDemo

Figure 35. The ImageViewDemo sample application

82

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

Fields of Green. Or Other Colors.

Along with buttons and labels, fields are the third "anchor” of most GUI
toolkits. In Android, they are implemented via the EditText widget, which
is a subclass of the Textview used for labels.

Along with the standard Textview properties (e.g., android:textStyle),
EditText has many others that will be useful for you in constructing fields,
including:

+ android:autoText, to control if the field should provide automatic
spelling assistance

+ android:capitalize, to control if the field should automatically
capitalize the first letter of entered text (e.g., first name, city)

+ android:digits, to configure the field to accept only certain digits

« android:singleLine, to control if the field is for single-line input or
multiple-line input (e.g., does <Enter> move you to the next widget
or add a newline?)

Most of those are also available from the new android:inputType attribute,
added in Android 1.5 as part of adding "soft keyboards" to Android - this
will be discussed in an upcoming chapter.

For example, from the Basic/Field project, here is an XML layout file
showing an EditText:

<?xml version="1.0" encoding="utf-8"?>

<EditText xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/field"
android:layout_width="fill_parent"
android:layout_height="fill_parent”
android:singlelLine="false"
/>

Note that android:singleLine is false, so users will be able to enter in several
lines of text.

83

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

For this project, the FieldDemo.java file populates the input field with some
prose:

package com.commonsware.android.field;

import android.app.Activity;
import android.os.Bundle;
import android.widget.EditText;

public class FieldDemo extends Activity {
@0Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

EditText fld=(EditText)findViewById(R.id.field);

fld.setText("Licensed under the Apache License, Version 2.0 " +
"(the \"License\"); you may not use this file " +
"except in compliance with the License. You may " +

"obtain a copy of the License at " +
"http://www.apache.org/licenses/LICENSE-2.0");

The result, once built and installed into the emulator, is:

Eh#l & 1:00 PM
FieldDemo

Licensed under the Apache License,
Version 2.0 (the "License"); you may
not use this file exceptin
compliance with the License. You
may obtain a copy of the License at
http://www.apache.org/licenses/LIC
ENSE-2.0

|
Figure 36. The FieldDemo sample application

84

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

Another flavor of field is one that offers auto-completion, to help users
supply a value without typing in the whole text. That is provided in
Android as the AutoCompleteTextview widget, discussed in greater detail later
in this book.

Just Another Box to Check

The classic checkbox has two states: checked and unchecked. Clicking the
checkbox toggles between those states to indicate a choice (e.g., "Add rush
delivery to my order").

In Android, there is a CheckBox widget to meet this need. It has Textview as
an ancestor, so you can use TextView properties like android:textColor to
format the widget.

Within Java, you can invoke:

+ isChecked() to determine if the checkbox has been checked

+ setChecked() to force the checkbox into a checked or unchecked
state

+ toggle() to toggle the checkbox as if the user checked it
Also, you can register a listener object (in this case, an instance of

onCheckedChangeListener) to be notified when the state of the checkbox
changes.

For example, from the Basic/CheckBox project, here is a simple checkbox
layout:

<?xml version="1.0" encoding="utf-8"?>

<CheckBox xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/check"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="This checkbox is: unchecked" />

85

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

The corresponding CheckBoxDemo.java retrieves and configures the behavior
of the checkbox:

public class CheckBoxDemo extends Activity
implements CompoundButton.OnCheckedChangeListener {
CheckBox cb;

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

cb=(CheckBox)findViewById(R.1id.check);
cb.setOnCheckedChangeListener(this);
}

public void onCheckedChanged(CompoundButton buttonView,
boolean isChecked) {
if (isChecked) {
cb.setText("This checkbox is: checked");
}
else {
cb.setText("This checkbox is: unchecked");
}
}

}

Note that the activity serves as its own listener for checkbox state changes
since it implements the oOnCheckedChangeListener interface (via
cb.setonCheckedChangelistener(this)). The callback for the listener is
onCheckedChanged(), which receives the checkbox whose state has changed
and what the new state is. In this case, we update the text of the checkbox
to reflect what the actual box contains.

The result? Clicking the checkbox immediately updates its text, as shown
below:

86

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

hMl & 1:38PMm

CheckBoxDemo

-This checkbox is: unchecked

Figure 37. The CheckBoxDemo sample application, with the checkbox
unchecked

Ml & 1:38PMm

CheckBoxDemo

This checkbox is: checked

Figure 38. The same application, now with the checkbox checked

87

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

Turn the Radio Up

As with other implementations of radio buttons in other toolkits, Android's
radio buttons are two-state, like checkboxes, but can be grouped such that
only one radio button in the group can be checked at any time.

Like checkBox, RadioButton inherits from CompoundButton, which in turn
inherits from Textview. Hence, all the standard Textview properties for font
face, style, color, etc. are available for controlling the look of radio buttons.
Similarly, you can call isChecked() on a RadioButton to see if it is selected,
toggle() to select it, and so on, like you can with a checkBox.

Most times, you will want to put your RadioButton widgets inside of a
RadioGroup. The RadioGroup indicates a set of radio buttons whose state is
tied, meaning only one button out of the group can be selected at any time.
If you assign an android:id to your RadioGroup in your XML layout, you can
access the group from your Java code and invoke:

« check() to check a specific radio button via its ID (e.g.,
gr‘oup.check(R.id.r‘adiol))

« clearcheck() to clear all radio buttons, so none in the group are
checked

+ getCheckedRadioButtonId() to get the ID of the currently-checked
radio button (or -1 if none are checked)

Note that the mutual-exclusion feature of RadioGroup only applies to
RadioButton widgets that are immediate children of the RadioGroup. You
cannot have other containers - discussed in the next chapter - between the
RadioGroup and its RadioButton widgets.

For example, from the Basic/RadioButton sample application, here is an
XML layout showing a RadioGroup wrapping a set of RadioButton widgets:

<?xml version="1.0" encoding="utf-8"?>

<RadioGroup
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical”
android:layout_width="fill_parent"

88

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

android:layout_height="fill_parent”
>
<RadioButton android:id="@+id/radiol"
android:layout_width="wrap_content”
android:layout_height="wrap_content"
android:text="Rock" />

<RadioButton android:id="@+id/radio2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Scissors" />

<RadioButton android:id="@+id/radio3"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Paper" />
</RadioGroup>

Using the stock Android-generated Java for the project and this layout, you
get:

Al @ 1:39PMm

RadioButtonDemo

. Rock
. Scissors
. Paper

Figure 39. The RadioButtonDemo sample application

Note that the radio button group is initially set to be completely unchecked
at the outset. To preset one of the radio buttons to be checked, use either
setChecked() on the RadioButton or check() on the RadioGroup from within
your onCreate() callback in your activity.

89

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

It's Quite a View

All widgets, including the ones shown above, extend view, and as such give
all widgets an array of useful properties and methods beyond those already
described.

Padding

Widgets have a minimum size, one that may be influenced by what is
inside of them. So, for example, a Button will expand to accommodate the
size of its caption. You can control this size using padding. Adding padding
will increase the space between the contents (e.g., the caption of a Button)
and the edges of the widget.

Padding can be set once in XML for all four sides (android:padding) or on a
per-side basis (android:paddingLeft, etc.). Padding can also be set in Java via
the setPadding() method.

The value of any of these is a dimension - a combination of a unit of
measure and a count. So, 5px is 5 pixels, or 2mm is 2 millimeters. We will
examine dimension in greater detail in an upcoming chapter.

Other Useful Properties

In addition to those presented in this chapter and in the next chapter, some
of the properties on view most likely to be used include:

« Controls the focus sequence: android:nextFocusDown,
android:nextFocusLeft, android:nextFocusRight, android:nextFocusUp

+ android:visibility, which controls whether the widget is initially
visible

20

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

Useful Methods

You can toggle whether or not a widget is enabled via setEnabled() and see
if it is enabled via isEnabled(). One common use pattern for this is to
disable some widgets based on a CheckBox or RadioButton selection.

You can give a widget focus via requestFocus() and see if it is focused via
isFocused(). You might use this in concert with disabling widgets as
mentioned above, to ensure the proper widget has the focus once your
disabling operation is complete.

To help navigate the tree of widgets and containers that make up an
activity's overall view, you can use:

« getParent() to find the parent widget or container
+ findviewById() to find a child widget with a certain ID

+ getRootview() to get the root of the tree (e.g., what you provided to
the activity via setContentview())

Colors

There are two types of color attributes in Android widgets. Some, like
android:background, take a single color (or a graphic image to serve as the
background). Others, like android:textColor on Textview (and subclasses)
can take a ColorstateList, including via the Java setter (in this case,
setTextColor()).

A cColorstateList allows you to specify different colors for different
conditions. For example, when you get to selection widgets in an upcoming
chapter, you will see how a Textview has a different text color when it is the
selected item in a list compared to when it is in the list but not selected.
This is handled via the default colorstateList associated with Textview.

If you wish to change the color of a Textview widget in Java code, you have
two main choices:

91

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

1. Use colorStatelList.valueof(), which returns a ColorStateList in
which all states are considered to have the same color, which you
supply as the parameter to the valueof() method. This is the Java
equivalent of the android:textColor approach, to make the Textview
always a specific color regardless of circumstances.

2. Create a ColorstateList with different values for different states,
either via the constructor or via an XML drawable resource, a
concept discussed in a later chapter

92

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 10
Working with Containers

Containers pour a collection of widgets (and possibly child containers) into
specific structures you like. If you want a form with labels on the left and
fields on the right, you will need a container. If you want OK and Cancel
buttons to be beneath the rest of the form, next to one another, and flush
to right side of the screen, you will need a container. Just from a pure XML
perspective, if you have multiple widgets (beyond RadioButton widgets in a
RadioGroup), you will need a container just to have a root element to place
the widgets inside.

Most GUI toolkits have some notion of layout management, frequently
organized into containers. In Java/Swing, for example, you have layout
managers like BoxLayout and containers that use them (e.g., Box). Some
toolkits stick strictly to the box model, such as XUL and Flex, figuring that
any desired layout can be achieved through the right combination of nested
boxes.

Android, through LinearLayout, also offers a "box" model, but in addition
supports a range of containers providing different layout rules. In this
chapter, we will look at three commonly-used containers: LinearLayout (the
box model), RelativeLayout (a rule-based model), and TableLayout (the grid
model), along with Scrollview, a container designed to assist with
implementing scrolling containers.

93

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

Thinking Linearly

As noted above, LinearLayout is a box model — widgets or child containers
are lined up in a column or row, one after the next. This works similar to
FlowLayout in Java/Swing, vbox and hbox in Flex and XUL, etc.

Flex and XUL use the box as their primary unit of layout. If you want, you
can use LinearLayout in much the same way, eschewing some of the other
containers. Getting the visual representation you want is mostly a matter of
identifying where boxes should nest and what properties those boxes
should have, such as alignment vis-d-vis other boxes.

Concepts and Properties

To configure a LinearLayout, you have five main areas of control besides the
container's contents: the orientation, the fill model, the weight, the gravity,
and the padding.

Orientation

Orientation indicates whether the LinearLayout represents a row or a
column. Just add the android:orientation property to your LinearLayout
element in your XML layout, setting the value to be horizontal for a row or
vertical for a column.

The orientation can be modified at runtime by invoking setorientation()
on the LinearLayout, supplying it either HORIZONTAL or VERTICAL.

Fill Model

Let's imagine a row of widgets, such as a pair of radio buttons. These
widgets have a "natural” size based on their text. Their combined sizes
probably do not exactly match the width of the Android device's screen -
particularly since screens come in various sizes. We then have the issue of
what to do with the remaining space.

94

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

All widgets inside a LinearLayout must supply android:layout_width and
android:layout_height properties to help address this issue. These
properties' values have three flavors:

« You can provide a specific dimension, such as 125px to indicate the
widget should take up exactly 125 pixels

« You can provide wrap_content, which means the widget should fill
up its natural space, unless that is too big, in which case Android
can use word-wrap as needed to make it fit

« You can provide fill_parent, which means the widget should fill up
all available space in its enclosing container, after all other widgets
are taken care of

The latter two flavors are the most common, as they are independent of
screen size, allowing Android to adjust your view to fit the available space.

NOTE: In API level 8 (Android 2.2), fill parent was renamed to
match_parent, for unknown reasons. You can still use fill_parent, as it will
be supported for the foreseeable future. However, at such point in time as
you are only supporting API level 8 or higher (eg,
android:minSdkversion="8" in your manifest), you should probably switch
over to match_parent.

Weight

But, what happens if we have two widgets that should split the available
free space? For example, suppose we have two multi-line fields in a column,
and we want them to take up the remaining space in the column after all
other widgets have been allocated their space.

To make this work, in addition to setting android:layout_width (for rows) or
android:layout_height (for columns) to fill_parent, you must also set
android:layout_weight. This property indicates what proportion of the free
space should go to that widget. If you set android:layout_weight to be the
same non-zero value for a pair of widgets (e.g., 1), the free space will be
split evenly between them. If you set it to be 1 for one widget and 2 for

95

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

another widget, the second widget will use up twice the free space that the
first widget does. And so on.

The weight for a widget is zero by default.

Another pattern for using weights is if you want to allocate sizes on a
percentage basis. To use this technique for, say, a horizontal layout:

« Set all the android:layout_width values to be o for the widgets in the
layout

« Set the android:layout_weight values to be the desired percentage
size for each widget in the layout

« Make sure all those weights add up to 100

Gravity

By default, everything in a LinearLayout is left- and top-aligned. So, if you
create a row of widgets via a horizontal LinearLayout, the row will start flush
on the left side of the screen.

If that is not what you want, you need to specify a gravity. Using
android:layout_gravity on a widget (or calling setGravity() at runtime on
the widget's Java object), you can tell the widget and its container how to
align it vis-a-vis the screen.

For a column of widgets, common gravity values are 1left,
center_horizontal, and right for left-aligned, centered, and right-aligned
widgets respectively.

For a row of widgets, the default is for them to be aligned so their texts are
aligned on the baseline (the invisible line that letters seem to "sit on"),
though you may wish to specify a gravity of center_vertical to center the
widgets along the row's vertical midpoint.

96

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

Margins

By default, widgets are tightly packed, one next to the other. You can
control this via the use of margins, a concept that is reminiscent of the
padding described in a previous chapter.

The difference between padding and margins comes in terms of the
background. Widgets with a transparent background - like the default look
of a Textview — padding and margins have similar visual effect, increasing
the space between the widget and adjacent widgets. However, widgets with
a non-transparent background - like a Button - padding is considered
inside the background while margins are outside. In other words, adding
padding will increase the space between the contents (e.g., the caption of a
Button) and the edges, while adding margin increases the empty space
between the edges and adjacent widgets.

Margins can be set in XML, though only on a per-side basis
(android:layout_marginTop). Once again, the value of any of these is a
dimension - a combination of a unit of measure and a count, such as 5px for
5 pixels.

Example

Let's look at an example (Containers/Linear) that shows LinearLayout
properties set both in the XML layout file and at runtime.

Here is the layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<RadioGroup android:id="@+id/orientation”
android:orientation="horizontal"
android:layout_width="wrap_content"
android:layout_height="wrap_content”
android:padding="5px">

97

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

<RadioButton
android:id="@+id/horizontal”
android:text="horizontal" />
<RadioButton
android:id="@+id/vertical"
android:text="vertical" />
</RadioGroup>
<RadioGroup android:id="@+id/gravity"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:padding="5px">
<RadioButton
android:id="@+id/left"
android:text="1left" />
<RadioButton
android:id="@+id/center"
android:text="center" />
<RadioButton
android:id="@+id/right"
android:text="right" />
</RadioGroup>
</LinearlLayout>

Note that we have a LinearLayout wrapping two RadioGroup sets. RadioGroup
is a subclass of LinearLayout, so our example demonstrates nested boxes as
if they were all LinearLayout containers.

The top RadioGroup sets up a row (android:orientation = "horizontal") of
RadioButton widgets. The RadioGroup has 5px of padding on all sides,
separating it from the other RadioGroup. The width and height are both set
to wrap_content, so the radio buttons will only take up the space that they
need.

The bottom RadioGroup is a column (android:orientation = "vertical") of
three RadioButton widgets. Again, we have 5px of padding on all sides and a
"natural" height (android:layout_height = "wrap_content"). However, we
have set android:layout_width to be fill_parent, meaning the column of
radio buttons "claims" the entire width of the screen.

To adjust these settings at runtime based on user input, we need some Java
code:

98

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

import
import
import
import
import
import
import

public

@0ve

}

android
android
android
android
android
android

package com.commonsware.android.linear;

.app.Activity;
.0s.Bundle;
.view.Gravity;
.text.TextWatcher;
.widget.LinearLayout;
.widget.RadioGroup;
android.

widget.EditText;

class LinearLayoutDemo extends Activity

rride

implements RadioGroup.OnCheckedChangelListener {
RadioGroup orientation;
RadioGroup gravity;

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

orientation=(RadioGroup)findViewById(R.id.orientation);
orientation.setOnCheckedChangeListener(this);
gravity=(RadioGroup)findViewById(R.id.gravity);
gravity.setOnCheckedChangeListener(this);

public void onCheckedChanged(RadioGroup group, int checkedId) {
switch (checkedId) {

case R.id.horizontal:
orientation.setOrientation(LinearLayout.HORIZONTAL);

break;

case R.id.vertical:
orientation.setOrientation(LinearLayout.VERTICAL);

break;

case R.id.left:
gravity.setGravity(Gravity.LEFT);

break;

case R.id.center:
gravity.setGravity(Gravity.CENTER_HORIZONTAL);

break;

case R.id.right:
gravity.setGravity(Gravity.RIGHT);

break;

In onCreate(), we look up our two RadioGroup containers and register a
listener on each, so we are notified when the radio buttons change state

Subscribe to updates at http://commonsware.com

929

Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

(setonCheckedChangelListener(this)). Since the activity implements
OnCheckedChangeListener, the activity itself is the listener.

In onCheckedChanged() (the callback for the listener), we see which
RadioButton had a state change. Based on the clicked-upon item, we adjust
either the orientation of the first LinearLayout or the gravity of the second
LinearLayout.

Here is the result when it is first launched inside the emulator:

Chifll & 12:22 am

LinearLayoutDemo

. horizontal .venical

[I
. center
. right

Figure 40. The LinearLayoutDemo sample application, as initially launched

If we toggle on the "vertical" radio button, the top RadioGroup adjusts to
match:

100

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

Al @ 12:22am

LinearLayoutDemo

. horizontal
°vertical

0
. center

. right

Figure 41. The same application, with the vertical radio button selected

If we toggle the "center" or "right" radio buttons, the bottom RadioGroup
adjusts to match:

M@ 12:23AM

LinearLayoutDemo

. horizontal
°vertical

0.
o center

. right

Figure 42. The same application, with the vertical and center radio buttons
selected

101

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

ChMl & 12:23 AM

LinearLayoutDemo

. horizontal
1"venkm

@ -
. center
e right

Figure 43. The same application, with the vertical and right radio buttons
selected

The Box Model

As noted earlier in this chapter, some GUI frameworks treat everything as
boxes - what Android calls LinearLayout containers. In Flex and XUL, for
example, you create boxes and indicate how big they should be, as a
percentage of the available space, then you put widgets in the boxes. A
similar pattern exists in Android for LinearLayout, as is demonstrated in the
Containers\LinearPercent project.

Here, we have a layout XML file that contains a vertical LinearLayout
wrapping three Button widgets:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent”
>
<Button
android:text="Fifty Percent"
android:layout_width="fill_parent"

102

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

android:layout_height="0px"
android:layout_weight="50"

/>

<Button
android:text="Thirty Percent"
android:layout_width="fill_parent"
android:layout_height="0px"
android:layout_weight="30"

/>

<Button
android:text="Twenty Percent"
android:layout_width="fill_parent"
android:layout_height="0px"
android:layout_weight="20"

/>

</LinearLayout>

Each of the three widgets will take up a certain percentage of the vertical
space for the LinearLayout. Since the LinearLayout is set to fill the screen,
this means that the three widgets will divide up the screen based upon their
requested percentages.

To request a percentage, each Button:

+ Sets its android:layout_height to be epx (note: we use height here
because it is a vertical LinearLayout we are sub-dividing)

+ Sets its android:layout_weight to be the desired percentage (e.g.,
android:layout_weight="50"

So long as the weights sum to 109, as they do in this case, you will get your
desired breakdown by percentage:

103

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

5l @ 9:29am

Fifty Percent

Thirty Percent

Twenty Percent

Figure 44. A LinearLayout split among three Buttons by percentage

All Things Are Relative

RelativeLayout, as the name suggests, lays out widgets based upon their
relationship to other widgets in the container and the parent container. You
can place Widget X below and to the left of Widget Y, or have Widget Z's
bottom edge align with the bottom of the container, and so on.

This is reminiscent of James Elliot's RelativeLayout for use with Java/Swing.

Concepts and Properties

To make all this work, we need ways to reference other widgets within an
XML layout file, plus ways to indicate the relative positions of those
widgets.

104

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.onjava.com/pub/a/onjava/2002/09/18/relativelayout.html

Working with Containers

Positions Relative to Container

The easiest relations to set up are tying a widget's position to that of its
container:

+ android:layout_alignParentTop says the widget's top should align
with the top of the container

+ android:layout_alignParentBottom says the widget's bottom should
align with the bottom of the container

+ android:layout_alignParentLeft says the widget's left side should
align with the left side of the container

+ android:layout_alignParentRight says the widget's right side should
align with the right side of the container

+ android:layout_centerHorizontal says the widget should be
positioned horizontally at the center of the container

+ android:layout_centerVertical says the widget should be positioned
vertically at the center of the container

+ android:layout_centerInParent says the widget should be positioned
both horizontally and vertically at the center of the container

All of these properties take a simple boolean value (true or false).

Note that the padding of the widget is taken into account when performing
these various alignments. The alignments are based on the widget's overall
cell (combination of its natural space plus the padding).

Relative Notation in Properties
The remaining properties of relevance to RelativeLayout take as a value the
identity of a widget in the container. To do this:

1. Put identifiers (android:id attributes) on all elements that you will
need to address

2. Reference other widgets using the same identifier value

105

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

The first occurrence of an id value should have the plus sign
(@+id/widget_a); the second and subsequent times that id value is used in
the layout file should drop the plus sign (@id/widget_a). This allows the
build tools to better help you catch typos in your widget id values - if you
do not have a plus sign for a widget id value that has not been seen before,
that will be caught at compile time.

For example, if Widget A is identified as @+id/widget_a, Widget B can refer
to Widget A in one of its own properties via the identifier @id/widget_a.

Positions Relative to Other Widgets

There are four properties that control position of a widget vis a vis other
widgets:

+ android:layout_above indicates that the widget should be placed
above the widget referenced in the property

+ android:layout_below indicates that the widget should be placed
below the widget referenced in the property

+ android:layout_toLeftof indicates that the widget should be placed
to the left of the widget referenced in the property

« android:layout_toRightof indicates that the widget should be placed
to the right of the widget referenced in the property

Beyond those four, there are five additional properties that can control one
widget's alignment relative to another:

« android:layout_alignTop indicates that the widget's top should be
aligned with the top of the widget referenced in the property

+ android:layout_alignBottom indicates that the widget's bottom
should be aligned with the bottom of the widget referenced in the
property

+ android:layout_alignLeft indicates that the widget's left should be
aligned with the left of the widget referenced in the property

106

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

« android:layout_alignRight indicates that the widget's right should
be aligned with the right of the widget referenced in the property

+ android:layout_alignBaseline indicates that the baselines of the two
widgets should be aligned (where the "baseline" is that invisible line
that text appears to sit on)

The last one is useful for aligning labels and fields so that the text appears
"natural”. Since fields have a box around them and labels do not,
android:layout_alignTop would align the top of the field's box with the top
of the label, which will cause the text of the label to be higher on-screen
than the text entered into the field.

So, if we want Widget B to be positioned to the right of Widget A, in the
XML element for Widget B, we need to include android:layout_toRightOf =
"@id/widget_a" (assuming @id/widget_a is the identity of Widget A).

Order of Evaluation

It used to be that Android would use a single pass to process
RelativeLayout-defined rules. That meant you could not reference a widget
(e.g., via android:layout_above) until it had been declared in the XML. This
made defining some layouts a bit complicated. Starting in Android 1.6,
Android uses two passes to process the rules, so you can now safely have
forward references to as-yet-undefined widgets.

Example

With all that in mind, let's examine a typical "form" with a field, a label,
plus a pair of buttons labeled "OK" and "Cancel".

Here is the XML layout, pulled from the Ccontainers/Relative sample
project:

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout
xmlns:android="http://schemas.android.com/apk/res/android"

107

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

android:layout_width="fill_parent"

android:layout_height="wrap_content">

<TextView android:id="@+id/label"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="URL:"
android:layout_alignBaseline="@+id/entry"
android:layout_alignParentLeft="true"/>

<EditText
android:id="@id/entry"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_toRightOf="@id/label"
android:layout_alignParentTop="true"/>

<Button
android:id="@+id/ok"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@id/entry"
android:layout_alignRight="@id/entry"
android:text="0K" />

<Button
android:id="@+id/cancel”
android:layout_width="wrap_content"
android:layout_height="wrap_content”
android:layout_toLeftOf="@id/ok"
android:layout_alignTop="@id/ok"
android:text="Cancel" />

</RelativelLayout>

First, we open up the RelativeLayout. In this case, we want to use the full
width of the screen (android:layout_width = "fill_parent") and only as
much height as we need (android:layout_height = "wrap_content").

Next, we define the label as a Textview. We indicate that we want its left
edge aligned with the left edge of the Relativelayout
(android:layout_alignParentLeft="true") and that we want its baseline
aligned with the baseline of the yet-to-be-defined EditText. Since the
EditText has not been declared yet, we use the + sign in the ID
(android:layout_alignBaseline="@+id/entry").

After that, we add in the field as an EditText. We want the field to be to the
right of the label, have the field be aligned with the top of the
RelativeLayout, and for the field to take up the rest of this "row" in the
layout. Those are handled by three properties:

* android:layout_toRightOf = "@id/label™

108

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

* android:layout_alignParentTop = "true"

* android:layout_width = "fill_parent”

Then, the OK button is set to be below the field (android:layout_below =
"@id/entry"”) and have its right side align with the right side of the field
(android:layout_alignRight = "@id/entry"). The Cancel button is set to be
to the left of the OK button (android:layout_toLeft = "@id/ok") and have its
top aligned with the OK button (android:layout_alignTop = "@id/ok").

With no changes to the auto-generated Java code, the emulator gives us:

ChMl @ 12:34 AM

RelativeLayoutDemo

Cancel m

Figure 45. The RelativeLayoutDemo sample application

Overlap

RelativeLayout also has a feature that LinearLayout lacks - the ability to
have widgets overlap one another. Later children of a RelativeLayout are
"higher in the Z axis" than are earlier children, meaning that later children
will overlap earlier children if they are set up to occupy the same space in
the layout.

109

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

This will be clearer with an example. Here is a layout, from
Containers/RelativeOverlap, with a RelativeLayout holding two Button
widgets:

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<Button
android:text="I AM BIG"
android:textSize="120dip"
android:textStyle="bold"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
/>
<Button
android:text="I am small"
android:layout_width="wrap_content"
android:layout_height="wrap_content”
android:layout_centerInParent="true"
/>
</RelativelLayout>

The first Button is set to fill the screen. The second Button is set to be
centered inside the parent, but only take up as much space as is needed for
its caption. Hence, the second Button will appear to "float" over the first
Button:

110

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

il @ 10:11 am

Tam small

Figure 46. The RelativeOverlap sample application

Both Button widgets can still be clicked, though clicking on the smaller
Button does not also click the bigger Button. Your clicks will be handled by
the widget on top in the case of an overlap like this.

Tabula Rasa

If you like HTML tables, spreadsheet grids, and the like, you will like
Android's TableLayout - it allows you to position your widgets in a grid to
your specifications. You control the number of rows and columns, which
columns might shrink or stretch to accommodate their contents, and so on.

TableLayout works in conjunction with TableRow. TableLayout controls the
overall behavior of the container, with the widgets themselves poured into
one or more TableRow containers, one per row in the grid.

111

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

Concepts and Properties

For all this to work, we need to figure out how widgets work with rows and
columns, plus how to handle widgets that live outside of rows.

Putting Cells in Rows

Rows are declared by you, the developer, by putting widgets as children of a
TableRow inside the overall TableLayout. You, therefore, control directly how
many rows appear in the table.

The number of columns are determined by Android; you control the
number of columns in an indirect fashion.

First, there will be at least one column per widget in your longest row. So if
you have three rows, one with two widgets, one with three widgets, and one
with four widgets, there will be at least four columns.

However, a widget can take up more than one column by including the
android:layout_span property, indicating the number of columns the widget
spans. This is akin to the colspan attribute one finds in table cells in HTML:

<TableRow>
<TextView android:text="URL:" />
<EditText
android:id="@+id/entry"
android:layout_span="3"/>
</TableRow>

In the above XML layout fragment, the field spans three columns.

Ordinarily, widgets are put into the first available column. In the above
fragment, the label would go in the first column (column e, as columns are
counted starting from o), and the field would go into a spanned set of three
columns (columns 1 through 3). However, you can put a widget into a
different column via the android:layout_column property, specifying the e-
based column the widget belongs to:

112

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

<TableRow>
<Button
android:id="@+id/cancel”
android:layout_column="2"
android:text="Cancel" />
<Button android:id="@+id/ok" android:text="OK" />
</TableRow>

In the preceding XML layout fragment, the Cancel button goes in the third
column (column 2). The OK button then goes into the next available
column, which is the fourth column.

Non-Row Children of TableLayout

Normally, TableLayout contains only TableRow elements as immediate
children. However, it is possible to put other widgets in between rows. For
those widgets, TableLayout behaves a bit like LinearLayout with vertical
orientation. The widgets automatically have their width set to fill_parent,
so they will fill the same space that the longest row does.

One pattern for this is to use a plain view as a divider (e.g., <View
android:layout_height = "2px" android:background = "#@@@OFF" /> as a two-
pixel-high blue bar across the width of the table).

Stretch, Shrink, and Collapse

By default, each column will be sized according to the "natural” size of the
widest widget in that column (taking spanned columns into account).
Sometimes, though, that does not work out very well, and you need more
control over column behavior.

You can place an android:stretchColumns property on the TableLayout. The
value should be a single column number (again, e-based) or a comma-
delimited list of column numbers. Those columns will be stretched to take
up any available space yet on the row. This helps if your content is narrower
than the available space.

113

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

Conversely, you can place a android:shrinkColumns property on the
TableLayout. Again, this should be a single column number or a comma-
delimited list of column numbers. The columns listed in this property will
try to word-wrap their contents to reduce the effective width of the column
- by default, widgets are not word-wrapped. This helps if you have columns
with potentially wordy content that might cause some columns to be
pushed off the right side of the screen.

You can also leverage an android:collapseColumns property on the
TableLayout, again with a column number or comma-delimited list of
column numbers. These columns will start out "collapsed”, meaning they
will be part of the table information but will be invisible. Programmatically,
you can collapse and un-collapse columns by calling setColumnCollapsed()
on the TableLayout. You might use this to allow users to control which
columns are of importance to them and should be shown versus which ones
are less important and can be hidden.

You can also control stretching and shrinking at runtime via
setColumnStretchable() and setColumnShrinkable().

Example

The XML layout fragments shown above, when combined, give us a
TableLayout rendition of the "form" we created for RelativeLayout, with the
addition of a divider line between the label/field and the two buttons
(found in the containers/Table demo):

<?xml version="1.0" encoding="utf-8"?>
<TablelLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent”
android:stretchColumns="1">
<TableRow>
<TextView
android:text="URL:" />
<EditText android:id="@+id/entry"
android:layout_span="3"/>
</TableRow>
<View
android:layout_height="2px"

114

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

android:background="#0000FF" />
<TableRow>
<Button android:id="@+id/cancel”
android:layout_column="2"
android:text="Cancel" />
<Button android:id="@+id/ok"
android:text="0K" />
</TableRow>
</TablelLayout>

When compiled against the generated Java code and run on the emulator,
we get:

M@ 12:35 AM

TableLayoutDemo
e

Figure 47. The TableLayoutDemo sample application

Scrollwork

Phone screens tend to be small, which requires developers to use some
tricks to present a lot of information in the limited available space. One
trick for doing this is to use scrolling, so only part of the information is
visible at one time, the rest available via scrolling up or down.

Scrollview is a container that provides scrolling for its contents. You can
take a layout that might be too big for some screens, wrap it in a Scrollview,

115

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

and still use your existing layout logic. It just so happens that the user can
only see part of your layout at one time, the rest available via scrolling.

For example, here is a Scrollview used in an XML layout file (from the
Containers/Scroll demo):

<?xml version="1.0" encoding="utf-8"?>
<ScrollView
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="wrap_content">
<TablelLayout
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:stretchColumns="0">
<TableRow>
<View
android:layout_height="80px"
android:background="#000000" />
<TextView android:text="#000000"
android:paddinglLeft="4px"
android:layout_gravity="center_vertical" />
</TableRow>
<TableRow>
<View
android:layout_height="80px"
android:background="#440000" />
<TextView android:text="#440000"
android:paddinglLeft="4px"
android:layout_gravity="center_vertical” />
</TableRow>
<TableRow>
<View
android:layout_height="80px"
android:background="#884400" />
<TextView android:text="#884400"
android:paddinglLeft="4px"
android:layout_gravity="center_vertical" />
</TableRow>
<TableRow>
<View
android:layout_height="80px"
android:background="#aa8844" />
<TextView android:text="#aa8844"
android:paddinglLeft="4px"
android:layout_gravity="center_vertical" />
</TableRow>
<TableRow>
<View
android:layout_height="80px"
android:background="#ffaa88" />

116

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

<TextView
android
android
</TableRow>
<TableRow>
<View
android

<TextView

</TableRow>
<TableRow>
<View

<TextView

</TableRow>

android:
android:

android:
android:

android:
android:

android:text="#ffaa88"

:paddinglLeft="4px"
:layout_gravity="center_vertical" />

:layout_height="80px"
android:

background="#ffffaa" />
android:text="#ffffaa"
paddingLeft="4px"
layout_gravity="center_vertical” />

layout_height="80px"
background="#ffffff" />
android:text="#ffffff"
paddingLeft="4px"
layout_gravity="center_vertical” />

</TableLayout>
</ScrollView>

Without the scrollview, the table would take up at least 560 pixels (7 rows
at 8o pixels each, based on the view declarations). There may be some
devices with screens capable of showing that much information, but many
will be smaller. The scrollview lets us keep the table as-is, but only present

part of it at a time.

On the stock Android emulator, when the activity is first viewed, you see:

Subscribe to updates at http://commonsware.com

117

Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

ChMl @ 12:35 AM

ScrollViewDemo

Figure 48. The ScrollViewDemo sample application

Notice how only five rows and part of the sixth are visible. By pressing the
up/down buttons on the directional pad, you can scroll up and down to see
the remaining rows. Also note how the right side of the content gets
clipped by the scrollbar - be sure to put some padding on that side or
otherwise ensure your own content does not get clipped in that fashion.

Android 1.5 introduced HorizontalScrollview, which works like
Scrollview...just horizontally. This would be good for forms that might be
too wide rather than too tall. Note that neither Scrollview nor
HorizontalScrollview will give you bi-directional scrolling - you have to
choose vertical or horizontal.

Also, note that you cannot put scrollable items into a Scrollview. For
example, a Listview widget — which we will see in the next chapter - already
knows how to scroll. You do not need to put a ListVview in a Scrollview, and
if you were to try, it would not work very well.

118

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 11
Using Selection Widgets

Back in the chapter on basic widgets, you saw how fields could have
constraints placed upon them to limit possible input, such as numeric-only
or phone-number-only. These sorts of constraints help users "get it right"
when entering information, particularly on a mobile device with cramped
keyboards.

Of course, the ultimate in constrained input is to select a choice from a set
of items, such as the radio buttons seen earlier. Classic UI toolkits have
listboxes, comboboxes, drop-down lists, and the like for that very purpose.
Android has many of the same sorts of widgets, plus others of particular
interest for mobile devices (e.g., the Gallery for examining saved photos).

Moreover, Android offers a flexible framework for determining what
choices are available in these widgets. Specifically, Android offers a
framework of data adapters that provide a common interface to selection
lists ranging from static arrays to database contents. Selection views —
widgets for presenting lists of choices — are handed an adapter to supply the
actual choices.

Adapting to the Circumstances

In the abstract, adapters provide a common interface to multiple disparate
APIs. More specifically, in Android's case, adapters provide a common
interface to the data model behind a selection-style widget, such as a

119

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

listbox. This use of Java interfaces is fairly common (e.g., Java/Swing's
model adapters for JTable), and Java is far from the only environment
offering this sort of abstraction (e.g., Flex's XML data-binding framework
accepts XML inlined as static data or retrieved from the Internet).

Android's adapters are responsible for providing the roster of data for a
selection widget plus converting individual elements of data into specific
views to be displayed inside the selection widget. The latter facet of the
adapter system may sound a little odd, but in reality it is not that different
from other GUI toolkits' ways of overriding default display behavior. For
example, in Java/Swing, if you want a JList-backed listbox to actually be a
checklist (where individual rows are a checkbox plus label, and clicks adjust
the state of the checkbox), you inevitably wind up calling setCellRenderer()
to supply your own ListCellRenderer, which in turn converts strings for the
list into JCheckBox-plus-JLabel composite widgets.

Using ArrayAdapter

The easiest adapter to use is ArrayAdapter — all you need to do is wrap one of
these around a Java array or java.util.List instance, and you have a fully-
functioning adapter:

String[] items={"this", "is", "a",
"really", "silly", "list"};
new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_1, items);

One flavor of the ArrayAdapter constructor takes three parameters:

The context to use (typically this will be your activity instance)

+ The resource ID of a view to use (such as a built-in system resource
ID, as shown above)

« The actual array or list of items to show

By default, the ArrayAdapter will invoke tostring() on the objects in the list
and wrap each of those strings in the view designated by the supplied
resource. android.R.layout.simple_list_item_1 simply turns those strings

120

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

into Textview objects. Those Textview widgets, in turn, will be shown in the
list or spinner or whatever widget uses this ArrayAdapter. If you want to see
what android.R.layout.simple_list_item_1 looks like, you can find a copy of
it in your SDK installation - just search for simple_list_item_1.xml.

We will see in a later chapter how to subclass an Adapter and override row
creation, to give you greater control over how rows appear.

Lists of Naughty and Nice

The classic listbox widget in Android is known as Listview. Include one of
these in your layout, invoke setAdapter() to supply your data and child
views, and attach a listener via setOnItemSelectedListener() to find out
when the selection has changed. With that, you have a fully-functioning
listbox.

However, if your activity is dominated by a single list, you might well
consider creating your activity as a subclass of ListActivity, rather than the
regular Activity base class. If your main view is just the list, you do not
even need to supply a layout - ListActivity will construct a full-screen list
for you. If you do want to customize the layout, you can, so long as you
identify your Listview as @android:id/list, so ListActivity knows which
widget is the main list for the activity.

For example, here is a layout pulled from the Selection/List sample project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill_parent" >
<TextView
android:id="@+id/selection”
android:layout_width="fill_parent"
android:layout_height="wrap_content"/>
<ListView
android:id="@android:id/list"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:drawSelectorOnTop="false"

121

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

/>
</LinearlLayout>

It is just a list with a label on top to show the current selection.

The Java code to configure the list and connect the list with the label is:

public class ListViewDemo extends ListActivity {

private TextView selection;

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_1,
items));
selection=(TextView)findViewById(R.id.selection);
}

public void onListItemClick(ListView parent, View v, int position,
long id) {
selection.setText(items[position]);
}
)

With ListActivity, you can set the list adapter via setListAdapter() - in this
case, providing an ArrayAdapter wrapping an array of nonsense strings. To
find out when the list selection changes, override onListItemClick() and
take appropriate steps based on the supplied child view and position (in
this case, updating the label with the text for that position).

The results?

122

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

O M@ s5:38 M

amet

consectetuer

Figure 49. The ListViewDemo sample application

The second parameter to our ArrayAdapter -
android.R.layout.simple list_item 1 — controls what the rows look like.
The value used in the preceding example provides the standard Android list
row: big font, lots of padding, white text.

Selection Modes

By default, Listview is set up simply to collect clicks on list entries.
Sometimes, though, you want a list that tracks a user's selection, or possibly
multiple selections. Listview can handle that as well, but it requires a few
changes.

First, you will need to call setChoiceMode() on the Listview in Java code to
set the choice mode, supplying either CHOICE_MODE_SINGLE or
CHOICE_MODE_MULTIPLE as the value. You can get your Listview from a
ListActivity via getListview(). You can also declare this via the
android:choiceMode attribute in your layout XML.

123

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

Then, rather than use android.R.layout.simple_list_item_1 as the layout for
the list rows in your ArrayAdapter constructor, you will need to use either
android.R.layout.simple_list _item_single choice or
android.R.layout.simple_list_item_multiple_choice for single-choice or
multiple-choice lists, respectively.

For example, here is an activity layout from the Selection/Checklist sample
project:

<?xml version="1.0" encoding="utf-8"?>

<ListView

xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@android:id/list"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:drawSelectorOnTop="false"
android:choiceMode="multipleChoice"

/>

It is a full-screen Listview, with the android:choiceMode="multipleChoice"
attribute to indicate that we want multiple choice support.

Our activity just uses a standard ArrayAdapter on our list of nonsense words,
but uses android.R.layout.simple list_item_multiple choice as the row
layout:

"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_multiple_choice,
items));

What the user sees is the list of words with checkboxes down the right
edge:

124

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

amet
consectetuer

adipiscing

Figure 50. Multiple-select mode

If we wanted, we could call methods like getCheckedItemPositions() on our
Listview to find out which items the user checked, or setItemChecked() if we
wanted to check (or un-check) a specific entry ourselves.

Spin Control

In Android, the spinner is the equivalent of the drop-down selector you
might find in other toolkits (e.g., JComboBox in Java/Swing). Pressing the
center button on the D-pad pops up a selection dialog for the user to
choose an item from. You basically get the ability to select from a list
without taking up all the screen space of a Listview, at the cost of an extra
click or screen tap to make a change.

As with Listview, you provide the adapter for data and child views via
setAdapter() and hook in a listener object for selections via
setOnItemSelectedListener().

125

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

If you want to tailor the view used when displaying the drop-down
perspective, you need to configure the adapter, not the Spinner widget. Use
the setDropDownviewResource() method to supply the resource ID of the view
to use.

For example, culled from the Selection/Spinner sample project, here is an
XML layout for a simple view with a Spinner:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent”
>
<TextView
android:id="@+id/selection”
android:layout_width="fill_parent"
android:layout_height="wrap_content”
/>
<Spinner android:id="@+id/spinner"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:drawSelectorOnTop="true"
/>
</LinearLayout>

This is the same view as shown in the previous section, just with a Spinner
instead of a Listview. The Spinner property android:drawSelectorOnTop
controls whether the arrows are drawn on the selector button on the right
side of the spinner UI.

To populate and use the Spinner, we need some Java code:

public class SpinnerDemo extends Activity

implements AdapterView.OnItemSelectedListener {

private TextView selection;

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0Override
public void onCreate(Bundle icicle) {

126

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

super.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);

Spinner spin=(Spinner)findViewById(R.id.spinner);
spin.setOnItemSelectedListener(this);

ArrayAdapter<String> aa=new ArrayAdapter<String>(this,
android.R.layout.simple_spinner_itenm,
items);

aa.setDropDownViewResource (
android.R.layout.simple_spinner_dropdown_item);
spin.setAdapter(aa);
}

public void onItemSelected(AdapterView<?> parent,
View v, int position, long id) {
selection.setText(items[position]);

}

public void onNothingSelected(AdapterView<?> parent) {
selection.setText("");

}

}

Here, we attach the activity itself as the selection listener
(spin.setOnItemSelectedListener(this)). This works because the activity
implements the onItemSelectedListener interface. We configure the adapter
not only with the list of fake words, but also with a specific resource to use
for the drop-down view (via aa.setDropDownViewResource()). Also note the
use of android.R.layout.simple_spinner_item as the built-in view for showing
items in the spinner itself. Finally, we implement the callbacks required by
onItemSelectedListener to adjust the selection label based on user input.

What we get is:

127

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

ChEl & 11:35 PM

SpinnerDemo
n

Figure 51. The SpinnerDemo sample application, as initially launched

Al @ 11:35 M

consectetuer

Figure 52. The same application, with the spinner drop-down list displayed

128

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

Grid Your Lions (Or Something Like That...)

As the name suggests, Gridview gives you a two-dimensional grid of items to
choose from. You have moderate control over the number and size of the
columns; the number of rows is dynamically determined based on the
number of items the supplied adapter says are available for viewing.

There are a few properties which, when combined, determine the number
of columns and their sizes:

+ android:numColumns spells out how many columns there are, or, if
you supply a value of auto_fit, Android will compute the number of
columns based on available space and the properties listed below.

+ android:verticalSpacing and android:horizontalSpacing indicate
how much whitespace there should be between items in the grid.

+ android:columnWidth indicates how many pixels wide each column

should be.

+ android:stretchMode indicates, for grids with auto_fit for
android:numColumns, what should happen for any available space not
taken up by columns or spacing - this should be columnwidth to have
the columns take up available space or spacingwWidth to have the
whitespace between columns absorb extra space. For example,
suppose the screen is 320 pixels wide, and we have
android:columnWidth set to 1@epx and android:horizontalSpacing set
to spx. Three columns would use 310 pixels (three columns of 100
pixels and two whitespaces of 5 pixels). With android:stretchMode
set to columnWidth, the three columns will each expand by 3-4 pixels
to use up the remaining 10 pixels. With android:stretchMode set to
spacingWidth, the two whitespaces will each grow by 5 pixels to
consume the remaining 10 pixels.

Otherwise, the Gridview works much like any other selection widget - use
setAdapter() to provide the data and child views, invoke
setOnItemSelectedListener() to register a selection listener, etc.

129

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

For example, here is an XML layout from the Selection/Grid sample project,
showing a Gridview configuration:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill parent"
>
<TextView
android:id="@+id/selection”
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>
<GridView
android:id="@+id/grid"
android:layout_width="fill_parent"
android:layout_height="fill_parent
android:verticalSpacing="4edip"
android:horizontalSpacing="5dip"
android:numColumns="auto_fit"
android:columnWidth="100dip"
android:stretchMode="columnWidth"
android:gravity="center"
/>
</LinearlLayout>

For this grid, we take up the entire screen except for what our selection
label requires. The number of columns is computed by Android

(android:numColumns = “auto_fit") based on our horizontal spacing
(android:horizontalSpacing = "5dip") and columns width
(android:columnWidth = "1eedip"), with the columns absorbing any "slop”

width left over (android:stretchMode = "columnWidth").

The Java code to configure the Gridview is:

package com.commonsware.android.grid;

import android.app.Activity;

import android.content.Context;
import android.os.Bundle;

import android.view.View;

import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.GridView;
import android.widget.TextView;

130

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

public class GridDemo extends Activity

implements AdapterView.OnItemSelectedListener {

private TextView selection;

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);

GridView g=(GridView) findViewById(R.id.grid);
g.setAdapter(new ArrayAdapter<String>(this,
R.layout.cell,
items));
g.setOnItemSelectedListener(this);

}

public void onItemSelected(AdapterView<?> parent, View v,
int position, long id) {
selection.setText(items[position]);

}

public void onNothingSelected(AdapterView<?> parent) {
selection.setText("");
}
¥

The grid cells are defined by a separate res/layout/cell.xml file, referenced

in our ArrayAdapter as R.layout.cell:

<?xml version="1.0" encoding="utf-8"?>

<TextView
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="wrap_content”
android:layout_height="wrap_content"
android:textSize="14dip"

/>

With the vertical spacing from the XML layout (android:verticalSpacing
“40dip"), the grid overflows the boundaries of the emulator's screen:

131

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

Ml @ 11:55am

consectetuer

lorem

amet

adipiscing

ligula

aliquet

etiam

placerat

sodales

pellentesque

dolor
morbi
vitae

mollis

porttitor

augue

Figure 53. The GridDemo sample application, as initially launched

2 Ml & 11:56 am

amet

adipiscing

ligula

aliquet

etiam

placerat

sodales

purus

pellentesque

consectetuer

morbi

vitae

mollis

porttitor

augue

Figure 54. The same application, scrolled to the bottom of the grid

Subscribe to updates at http://commonsware.com

132

Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

Fields: Now With 35% Less Typing!

The AutoCompleteTextview is sort of a hybrid between the EditText (field)
and the spinner. With auto-completion, as the user types, the text is treated
as a prefix filter, comparing the entered text as a prefix against a list of
candidates. Matches are shown in a selection list that folds down from the
field. The user can either type out an entry (e.g., something not in the list)
or choose an entry from the list to be the value of the field.

AutoCompleteTextView subclasses EditText, so you can configure all the
standard look-and-feel aspects, such as font face and color.

In addition, AutoCompleteTextview has a android:completionThreshold
property, to indicate the minimum number of characters a user must enter
before the list filtering begins.

You can give AutoCompleteTextview an adapter containing the list of
candidate values via setAdapter(). However, since the user could type
something not in the list, AutoCompleteTextview does not support selection
listeners. Instead, you can register a TextWatcher, like you can with any
EditText, to be notified when the text changes. These events will occur
either because of manual typing or from a selection from the drop-down
list.

Below we have a familiar-looking XML layout, this time containing an
AutoCompleteTextview (pulled from the Selection/AutoComplete sample
application):

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<TextView
android:id="@+id/selection”
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>

133

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

<AutoCompleteTextView android:id="@+id/edit"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:completionThreshold="3"/>
</LinearLayout>

The corresponding Java code is:

package com.commonsware.android.auto;

import android.app.Activity;

import android.os.Bundle;

import android.text.Editable;

import android.text.TextWatcher;

import android.view.View;

import android.widget.AdapterView;

import android.widget.ArrayAdapter;

import android.widget.AutoCompleteTextView;
import android.widget.TextView;

public class AutoCompleteDemo extends Activity

implements TextWatcher {

private TextView selection;

private AutoCompleteTextView edit;

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);
edit=(AutoCompleteTextView)findViewById(R.id.edit);
edit.addTextChangedListener(this);

edit.setAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple_dropdown_item_1line,
items));

}

public void onTextChanged(CharSequence s, int start, int before,
int count) {
selection.setText(edit.getText());
}

public void beforeTextChanged(CharSequence s, int start,
int count, int after) {
// needed for interface, but not used

}

134

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

public void afterTextChanged(Editable s) {
// needed for interface, but not used
}
¥

This time, our activity implements TextWatcher, which means our callbacks
are onTextChanged(), beforeTextChanged(), and afterTextChanged(). In this
case, we are only interested in the former, and we update the selection label
to match the AutoCompleteTextView's current contents.

Here we have the results:

Chifll & 11:47 PM

AutoCompleteDemo

Figure 55. The AutoCompleteDemo sample application, as initially launched

135

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

Al @ 11:47pPM

AutoCompleteDemo
lar

lor

Figure 56. The same application, after a few matching letters were entered,
showing the auto-complete drop-down

& 11:47pPM

AutoCompleteDemo

Figure 57. The same application, after the auto-complete value was selected

136

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

Galleries, Give Or Take The Art

The Gallery widget is not one ordinarily found in GUI toolkits. It is, in
effect, a horizontally-laid-out listbox. One choice follows the next across
the horizontal plane, with the currently-selected item highlighted. On an
Android device, one rotates through the options through the left and right
D-pad buttons.

Compared to the Listview, the Gallery takes up less screen space while still
showing multiple choices at one time (assuming they are short enough).
Compared to the spinner, the Gallery always shows more than one choice at
a time.

The quintessential example use for the Gallery is image preview - given a
collection of photos or icons, the Gallery lets people preview the pictures in
the process of choosing one.

Code-wise, the Gallery works much like a Spinner or Gridview. In your XML
layout, you have a few properties at your disposal:

+ android:spacing controls the number of pixels between entries in
the list

+ android:spinnersSelector controls what is used to indicate a selection
- this can either be a reference to a bDrawable (see the resources
chapter) or an RGB value in #AARRGGBB or similar notation

+ android:drawSelectoronTop indicates if the selection bar (or brawable)
should be drawn before (false) or after (true) drawing the selected
child - if you choose true, be sure that your selector has sufficient
transparency to show the child through the selector, otherwise
users will not be able to read the selection

137

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 12
Getting Fancy With Lists

The humble Listview is one of the most important widgets in all of
Android, simply because it is used so frequently. Whether choosing a
contact to call or an email message to forward or an ebook to read, Listview
widgets are employed in a wide range of activities.

Of course, it would be nice if they were more than just plain text.

The good news is that they can be as fancy as you want, within the
limitations of a mobile device's screen, of course. However, making them
fancy takes some work and some features of Android that we will cover in
this chapter.

Getting To First Base

The classic Android Listview is a plain list of text — solid but uninspiring.
This is because all we have handed to the Listview is a bunch of words in an
array, and told Android to use a simple built-in layout for pouring those
words into a list.

However, you can have a list whose rows are made up of icons, or icons and
text, or checkboxes and text, or whatever you want. It is merely a matter of
supplying enough data to the adapter and helping the adapter to create a
richer set of view objects for each row.

139

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

For example, suppose you want a Listview whose entries are made up of an
icon, followed by some text. You could construct a layout for the row that
looks like this, found in res/layout/row.xml in the FancyLists/Static sample
project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="wrap_content”
android:orientation="horizontal"
>
<ImageView
android:id="@+id/icon"
android:padding="2dip"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="@drawable/ok"
/>
<TextView
android:id="@+id/label"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="40sp"
/>
</LinearLayout>

This layout uses a LinearLayout to set up a row, with the icon on the left and
the text (in a nice big font) on the right.

By default, though, Android has no idea that you want to use this layout
with your Listview. To make the connection, you need to supply your
Adapter with the resource ID of the custom layout shown above:

public class StaticDemo extends ListActivity {

private TextView selection;

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new ArrayAdapter<String>(this,
R.layout.row, R.id.label,

140

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

items));
selection=(TextView)findViewById(R.id.selection);
}

public void onListItemClick(ListView parent, View v,
int position, 1long id) {
selection.setText(items[position]);
}
¥

This follows the general structure for the previous ListView sample.

The key in this example is that you have told ArrayAdapter that you want to
use your custom layout (R.layout.row) and that the Textview where the
word should go is known as R.id.label within that custom layout.
Remember: to reference a layout (row.xml), use R.layout as a prefix on the
base name of the layout XML file (R.1layout.row).

The result is a Listview with icons down the left side. In particular, all the
icons are the same:

LM @ 1:15em

v lorem
v ipsum
v dolor
v sit

v’ amet

v’ consectetuer
v’ adipiscing
v elit

N
Figure 58. The StaticDemo application

141

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

A Dynamic Presentation

This technique - supplying an alternate layout to use for rows - handles
simple cases very nicely.

However, what happens when we want the icon to change based on the row
data? For example, perhaps we want to use one icon for small words and a
different icon for large words.

In the case of ArrayAdapter, you will need to extend it, creating your own
custom subclass (e.g., IconicAdapter) that incorporates your business logic.
In particular, it will need to override getview().

The getview() method of an Adapter is what an Adapterview (like Listview or
Spinner) calls when it needs the view associated with a given piece of data
the Adapter is managing. In the case of an ArrayAdapter, getview() is called
as needed for each position in the array - "get me the view for the first row",
"get me the view for the second row", etc.

For example, let us rework the above code to use getview(), so we can have
different icons for different rows - in this case, one icon for short words and
one for long words (from the FancyLists/Dynamic sample project):

public class DynamicDemo extends ListActivity {

TextView selection;

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new IconicAdapter());
selection=(TextView)findViewById(R.id.selection);

}

public void onListItemClick(ListView parent, View v,
int position, long id) {

142

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

selection.setText(items[position]);

}

class IconicAdapter extends ArrayAdapter<String> {
IconicAdapter() {
super(DynamicDemo.this, R.layout.row, R.id.label, items);

}

public View getView(int position, View convertView,
ViewGroup parent) {
View row=super.getView(position, convertView, parent);
ImageView icon=(ImageView)row.findViewById(R.id.icon);

if (items[position].length()>4) {
icon.setImageResource(R.drawable.delete);

}

else {
icon.setImageResource(R.drawable.ok);
}

return(row);

Our IconicAdapter — an inner class of the activity — has two methods. First,
it has the constructor, which just passes to ArrayAdapter the same data we
used in the ArrayAdapter constructor in StaticDemo. Second, it has our
getview() implementation, which does two things:

1. It chains to the superclass’ implementation of getview(), which
returns to us an instance of our row View, as prepared by
ArrayAdapter. In particular, our word has already been put into the
TextView, since ArrayAdapter does that normally.

2. It finds our Imageview and applies a business rule to set which icon
should be used, referencing one of two drawable resources
(R .drawable.ok and R.drawable. delete).

This gives us:

143

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

LMl @ 1:24em

DynamicDemo

Blorem
B ipsum
B dolor
v sit

v amet
Ed consectetuer
B adipiscing

v elit
™ .

Figure 59. The DynamicDemo application

Inflating Rows Ourselves

The solution shown in this version of the Dynamicbemo works fine. However,
there will be times when ArrayAdapter cannot even be used for setting up
the basics of our row. For example, it is possible to have a Listview where
the rows are materially different, such as category headers interspersed
among "regular” rows. In that case, we may need to do all of the work
ourselves, starting with inflating our rows.

A Sidebar About Inflation

In this case, “inflation” means the act of converting an XML layout
specification into the actual tree of view objects the XML represents. This is
undoubtedly a tedious bit of code: take an element, create an instance of
the specified view class, walk the attributes, convert those into property
setter calls, iterate over all child elements, lather, rinse, repeat.

144

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

The good news is that the fine folk on the Android team wrapped all that
up into a class called LayoutInflater that we can use ourselves. When it
comes to fancy lists, for example, we will want to inflate views for each row
shown in the list, so we can use the convenient shorthand of the XML
layout to describe what the rows are supposed to look like.

For example, let us look at a slightly different implementation of the
DynamicDemo class, from the FancyLists/DynamicEx project:

public class DynamicDemo extends ListActivity {

TextView selection;

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new IconicAdapter());
selection=(TextView)findViewById(R.id.selection);

}

public void onListItemClick(ListView parent, View v,
int position, long id) {
selection.setText(items[position]);

}

class IconicAdapter extends ArrayAdapter<String> {
IconicAdapter() {
super(DynamicDemo.this, R.layout.row, items);

}

public View getView(int position, View convertView,
ViewGroup parent) {
LayoutInflater inflater=getLayoutInflater();
View row=inflater.inflate(R.layout.row, parent, false);
TextView label=(TextView)row.findViewById(R.id.label);

label.setText(items[position]);
ImageView icon=(ImageView)row.findViewById(R.id.icon);
if (items[position].length()>4) {

icon.setImageResource(R.drawable.delete);

}

else {

145

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

icon.setImageResource(R.drawable.ok);

}

return(row);

}
}

}

Here we inflate our R.layout.row layout by use of a LayoutInflater object,
obtained from our Activity via getLayoutInflater(). This gives us a view
object back which, in reality, is our LinearLayout with an Imageview and a
TextView, just as R.layout.row specifies. However, rather than having to
create all those objects ourselves and wire them together, the XML and
LayoutInflater handle the "heavy lifting" for us.

And Now, Back To Our Story

So we have used LayoutInflater to give us a View representing the row. This
row is "empty", since the static layout file has no idea what actual data goes
into the row. It is our job to customize and populate the row as we see fit
before returning it. So, we:

« Fill in the text label into our label widget, using the word at the
supplied position
« See if the word is longer than four characters and, if so, we find our

Imageview icon widget and replace the stock resource with a
different one

The user sees nothing different — we have simply changed how those rows
are being created.

Obviously, this was a fairly contrived example, but you can see where this
technique could be used to customize rows based on any sort of criteria.

146

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

Better. Stronger. Faster.

The getview() implementation shown in the FancyLists/DynamicEx project
works, but is inefficient. Every time the user scrolls, we have to create a
bunch of new view objects to accommodate the newly-shown rows.

This is bad.

It might be bad for the immediate user experience, if the list appears to be
sluggish. More likely, though, it will be bad due to battery usage — every bit
of CPU that is used eats up the battery. This is compounded by the extra
work the garbage collector needs to do to get rid of all those extra objects
you create. So the less efficient your code, the more quickly the phone's
battery will be drained, and the less happy the user will be.

And you want happy users, right?

So, let us take a look at a few tricks to make your fancy Listview widgets
more efficient.

Using convertView

The getview() method receives, as one of its parameters, a view named, by
convention, convertvView. Sometimes, convertview will be null. In those
cases, you have to create a new row Vview from scratch (e.g., via inflation),
just as we did before.

However, if convertview is not null, then it is actually one of your
previously-created view objects! This will happen primarily when the user
scrolls the Listview — as new rows appear, Android will attempt to recycle
the views of the rows that scrolled off the other end of the list, to save you
having to rebuild them from scratch.

Assuming that each of your rows has the same basic structure, you can use
findviewById() to get at the individual widgets that make up your row and

147

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

change their contents, then return convertview from getview(), rather than
create a whole new row.

For example, here is the getview() implementation from last time, now
optimized via convertview (from the FancyLists/Recycling project):

public class RecyclingDemo extends ListActivity {

private TextView selection;

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new IconicAdapter());
selection=(TextView)findViewById(R.id.selection);

}

public void onListItemClick(ListView parent, View v,
int position, long id) {
selection.setText (items[position]);

}
class IconicAdapter extends ArrayAdapter<String> {
IconicAdapter() {
super(RecyclingDemo.this, R.layout.row, items);

¥
public View getView(int position, View convertView,
ViewGroup parent) {

View row=convertView;

if (row==null) {
LayoutInflater inflater=getLayoutInflater();

row=inflater.inflate(R.layout.row, parent, false);

¥

TextView label=(TextView)row.findViewById(R.id.label);
label.setText(items[position]);

ImageView icon=(ImageView)row.findViewById(R.id.icon);

if (items[position].length()>4) {
icon.setImageResource(R.drawable.delete);

148

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

}
else {
icon.setImageResource(R.drawable.ok);

}

return(row);
}
}
}

Here, we check to see if the convertview is null and, if so, we then inflate our
row - but if it is not-null, we just reuse it. The work to fill in the contents
(icon image, text) is the same in either case. The advantage is that we avoid
the potentially-expensive inflation step. In fact, according to statistics cited
by Google at the 2010 Google I|O conference, a Listview that uses a
recycling ListAdapter will perform 150% faster than one that does not. In
fact, for complex rows, that might understate the benefit.

Not only is this faster, but it uses much less memory. Each widget or
container - in other words, each subclass of view — holds onto up to 2KB of
data, not counting things like images in Imageview widgets. Each of our
rows, therefore, might be as big as 6KB. For our list of 25 nonsense words,
consuming as much as 150KB for a non-recycling list (25 rows at 6KB each)
would be inefficient but not a huge problem. A list of 1,000 nonsense
words, though, consuming as much as 6MB of RAM, would be a much
bigger issue. Bear in mind that your application may only have 16MB of Java
heap memory to work with. Recycling allows us to handle arbitrary list
lengths with only as much view memory consumed as is needed for the
rows visible on screen.

Note that row recycling is only an issue if we are creating the rows ourself.
If we let ArrayAdapter create the rows, by leveraging its implementation of
getview() as shown in the FancyLists/Dynamic project, then it deals with the
recycling.

Using the Holder Pattern

Another somewhat expensive operation we do a lot with fancy views is call
findviewById(). This dives into our inflated row and pulls out widgets by

149

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

their assigned identifiers, so we can customize the widget contents (e.g.,
change the text of a Textview, change the icon in an Imageview). Since
findviewById() can find widgets anywhere in the tree of children of the
row's root View, this could take a fair number of instructions to execute,
particularly if we keep having to re-find widgets we had found once before.

In some GUI toolkits, this problem is avoided by having the composite view
objects, like our rows, be declared totally in program code (in this case,
Java). Then, accessing individual widgets is merely the matter of calling a
getter or accessing a field. And you can certainly do that with Android, but
the code gets rather verbose. What would be nice is a way where we can
still use the layout XML yet cache our row's key child widgets so we only
have to find them once.

That's where the holder pattern comes into play, in a class we'll call
ViewHolder.

All view objects have getTag() and setTag() methods. These allow you to
associate an arbitrary object with the widget. What the holder pattern does
is use that "tag" to hold an object that, in turn, holds each of the child
widgets of interest. By attaching that holder to the row view, every time we
use the row, we already have access to the child widgets we care about,
without having to call findviewById() again.

So, let’s take a look at one of these holder classes (taken from the
FancyLists/ViewHolder sample project):

package com.commonsware.android.fancylists.five;

import android.view.View;
import android.widget.ImageView;

class ViewHolder {
ImageView icon=null;

ViewHolder(View base) {
this.icon=(ImageView)base.findViewById(R.id.icon);
}
)

150

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

viewHolder holds onto the child widgets, initialized via findviewById() in its
constructor. The widgets are simply package-protected data members,
accessible from other classes in this project...such as a VviewHolderDemo
activity. In this case, we are only holding onto one widget - the icon - since
we will let ArrayAdapter handle our label for us.

Using ViewHolder is a matter of creating an instance whenever we inflate a
row and attaching said instance to the row view via setTag(), as shown in
this rewrite of getview(), found in ViewHolderDemo:

public View getView(int position, View convertView,
ViewGroup parent) {
View row=super.getView(position, convertView, parent);
ViewHolder holder=(ViewHolder)row.getTag();

if (holder==null) {
holder=new ViewHolder(row);
row.setTag(holder);

}

if (getModel(position).length()>4) {
holder.icon.setImageResource(R.drawable.delete);

}
else {
holder.icon.setImageResource(R.drawable.ok);

}

return(row);

Here, we go back to allowing ArrayAdapter to handle our row inflation and
recycling for us. If the call to getTag() on the row returns null, we know we
need to create a new ViewHolder, which we then attach to the row via
setTag() for later reuse. Then, accessing the child widgets is merely a
matter of accessing the data members on the holder. The first time the
Listview is displayed, all new rows need to be inflated, and we wind up
creating a ViewHolder for each. As the user scrolls, rows get recycled, and we
can reuse their corresponding ViewHolder widget caches.

Using a holder helps performance, but the effect is not as dramatic.
Whereas recycling can give you a 150% performance improvement, adding
in a holder increases the improvement to 175%. Hence, while you may wish
to implement recycling up front when you create your adapter, adding in a

151

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

holder might be something you deal with later, when you are working
specifically on performance tuning.

In this particular case, we certainly could simplify all of this, by skipping
ViewHolder and using getTag() and setTag() with the Imageview directly. This
example is written as it is to demonstrate how to handle a more complex
scenario, where you might have several widgets that would need to be
cached via the holder pattern.

Interactive Rows

Lists with pretty icons next to them are all fine and well. But, can we create
Listview widgets whose rows contain interactive child widgets instead of
just passive widgets like Textview and Imageview? For example, there is a
RatingBar widget that allows users to assign a rating by clicking on a set of
star icons. Could we combine the RatingBar with text in order to allow
people to scroll a list of, say, songs and rate them right inside the list?

There is good news and bad news.

The good news is that interactive widgets in rows work just fine. The bad
news is that it is a little tricky, specifically when it comes to taking action
when the interactive widget's state changes (e.g., a value is typed into a
field). We need to store that state somewhere, since our RatingBar widget
will be recycled when the Listview is scrolled. We need to be able to set the
RatingBar state based upon the actual word we are viewing as the RatingBar
is recycled, and we need to save the state when it changes so it can be
restored when this particular row is scrolled back into view.

What makes this interesting is that, by default, the RatingBar has absolutely
no idea what item in the ArrayAdapter it represents. After all, the RatingBar
is just a widget, used in a row of a Listview. We need to teach the rows
which item in the ArrayAdapter they are currently displaying, so when their
RatingBar is checked, they know which item's state to modify.

152

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

So, let's see how this is done, using the activity in the FancyLists/RateList
sample project. We will use the same basic classes as our previous demo -
we are showing a list of nonsense words, which you can then rate. In
addition, words given a top rating are put in all caps:

package com.commonsware.android.fancylists.six;

import android.app.Activity;

import android.os.Bundle;

import android.app.ListActivity;
import android.view.View;

import android.view.ViewGroup;
import android.view.LayoutInflater;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.RatingBar;
import android.widget.LinearlLayout;
import android.widget.ListView;
import android.widget.TextView;
import java.util.Arraylist;

public class RatelListDemo extends ListActivity {
private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

ArraylList<RowModel> list=new ArrayList<RowModel>();

for (String s : items) {
list.add(new RowModel(s));
¥

setListAdapter(new RatingAdapter(list));
}

private RowModel getModel(int position) {
return(((RatingAdapter)getListAdapter()).getItem(position));
}

class RatingAdapter extends ArrayAdapter<RowModel> {
RatingAdapter(ArrayList<RowModel> list) {
super(RateListDemo.this, R.layout.row, R.id.label, list);
}

public View getView(int position, View convertView,

153

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

ViewGroup parent) {
View row=super.getView(position, convertView, parent);
ViewHolder holder=(ViewHolder)row.getTag();

if (holder==null) {
holder=new ViewHolder(row);
row.setTag(holder);

RatingBar.OnRatingBarChangelListener 1=
new RatingBar.OnRatingBarChangeListener() {
public void onRatingChanged(RatingBar ratingBar,
float rating,
boolean fromTouch) {
Integer myPosition=(Integer)ratingBar.getTag();
RowModel model=getModel(myPosition);

model.rating=rating;

LinearLayout parent=(LinearLayout)ratingBar.getParent();
TextView label=(TextView)parent.findViewById(R.id.label);

label.setText(model.toString());
}
¥

holder.rate.setOnRatingBarChangeListener(1l);

}

RowModel model=getModel(position);

holder.rate.setTag(new Integer(position));
holder.rate.setRating(model.rating);

return(row);
¥
}

class RowModel {
String label;
float rating=2.0f;

RowModel (String label) {
this.label=1label;

}

public String toString() {
if (rating>=3.0) {
return(label.toUpperCase());
¥

return(label);
¥
}

154

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

Here is what is different in this activity and getview() implementation than
before:

1. While we are still using string[] items as the list of nonsense words,
rather than pour that string array straight into an ArrayAdapter, we
turn it into a list of RowModel objects. RowModel is the mutable model:
it holds the nonsense word plus the current checked state. In a real
system, these might be objects populated from a database, and the
properties would have more business meaning.

2. Utility methods like onListItemClick() had to be updated to reflect
the change from a pure-string model to use a RowModel.

3. The ArrayAdapter subclass (RatingAdapter), in getview(), lets
ArrayAdapter inflate and recycle the row, then checks to see if we
have a viewHolder in the row's tag. If not, we create a new ViewHolder
and associate it with the row. For the row's RatingBar, we add an
anonymous onRatingChanged() listener that looks at the row's tag
(getTag()) and converts that into an Integer, representing the
position within the ArrayAdapter that this row is displaying. Using
that, the rating bar can get the actual RowModel for the row and
update the model based upon the new state of the rating bar. It also
updates the text adjacent to the RatingBar when checked to match
the rating bar state.

4. We always make sure that the RatingBar has the proper contents
and has a tag (via setTag()) pointing to the position in the adapter
the row is displaying.

The row layout is very simple: just a RatingBar and a Textview inside a
LinearlLayout:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="wrap_content”
android:orientation="horizontal"

<RatingBar
android:id="@+id/rate"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:numStars="3"

155

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

android
<TextView
android
android
android
android

android:
rrating="2" />

:id="@+id/label"

:padding="2dip"

:textSize="18sp"

:layout_gravity="left|center_vertical"
android:
android:

</LinearLayout>

stepSize="1"

layout_width="fill _parent"
layout_height="wrap_content"/>

The viewHolder is similarly simple, just extracting the RatingBar out of the
row View for caching purposes:

RatingBar

}
}

package com.

import android.view.View;
import android.widget.RatingBar;

class ViewHolder {

ViewHolder(View base) {
this.rate=(RatingBar)base.findViewById(R.id.rate);

commonsware.android.fancylists.six;

rate=null;

And the result is what you would expect, visually:

156

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

Al & s:1apPm

RateListDemo

ﬁnﬁr*lorem
T 7 Wripsum
ﬁnﬁr*dolor
¥ 7 W sit

Y Y W amet
¥ Y W consect

etuer

A A A ' . .
Figure 60. The RateListDemo application, as initially launched

This includes the toggled rating bars turning their words into all caps:

£ Ml @ 7:46 Am

RateListDemo

‘L‘.{ﬁ*lorem
T 7 W ipsum
ﬁnﬁr*dolor

Y W sit
Y Y AMET
¥ ¥ W consect

etuer

A A A .
Figure 61. The same application, showing a top-rated word

157

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 13

Still More Widgets and
Containers

This book has covered a number of widgets and containers so far. This
chapter is the last that focuses exclusively on widgets and containers,
covering a number of popular options, from date and time widgets to tabs.
After this chapter, we will still introduce the occasional new widget, but in
the context of some other topic, such as introducing the progressBar in the
chapter on threads.

Pick and Choose

With limited-input devices like phones, having widgets and dialogs that are
aware of the type of stuff somebody is supposed to be entering is very
helpful. It minimizes keystrokes and screen taps, plus reduces the chance of
making some sort of error (e.g., entering a letter someplace where only
numbers are expected).

As shown previously, EditText has content-aware flavors for entering in
numbers, phone numbers, etc. Android also supports widgets (DatePicker,
TimePicker) and dialogs (DatePickerDialog, TimePickerDialog) for helping
users enter dates and times.

The DatePicker and DatePickerDialog allow you to set the starting date for
the selection, in the form of a year, month, and day of month value. Note

159

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

that the month runs from e for January through 11 for December. Most
importantly, each let you provide a callback object (onDatechangedListener
or OnDateSetListener) where you are informed of a new date selected by the
user. It is up to you to store that date someplace, particularly if you are
using the dialog, since there is no other way for you to get at the chosen
date later on.

Similarly, TimePicker and TimePickerDialog let you:

- set the initial time the user can adjust, in the form of an hour (e
through 23) and a minute (e through 59)

+ indicate if the selection should be in 12-hour mode with an AM/PM
toggle, or in 24-hour mode (what in the US is thought of as
"military time" and much of the rest of the world is thought of as
"the way times are supposed to be")

« provide a callback object (onTimeChangedListener or
onTimeSetListener) to be notified of when the user has chosen a new
time, which is supplied to you in the form of an hour and minute

For example, from the Fancy/Chrono sample project, here's a trivial layout
containing a label and two buttons - the buttons will pop up the dialog
flavors of the date and time pickers:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent”

>

<TextView android:id="@+id/dateAndTime"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>

<Button android:id="@+id/dateBtn"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Set the Date"
android:onClick="chooseDate"
/>

<Button android:id="@+id/timeBtn"
android:layout_width="fill_parent"
android:layout_height="wrap_content"

160

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

/>

android:text="Set the Time"
android:onClick="chooseTime"

</LinearlLayout>

The more interesting stuff comes in the Java source:

import
import
import
import
import
import
import
import
import
import

public

}

}

}

package com.commonsware.android.chrono;

android.
android.
android.
android.
android.
android.
android.
android.
java.text.DateFormat;
java.util.Calendar;

class ChronoDemo extends Activity {

DateFormat fmtDateAndTime=DateFormat.getDateTimeInstance();
TextView dateAndTimelLabel;

Calendar dateAndTime=Calendar.getInstance();

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
dateAndTimeLabel=(TextView)findViewById(R.id.dateAndTime);
updatelLabel();

public void chooseDate(View v) {
new DatePickerDialog(ChronoDemo.this, d,

show();

public void chooseTime(View v) {
new TimePickerDialog(ChronoDemo.this, t,

show();

private void updateLabel() {
dateAndTimeLabel.setText (fmtDateAndTime

app.Activity;
os.Bundle;
app.DatePickerDialog;
app.TimePickerDialog;
view.View;
widget.DatePicker;
widget.TimePicker;
widget.TextView;

dateAndTime.get(Calendar.YEAR),
dateAndTime.get(Calendar .MONTH),
dateAndTime.get(Calendar.DAY_OF_MONTH))

dateAndTime.get(Calendar.HOUR_OF_DAY),
dateAndTime.get(Calendar.MINUTE),
true)

161

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

.format (dateAndTime.getTime()));
}

DatePickerDialog.OnDateSetListener d=new DatePickerDialog.OnDateSetListener()
{
public void onDateSet(DatePicker view, int year, int monthOfYear,
int dayOfMonth) {
dateAndTime.set(Calendar.YEAR, year);
dateAndTime.set(Calendar.MONTH, monthOfYear);
dateAndTime.set(Calendar.DAY_OF_MONTH, dayOfMonth);
updatelLabel();
¥
s

TimePickerDialog.OnTimeSetListener t=new TimePickerDialog.OnTimeSetListener()
{
public void onTimeSet(TimePicker view, int hourOfDay,
int minute) {
dateAndTime.set(Calendar.HOUR_OF_DAY, hourOfDay);
dateAndTime.set(Calendar.MINUTE, minute);
updatelLabel();
}
s
¥

The "model" for this activity is just a Calendar instance, initially set to be the
current date and time. We pour it into the view via a DateFormat formatter.
In the updateLabel() method, we take the current calendar, format it, and
put it in the Textview.

Each button has a corresponding method that will get control when the
user clicks it (chooseDate() and chooseTime()). When the button is clicked,
either a DatePickerDialog or a TimePickerDialog is shown. In the case of the
DatePickerDialog, we give it a OnDateSetListener callback that updates the
Calendar with the new date (year, month, day of month). We also give the
dialog the last-selected date, getting the values out of the calendar. In the
case of the TimePickerDialog, it gets a OnTimeSetListener callback to update
the time portion of the calendar, the last-selected time, and a true
indicating we want 24-hour mode on the time selector.

With all this wired together, the resulting activity looks like this:

162

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

EhMl & &:50PMm

ChronoDemo

g A
Set the Date
Set the Time

Figure 62. The ChronoDemo sample application, as initially launched

EhMl & &:51pPm

G Sat, August 23, 2008

+ f + +
Aug il 23 § 2008

Cancel

Figure 63. The same application, showing the date picker dialog

163

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

EhMl & &:51pPMm

Cancel

Figure 64. The same application, showing the time picker dialog

Time Keeps Flowing Like a River

If you want to display the time, rather than have users enter the time, you
may wish to use the DigitalClock or AnalogClock widgets. These are
extremely easy to use, as they automatically update with the passage of
time. All you need to do is put them in your layout and let them do their
thing.

For example, from the Fancy/Clocks sample application, here is an XML
layout containing both pigitalClock and AnalogClock:

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent”
>
<AnalogClock android:id="@+id/analog"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_alignParentTop="true"
/>

164

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

<DigitalClock android:id="@+id/digital”
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_below="@id/analog"
/>
</RelativelLayout>

Without any Java code other than the generated stub, we can build this
project and get the following activity:

Ml & 6:52Pm

ClocksDemo

Figure 65. The ClocksDemo sample application

If you are looking for more of a timer, Chronometer may be of interest. With
a Chronometer, you can track elapsed time from a starting point. You simply
tell it when to start() and stop(), and possibly override the format string
that displays the text:

165

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

M@ 9:23 Am

Initial format: 00:12

Set format string
Clear format string

Figure 66. The Views/Chronometer APl Demo from the Android 2.0 SDK

Seeking Resolution

The seekBar is an input widget, allowing the user to select a value along a
range of possible values:

166

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

Ml @ 9:38 AM

Figure 67. The Views/SeekBar APl Demo from the Android 2.0 SDK

The user can either drag the "thumb" or click on either side of it to
reposition the thumb. The thumb then points to a particular value along a
range. That range will be @ to some maximum value, 100 by default, that
you control via a call to setMax(). You can find out what the current position
is via getProgress(), or find out when the user makes a change to the
thumb's position by registering a listener via setonSeekBarChangeListener().

We saw another variation on this theme with the RatingBar in the previous
chapter.

Putting It On My Tab

The general Android philosophy is to keep activities short and sweet. If
there is more information than can reasonably fit on one screen, albeit
perhaps with scrolling, then it perhaps belongs in another activity kicked
off via an Intent, as will be described later in this book. However, that can
be complicated to set up. Moreover, sometimes there legitimately is a lot of
information that needs to be collected to be processed as an atomic
operation.

167

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

In a traditional UI, you might use tabs to accomplish this end, such as a
JTabbedPane in Java/Swing. In Android, you now have an option of using a
TabHost container in much the same way - a portion of your activity's screen
is taken up with tabs which, when clicked, swap out part of the view and
replace it with something else. For example, you might have an activity with
a tab for entering a location and a second tab for showing a map of that
location.

Some GUI toolkits refer to "tabs" as being just the things a user clicks on to
toggle from one view to another. Some toolkits refer to "tabs" as being the
combination of the clickable button-ish element and the content that
appears when that tab is chosen. Android treats the tab buttons and
contents as discrete entities, so we will call them "tab buttons" and "tab
contents” in this section.

The Pieces

There are a few widgets and containers you need to use in order to set up a
tabbed portion of a view:

« TabHost is the overarching container for the tab buttons and tab
contents

+ Tabwidget implements the row of tab buttons, which contain text
labels and optionally contain icons

+ Framelayout is the container for the tab contents; each tab content is
a child of the FrameLayout

This is similar to the approach that Mozilla's XUL takes. In XUL's case, the
tabbox element corresponds to Android's TabHost, the tabs element
corresponds to TabWidget, and tabpanels corresponds to the FrameLayout.

For example, here is a layout definition for a tabbed activity, from
Fancy/Tab:

<?xml version="1.0" encoding="utf-8"?>
<TabHost xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/tabhost"

168

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

android:layout_width="fill_parent"
android:layout_height="fill_parent">
<LinearLayout
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">
<TabWidget android:id="@android:id/tabs"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>
<FramelLayout android:id="@android:id/tabcontent”
android:layout_width="fill_parent"
android:layout_height="fill_parent">
<AnalogClock android:id="@+id/tab1l"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:layout_centerHorizontal="true"
/>
<Button android:id="@+id/tab2"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:text="A semi-random button"
/>
</FrameLayout>
</LinearLayout>
</TabHost>

Note that the Tabwidget and FrameLayout are indirect children of the TabHost,
and the FrameLayout itself has children representing the various tabs. In this
case, there are two tabs: a clock and a button. In a more complicated
scenario, the tabs are probably some form of container (e.g., LinearLayout)
with their own contents.

Wiring It Together

You can put these widgets in a regular Activity or a TabActivity.
TabActivity, like ListActivity, wraps a common UI pattern (activity made
up entirely of tabs) into a pattern-aware activity subclass. If you wish to use
the TabActivity, you must give the TabHost an android:id of
@android:id/tabhost. Conversely, if you do not wish to use TabActivity, you
need to get your TabHost via findviewById(), then call setup() on the TabHost,
before you do anything else.

The rest of the Java code needs to tell the TabHost what views represent the
tab contents and what the tab buttons should look like. This is all wrapped

169

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

up in TabSpec objects. You get a TabSpec instance from the host via
newTabSpec(), fill it out, then add it to the host in the proper sequence.

The two key methods on Tabspec are:

+ setContent(), where you indicate what goes in the tab content for
this tab, typically the android:id of the view you want shown when
this tab is selected

+ setIndicator(), where you provide the caption for the tab button
and, in some flavors of this method, supply a brawable to represent
the icon for the tab

Note that tab "indicators" can actually be views in their own right, if you
need more control than a simple label and optional icon.

Also note that you must call setup() on the TabHost before configuring any
of these Tabspec objects. The call to setup() is not needed if you are using
the TabActivity base class for your activity.

For example, here is the Java code to wire together the tabs from the
preceding layout example:

package com.commonsware.android.fancy;

import android.app.Activity;
import android.os.Bundle;
import android.widget.TabHost;

public class TabDemo extends Activity {
@Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

TabHost tabs=(TabHost)findViewById(R.id.tabhost);
tabs.setup();

TabHost.TabSpec spec=tabs.newTabSpec("tagl");
spec.setContent(R.id.tabl);

spec.setIndicator("Clock");
tabs.addTab(spec);

170

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

spec=tabs.newTabSpec("tag2");
spec.setContent(R.id.tab2);
spec.setIndicator("Button");
tabs.addTab(spec);

We find our TabHost via the familiar findviewById() method, then have it
setup(). After that, we get a TabSpec via newTabSpec(), supplying a tag whose
purpose is unknown at this time. Given the spec, you call setContent() and
setIndicator(), then call addTab() back on the TabHost to register the tab as
available for use. Finally, you can choose which tab is the one to show via
setCurrentTab(), providing the e-based index of the tab.

The result?

LMl @ 6:54 PM

TabDemo

Figure 68. The TabDemo sample application, showing the first tab

171

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

Al @ e:54PM

TabDemo

Button

A semi-random button

.-l
Figure 69. The same application, showing the second tab

Adding Them Up

Tabwidget is set up to allow you to easily define tabs at compile time.
However, sometimes, you want to add tabs to your activity during runtime.
For example, imagine an email client where individual email messages get
opened in their own tab, for easy toggling between messages. In this case,
you do not know how many tabs or what their contents will be until
runtime, when the user chooses to open a message.

Fortunately, Android also supports adding tabs dynamically at runtime.

Adding tabs dynamically at runtime works much like the compile-time tabs
shown above, except you use a different flavor of setContent(), one that
takes a TabHost.TabContentFactory instance. This is just a callback that will
be invoked - you provide an implementation of createTabContent() and use
it to build and return the view that becomes the content of the tab.

Let us take a look at an example (Fancy/DynamicTab).

172

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

First, here is some layout XML for an activity that sets up the tabs and
defines one tab, containing a single button:

<?xml version="1.0" encoding="utf-8"?>
<TabHost xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/tabhost"
android:layout_width="fill parent"
android:layout_height="fill_parent">
<LinearLayout
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">
<TabWidget android:id="@android:id/tabs"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>
<FrameLayout android:id="@android:id/tabcontent”
android:layout_width="fill_parent"
android:layout_height="fill_parent">
<Button android:id="@+id/buttontab”
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:text="A semi-random button"
android:onClick="addTab"
/>
</FrameLayout>
</LinearLayout>
</TabHost>

What we want to do is add new tabs whenever the button is clicked. That
can be accomplished in just a few lines of code:

package com.commonsware.android.dynamictab;

import android.app.Activity;
import android.os.Bundle;

import android.view.View;

import android.widget.AnalogClock;
import android.widget.TabHost;

public class DynamicTabDemo extends Activity {
private TabHost tabs=null;

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

tabs=(TabHost)findviewById(R.id.tabhost);
tabs.setup();

173

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

TabHost.TabSpec spec=tabs.newTabSpec("buttontab");

spec.setContent(R.id.buttontab);
spec.setIndicator("Button");
tabs.addTab(spec);

}

public void addTab(View v) {
TabHost.TabSpec spec=tabs.newTabSpec("tagl");

spec.setContent(new TabHost.TabContentFactory() {

public View createTabContent(String tag) {
return(new AnalogClock(DynamicTabDemo.this));

}
s

spec.setIndicator("Clock");
tabs.addTab(spec);

In our button's addTab() callback, we create a TabHost.TabSpec object and
give it an anonymous TabHost.TabContentFactory. The factory, in turn,
returns the view to be used for the tab - in this case, just an AnalogClock.
The logic for constructing the tab’s view could be much more elaborate,
such as using LayoutInflater to construct a view from layout XML.

Initially, when the activity is launched, we just have the one tab:

174

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

]

3:49 PM

Dynamic Tabs

Button

A semi-random button

-, _—,__—i
Figure 70. The DynamicTab application, with the single initial tab

B & 3:49 PM

Dynamic Tabs

Button Clock Clock

A semi-random button

—]
Figure 71. The DynamicTab application, with three dynamically-created tabs

175

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

Flipping Them Off

Sometimes, you want the overall effect of tabs (only some views visible at a
time), but you do not want the actual Ul implementation of tabs. Maybe
the tabs take up too much screen space. Maybe you want to switch between
perspectives based on a gesture or a device shake. Or maybe you just like
being different.

The good news is that the guts of the view-flipping logic from tabs can be
found in the viewFlipper container, which can be used in other ways than
the traditional tab.

ViewFlipper inherits from FrameLayout, just like we used to describe the
innards of a Tabwidget. However, initially, it just shows the first child view.
It is up to you to arrange for the views to flip, either manually by user
interaction, or automatically via a timer.

For example, here is a layout for a simple activity (Fancy/Flipperl) using a
Button and a ViewFlipper:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

>

<Button android:id="@+id/flip_me"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Flip Me!"
android:onClick="flip"
/>
<ViewFlipper android:id="@+id/details"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

>

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content”
android:textStyle="bold"
android:textColor="#FFOOFF00O"
android:text="This is the first panel"

/>

<TextView

176

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

/>
<TextView

/>

android:
android:
android:
android:
android:

android:
android:
android:
android:
android:

layout_width="fill_parent"
layout_height="wrap_content"

textStyle="bold"
textColor="#FFFF0000"

text="This is the second panel"

layout_width="fill parent"
layout_height="wrap_content"

textStyle="bold"
textColor="#FFFFFF0Q"

text="This is the third panel”

</ViewFlipper>
</LinearLayout>

Notice that the layout defines three child views for the viewFlipper, each a
Textview with a simple message. Of course, you could have very
complicated child views, if you so chose.

To manually flip the views, we need to hook into the Button and flip them
ourselves when the button is clicked:

ViewFlipper

@0verride

}

public void

package com.commonsware.android.flipperl;

import android.app.Activity;
import android.os.Bundle;

import android.view.View;

import android.widget.ViewFlipper;

public class FlipperDemo extends Activity {

flipper;

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

flipper=(ViewFlipper)findViewById(R.id.details);

flip(View v) {

flipper.showNext();

This is just a matter of calling showNext() on the viewFlipper, like you can on
any ViewAnimator class.

Subscribe to updates at http://commonsware.com

177

Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

The result is a trivial activity: click the button, and the next Textview in
sequence is displayed, wrapping around to the first after viewing the last:

£ G5l @ 3:49 PM

FlipperDemo

Flip Me!

Th the first panel

Figure 72. The Flipperl application, showing the first panel

£l SRl @ 3:49 PM
FlipperDemo

Flip Me!

Figure 73. The same application, after switching to the second panel

178

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

This, of course, could be handled more simply by having a single Textview
and changing the text and color on each click. However, you can imagine
that the viewFlipper contents could be much more complicated, like the
contents you might put into a Tabview.

As with the TabWidget, sometimes, your ViewFlipper contents may not be
known at compile time. As with Tabwidget, though, you can add new
contents on the fly with ease.

For example, let us look at another sample activity (Fancy/Flipper2), using
this layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<ViewFlipper android:id="@+id/details"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
</ViewFlipper>
</LinearLayout>

Notice that the viewFlipper has no contents at compile time. Also note that
there is no Button for flipping between the contents - more on this in a
moment.

For the viewFlipper contents, we will create large Button widgets, each
containing one of the random words used in many chapters in this book.
And, we will set up the viewFlipper to automatically rotate between the
Button widgets:

package com.commonsware.android.flipper2;

import android.app.Activity;
import android.os.Bundle;

import android.view.View;

import android.view.ViewGroup;
import android.widget.Button;
import android.widget.ViewFlipper;

179

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

public class FlipperDemo2 extends Activity {

static String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
"consectetuer"”, "adipiscing", "elit",
"morbi", "vel", "ligula", "vitae",
"arcu", "aliquet", "mollis", "etiam",
"vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque",
"augue", "purus"};

ViewFlipper flipper;

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

flipper=(ViewFlipper)findViewById(R.id.details);

for (String item : items) {
Button btn=new Button(this);

btn.setText(item);

flipper.addView(btn,
new ViewGroup.LayoutParams(
ViewGroup.LayoutParams.FILL_PARENT,
ViewGroup.LayoutParams.FILL_PARENT));
¥

flipper.setFlipInterval(2000);
flipper.startFlipping();

After iterating over the funky words, turning each into a Button, and adding
the Button as a child of the viewFlipper, we set up the flipper to
automatically flip between children (flipper.setFlipInterval(2000);) and
to start flipping (flipper.startFlipping();).

The result is an endless series of buttons, each appearing, then being
replaced by the next button in sequence after 2 seconds, wrapping around
to the first after the last has been shown:

180

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

T Ml @ 7:00em

consectetuer

Figure 74. The Flipper2 application

The auto-flipping viewFlipper is useful for status panels or other situations
where you have a lot of information to display, but not much room. The
key is that, since it automatically flips between views, expecting users to
interact with individual views is dicey - the view might switch away part-
way through their interaction.

Getting In Somebody's Drawer

For a long time, Android developers yearned for a sliding drawer container
that worked like the one on the home screen, containing the icons for
launching applications. The official implementation was in the open source
code but was not part of the SDK...until Android 1.5, when they released
slidingDrawer for others to use.

Unlike most other Android containers, SlidingDrawer moves, switching
from a closed to an open position. This puts some restrictions on what
container the slidingbrawer itself can be in. It needs to be a container that

181

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

allows multiple widgets to sit atop each other. RelativeLayout and
FrameLayout satisfy this requirement, where FrameLayout is a container
purely for stacking widgets atop one another. On the flip side, LinearLayout
does not allow widgets to stack (they fall one after another in a row or
column), and so you should not have a slidingbrawer as an immediate child
of a LinearLayout.

Here is a layout, showing a SlidingDrawer in a FrameLayout, from the
Fancy/DrawerDemo project:

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:background="#FF4444CC"
>
<SlidingDrawer
android:id="@+id/drawer"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:handle="@+id/handle"
android:content="@+id/content">
<ImageView
android:id="@id/handle"
android:layout_width="wrap_content”
android:layout_height="wrap_content"
android:src="@drawable/tray_handle_normal"
/>
<Button
android:id="@id/content"
android:layout_width="fill_parent"
android:layout_height="fill_parent”
android:text="I'm in here!"
/>
</SlidingDrawer>
</FrameLayout>

The slidingbrawer should contain two things:

1. A handle, frequently an Imageview or something along those lines,
such as the one used here, pulled from the Android open source
project

2. The contents of the drawer itself, usually some sort of container,
though in this case we are using a Button

182

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

Moreover, slidingbrawer needs to know the android:id values of the handle
and contents, via the android:handle and android:content attributes,
respectively. This tells the drawer how to animate itself as it slides open and
closed.

Here is what the slidingDrawer looks like closed, using the supplied handle:

< Gl @ 8:28 pm

DrawerDemo

Figure 75. A SlidingDrawer, closed

And here it is open, showing its contents:

183

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

O € 828w

I'm in here!

[k |
Figure 76. A SlidingDrawer, open

As one might expect, you can open and close the drawer from Java code as
well as via user touch events. However, you have two sets of these methods,
ones that take place instantaneously (open(), close(), and toggle()) and
ones that wuse the animation (animateOpen(), animateClose(),
animateToggle()). You can also lock() and unlock() the drawer; while locked,
the drawer will not respond to touch events.

You can also register three types of callbacks if you wish:

1. Alistener to be invoked when the drawer is opened
2. Alistener to be invoked when the drawer is closed

3. A listener to be invoked when the drawer is "scrolled" (i.e., the user
drags or flings the handle)

For example, the Launcher's slidingbrawer toggles the icon on the handle
from open to closed to "delete" (if you long-tap something on the desktop).
It accomplishes this, in part, through callbacks like these.

184

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

SlidingDrawer can be vertical or horizontal. Note, though, that it keeps its
orientation despite the screen orientation. In other words, if you rotate the
Android device or emulator running bDrawerDemo, the drawer always opens
from the bottom - it does not always "stick" to the original side it opened
from. This means that if you want the drawer to always open from the same
side, like the Launcher does, you will need separate layouts for portrait
versus landscape, a topic we discuss in the chapter on resources.

Other Good Stuff

Android offers AbsoluteLayout, where the contents are laid out based on
specific coordinate positions. You tell AbsoluteLayout where to place a child
in precise X,Y coordinates, and Android puts it there, no questions asked.
On the plus side, this gives you precise positioning. On the minus side, it
means your views will only look "right" on screens of a certain dimension,
or it requires you to write a bunch of code to adjust the coordinates based
on screen size. Since Android screens might run the gamut of sizes, plus
have new sizes crop up periodically, using AbsoluteLayout could get quite
annoying. Also, note that AbsoluteLayout is officially deprecated, meaning
that while it is available to you, its use is discouraged.

Android also has the ExpandableListview. This provides a simplified tree
representation, supporting two levels of depth: groups and children.
Groups contain children; children are "leaves" of the tree. This requires a
new set of adapters, since the ListAdapter family does not provide any sort
of group information for the items in the list.

Here are some other widgets available in Android beyond those covered so
far in this book:

+ CheckedTextView: a TextView that can either have a checkbox or a
radio button next to it, used with single-choice and multi-choice
lists

+ Chronometer: a stopwatch-style countdown timer

« Gallery: a horizontal scrolling selection widget, designed for
thumbnail previews of images (e.g., camera photos, album covers)

185

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

« MultiAutoCompleteTextView: like an AutoCompleteTextview, except that
the user can make multiple choices from the drop-down list, rather
than just one

+ QuickContactBadge: given the identity of a contact from the user's
contacts database, displays a roster of icons representing actions to
be performed on that contact (place a call, send a text message,
send an email, etc.)

« ToggleButton: a two-state button where the states are indicated by a
"light" and prose ("ON", "OFF") instead of a checkmark

« Viewswitcher (and the ImageSwitcher and TextSwitcher subclasses):
like a simplified viewFlipper for toggling between two views

186

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 14
The Input Method Framework

Android 1.5 introduced the input method framework (IMF), which is
commonly referred to as "soft keyboards". However, the "soft keyboard"
term is not necessarily accurate, as IMF could be used for handwriting
recognition or other means of accepting text input via the screen.

Keyboards, Hard and Soft

Some Android devices have a hardware keyboard that is visible some of the
time (when it is slid out). A few Android devices have a hardware keyboard
that is always visible (so-called "bar" or "slab" phones). Most Android
devices, though, have no hardware keyboard at all.

The IMF handles all of these scenarios. In short, if there is no hardware
keyboard, an input method editor (IME) will be available to the user when
they tap on an enabled EditText.

This requires no code changes to your application...if the default
functionality of the IME is what you want. Fortunately, Android is fairly
smart about guessing what you want, so it may be you can just test with the
IME but otherwise make no specific code changes.

Of course, the keyboard may not quite behave how you would like. For
example, in the Basic/Field sample project, the FieldDemo activity has the
IME overlaying the multiple-line EditText:

187

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Input Method Framework

T | 12:35Pm

FieldDemo

Licensed under the Apache License,
Version 2.0 (the "License"); you may
not use this file exceptin

compliance with the License. You

qw e r ty ui

a s df gh j k|l

£ 'z x cvbnmoxm

P

Figure 77. The input method editor, as seen in the FieldDemo sample
application

It would be nice to have more control over how this appears, and for other
behavior of the IME. Fortunately, the framework as a whole gives you many
options for this, as is described over the bulk of this chapter.

Tailored To Your Needs

Android 1.1 and earlier offered many attributes on EditText widgets to
control their style of input, such as android:password to indicate a field
should be for password entry (shrouding the password keystrokes from
prying eyes). Starting in Android 1.5, with the IMF, many of these have been
combined into a single android:inputType attribute.

The android:inputType attribute takes a class plus modifiers, in a pipe-
delimited (where | is the pipe character). The class generally describes what
the user is allowed to input, and this determines the basic set of keys
available on the soft keyboard. The available classes are:

+ text (the default)

. number

188

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Input Method Framework

* phone
* datetime
. date

. time

Many of these classes offer one or more modifiers, to further refine what
the user will be entering. To help explain those, take a look at the
res/layout/main.xml file from the InputMethod/IMEDemol project:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent”
android:stretchColumns="1"
>
<TableRow>
<TextView
android:text="No special rules:"
/>
<EditText
/>
</TableRow>
<TableRow>
<TextView
android:text="Email address:"
/>
<EditText
android:inputType="text|textEmailAddress"
/>
</TableRow>
<TableRow>
<TextView
android:text="Signed decimal number:"
/>
<EditText
android:inputType="number |numberSigned|numberDecimal"
/>
</TableRow>
<TableRow>
<TextView
android:text="Date:"
/>
<EditText
android:inputType="date"
/>
</TableRow>
<TableRow>
<TextView
android:text="Multi-line text:"
/>

189

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Input Method Framework

<EditText
android:inputType="text|textMultilLine|textAutoCorrect"
android:minLines="3"
android:gravity="top"
/>
</TableRow>
</TablelLayout>

Here, you will see a TableLayout containing five rows, each demonstrating a
slightly different flavor of EditText:

1.

One has no attributes at all on the EditText, meaning you get a plain
text entry field

One has android:inputType = "text|textEmailAddress", meaning it is
text entry, but specifically seeks an email address

One allows for signed decimal numeric input, via android:inputType
= "number|numberSigned|numberDecimal”

One is set up to allow for data entry of a date (android:inputType =
"date")

The last allows for multi-line input with auto-correction of probable
spelling errors (android:inputType = "text|textMultiline|
textAutoCor‘r‘ect")

The class and modifiers tailor the keyboard. So, a plain text entry field
results in a plain soft keyboard:

190

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Input Method Framework

N & 9:19 Am

IMEDemo1

No cial rules:
Email at

decimal number:

qwe r tyui/olp
a s df gh j k|l

£ 'z x cvbnmoxm

!
Figure 78. A standard input method editor (a.k.a., soft keyboard)

An email address field puts the @ symbol on the soft keyboard, at the cost of
a smaller spacebar:

Ml & 9:19 am

D e e e e

qwe r t yilu

a s df gh/j kil

2 'z x cvbnmcax

(@] . Next

—_

Figure 79. The input method editor for email addresses

191

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Input Method Framework

Numbers and dates restrict the keys to numeric keys, plus a set of symbols
that may or may not be valid on a given field:

18 P21 131 14 151 16 17 F81 19 [0

@# $ % & *

Figure 80. The input method editor for signed decimal numbers

And so on.

By choosing the appropriate android:inputType, you can give the user a soft
keyboard that best suits what it is they should be entering.

Tell Android Where It Can Go

You may have noticed a subtle difference between the first and second
input method editors, beyond the addition of the @ key. If you look in the
lower-right corner of the soft keyboard, the second field's editor has a
"Next" button, while the first field's editor has a newline button.

This points out two things:

1. EditText widgets are multi-line by default if you do not specify
android:inputType

192

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Input Method Framework

2. You can control what goes on with that lower-right-hand button,
called the accessory button

By default, on an EditText where you have specified android:inputType, the
accessory button will be "Next", moving you to the next EditText in
sequence, or "Done", if you are on the last EditText on the screen. You can
manually stipulate what the accessory button will be labeled via the
android:imeOptions attribute. For example, in the res/layout/main.xml from
InputMethod/IMEDemo2, you will see an augmented version of the previous
example, where two input fields specify what their accessory button should
look like:

<?xml version="1.0" encoding="utf-8"?>
<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent”
>
<TablelLayout
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:stretchColumns="1"
>
<TableRow>
<TextView
android:text="No special rules:
/>
<EditText
/>
</TableRow>
<TableRow>
<TextView
android:text="Email address:"
/>
<EditText
android:inputType="text|textEmailAddress"
android:imeOptions="actionSend"
/>
</TableRow>
<TableRow>
<TextView
android:text="Signed decimal number:"
/>
<EditText
android:inputType="number|numberSigned|numberDecimal™
android:imeOptions="actionDone"
/>
</TableRow>
<TableRow>
<TextView

193

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Input Method Framework

android:text="Date:"
/>
<EditText
android:inputType="date"
/>
</TableRow>
<TableRow>
<TextView
android:text="Multi-line text:"
/>
<EditText
android:inputType="text|textMultiline|textAutoCorrect"
android:minLines="3"
android:gravity="top"
/>
</TableRow>
</TableLayout>
</Scrollview>

Here, we attach a "Send" action to the accessory button for the email
address (android:imeOptions = "actionSend"), and the "Done" action on the
middle field (android:imeOptions = "actionDone").

By default, "Next" will move the focus to the next EditText and "Done" will
close up the input method editor. However, for those, or for any other ones
like "Send", you can use setOnEditorActionListener() on EditText
(technically, on the Textview superclass) to get control when the accessory
button is clicked or the user presses the <enter> key. You are provided with
a flag indicating the desired action (e.g., IME_ACTION_SEND), and you can then
do something to handle that request (e.g., send an email to the supplied
email address).

Fitting In

You will notice that the IMEDemo2 layout shown above has another difference
from its IMEDemol predecessor: the use of a Scrollview container wrapping
the TableLayout. This ties into another level of control you have over the
input method editors: what happens to your activity's own layout when the
input method editor appears?

There are three possibilities, depending on circumstances:

194

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Input Method Framework

« Android can "pan” your activity, effectively sliding the whole layout
up to accommodate the input method editor, or overlaying your
layout, depending on whether the EditText being edited is at the top
or bottom. This has the effect of hiding some portion of your UI.

« Android can resize your activity, effectively causing it to shrink to a
smaller screen dimension, allowing the input method editor to sit
below the activity itself. This is great when the layout can readily be
shrunk (e.g., it is dominated by a list or multi-line input field that
does not need the whole screen to be functional).

« In landscape mode, Android may display the input method editor
full-screen, obscuring your entire activity. This allows for a bigger
keyboard and generally easier data entry.

Android controls the full-screen option purely on its own. And, by default,
Android will choose between pan and resize modes depending on what
your layout looks like. If you want to specifically choose between pan and
resize, you can do so via an android:windowSoftInputMode attribute on the
<activity> element in your AndroidManifest.xml file. For example, here is
the manifest from IMEDemo2:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.imf.two" android:versionCode="1"
android:versionName="1.0">
<application android:label="@string/app_name" android:icon="@drawable/cw">
<activity android:name=".IMEDemo2" android:label="@string/app_name"
android:windowSoftInputMode="adjustResize">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>
</activity>
</application>
<supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

Because we specified resize, Android will shrink our layout to
accommodate the input method editor. With the scrollview in place, this
means the scroll bar will appear as needed:

195

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Input Method Framework

THI @ 10:58 AM

| IMEDemo2

" al num h': " _

Emall adt

qw e r ty ui

a s df gh j k|l

£ 'z x cvbnmoxm

P

Figure 81. The shrunken, scrollable layout

Jane, Stop This Crazy Thing!

Sometimes, you need the input method editor to just go away. For example,
if you make the action button be "Search", the user tapping that button will
not automatically hide the editor.

To hide the editor, you will need to make a call to the InputMethodManager, a
system service that controls these input method editors:

InputMethodManager
mgr=(InputMethodManager)getSystemService (INPUT_METHOD_SERVICE);

mgr.hideSoftInputFromWindow(fld.getWindowToken(), 9);

(where f1d is the EditText whose input method editor you want to hide)

This will always close the input method editor. However, bear in mind that
there are two ways for a user to have opened that input method editor in

the first place:

196

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Input Method Framework

1. If their device does not have a hardware keyboard exposed, and
they tap on the EditText, the input method editor should appear

2. If they previously dismissed the editor, or if they are using the
editor for a widget that does not normally pop one up (e.g.,
Listview), and they long-tap on the MENU button, the input
method editor should appear

If you only want to close the input method editor for the first scenario, but
not the second, use InputMethodManager.HIDE_IMPLICIT_ONLY as a flag for the
second parameter to your call to hideSoftInputFromWindow(), instead of the o
shown in the previous example.

197

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 15

Applying Menus

Like applications for the desktop and some mobile operating systems,
Android supports activities with "application" menus. Most Android
phones will have a dedicated menu key for popping up the menu; other
devices will offer alternate means for triggering the menu to appear, such as
the on-screen button used by the ARCHOS 5 Android tablet.

Also, as with many GUI toolkits, you can create "context menus”. On a
traditional GUI, this might be triggered by the right-mouse button. On
mobile devices, context menus typically appear when the user "taps-and-
holds" over a particular widget. For example, if a Textview had a context
menu, and the device was designed for finger-based touch input, you could
push the Textview with your finger, hold it for a second or two, and a pop-
up menu will appear for the user to choose from.

Flavors of Menu

Android considers the two types of menu described above as being the
"options menu" and "context menu". The options menu is triggered by
pressing the hardware "Menu" button on the device, while the context
menu is raised by a tap-and-hold on the widget sporting the menu.

In addition, the options menu operates in one of two modes: icon and
expanded. When the user first presses the "Menu" button, the icon mode
will appear, showing up to the first six menu choices as large, finger-

199

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

friendly buttons in a grid at the bottom of the screen. If the menu has more
than six choices, the sixth button will become "More" - clicking that option
will bring up the expanded mode, showing the remaining choices not
visible in the regular menu. The menu is scrollable, so the user can get to
any of the menu choices.

Menus of Options

Rather than building your activity's options menu during onCreate(), the
way you wire up the rest of your Ul, you instead need to implement
onCreateOptionsMenu(). This callback receives an instance of Menu.

The first thing you should do is chain upward to the superclass
(super.onCreateOptionsMenu(menu)), so the Android framework can add in
any menu choices it feels are necessary. Then, you can go about adding
your own options, described below.

If you will need to adjust the menu during your activity's use (e.g., disable a
now-invalid menu choice), just hold onto the Menu instance you receive in
onCreateOptionsMenu(). Or, implement onPrepareOptionsMenu(), which is
called just before displaying the menu each time it is requested.

Given that you have received a Menu object via onCreateOptionsMenu(), you
add menu choices by calling add(). There are many flavors of this method,
which require some combination of the following parameters:

« A group identifier (int), which should be NONE unless you are
creating a specific grouped set of menu choices for use with
setGroupCheckable() (see below)

+ A choice identifier (also an int), for use in identifying this choice in
the onoptionsItemSelected() callback when a menu choice is chosen

« An order identifier (yet another int), for indicating where this menu
choice should be slotted if the menu has Android-supplied choices
alongside your own - for now, just use NONE

« The text of the menu choice, as a String or a resource 1D

200

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

The add() family of methods all return an instance of MenuItem, where you
can adjust any of the menu item settings you have already set (e.g., the text
of the menu choice). You can also set the shortcuts for the menu choice -
single-character mnemonics that choose that menu choice when the menu
is visible. Android supports both an alphabetic (or "qwerty") set of
shortcuts and a numeric set of shortcuts. These are set individually by
calling setAlphabeticShortcut() and setNumericShortcut() respectively. The
menu is placed into alphabetic shortcut mode by calling setQwertyMode() on
the menu with a true parameter.

The choice and group identifiers are keys used to unlock additional menu
features, such as:

+ Calling MenuItem#setCheckable() with a choice identifier, to control if
the menu choice has a two-state checkbox alongside the title, where
the checkbox value gets toggled when the user chooses that menu
choice

« Calling Menu#setGroupCheckable() with a group identifier, to turn a
set of menu choices into ones with a mutual-exclusion radio button
between them, so one out of the group can be in the "checked" state
at any time

Finally, you can create fly-out sub-menus by calling addsubMenu(), supplying
the same parameters as addMenu(). Android will eventually call
onCreatePanelMenu(), passing it the choice identifier of your sub-menu,
along with another Menu instance representing the sub-menu itself. As with
onCreateOptionsMenu(), you should chain upward to the superclass, then add
menu choices to the sub-menu. One limitation is that you cannot
indefinitely nest sub-menus - a menu can have a sub-menu, but a sub-
menu cannot have a sub-sub-menu.

If the user makes a menu choice, your activity will be notified via the
onOptionsItemSelected() callback that a menu choice was selected. You are
given the MenuItem object corresponding to the selected menu choice. A
typical pattern is to switch() on the menu ID (item.getItemId()) and take
appropriate behavior. Note that onoptionsItemSelected() is used regardless
of whether the chosen menu item was in the base menu or in a submenu.

201

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

Menus in Context

By and large, context menus use the same guts as option menus. The two
main differences are how you populate the menu and how you are informed
of menu choices.

First, you need to indicate which widget(s) on your activity have context
menus. To do this, call registerForContextMenu() from your activity,
supplying the view that is the widget needing a context menu.

Next, you need to implement onCreateContextMenu(), which, among other
things, is passed the view you supplied in registerForContextMenu(). You can
use that to determine which menu to build, assuming your activity has
more than one.

The onCreateContextMenu() method gets the ContextMenu itself, the view the
context menu is associated with, and a ContextMenu.ContextMenuInfo, which
tells you which item in the list the user did the tap-and-hold over, in case
you want to customize the context menu based on that information. For
example, you could toggle a checkable menu choice based upon the current
state of the item.

It is also important to note that onCreateContextMenu() gets called for each
time the context menu is requested. Unlike the options menu (which is
only built once per activity), context menus are discarded once they are
used or dismissed. Hence, you do not want to hold onto the supplied
ContextMenu object; just rely on getting the chance to rebuild the menu to
suit your activity's needs on an on-demand basis based on user actions.

To find out when a context menu choice was chosen, implement
onContextItemSelected() on the activity. Note that you only get the MenuItem
instance that was chosen in this callback. As a result, if your activity has
two or more context menus, you may want to ensure they have unique
menu item identifiers for all their choices, so you can tell them apart in this
callback. Also, you can call getMenuInfo() on the MenuItem to get the
ContextMenu.ContextMenuInfo you received in onCreateContextMenu().

202

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

Otherwise, this callback behaves the same as onOptionsItemSelected() as is

described above.

Taking a Peek

In the sample project Menus/Menus, you will find an amended version of the
Listview sample (List) with associated menus. Since the menus do not
affect the layout, the XML layout file needs not change and is not reprinted

here.

However, the Java code has a few new behaviors:

package com.commonsware.android.menus;

import android.app.AlertDialog;
import android.app.ListActivity;
import android.content.DialogInterface;
import android.os.Bundle;

import android.view.ContextMenu;
import android.view.Menu;

import android.view.MenuItem;
import android.view.View;

import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.EditText;
import android.widget.ListView;
import android.widget.TextView;
import java.util.Arraylist;

public class MenuDemo extends ListActivity {

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet", "consectetuer", "adipiscing", "elit",
"morbi", "vel", "ligula", "vitae", "arcu", "aliquet",
"mollis", "etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

public static final int MENU_ADD = Menu.FIRST+1;

public static final int MENU_RESET = Menu.FIRST+2;

public static final int MENU_CAP = Menu.FIRST+3;

public static final int MENU_REMOVE = Menu.FIRST+4;

private ArraylList<String> words=null;

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

initAdapter();
registerForContextMenu(getListView());

}

203

Subscribe to updates at http://commonsware.com

Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

@Override

public boolean onCreateOptionsMenu(Menu menu) {
menu
.add(Menu.NONE, MENU_ADD, Menu.NONE, "Add")
.setIcon(R.drawable.ic_menu_add);
menu
.add(Menu.NONE, MENU_RESET, Menu.NONE, "Reset")
.setIcon(R.drawable.ic_menu_refresh);

return(super.onCreateOptionsMenu(menu));

}

@0verride
public void onCreateContextMenu(ContextMenu menu, View v,
ContextMenu.ContextMenuInfo menuInfo) {
menu.add(Menu.NONE, MENU_CAP, Menu.NONE, "Capitalize");
menu.add(Menu.NONE, MENU_REMOVE, Menu.NONE, "Remove");

}

@Override
public boolean onOptionsItemSelected(MenuItem item) {
switch (item.getItemId()) {
case MENU_ADD:
add();
return(true);

case MENU_RESET:
initAdapter();
return(true);

}

return(super.onOptionsItemSelected(item));

}

@Override
public boolean onContextItemSelected(Menultem item) {
AdapterView.AdapterContextMenuInfo info=
(AdapterView.AdapterContextMenuInfo)item.getMenuInfo();
ArrayAdapter<String> adapter=(ArrayAdapter<String>)getListAdapter();

switch (item.getItemId()) {
case MENU_CAP:
String word=words.get(info.position);

word=word.toUpperCase();

adapter.remove (words.get(info.position));
adapter.insert(word, info.position);

return(true);

case MENU_REMOVE:
adapter.remove(words.get(info.position));

204

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

return(true);

}

return(super.onContextItemSelected(item));

}

private void initAdapter() {
words=new ArrayList<String>();

for (String s : items) {
words.add(s);
}

setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_1, words));

}

private void add() {
final View addView=getLayoutInflater().inflate(R.layout.add, null);

new AlertDialog.Builder(this)
.setTitle("Add a Word")
.setView(addview)
.setPositiveButton("0OK",
new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog,
int whichButton) {
ArrayAdapter<String> adapter=(ArrayAdapter<String>)getListAdapter();
EditText title=(EditText)addView.findViewById(R.id.title);

adapter.add(title.getText().toString());

}
b))

.setNegativeButton("Cancel”, null)
.show();

In onCreate(), we register our Listview widget as having a context menu. We
also delegate loading the adapter to an initAdapter() private method, one
that copies the data out of our static String array and pours it into an
ArrayList, using the ArrayList for the ArrayAdapter. The reason: we want to
be able to change the contents of the list on the fly, and that is much easier
if you use an ArrayList rather than a ordinary string array.

For the options menu, we override onCreateOptionsMenu() and add two
menu items, one to add a new word to the list and one to reset the words to
their initial state. These menu items have IDs defined locally as static data

205

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

members (MENU_ADD and MENU_RESET), and they also sport icons copied out of
the Android open source project. If the user displays the menu, it looks like
this:

LM & 2:37em

amet

consectetuer

@ [¥
Add Reset

Figure 82. The MenuDemo sample application and its options menu

We also override onOptionsItemSelected(), which will be called if the user
makes a choice from the menu. The supplied MenuItem has a getItemId()
method that should map to either MENU_ADD or MENU_RESET. In the case of
MENU_ADD, we call a private add() method that displays an AlertDialog with a
custom View as its contents, inflated from res/layout/add.xml:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout_width="fill_parent"
android:layout_height="wrap_content”
>
<TextView
android:text="Word:"
android:layout_width="wrap_content”
android:layout_height="wrap_content"
/>
<EditText

206

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

android:id="@+id/title"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_marginLeft="4dip"
/>

</LinearLayout>

That gives us a dialog like this one:

L Ml @ 2:38em

@ Add a Word

Figure 83. The same application, showing the add-word dialog

If the user clicks the OK button, we get our ArrayAdapter and call add() on
it, adding the entered word to the end of the list.

If the user chooses MENU_RESET, we call initAdapter() again, setting up a new
ArrayAdapter and attaching the new one to our ListActivity.

For the context menu, we override onCreateContextMenu(). Once again, we
define a pair of menu items with local IDs, MENU_CAP (to capitalize the long-
tapped-upon word) and MENU_REMOVE (to remove the word). Since context

207

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

menus have no icons, we can skip that part. That gives the user a context
menu if they long tap on a word:

T Ml & 2:39em

Capitalize

Remove

Figure 84. The same application, showing the context menu

We also override onContextMenuSelected(). Since this is a context menu for a
Listview, our MenuItem has some extra information for us - specifically,
which item was long-tapped-upon in the list. To do that, we call
getMenuInfo() on the MenuItem and cast the result to be an
AdapterView.AdapterContextMenuInfo. That object, in turn, has a position
data member, which is the index into our array of the word the user chose.
From there, we work with our ArrayAdapter to capitalize or remove the
word, as requested.

Yet More Inflation

We saw earlier in this book that you can describe views via XML files and
"inflate" them into actual view objects at runtime. Android also allows you
to describe menus via XML files and "inflate" them when a menu is called
for. This helps you keep your menu structure separate from the

208

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

implementation of menu-handling logic, and it provides easier ways to
develop menu-authoring tools.

Menu XML Structure

Menu XML goes in res/menu/ in your project tree, alongside the other types
of resources that your project might employ. As with layouts, you can have
several menu XML files in your project, each with their own filename and
the .xml extension.

For example, from the Menus/Inflation sample project, here is a menu called
option.xml:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
<item android:id="@+id/add"
android:title="Add"
android:icon="@drawable/ic_menu_add" />
<item android:id="@+id/reset"
android:title="Reset"
android:icon="@drawable/ic_menu_refresh" />
</menu>

+ You must start with a menu root element

+ Inside a menu are item elements and group elements, the latter
representing a collection of menu items that can be operated upon
as a group

« Submenus are specified by adding a menu element as a child of an
item element, using this new menu element to describe the contents
of the submenu

« If you want to detect when an item is chosen, or to reference an
item or group from your Java code, be sure to apply an android:id,
just as you do with view layout XML

Menu Options and XML

Inside the item and group elements you can specify various options,
matching up with corresponding methods on Menu or MenuItem.

209

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

Title

The title of a menu item is provided via the android:title attribute on an
item element. This can be either a literal string or a reference to a string
resource (e.g., @string/foo).

Icon

Menu items optionally have icons. To provide an icon - in the form of a
reference to a drawable resource (e.g., @drawable/eject), use the
android:icon attribute on the item element.

Order

By default, the order of the items in the menu is determined by the order
they appear in the menu XML. If you want, you can change that, by
specifying the android:orderInCategory attribute on item element. This is a
o-based index of the order for the items associated with the current
category. There is an implicit default category; groups can provide an
android:menuCategory attribute to specify a different category to use for
items in that group.

Generally, though, it is simplest just to put the items in the XML in the
order you want them to appear.

Enabled

Items and groups can be enabled or disabled, controlled in the XML via the
android:enabled attribute on the item or group element. By default, items
and groups are enabled. Disabled items and groups appear in the menu but
cannot be selected. You can change an item's status at runtime via the
setEnabled() method on MenuItem, or change a group's status via
setGroupEnabled() on Menu.

210

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

Visible

Similarly, items and groups can be visible or invisible, controlled in the
XML via the android:visible attribute on the item or group element. By
default, items and groups are visible. Invisible items and groups do not
appear in the menu at all. You can change an item's status at runtime via
the setvisible() method on Menultem, or change a group's status via
setGroupVisible() on Menu.

Shortcut

Items can have shortcuts - single letters (android:alphabeticShortcut) or
numbers (android:numericShortcut) that can be pressed to choose the item
without having to use the touchscreen, D-pad, or trackball to navigate the
full menu.

Inflating the Menu

Actually using the menu, once defined in XML, is easy. Just create a
MenuInflater and tell it to inflate your menu.

The Menus/Inflation project is a clone of the Menus/Menus project, with the
menu creation converted to use menu XML resources and MenuInflater.
The option menu was converted to the XML shown previously in this
section; here is the context menu:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
<item android:id="@+id/cap"
android:title="Capitalize" />
<item android:id="@+id/remove"
android:title="Remove" />
</menu>

The Java code is nearly identical, changing mostly in the implementation of
onCreateOptionsMenu() and onCreateContextMenu():

211

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

@Override
public boolean onCreateOptionsMenu(Menu menu) {
new MenuInflater(this).inflate(R.menu.option, menu);

return(super.onCreateOptionsMenu(menu));

}

@Override
public void onCreateContextMenu(ContextMenu menu, View v,
ContextMenu.ContextMenuInfo menuInfo) {
new MenuInflater(this).inflate(R.menu.context, menu);

}

Here, we see how MenuInflater "pours in" the menu items specified in the
menu resource (e.g., R.menu.option) into the supplied Menu or ContextMenu
object.

We also need to change onOptionsItemSelected() and
onContextItemSelected() to use the android:id values specified in the XML:

@Override
public boolean onOptionsItemSelected(MenuIltem item) {
switch (item.getItemId()) {
case R.id.add:
add();
return(true);

case R.id.reset:
initAdapter();
return(true);

}

return(super.onOptionsItemSelected(item));

}

@Override
public boolean onContextItemSelected(MenuIltem item) {
AdapterView.AdapterContextMenuInfo info=
(AdapterView.AdapterContextMenuInfo)item.getMenuInfo();
ArrayAdapter<String> adapter=(ArrayAdapter<String>)getListAdapter();

switch (item.getItemId()) {
case R.id.cap:
String word=words.get(info.position);

word=word. toUpperCase();

adapter.remove(words.get(info.position));
adapter.insert(word, info.position);

212

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

return(true);

case R.id.remove:
adapter.remove(words.get(info.position));

return(true);

}

return(super.onContextItemSelected(item));

213

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 16

Fonts

Inevitably, you'll get the question “hey, can we change this font?” when
doing application development. The answer depends on what fonts come
with the platform, whether you can add other fonts, and how to apply them
to the widget or whatever needs the font change.

Android is no different. It comes with some fonts plus a means for adding
new fonts. Though, as with any new environment, there are a few
idiosyncrasies to deal with.

Love The One You're With

Android natively knows three fonts, by the shorthand names of “sans”,
“serif”, and “monospace”. These fonts are actually the Droid series of fonts,
created for the Open Handset Alliance by Ascender.

For those fonts, you can just reference them in your layout XML, if you
choose, such as the following layout from the Fonts/FontSampler sample
project:

<?xml version="1.0" encoding="utf-8"?>

<TablelLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout_height="fill_parent”
android:stretchColumns="1">
<TableRow>

215

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.ascendercorp.com/oha.html

Fonts

<TextView
android:
android:
android:
/>
<TextView
android:
android:
android:
android:
/>
</TableRow>
<TableRow>
<TextView
android:
android:
android:
/>
<TextView
android:
android:
android:
android:
/>
</TableRow>
<TableRow>
<TextView
android:
android:
android:
/>
<TextView
android:
android:
android:
android:
/>
</TableRow>
<TableRow>
<TextView
android:
android:
android:
/>
<TextView
android:
android:
android:
/>
</TableRow>

<TextView
android:
android:

text="sans:"
layout_marginRight="4px"
textSize="20sp"

id="@+id/sans"
text="Hello, world!"
typeface="sans"
textSize="20sp"

text="serif:"
layout_marginRight="4px"
textSize="20sp"

id="@+id/serif"
text="Hello, world!"
typeface="serif"
textSize="20sp"

text="monospace:"
layout_marginRight="4px"
textSize="20sp"

id="@+id/monospace”
text="Hello, world!"
typeface="monospace"
textSize="20sp"

text="Custom:"
layout_marginRight="4px"
textSize="20sp"

id="@+id/custom"
text="Hello, world!"
textSize="20sp"

<TableRow android:id="@+id/filerow">

text="Custom from File:"
layout_marginRight="4px"

Subscribe to updates at http://commonsware.com

216

Special Creative Commons BY-NC-SA 3.0 License Edition

Fonts

android:textSize="20sp"
/>
<TextView
android:id="@+id/file"
android:text="Hello, world!"
android:textSize="20sp"
/>
</TableRow>
</TablelLayout>

This layout builds a table showing short samples of five fonts. Notice how
the first three have the android:typeface attribute, whose value is one of the
three built-in font faces (e.g., “sans”).

The three built-in fonts are very nice. However, it may be that a designer,
or a manager, or a customer wants a different font than one of those three.
Or perhaps you want to use a font for specialized purposes, such as a
“dingbats” font instead of a series of PNG graphics.

The easiest way to accomplish this is to package the desired font(s) with
your application. To do this, simply create an assets/ folder in the project
root, and put your TrueType (TTF) fonts in the assets. You might, for
example, create assets/fonts/ and put your TTF files in there.

Then, you need to tell your widgets to use that font. Unfortunately, you can
no longer use layout XML for this, since the XML does not know about any
fonts you may have tucked away as an application asset. Instead, you need
to make the change in Java code:

import android.widget.TextView;
import java.io.File;

public class FontSampler extends Activity {
@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

TextView tv=(TextView)findViewById(R.id.custom);
Typeface face=Typeface.createFromAsset(getAssets(),
"fonts/HandmadeTypewriter.ttf");

tv.setTypeface(face);

217

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Fonts

File font=new File(Environment.getExternalStorageDirectory(),
"MgOpenCosmeticaBold.ttf");

if (font.exists()) {
tv=(TextView)findViewById(R.id.file);
face=Typeface.createFromFile(font);

tv.setTypeface(face);
}
else {
findViewById(R.id.filerow).setVisibility(View.GONE);
}
}
}

Here we grab the Textview for our “custom” sample, then create a Typeface
object via the static createFromAsset() builder method. This takes the
application’s AssetManager (from getAssets()) and a path within your
assets/ directory to the font you want.

Then, it is just a matter of telling the Textview to setTypeface(), providing
the Typeface you just created. In this case, we are using the Handmade
Typewriter font.

You can also load a font out of a local file and use it. The benefit is that you
can customize your fonts after your application has been distributed. On
the other hand, you have to somehow arrange to get the font onto the
device. But just as you can get a Typeface via createFromAsset(), you can get
a Typeface via createFromFile(). In our FontSampler, we look in the root of
"external storage” (typically the SD card) for the MgOpenCosmeticaBold
TrueType font file, and if it is found, we use it for the fifth row of the table.
Otherwise, we hide that row.

The results?

218

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://moorstation.org/typoasis/designers/klein07/text01/handmade.htm
http://moorstation.org/typoasis/designers/klein07/text01/handmade.htm

Fonts

5 il @ 9:31 am

Hello, world!
Hello, world!
Hello, world!

Custom from File: Hello, world!

Figure 85. The FontSampler application

We will go into more details regarding assets and local files in an upcoming
chapter.

Note that Android does not seem to like all TrueType fonts. When Android
dislikes a custom font, rather than raise an Exception, it seems to substitute
Droid Sans ("sans”) quietly. So, if you try to use a different font and it does
not seem to be working, it may be that the font in question is incompatible
with Android, for whatever reason.

Here a Glyph, There a Glyph

TrueType fonts can be rather pudgy, particularly if they support an
extensive subset of the available Unicode characters. The Handmade
Typewriter font used above runs over 70KB; the DejaVu free fonts can run
upwards of 500KB apiece. Even compressed, these add bulk to your
application, so be careful not to go overboard with custom fonts, lest your
application take up too much room on your users’ phones.

219

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Fonts

Conversely, bear in mind that fonts may not have all of the glyphs that you
need. As an example, let us talk about the ellipsis.

Android's Textview class has the built-in ability to "ellipsize” text,
truncating it and adding an ellipsis if the text is longer than the available
space. You can use this via the android:ellipsize attribute, for example.
This works fairly well, at least for single-line text.

The ellipsis that Android uses is not three periods. Rather it uses an actual
ellipsis character, where the three dots are contained in a single glyph.
Hence, any font that you use that you also use the "ellipsizing" feature will
need the ellipsis glyph.

Beyond that, though, Android pads out the string that gets rendered on-
screen, such that the length (in characters) is the same before and after
"ellipsizing". To make this work, Android replaces one character with the
ellipsis, and replaces all other removed characters with the Unicode
character 'ZERO WIDTH NO-BREAK SPACE' (u+FefF). This means the
"extra" characters after the ellipsis do not take up any visible space on
screen, yet they can be part of the string.

However, this means any custom fonts you use for Textview widgets that
you use with android:ellipsize must also support this special Unicode
character. Not all fonts do, and you will get artifacts in the on-screen
representation of your shortened strings if your font lacks this character
(e.g., rogue X's appear at the end of the line).

And, of course, Android's international deployment means your font must
handle any language your users might be looking to enter, perhaps through
a language-specific input method editor.

Hence, while using custom fonts in Android is very possible, there are
many potential problems, and so you must weigh carefully the benefits of
the custom fonts versus their potential costs.

220

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 17
Embedding the WebKit Browser

Other GUI toolkits let you use HTML for presenting information, from
limited HTML renderers (e.g., Java/Swing, wxWidgets) to embedding
Internet Explorer into .NET applications. Android is much the same, in that
you can embed the built-in Web browser as a widget in your own activities,
for displaying HTML or full-fledged browsing. The Android browser is
based on WebKit, the same engine that powers Apple's Safari Web browser.

The Android browser is sufficiently complex that it gets its own Java
package (android.webkit), though using the webview widget itself can be
simple or powerful, based upon your requirements.

A Browser, Writ Small

For simple stuff, webview is not significantly different than any other widget
in Android - pop it into a layout, tell it what URL to navigate to via Java
code, and you are done.

For example (webkit/Browser1), here is a simple layout with a webview:

<?xml version="1.0" encoding="utf-8"?>

<WebView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/webkit"
android:layout_width="fill parent"
android:layout_height="fill_parent”

/>

221

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Embedding the WebKit Browser

As with any other widget, you need to tell it how it should fill up the space
in the layout (in this case, it fills all remaining space).

The Java code is equally simple:

package com.commonsware.android.browserl;

import android.app.Activity;
import android.os.Bundle;
import android.webkit.WebView;

public class BrowserDemol extends Activity {
WebView browser;

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
browser=(WebView)findviewById(R.id.webkit);

browser.loadUrl("http://commonsware.com");

The only thing unusual with this edition of onCreate() is that we invoke
loadurl() on the webview widget, to tell it to load a Web page (in this case,
the home page of some random firm).

However, we also have to make one change to AndroidManifest.xml,
requesting permission to access the Internet:

<?xml version="1.0"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.browserli™>
<uses-permission android:name="android.permission.INTERNET"/>
<application android:icon="@drawable/cw">
<activity android:name=".BrowserDemol" android:label="BrowserDemol">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>
</activity>
</application>
<supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

222

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Embedding the WebKit Browser

If we fail to add this permission, the browser will refuse to load pages.
Permissions will be covered in greater detail in a later chapter.

The resulting activity looks like a Web browser, just with hidden scrollbars:

Ml & s:18Pm

BrowserDemo1

Home

Comm¢
All
About

CoMMONSWARE the
Comm

What We Offer The

firm's
mission

is fto

help

people

and
organizatior|

Figure 86. The Browserl sample application

As with the regular Android browser, you can pan around the page by
dragging it, while the directional pad moves you around all the focusable
elements on the page.

What is missing is all the extra stuff that make up a Web browser, such as a
navigational toolbar.

Now, you may be tempted to replace the URL in that source code with
something else, such as Google's home page or something else that relies
upon Javascript. By default Javascript is turned off in webview widgets. If you
want to enable Javascript, call getSettings().setJavaScriptEnabled(true);
on the webview instance. This notion will be covered in a bit more detail
later in this chapter.

223

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Embedding the WebKit Browser

Loading It Up

There are two main ways to get content into the webview. One, shown
above, is to provide the browser with a URL and have the browser display
that page via loadurl(). The browser will access the Internet through
whatever means are available to that specific device at the present time
(WiFj, 2G, 3G, WiMax, well-trained tiny carrier pigeons, etc.).

The alternative is to use loadData(). Here, you supply the HTML for the
browser to view. You might use this to:

« display a manual that was installed as a file with your application
package

« display snippets of HTML you retrieved as part of other processing,
such as the description of an entry in an Atom feed

« generate a whole user interface using HTML, instead of using the
Android widget set

There are two flavors of loadbata(). The simpler one allows you to provide
the content, the MIME type, and the encoding, all as strings. Typically, your
MIME type will be text/html and your encoding will be uTF-8 for ordinary
HTML.

For example, if you replace the loadurl() invocation in the previous
example with the following:

browser.loadData("<html><body>Hello, world!</body></html>",
"text/html", "UTF-8");

You get:

224

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Embedding the WebKit Browser

hMl @ s:18PMm
BrowserDemo2

Hello, world!

Figure 87. The Browser2 sample application

This is also available as a fully-buildable sample, as webkit/Browser2.

Navigating the Waters

As was mentioned above, there is no navigation toolbar with the webview
widget. This allows you to use it in places where such a toolbar would be
pointless and a waste of screen real estate. That being said, if you want to
offer navigational capabilities, you can, but you have to supply the UI.

Webview offers ways to perform garden-variety browser navigation,
including:
« reload() to refresh the currently-viewed Web page

+ goBack() to go back one step in the browser history, and canGoBack()
to determine if there is any history to go back to

« goForward() to go forward one step in the browser history, and
canGoForward() to determine if there is any history to go forward to

225

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Embedding the WebKit Browser

+ goBackOrForward() to go backwards or forwards in the browser
history, where negative numbers represent a count of steps to go
backwards, and positive numbers represent how many steps to go
forwards

+ canGoBackOrForward() to see if the browser can go backwards or
forwards the stated number of steps (following the same
positive/negative convention as goBackOrForward())

« clearcache() to clear the browser resource cache and clearHistory()
to clear the browsing history

Entertaining the Client

Particularly if you are going to use the webview as a local user interface (vs.
browsing the Web), you will want to be able to get control at key times,
particularly when users click on links. You will want to make sure those
links are handled properly, either by loading your own content back into
the webview, by submitting an Intent to Android to open the URL in a full
browser, or by some other means (see the chapter on launching activities).

Your hook into the Webview activity is via setWebviewClient(), which takes an
instance of a WebviewClient implementation as a parameter. The supplied
callback object will be notified of a wide range of events, ranging from
when parts of a page have been retrieved (onPagestarted(), etc.) to when
you, as the host application, need to handle certain user- or circumstance-
initiated events, such as:

* onTooManyRedirects()

* onReceivedHttpAuthRequest()

. etc.

A common hook will be shouldoverrideurlLoading(), where your callback is
passed a URL (plus the webview itself) and you return true if you will handle
the request or false if you want default handling (e.g., actually fetch the
Web page referenced by the URL). In the case of a feed reader application,
for example, you will probably not have a full browser with navigation built
into your reader, so if the user clicks a URL, you probably want to use an

226

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Embedding the WebKit Browser

Intent to ask Android to load that page in a full browser. But, if you have
inserted a "fake" URL into the HTML, representing a link to some activity-
provided content, you can update the webview yourself.

For example, let's amend the first browser example to be a browser-based
equivalent of our original example: an application that, upon a click, shows
the current time.

From Webkit/Browser3, here is the revised Java:

public class BrowserDemo3 extends Activity {
WebView browser;

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
browser=(WebView)findViewById(R.id.webkit);
browser.setWebViewClient(new Callback());

loadTime();
}

void loadTime() {
String page="<html><body>
+new Date().toString()
+"</body></html>";

browser.loadData(page, "text/html", "UTF-8");
}

private class Callback extends WebViewClient {
public boolean shouldOverrideUrlLoading(WebView view, String url) {
loadTime();

return(true);
¥
}

}

Here, we load a simple Web page into the browser (loadTime()) that
consists of the current time, made into a hyperlink to the /clock URL. We
also attach an instance of a webviewClient subclass, providing our
implementation of shouldoverrideUrlLoading(). In this case, no matter what
the URL, we want to just reload the webview via loadTime().

227

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Embedding the WebKit Browser

Running this activity gives us:

Al @ 9:46 P

BrowserDemo3

Thu Aug 21 21:46:26 GMT+00:00 2008

Figure 88. The Browser3 sample application

Selecting the link and clicking the D-pad center button will "click" the link,
causing us to rebuild the page with the new time.

Settings, Preferences, and Options (Oh, My!)

With your favorite desktop Web browser, you have some sort of "settings"
or "preferences” or "options" window. Between that and the toolbar
controls, you can tweak and twiddle the behavior of your browser, from
preferred fonts to the behavior of Javascript.

Similarly, you can adjust the settings of your webview widget as you see fit,
via the wWebSettings instance returned from calling the widget's
getSettings() method.

There are lots of options on WebSettings to play with. Most appear fairly
esoteric (e.g., setFantasyFontFamily()). However, here are some that you
may find more useful:

228

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Embedding the WebKit Browser

Control the font sizing via setbefaultFontSize() (to use a point size)
or setTextSize() (to use constants indicating relative sizes like
LARGER and SMALLEST)

+ Control Javascript via setJavascriptEnabled() (to disable it outright)
and setJavaScriptCanOpenWindowsAutomatically() (to merely stop it
from opening pop-up windows)

« Control Web site rendering via setUserAgent(), so you can supply
your own user agent string to make the Web server think you are a
desktop browser, another mobile device (e.g., iPhone), or whatever

The settings you change are not persistent, so you should store them
somewhere (such as via the Android preferences engine) if you are allowing
your users to determine the settings, versus hard-wiring the settings in your
application.

229

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 18
Showing Pop-Up Messages

Sometimes, your activity (or other piece of Android code) will need to
speak up.

Not every interaction with Android users will be neat, tidy, and containable
in activities composed of views. Errors will crop up. Background tasks may
take way longer than expected. Something asynchronous may occur, such
as an incoming message. In these and other cases, you may need to
communicate with the user outside the bounds of the traditional user
interface.

Of course, this is nothing new. Error messages in the form of dialog boxes
have been around for a very long time. More subtle indicators also exist,
from task tray icons to bouncing dock icons to a vibrating cell phone.

Android has quite a few systems for letting you alert your users outside the
bounds of an Activity-based Ul One, notifications, is tied heavily into
intents and services and, as such, is covered in a later chapter. In this
chapter, you will see two means of raising pop-up messages: toasts and
alerts.

Raising Toasts

A Toast is a transient message, meaning that it displays and disappears on
its own without user interaction. Moreover, it does not take focus away

231

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Showing Pop-Up Messages

from the currently-active Activity, so if the user is busy writing the next
Great Programming Guide, they will not have keystrokes be "eaten" by the
message.

Since a Toast is transient, you have no way of knowing if the user even
notices it. You get no acknowledgment from them, nor does the message
stick around for a long time to pester the user. Hence, the Toast is mostly
for advisory messages, such as indicating a long-running background task is
completed, the battery has dropped to a low-but-not-too-low level, etc.

Making a Toast is fairly easy. The Toast class offers a static makeText() that
accepts a string (or string resource ID) and returns a Toast instance. The
makeText() method also needs the Activity (or other context) plus a
duration. The duration is expressed in the form of the LENGTH_SHORT or
LENGTH_LONG constants to indicate, on a relative basis, how long the message
should remain visible.

If you would prefer your Toast be made out of some other view, rather than
be a boring old piece of text, simply create a new Toast instance via the
constructor (which takes a context), then call setview() to supply it with the
view to use and setDuration() to set the duration.

Once your Toast is configured, call its show() method, and the message will
be displayed. We will see an example of this in action later in this chapter.

Alert! Alert!

If you would prefer something in the more classic dialog box style, what you
want is an AlertDialog. As with any other modal dialog box, an AlertDialog
pops up, grabs the focus, and stays there until closed by the user. You might
use this for a critical error, a validation message that cannot be effectively
displayed in the base activity Ul, or something else where you are sure that
the user needs to see the message and needs to see it now.

The simplest way to construct an AlertDialog is to use the Builder class.
Following in true builder style, Builder offers a series of methods to

232

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Showing Pop-Up Messages

configure an AlertDialog, each method returning the Builder for easy
chaining. At the end, you call show() on the builder to display the dialog
box.

Commonly-used configuration methods on Builder include:

+ setMessage() if you want the "body" of the dialog to be a simple
textual message, from either a supplied string or a supplied string
resource ID.

+ setTitle() and setIcon(), to configure the text and/or icon to
appear in the title bar of the dialog box.

+ setPositiveButton(), setNeutralButton(), and setNegativeButton(),
to indicate which button(s) should appear across the bottom of the
dialog, where they should be positioned (left, center, or right,
respectively), what their captions should be, and what logic should
be invoked when the button is clicked (besides dismissing the
dialog).

If you need to configure the AlertDialog beyond what the builder allows,
instead of calling show(), call create() to get the partially-built AlertDialog
instance, configure it the rest of the way, then call one of the flavors of
show() on the AlertDialog itself.

Once show() is called, the dialog box will appear and await user input.

Note that pressing any of the buttons will close the dialog, even if you have
registered a listener for the button in question. Hence, if all you need a
button to do is close the dialog, give it a caption and a null listener. There is
no option, with AlertDialog, to have a button at the bottom invoke a
listener yet not close the dialog.

Checking Them Out

To see how these work in practice, take a peek at Messages/Message,
containing the following layout...:

233

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Showing Pop-Up Messages

<?xml version="1.0" encoding="utf-8"?>

<Button xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/alert"
android:text="Raise an alert"
android:layout_width="fill parent"
android:layout_height="fill_parent”
android:onClick="showAlert"

/>

...and Java code:

public void onCreate(Bundle icicle) {
super.onCreate(icicle);

setContentView(R.layout.main);

}

public void showAlert(View view) {
new AlertDialog.Builder(this)
.setTitle("MessageDemo")
.setMessage("Let's raise a toast!")
.setNeutralButton("Here, here!", new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dlg, int sumthin) {
Toast
.makeText (MessageDemo.this, "<clink, clink>",
Toast.LENGTH_SHORT)
.show();
}
)

.show();

The layout is unremarkable - just a really large Button to show the
AlertDialog.

When you click the Button, we use a builder (new Builder(this)) to set the
title (setTitle("MessageDemo")), message (setMessage("Let's raise a
toast!")), and "neutral button" (setNeutralButton("Here, here!", new
onClickListener() ...) before showing the dialog. When the button is
clicked, the onclickListener callback triggers the Toast class to make us a
text-based toast (makeText(this, "<clink, clink>", LENGTH_SHORT)), which
we then show(). The result is a typical dialog box:

234

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Showing Pop-Up Messages

&5 Ml @ 9:57 am

() MessageDemo

Let's raise a toast!

Here, here!

Figure 89. The MessageDemo sample application, after clicking the "Raise an
alert" button

When you close the dialog via the button, it raises the toast:

235

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Showing Pop-Up Messages

Raise an alert

<clink, clink> |

Figure 90. The same application, after clicking the "Make a toast" button

236

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 19
Handling Activity Lifecycle
Events

While this may sound like a broken record...please remember that Android
devices, by and large, are phones. As such, some activities are more
important than others - taking a call is probably more important to users
than is playing Sudoku. And, since it is a phone, it probably has less RAM
than does your current desktop or notebook.

As a result, your activity may find itself being killed off because other
activities are going on and the system needs your activity's memory. Think
of it as the Android equivalent of the "circle of life" - your activity dies so
others may live, and so on. You cannot assume that your activity will run
until you think it is complete, or even until the user thinks it is complete.

This is one example - perhaps the most important example - of how an
activity's lifecycle will affect your own application logic. This chapter covers
the various states and callbacks that make up an activity's lifecycle and how
you can hook into them appropriately.

Schroedinger's Activity

An activity, generally speaking, is in one of four states at any point in time:

237

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Activity Lifecycle Events

« Active: the activity was started by the user, is running, and is in the
foreground. This is what you are used to thinking of in terms of
your activity's operation.

- Paused: the activity was started by the user, is running, and is
visible, but a notification or something is overlaying part of the
screen. During this time, the user can see your activity but may not
be able to interact with it. For example, if a call comes in, the user
will get the opportunity to take the call or ignore it.

- Stopped: the activity was started by the user, is running, but it is
hidden by other activities that have been launched or switched to.
Your application will not be able to present anything meaningful to
the user directly, only by way of a Notification.

« Dead: either the activity was never started (e.g., just after a phone
reset) or the activity was terminated, perhaps due to lack of
available memory.

Life, Death, and Your Activity

Android will call into your activity as the activity transitions between the
four states listed above. Some transitions may result in multiple calls to
your activity, and sometimes Android will kill your application without
calling it. This whole area is rather murky and probably subject to change,
so pay close attention to the official Android documentation as well as this
section when deciding which events to pay attention to and which you can
safely ignore.

Note that for all of these, you should chain upward and invoke the
superclass' edition of the method, or Android may raise an exception.

onCreate() and onDestroy()

We have been implementing oncCreate() in all of our Activity subclasses in
all the examples. This will get called in three situations:

238

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Activity Lifecycle Events

1. When the activity is first started (e.g., since a system restart),
onCreate() will be invoked with a null parameter.

2. If the activity had been running, then sometime later was killed off,
onCreate() will be invoked with the Bundle from
onSaveInstanceState() as a parameter (see below).

3. If the activity had been running and you have set up your activity to
have different resources based on different device states (e.g.,
landscape versus portrait), your activity will be re-created and
onCreate() will be called.

Here is where you initialize your user interface and set up anything that
needs to be done once, regardless of how the activity gets used.

On the other end of the lifecycle, onbDestroy() may be called when the
activity is shutting down, either because the activity called finish() (which
"finishes" the activity) or because Android needs RAM and is closing the
activity prematurely. Note that onDestroy() may not get called if the need
for RAM is urgent (e.g., incoming phone call) and that the activity will just
get shut down regardless. Hence, onDestroy() is mostly for cleanly releasing
resources you obtained in onCreate() (if any).

onStart(), onRestart(), and onStop()

An activity can come to the foreground either because it is first being
launched, or because it is being brought back to the foreground after
having been hidden (e.g., by another activity, by an incoming phone call).

The onstart() method is called in either of those cases. The onRestart()
method is called in the case where the activity had been stopped and is now
restarting.

Conversely, onstop() is called when the activity is about to be stopped.

239

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Activity Lifecycle Events

onPause() and onResume()

The onResume() method is called just before your activity comes to the
foreground, either after being initially launched, being restarted from a
stopped state, or after a pop-up dialog (e.g., incoming call) is cleared. This
is a great place to refresh the UI based on things that may have occurred
since the user last was looking at your activity. For example, if you are
polling a service for changes to some information (e.g., new entries for a
feed), onResume() is a fine time to both refresh the current view and, if
applicable, kick off a background thread to update the view (e.g., via a
Handler).

Conversely, anything that steals your user away from your activity — mostly,
the activation of another activity — will result in your onPause() being called.
Here, you should undo anything you did in onResume(), such as stopping
background threads, releasing any exclusive-access resources you may have
acquired (e.g., camera), and the like.

Once onPause() is called, Android reserves the right to kill off your activity's
process at any point. Hence, you should not be relying upon receiving any
further events.

The Grace of State

Mostly, the aforementioned methods are for dealing with things at the
application-general level (e.g., wiring together the last pieces of your Ul in
onCreate(), closing down background threads in onPause()).

However, a large part of the goal of Android is to have a patina of
seamlessness. Activities may come and go as dictated by memory
requirements, but users are, ideally, unaware that this is going on. If, for
example, they were using a calculator, and come back to that calculator
after an absence, they should see whatever number(s) they were working on
originally - unless they themselves took some action to close down the
calculator (e.g., pressed the BACK button to exit it).

240

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Activity Lifecycle Events

To make all this work, activities need to be able to save their application-
instance state, and to do so quickly and cheaply. Since activities could get
killed off at any time, activities may need to save their state more frequently
than one might expect. Then, when the activity restarts, the activity should
get its former state back, so it can restore the activity to the way it appeared
previously. Think of it as establishing a bookmark, such that when the user
returns to that bookmark, you can return the application to the same state
as when they left it.

Saving instance state is handled by onSaveInstancestate(). This supplies a
Bundle, into which activities can pour whatever data they need (e.g., the
number showing on the calculator's display). This method implementation
needs to be speedy, so do not try to do too much fancy - just put your data
in the Bundle and exit the method.

That instance state is provided to you again in two places:

1. In onCreate()

2. In onRestoreInstanceState()

It is your choice when you wish to re-apply the state data to your activity -
either callback is a reasonable option.

The built-in implementation of onSaveInstancestate() will save likely
mutable state from a subset of widgets. For example, it will save the text in
an EditText, but it will not save whether or not a Button is enabled or
disabled. This works so long as the widgets are uniquely identified via their
android:id attributes.

Hence, if you implement onSaveInstanceState(), you can elect to either
chain upward and leverage the inherited implementation or not and
override the inherited implementation. Similarly, some activities may not
need onSaveInstanceState() to be implemented at all, as the built-in one
handles everything that is needed.

241

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 20

Handling Rotation

Some Android handsets offer a slide-out keyboard that triggers rotating the
screen from portrait to landscape. Other handsets use accelerometers to
determine when the screen rotates. As a result, it is reasonable to assume
that switching from portrait to landscape and back again may be something
your users will look to do.

Android has a number of ways for you to handle screen rotation, so your
application can properly handle either orientation. All these facilities do is
help you detect and manage the rotation process - you are still required to
make sure you have layouts that look decent on each orientation.

A Philosophy of Destruction

By default, when there is a change in the phone configuration that might
affect resource selection, Android will destroy and re-create any running or
paused activities the next time they are to be viewed. While this could
happen for a variety of different configuration changes (e.g., change of
language selection), it will most likely trip you up mostly for rotations,
since a change in orientation can cause you to load a different set of
resources (e.g., layouts).

The types of configuration changes that trigger this destroy-and-recreate
behavior include:

Orientation changes (i.e., rotating the screen)

243

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

- Extending or hiding a physical keyboard, for devices that have such
sliding keyboards

+ Putting the device in a car or desk dock, or removing it from a dock

« Changing the locale, and thereby changing the preferred language

The key here is that this is the default behavior. It is probably the behavior
that is best for most of your activities. You do have some control over the
matter, though, and can tailor how your activities respond to orientation
changes or similar configuration switches.

It's All The Same, Just Different

Since, by default, Android destroys and re-creates your activity on a
rotation, you may only need to hook into the same onsSaveInstanceState()
that you would if your activity were destroyed for any other reason (e.g.,
low memory). Implement that method in your activity and fill in the
supplied Bundle with enough information to get you back to your current
state. Then, in onCreate() (or onRestoreInstanceState(), if you prefer), pick
the data out of the Bundle and use it to bring your activity back to the way it
was.

To demonstrate this, let's take a look at the Rotation/RotationoOne project. It,
and the other sample projects used in this chapter, use a pair of main.xml
layouts, one in res/layout/ and one in res/layout-land/ for use in landscape
mode. Here is the portrait layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent”
>
<Button android:id="@+id/pick"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:layout_weight="1"
android:text="Pick"
android:enabled="true"
android:onClick="pickContact"
/>

244

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

<Button android:id="@+id/view"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:layout_weight="1"
android:text="View"
android:enabled="false"
android:onClick="viewContact"

/>

</LinearLayout>

While here is the similar landscape layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout_width="fill_parent"
android:layout_height="fill parent”
>
<Button android:id="@+id/pick"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:layout_weight="1"
android:text="Pick"
android:enabled="true"
android:onClick="pickContact"
/>
<Button android:id="@+id/view"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:layout_weight="1"
android:text="View"
android:enabled="false"
android:onClick="viewContact"
/>
</LinearlLayout>

Basically, it is a pair of buttons, each taking up half the screen. In portrait
mode, the buttons are stacked; in landscape mode, they are side-by-side.

If you were to simply create a project, put in those two layouts, and compile
it, the application would appear to work just fine - a rotation (<Ctrl>-<F12>
in the emulator) will cause the layout to change. And while buttons lack
state, if you were using other widgets (e.g., EditText), you would even find
that Android hangs onto some of the widget state for you (e.g., the text
entered in the EditText).

245

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

What Android cannot automatically help you with is anything held outside
the widgets.

Picking and Viewing a Contact

This application lets you pick a contact, then view the contact, via separate
buttons, with the "View" button only enabled when we actually have a
contact. Let us take a closer look at how this feat is accomplished.

When the user clicks the Pick button, we call startActivityForResult().
This is a variation on startActivity(), designed for activities that are set up
to return some sort of result — a user's choice of file, or contact, or whatever.
Relatively few activities are set up this way, so you cannot expect to call
startActivityForResult() and get answers from any activity you choose.

In this case, we want to pick a contact. There is an ACTION_PICK Intent action
available in Android, designed for this sort of scenario. An ACTION_PICK
Intent indicates to Android that we want to pick..something. The
"something" is determined by the uri we put in the Intent.

In our case, it turns out that we can use an ACTION_PICK Intent for certain
system-defined uri values to let the user pick a contact out of the device's
contacts. In particular, on Android 2.0 and higher, we can use
android.provider.ContactsContract.Contacts.CONTENT_URI for this purpose:

public void pickContact(View v) {
Intent i=new Intent(Intent.ACTION_PICK,
Contacts.CONTENT_URI);

startActivityForResult (i, PICK_REQUEST);

}

For Android 1.6 and older, there is a separate
android.provider.Contacts.CONTENT_URI that we could use.

The second parameter to startActivityForResult() is an identifying
number, to help us distinguish this call to startActivityForResult() from
any others we might make.

246

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

Calling startActivityForResult() with an ACTION_PICK Intent for the

Contacts.CONTENT_URI will bring up a contact-picker activity, supplied by
Android.

When the user taps a contact, the picker activity ends (e.g., via finish()),
and control returns to our activity. At that point, our activity is called with
onActivityResult(). Android supplies us with three pieces of information:

1. The identifying number we supplied to startActivityForResult(), so
we can match this result to its original request

2. Aresult status, either RESULT_OK or RESULT_CANCELED, to indicate if the
user made a positive selection or if the user abandoned the picker
(e.g., by clicking the BACK button)

3. An Intent that represents the result data itself, for a RESULT_OK
response

The details of what is in the Intent will need to be documented by the
activity that you called. In the case of an ACTION_PICK Intent for the
Contacts.CONTENT_URI, the returned Intent has its own uri (via getData())
that represents the chosen contact. In the Rotationone example, we stick
that in a data member of the activity and enable the View button:

@Override
protected void onActivityResult(int requestCode, int resultCode,
Intent data) {
if (requestCode==PICK_REQUEST) {
if (resultCode==RESULT_OK) {
contact=data.getData();
viewButton.setEnabled(true);
¥
}

}

If the user clicks the now-enabled View button, we create an ACTION_VIEW
Intent on the contact's Uri, and call startActivity() on that Intent:

public void viewContact(View v) {
startActivity(new Intent(Intent.ACTION_VIEW, contact));
}

247

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

This will bring up an Android-supplied activity to view details of that

contact.

Saving Your State

Given that we have used startActivityForResult() to pick a contact, now we
need to hang onto that contact when the screen orientation changes. In the

RotationOne example, we do this via onSaveInstanceState():

package com.commonsware.android.rotation.one;

import android.app.Activity;

import android.content.Intent;

import android.net.Uri;

import android.os.Bundle;

import android.provider.ContactsContract.Contacts;
import android.view.View;

import android.widget.Button;

import android.util.log;

public class RotationOneDemo extends Activity {
static final int PICK_REQUEST=1337;
Button viewButton=null;
Uri contact=null;

@0Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

viewButton=(Button)findViewById(R.id.view);
restoreMe(savedInstanceState);

viewButton.setEnabled(contact!=null);

}

@Override
protected void onActivityResult(int requestCode, int resultCode,
Intent data) {
if (requestCode==PICK_REQUEST) {
if (resultCode==RESULT_OK) {
contact=data.getData();
viewButton.setEnabled(true);
¥
}
}

public void pickContact(View v) {
Intent i=new Intent(Intent.ACTION_PICK,
Contacts.CONTENT_URI);

248

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

startActivityForResult (i, PICK_REQUEST);
}

public void viewContact(View v) {
startActivity(new Intent(Intent.ACTION_VIEW, contact));
}

@0verride
protected void onSaveInstanceState(Bundle outState) {
super.onSaveInstanceState(outState);

if (contact!=null) {
outState.putString("contact", contact.toString());
¥
}

private void restoreMe(Bundle state) {
contact=null;

if (state!=null) {
String contactUri=state.getString("contact");

if (contactUri!=null) {
contact=Uri.parse(contactUri);
}
b
}

}

By and large, it looks like a normal activity...because it is. Initially, the
"model" - a Uri named contact - is null. It is set as the result of spawning
the ACTION_PICK sub-activity. Its string representation is saved in
onSaveInstanceState() and restored in restoreMe() (called from oncCreate()).
If the contact is not null, the "View" button is enabled and can be used to
view the chosen contact.

Visually, it looks pretty much as one would expect:

249

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

B Bl & 748 am
RotationOne Demo

Pick

View

| ———————————————————————————
Figure 91. The RotationOne application, in portrait mode

El ANl @ 7:48 AM

RotationOne Demo

Figure 92. The RotationOne application, in landscape mode

The benefit to this implementation is that it handles a number of system
events beyond mere rotation, such as being closed by Android due to low
memory.

For fun, comment out the restoreMe() call in onCreate() and try running the
application. You will see that the application "forgets" a contact selected in
one orientation when you rotate the emulator or device.

250

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

Now With More Savings!

The problem with onSaveInstancestate() is that you are limited to a Bundle.
That's because this callback is also used in cases where your whole process
might be terminated (e.g., low memory), so the data to be saved has to be
something that can be serialized and has no dependencies upon your
running process.

For some activities, that limitation is not a problem. For others, though, it
is more annoying. Take an online chat, for example. You have no means of
storing a socket in a Bundle, so by default, you will have to drop your
connection to the chat server and re-establish it. That not only may be a
performance hit, but it might also affect the chat itself, such as you
appearing in the chat logs as disconnecting and reconnecting.

One way to get past this is to use onRetainNonConfigurationInstance()
instead of onsaveInstancestate() for "light" changes like a rotation. Your
activity's onRetainNonConfigurationInstance() callback can return an object,
which you can retrieve later via getLastNonConfigurationInstance(). The
Object can be just about anything you want - typically, it will be some kind
of "context" object holding activity state, such as running threads, open
sockets, and the like. Your activity's onCreate() can call
getLastNonConfigurationInstance() - if you get a non-null response, you
now have your sockets and threads and whatnot. The biggest limitation is
that you do not want to put in the saved context anything that might
reference a resource that will get swapped out, such as a brawable loaded
from a resource.

Let's take a look at the Rotation/RotationTwo sample project, which uses this
approach to handling rotations. The layouts, and hence the visual
appearance, is the same as with Rotation/Rotationone. Where things differ
slightly is in the Java code:

package com.commonsware.android.rotation.two;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;

251

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

import android.os.Bundle;

import android.provider.ContactsContract.Contacts;
import android.view.View;

import android.widget.Button;

import android.util.log;

public class RotationTwoDemo extends Activity {
static final int PICK_REQUEST=1337;
Button viewButton=null;
Uri contact=null;

@0Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

viewButton=(Button)findViewById(R.id.view);
restoreMe();

viewButton.setEnabled(contact!=null);

}

@Override
protected void onActivityResult(int requestCode, int resultCode,
Intent data) {
if (requestCode==PICK_REQUEST) {
if (resultCode==RESULT_OK) {
contact=data.getData();
viewButton.setEnabled(true);
}
}
}

public void pickContact(View v) {
Intent i=new Intent(Intent.ACTION_PICK,
Contacts.CONTENT_URI);

startActivityForResult (i, PICK_REQUEST);
}

public void viewContact(View v) {
startActivity(new Intent(Intent.ACTION_VIEW, contact));

}

@Override
public Object onRetainNonConfigurationInstance() {
return(contact);

}

private void restoreMe() {
contact=null;

if (getLastNonConfigurationInstance()!=null) {
contact=(Uri)getLastNonConfigurationInstance();

252

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

In this case, we override onRetainNonConfigurationInstance(), returning the
actual uri for our contact, rather than a string representation of it. In turn,
restoreMe() calls getLastNonConfigurationInstance(), and if it is not null, we
hold onto it as our contact and enable the "View" button.

The advantage here is that we are passing around the uri rather than a
string representation. In this case, that is not a big savings. But our state
could be much more complicated, including threads and sockets and other
things we cannot pack into a Bundle.

DIY Rotation

Even this, though, may still be too intrusive to your application. Suppose,
for example, you are creating a real-time game, such as a first-person
shooter. The "hiccup" your users experience as your activity is destroyed
and re-created might be enough to get them shot, which they may not
appreciate. While this would be less of an issue on the T-Mobile G, since a
rotation requires sliding open the keyboard and therefore is unlikely to be
done mid-game, other devices might rotate based solely upon the device's
position as determined by accelerometers.

The third possibility for handling rotations, therefore, is to tell Android
that you will handle them completely yourself and that you do not want
assistance from the framework. To do this:

1. Put an android:configChanges entry in your AndroidManifest.xml file,
listing the configuration changes you want to handle yourself versus
allowing Android to handle for you

2. Implement onConfigurationChanged() in your Activity, which will be
called when one of the configuration changes you listed in
android:configChanges occurs

253

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

Now, for any configuration change you want, you can bypass the whole
activity-destruction process and simply get a callback letting you know of
the change.

To see this in action, turn to the Rotation/RotationThree sample application.
Once again, our layouts are the same, so the application looks the same as
the preceding two samples. However, the Java code is significantly
different, because we are no longer concerned with saving our state, but
rather with updating our UI to deal with the layout.

But first, we need to make a small change to our manifest:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.rotation.three" android:versionCode="1"
android:versionName="1.0.0">
<uses-sdk android:minSdkVersion="5" android:targetSdkVersion="6"/>
<application android:label="@string/app_name" android:icon="@drawable/cw">
<activity android:name=".RotationThreeDemo"
android:label="@string/app_name" android:configChanges="keyboardHidden |
orientation”>
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>
</activity>
</application>
<supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

Here, we state that we will handle keyboardHidden and orientation
configuration changes ourselves. This covers us for any cause of the
"rotation” - whether it is a sliding keyboard or a physical rotation. Note
that this is set on the activity, not the application - if you have several
activities, you will need to decide for each which of the tactics outlined in
this chapter you wish to use.

The Java code for this project is shown below:

package com.commonsware.android.rotation.three;

import android.app.Activity;

254

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

import android.content.Intent;

import android.content.res.Configuration;

import android.net.Uri;

import android.os.Bundle;

import android.provider.ContactsContract.Contacts;
import android.view.View;

import android.widget.Button;

import android.util.Log;

public class RotationThreeDemo extends Activity {
static final int PICK_REQUEST=1337;
Button viewButton=null;
Uri contact=null;

@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

setupViews();

}

@0verride
protected void onActivityResult(int requestCode, int resultCode,
Intent data) {
if (requestCode==PICK_REQUEST) {
if (resultCode==RESULT_OK) {
contact=data.getData();
viewButton.setEnabled(true);
¥
}
}

public void pickContact(View v) {
Intent i=new Intent(Intent.ACTION_PICK,
Contacts.CONTENT_URI);

startActivityForResult (i, PICK_REQUEST);
}

public void viewContact(View v) {
startActivity(new Intent(Intent.ACTION_VIEW, contact));
}

public void onConfigurationChanged(Configuration newConfig) {
super.onConfigurationChanged(newConfig);

setupViews();

}

private void setupViews() {
setContentView(R.layout.main);
viewButton=(Button)findViewById(R.id.view);
viewButton.setEnabled(contact!=null);

255

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

The oncreate() implementation delegates most of its logic to a setupviews()
method, which loads the layout and sets up the buttons. The reason this
logic was broken out into its own method is because it is also called from
onConfigurationChanged().

...But Google Does Not Recommend This

You might think that onConfigurationChanged() and android:configChanges
would be the ultimate solution. After all, we no longer have to worry about
all that messy passing of data to the new activity as the old one is being
destroyed. The onConfigurationChanged() approach is very sexy.

However, Google does not recommend it.

The primary concern is forgetting about resources. With the
onConfigurationChanged() approach, you must take steps to ensure that each
and every resource that might possibly have changed as a result of this
configuration change gets updated. That includes strings, layouts,
drawables, menus, animations, preferences, dimensions, colors, and all the
others. If you are incomplete, your app will have a whole series of little (or
not so little) bugs as a result.

Allowing Android to destroy and recreate your activity guarantees you will
get the proper resources. All you need to do is arrange to pass the proper
data from the old to the new activity.

The onConfigurationChanged() approach is there where the user would be
directly affected by a destroy-and-create cycle. For example, imagine a
video player application, playing a streaming video. Destroying and
recreating the activity would necessarily cause us to have to reconnect to
the stream, losing our buffered data. Users will get frustrated if an
accidental movement causes the device to change orientation and interrupt
their video playback. In this case, since the user will perceive problems with

256

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

a destroy-and-create cycle, onConfigurationChanged() is an appropriate
choice.

Forcing the Issue

In the previous three sections, we covered ways to deal with rotational
events. There is, of course, a radical alternative: tell Android not to rotate
your activity at all. If the activity does not rotate, you do not have to worry
about writing code to deal with rotations.

To block Android from rotating your activity, all you need to do is add
android:screenOrientation = "portrait" (or "landscape”, as you prefer) to
your AndroidManifest.xml file, as shown below (from the
Rotation/RotationFour sample project):

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.rotation.four" android:versionCode="1"
android:versionName="1.0.0">
<uses-sdk android:minSdkVersion="5" android:targetSdkVersion="6"/>
<application android:label="@string/app_name" android:icon="@drawable/cw">
<activity android:name=".RotationFourDemo"
android:screenOrientation="portrait" android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>
</activity>
</application>
<supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

Since this is applied on a per-activity basis, you will need to decide which of
your activities may need this turned on.

At this point, your activity is locked into whatever orientation you
specified, regardless of what you do. The following screen shots show the
same activity as in the previous three sections, but using the above manifest
and with the emulator set for both portrait and landscape orientation. Note
that the Ul does not move a bit, but remains in portrait mode.

257

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

RotationFourDemo

L3

IR e
o [w [e & |7 v [u |t |o[r |
NENEEEERER
2z [x |c [v s [N m |,]
B e

Figure 93. The RotationFour application, in portrait mode

@ 6:11pm

RotationFourDemo

EEEEEEEEEE 00 O O
ANENEAEEEE ..,
NEDEEEEEEE & (&) &
212 [x c [v s v v | [«
EFrEEER @ @ 6 ©

Figure 94. The RotationFour application, in landscape mode

Subscribe to updates at http://commonsware.com

258

Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

Note that Android will still destroy and recreate your activity, even if you
have the orientation set to a specific value as shown here. If you wish to
avoid that, you will also need to set android:configChanges in the manifest,
as described earlier in this chapter. Or, you can still use
onSaveInstanceState() or onRetainNonConfigurationInstance() to save your
activity's mutable state.

Making Sense of it All

As noted at the top of this chapter, devices with side-slider keyboards (T-
Mobile Gi, Motorola DROID/Milestone, etc.) change screen orientation
when the keyboard is exposed or hidden, whereas other devices change
screen orientation based upon the accelerometer.

If you have an activity that should change orientation based on the
accelerometer, even if the device has a side-slider keyboard, just add
android:screenOrientation = "sensor" to your AndroidManifest.xml file (as
seen in the Rotation/RotationFive sample project):

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.rotation.five" android:versionCode="1"
android:versionName="1.0.0">
<uses-sdk android:minSdkVersion="5" android:targetSdkVersion="6"/>
<application android:label="@string/app_name" android:icon="@drawable/cw">
<activity android:name=".RotationFiveDemo"
android:screenOrientation="sensor" android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>
</activity>
</application>
<supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

The “sensor”, in this case, tells Android you want the accelerometers to
control the screen orientation, so the physical shift in the device
orientation controls the screen orientation.

259

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

Android 2.3 adds a number of other possible values for android:orientation,
including:

+ reverselandscape and reversePortrait, indicating that you want the
screen to be in landscape or portrait, respectively, but "upside
down" compared to the normal landscape and portrait orientations

+ sensorLandscape and sensorPortrait, indicating you want to be
locked to landscape or portrait, respectively, but the sensors can be
used to determine which side is "up”

« fullsensor, which allows the sensors to put the screen in any of the
four possible orientations (portrait, reverse portrait, landscape,
reverse landscape), whereas sensor only toggles between portrait
and landscape

260

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 21

Dealing with Threads

Users like snappy applications. Users do not like applications that feel
sluggish.

The way to help your application feel snappy is to use the standard
threading capabilities built into Android. This chapter will go through the
issues involved with thread management in Android and will walk you
through some of the options for keeping the user interface crisp and
responsive.

The Main Application Thread

When you call setText() on a TextView, you probably think that the screen
is updated with the text you supply, right then and there.

You would be mistaken.

Rather, everything that modifies the widget-based Ul goes through a
message queue. Calls to setText() do not update the screen - they just pop
a message on a queue telling the operating system to update the screen.
The operating system pops these messages off of this queue and does what
the messages require.

The queue is processed by one thread, variously called the "main
application thread" and the "UI thread". So long as that thread can keep

261

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

processing messages, the screen will update, user input will be handled,
and so on.

However, the main application thread is also used for nearly all callbacks
into your activity. Your onCreate(), onClick(), onListItemClick(), and similar
methods are all called on the main application thread. While your code is
executing in these methods, Android is not processing messages on the
queue, and so the screen does not update, user input is not handled, and so
on.

This, of course, is bad. So bad, that if you take more than a few seconds to
do work on the main application thread, Android may display the dreaded
"Application Not Responding” dialog (ANR for short), and your activity may
be killed off.

Hence, you want to make sure that all of your work on the main application
thread happens quickly. This means that anything slow should be done in a
background thread, so as not to tie up the main application thread. This
includes things like:

- Internet access, such as sending data to a Web service or
downloading an image

- Significant file operations, since flash storage can be remarkably
slow at times

« Any sort of complex calculations

Fortunately, Android supports threads using the standard Thread class from
Java, plus all of the wrappers and control structures you would expect, such
as the java.util.concurrent class package.

However, there is one big limitation: you cannot modify the Ul from a
background thread. You can only modify the UI from the main application
thread.

Hence, you need to get long-running work moved into background threads,
but those threads need to do something to arrange to update the Ul using

262

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

the main application thread. Fortunately, Android provides a wide range of
tools to do just that, and these tools are the primary focus of this chapter.

Making Progress with ProgressBars

If you are going to fork background threads to do work on behalf of the
user, you will want to think about keeping the user informed that work is
going on. This is particularly true if the user is effectively waiting for that
background work to complete.

The typical approach to keeping users informed of progress is some form of
progress bar, like you see when you copy a bunch of files from place to
place in many desktop operating systems. Android supports this through
the ProgressBar widget.

A ProgressBar keeps track of progress, defined as an integer, with o
indicating no progress has been made. You can define the maximum end of
the range — what value indicates progress is complete — via setMax(). By
default, a ProgressBar starts with a progress of o, though you can start from
some other position via setProgress().

If you prefer your progress bar to be indeterminate, use setIndeterminate(),
setting it to true.

In your Java code, you can either positively set the amount of progress that
has been made (via setProgress()) or increment the progress from its
current amount (via incrementProgressBy()). You can find out how much
progress has been made via getProgress().

There are other alternatives - ProgressDialog, progress indicator in the
activity's title bar, etc. — but a ProgressBar is a good place to start.

263

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

Getting Through the Handlers

The most flexible means of making an Android-friendly background thread
is to create an instance of a Handler subclass. You only need one Handler
object per activity, and you do not need to manually register it or anything
- merely creating the instance is sufficient to register it with the Android
threading subsystem.

Your background thread can communicate with the Handler, which will do
all of its work on the activity's Ul thread. This is important, as UI changes,
such as updating widgets, should only occur on the activity's UI thread.

You have two options for communicating with the Handler: messages and
Runnable objects.

Messages

To send a Message to a Handler, first invoke obtainMessage() to get the
Message object out of the pool. There are a few flavors of obtainMessage(),
allowing you to just create empty Message objects, or ones populated with
message identifiers and arguments. The more complicated your Handler
processing needs to be, the more likely it is you will need to put data into
the Message to help the Handler distinguish different events.

Then, you send the Message to the Handler via its message queue, using one
of the sendMessage. .. () family of methods, such as:

+ sendMessage() puts the message on the queue immediately

* sendMessageAtFrontOfQueue() puts the message on the queue
immediately, and moreover puts it at the front of the message
queue (versus the back, as is the default), so your message takes
priority over all others

+ sendMessageAtTime() puts the message on the queue at the stated
time, expressed in the form of milliseconds based on system uptime
(SystemClock .uptimeMillis())

264

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

« sendMessageDelayed() puts the message on the queue after a delay,
expressed in milliseconds

+ sendEmptyMessage(), which sends an empty Message object to the
queue, allowing you to skip the obtainMessage() step if you were
planning on leaving it empty anyway

To process these messages, your Handler needs to implement
handleMessage(), which will be called with each message that appears on the
message queue. There, the handler can update the Ul as needed. However,
it should still do that work quickly, as other UI work is suspended until the
Handler is done.

For example, let's create a ProgressBar and update it via a Handler. Here is
the layout from the Threads/Handler sample project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent”
>
<ProgressBar android:id="@+id/progress"
style="?android:attr/progressBarStyleHorizontal"
android:layout_width="fill_parent"
android:layout_height="wrap_content” />
</LinearLayout>

The ProgressBar, in addition to setting the width and height as normal, also
employs the style property. This particular style indicates this ProgressBar
should be drawn as the traditional horizontal bar showing the amount of
work that has been completed.

And here is the Java:

package com.commonsware.android.threads;

import android.app.Activity;

import android.os.Bundle;

import android.os.Handler;

import android.os.Message;

import android.widget.ProgressBar;

import java.util.concurrent.atomic.AtomicBoolean;

265

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

public class HandlerDemo extends Activity {
ProgressBar bar;
Handler handler=new Handler() {
@Override
public void handleMessage(Message msg) {
bar.incrementProgressBy(5);

}
1

AtomicBoolean isRunning=new AtomicBoolean(false);

@0Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
bar=(ProgressBar)findViewById(R.id.progress);

}

public void onStart() {
super.onStart();
bar.setProgress(9);

Thread background=new Thread(new Runnable() {
public void run() {
try {
for (int i1=0;i<20 && isRunning.get();i++) {
Thread.sleep(1000);
handler.sendMessage (handler.obtainMessage());
¥
}
catch (Throwable t) {
// just end the background thread
}
¥
s

isRunning.set(true);
background.start();
}

public void onStop() {
super.onStop();
isRunning.set(false);

}

}

As part of constructing the Activity, we create an instance of Handler, with
our implementation of handleMessage(). Basically, for any message received,
we update the ProgressBar by 5 points, then exit the message handler.

266

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

We then take advantage of onstart() and onStop(). In onstart(), we set up a
background thread. In a real system, this thread would do something
meaningful. Here, we just sleep one second, post a Message to the Handler,
and repeat for a total of 20 passes. This, combined with the 5-point increase
in the ProgressBar position, will march the bar clear across the screen, as
the default maximum value for ProgressBar is 100. You can adjust that
maximum via setMax(), such as setting the maximum to be the number of
database rows you are processing, and updating once per row.

Note that we then leave onstart(). This is crucial. The onstart() method is
invoked on the activity UI thread, so it can update widgets and such.
However, that means we need to get out of onstart(), both to let the
Handler get its work done, and also so Android does not think our activity is
stuck.

The resulting activity is simply a horizontal progress bar:

@ ol (O 8:58AM

HandlerDemo

w

Figure 95. The HandlerDemo sample application

Note, though, that while ProgressBar samples like this one show your code
arranging to update the progress on the Ul thread, for this specific widget,
that is not necessary. At least as of Android 1.5, ProgressBar is now "UI

267

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

thread safe", in that you can update it from any thread, and it will handle
the details of performing the actual Ul update on the UI thread.

Runnables

If you would rather not fuss with Message objects, you can also pass Runnable
objects to the Handler, which will run those Runnable objects on the activity
UI thread. Handler offers a set of post...() methods for passing Runnable
objects in for eventual processing.

Just as Handler supports post() and postDelayed() to add Runnable objects to
the event queue, you can use those same methods on any view (i.e., any
widget or container). This slightly simplifies your code, in that you can then
skip the Handler object.

Where, Oh Where Has My Ul Thread Gone?

Sometimes, you may not know if you are currently executing on the Ul
thread of your application. For example, if you package some of your code
in a JAR for others to reuse, you might not know whether your code is
being executed on the Ul thread or from a background thread.

To help combat this problem, Activity offers runonuiThread(). This works
similar to the post() methods on Handler and View, in that it queues up a
Runnable to run on the Ul thread...if you are not on the UI thread right now.
If you already are on the UI thread, it invokes the Runnable immediately.
This gives you the best of both worlds: no delay if you are on the Ul thread,
yet safety in case you are not.

Asyncing Feeling

Android 1.5 introduced a new way of thinking about background
operations: AsyncTask. In one (reasonably) convenient class, Android will
handle all of the chores of doing work on the UI thread versus on a
background thread. Moreover, Android itself allocates and removes that

268

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

background thread. And, it maintains a small work queue, further
accentuating the "fire and forget" feel to AsyncTask.

The Theory

There is a saying, popular in marketing circles: "When a man buys a 1/4"
drill bit at a hardware store, he does not want a 1/4" drill bit - he wants 1/4"
holes". Hardware stores cannot sell holes, so they sell the next-best thing:
devices (drills and drill bits) that make creating holes easy.

Similarly, Android developers who have struggled with background thread
management do not strictly want background threads - they want work to
be done off the UI thread, so users are not stuck waiting and activities do
not get the dreaded "application not responding” (ANR) error. And while
Android cannot magically cause work to not consume Ul thread time,
Android can offer things that make such background operations easier and
more transparent. AsyncTask is one such example.

To use AsyncTask, you must:

« Create a subclass of AsyncTask, commonly as a private inner class of
something that uses the task (e.g., an activity)

« Opverride one or more AsyncTask methods to accomplish the
background work, plus whatever work associated with the task that
needs to be done on the Ul thread (e.g., update progress)

« When needed, create an instance of the AsyncTask subclass and call
execute() to have it begin doing its work

What you do not have to do is:

« Create your own background thread
« Terminate that background thread at an appropriate time

« (Call all sorts of methods to arrange for bits of processing to be done
on the Ul thread

269

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

AsyncTask, Generics, and Varargs

Creating a subclass of AsyncTask is not quite as easy as, say, implementing
the Runnable interface. AsyncTask uses generics, and so you need to specify
three data types:

« The type of information that is needed to process the task (e.g.,
URLSs to download)

« The type of information that is passed within the task to indicate
progress

« The type of information that is passed when the task is completed
to the post-task code

What makes this all the more confusing is that the first two data types are
actually used as varargs, meaning that an array of these types is used within
your AsyncTask subclass.

This should become clearer as we work our way towards an example.

The Stages of AsyncTask

There are four methods you can override in AsyncTask to accomplish your
ends.

The one you must override, for the task class to be useful, is
doInBackground(). This will be called by AsyncTask on a background thread.
It can run as long as it needs to in order to accomplish whatever work needs
to be done for this specific task. Note, though, that tasks are meant to be
finite — using AsyncTask for an infinite loop is not recommended.

The doinBackground() method will receive, as parameters, a varargs array of
the first of the three data types listed above - the data needed to process
the task. So, if your task's mission is to download a collection of URLs,
doInBackground() will receive those URLSs to process.

270

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

The doInBackground() method must return a value of the third data type
listed above - the result of the background work.

You may wish to override onPrekxecute(). This method is called, from the
UI thread, before the background thread executes doInBackground(). Here,
you might initialize a ProgressBar or otherwise indicate that background
work is commencing.

Also, you may wish to override onpPostExecute(). This method is called, from
the UI thread, after doInBackground() completes. It receives, as a parameter,
the value returned by doInBackground() (e.g., success or failure flag). Here,
you might dismiss the progressBar and make use of the work done in the
background, such as updating the contents of a list.

In addition, you may wish to override onProgressupdate(). If
doInBackground() calls the task's publishProgress() method, the object(s)
passed to that method are provided to onProgressupdate(), but in the Ul
thread. That way, onProgressupdate() can alert the user as to the progress
that has been made on the background work, such as updating a
ProgressBar or continuing an animation. The onProgressupdate() method
will receive a varargs of the second data type from the above list - the data
published by doInBackground() via publishProgress().

A Sample Task

As mentioned earlier, implementing an AsyncTask is not quite as easy as
implementing a Runnable. However, once you get past the generics and
varargs, it is not too bad.

For example, below you will find an implementation of a ListActivity that
uses an AsyncTask, from the Threads/Asyncer sample project:

package com.commonsware.android.async;

import android.app.ListActivity;
import android.os.AsyncTask;
import android.os.Bundle;

import android.os.SystemClock;

271

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

import android.widget.ArrayAdapter;
import android.widget.Toast;
import java.util.Arraylist;

public class AsyncDemo extends ListActivity {
private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet", "consectetuer",
"adipiscing", "elit", "morbi",
"vel", "ligula", "vitae",
"arcu", "aliquet", "mollis",
"etiam", "vel", "erat",
"placerat"”, "ante",
"porttitor", "sodales",
"pellentesque", "augue",
"purus"};
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_1,
new ArrayList()));

new AddStringTask().execute();
}

class AddStringTask extends AsyncTask<Void, String, Void> {
@Override
protected Void doInBackground(Void... unused) {
for (String item : items) {
publishProgress(item);
SystemClock.sleep(209);
¥

return(null);

}

@Override
protected void onProgressUpdate(String... item) {
((ArrayAdapter)getListAdapter()).add(item[0]);

}

@Override

protected void onPostExecute(Void unused) {

Toast

.makeText (AsyncDemo.this, "Done!", Toast.LENGTH_SHORT)
.show();

}

3

272

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

This is another variation on the lorem ipsum list of words, used frequently
throughout this book. This time, rather than simply hand the list of words
to an ArrayAdapter, we simulate having to work to create these words in the
background using AddstringTask, our AsyncTask implementation.

Let's examine this piece by piece:

The AddStringTask Declaration

|class AddStringTask extends AsyncTask<Void, String, Void> { |

Here, we use the generics to set up the specific types of data we are going to
leverage in AddstringTask. Specifically:

« We do not need any configuration information in this case, so our

first type is void

« We want to pass each string "generated" by our background task to

onProgressUpdate(), so we can add it to our list, so our second type is
String

« We do not have any results, strictly speaking (beyond the updates),
so our third type is void

The dolnBackground() Method

@Override
protected Void doInBackground(Void... unused) {
for (String item : items) {
publishProgress(item);
SystemClock.sleep(209);
}

return(null);

}

The doinBackground() method is invoked in a background thread. Hence,
we can take as long as we like. In a production application, we would be,
perhaps, iterating over a list of URLs and downloading each. Here, we
iterate over our static list of lorem ipsum words, call publishProgress() for
each, and then sleep 200 milliseconds to simulate real work being done.

273

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

Since we elected to have no configuration information, we should not need
parameters to doInBackground().}{ovvever,the ContractwvﬁflAsyncTask says
we need to accept a varargs of the first data type, which is why our method
parameter is Void... unused.

Since we elected to have no results, we should not need to return anything.
Again, though, the contract with AsyncTask says we have to return an object
of the third data type. Since that data type is void, our returned object is
null.

The onProgressUpdate() Method

@Override

protected void onProgressUpdate(String... item) {
((ArrayAdapter)getListAdapter()).add(item[0]);

¥

The onProgressUpdate() method is called on the Ul thread, and we want to
do something to let the user know we are progressing on loading up these
strings. In this case, we simply add the string to the ArrayAdapter, so it gets
appended to the end of the list.

The onProgressupdate() method receives a String. .. varargs because that is
the second data type in our class declaration. Since we are only passing one

string per call to publishProgress(), we only need to examine the first entry
in the varargs array.

The onPostExecute() Method

@Override
protected void onPostExecute(Void unused) {
Toast
.makeText (AsyncDemo.this, "Done!", Toast.LENGTH_SHORT)
.show();
}

The onPostExecute() method is called on the UI thread, and we want to do
something to indicate that the background work is complete. In a real

274

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

system, there may be some ProgressBar to dismiss or some animation to
stop. Here, we simply raise a Toast.

Since we elected to have no results, we should not need any parameters.
The contract with AsyncTask says we have to accept a single value of the
third data type. Since that data type is Void, our method parameter is void
unused.

The Activity

|new AddStringTask() .execute(); |

To use AddstringTask, we simply create an instance and call execute() on it.
That starts the chain of events eventually leading to the background thread
doing its work.

If AddstringsTask required configuration parameters, we would have not
used Void as our first data type, and the constructor would accept zero or
more parameters of the defined type. Those values would eventually be
passed to doInBackground().

The Results

If you build, install, and run this project, you will see the list being
populated in "real time" over a few seconds, followed by a Toast indicating
completion.

275

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

N € 3:24pm

amet

consectetuer

adinisrine

Figure 96. The AsyncDemo, partway through loading the list of words

Threads and Rotation

One problem with the default destroy-and-create cycle that activities go
through on an orientation change comes from background threads. If the
activity has started some background work - through an AsyncTask, for
example - and then the activity is destroyed and re-created, somehow the
AsyncTask needs to know about this. Otherwise, the AsyncTask might well
send updates and final results to the old activity, with the new activity none
the wiser. In fact, the new activity might start up the background work
again, wasting resources.

One way to deal with this is to disable the destroy-and-create cycle is to
take over configuration changes, as described in a previous section.
Another alternative is to have a smarter activity and AsyncTask. You can see
an example of that in the Rotation/RotationAsync sample project. This
project uses a ProgressBar, much like the Handler demo from earlier in this
chapter . It also has a Textview to indicate when the background work is
completed, initially invisible:

276

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<ProgressBar android:id="@+id/progress"
style="?android:attr/progressBarStyleHorizontal"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>
<TextView android:id="@+id/completed"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Work completed!"
android:visibility="invisible"
/>
</LinearLayout>

The "business logic" is for an AsyncTask to do some (fake) work in the
background, updating the ProgressBar along the way, and making the
TextView visible when it is finished. More importantly, it needs to do this in
such a way as to behave properly if the screen is rotated:

« We cannot "lose" our AsyncTask, having it continue doing work and
updating the wrong activity

« We cannot start a second AsyncTask, thereby doubling our workload

« We need to have the UI correctly reflect our work's progress or
completion

Manual Activity Association

Earlier in this chapter, we showed the use of an AsyncTask that was
implemented as a regular inner class of the Activity class. That works well
when you are not concerned about rotation. For example, if the AsyncTask is
not affecting the user interface - such as uploading a photo - rotation will
not be an issue for you. Having the AsyncTask as an inner class of the
Activity means you get ready access to the Activity for any place where you
need a Context.

However, for the rotation scenario, a regular inner class will work poorly.
The AsyncTask will think it knows the Activity it is supposed to work with,

277

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

but in reality it will be holding onto an implicit reference to the old activity,
not one after an orientation change.

So, in RotationAsync, the RotationAwareTask class is a static inner class. This
means RotationAwareTask does not have any implicit reference to any
RotationAsync Activity (old or new):

import android.app.Activity;
import android.os.AsyncTask;
import android.os.Bundle;

import android.os.SystemClock;
import android.util.log;

import android.view.View;

import android.widget.ProgressBar;

public class RotationAsync extends Activity {
private ProgressBar bar=null;
private RotationAwareTask task=null;

@0Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

bar=(ProgressBar)findViewById(R.id.progress);
task=(RotationAwareTask)getLastNonConfigurationInstance();

if (task==null) {
task=new RotationAwareTask(this);
task.execute();
¥
else {
task.attach(this);
updateProgress (task.getProgress());

if (task.getProgress()>=100) {
markAsDone() ;
¥
¥
}

@0Override
public Object onRetainNonConfigurationInstance() {
task.detach();

return(task);

}

void updateProgress(int progress) {

278

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

bar.setProgress(progress);

}

void markAsDone() {
findviewById(R.id.completed).setVisibility(View.VISIBLE);
}

static class RotationAwareTask extends AsyncTask<Void, Void, Void> {
RotationAsync activity=null;
int progress=0;

RotationAwareTask(RotationAsync activity) {
attach(activity);

}

@Override
protected Void doInBackground(Void... unused) {
for (int i1=0;i<20;i++) {
SystemClock.sleep(500);
publishProgress();

}

return(null);

}

@Override
protected void onProgressUpdate(Void... unused) {
if (activity==null) {
Log.w("RotationAsync", "onProgressUpdate() skipped - no activity");
¥
else {
progress+=5;
activity.updateProgress(progress);
¥
¥

@Override
protected void onPostExecute(Void unused) {
if (activity==null) {
Log.w("RotationAsync", "onPostExecute() skipped - no activity");
¥
else {
activity.markAsDone();
¥
¥

void detach() {
activity=null;

}

void attach(RotationAsync activity) {
this.activity=activity;

}

279

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

int getProgress() {
return(progress);
}
}
¥

Since we want RotationAwareTask to update the current RotationAsync
Activity, we supply that Activity when we create the task, via the
constructor. RotationAwareTask also has attach() and detach() methods to
change what Activity the task knows about, as we will see shortly.

Flow of Events

When RotationAsync starts up for the first time, it creates a new instance of
the RotationAwareTask class and executes it. At this point, the task has a
reference to the RotationAsync Activity and can do its (fake) work, telling
RotationAsync to update the progress along the way.

Now, suppose that during the middle of the doInBackground() processing,
the user rotates the screen.

Our Activity will be called with onRetainNonConfigurationInstance(). Here,
we want to do two things:

1. Since this Activity instance is being destroyed, we need to make
sure the task no longer holds onto a reference to it. Hence, we call
detach(), causing the task to set its RotationAsync data member
(activity) to null.

2. We return the RotationAwareTask object, so that our new
RotationAsync instance can get access to it

Eventually, the new RotationAsync instance will be created. In onCreate(),
we try to get access to any current RotationAwareTask instance via
getLastNonConfigurationInstance(). If that was null, then we know that this
is a newly-created activity, and so we create a new task. If, however,
getLastNonConfigurationInstance() returned the task object from the old
RotationAsync instance, we hold onto it and update our Ul to reflect the
current progress that has been made. We also attach() the new

280

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

RotationAsync to the RotationAwareTask, so as further progress is made, the
task can notify the proper activity.

The net result is that our progressBar smoothly progresses from o to 100,
even while rotations are going on.

Why This Works

Most callback methods in Android are driven by messages on the message
queue being processed by the main application thread. Normally, this
queue is being processed whenever the main application thread is not
otherwise busy, such as running our code.

However, when a configuration change occurs, like a screen rotation, that
no longer holds true.

In between the call to onRetainNonConfiguration() instance of the old
activity and the completion of onCreate() of the new activity, the message
queue is left alone.

So, let us suppose that, in between onRetainNonConfiguration() activity and
the subsequent onCreate(), our AsyncTask's background work completes.
This will trigger onPostExecute() to be called...eventually. However, since
onPostExecute() is actually launched from a message on the message queue,
onPostExecute() will not be called until after our oncreate() has completed.

Hence, our AsyncTask can keep running during the configuration change, so
long as we do two things:

1. In oncreate() of the new activity instance, we update the AsyncTask
to have it work with our new activity, rather than the old one

2. We do not attempt to use the activity from doInBackground()

281

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

And Now, The Caveats

Background threads, while eminently possible using the Android Handler
system, are not all happiness and warm puppies. Background threads not
only add complexity, but they have real-world costs in terms of available
memory, CPU, and battery life.

To that end, there are a wide range of scenarios you need to account for
with your background thread, including:

The possibility that users will interact with your activity's Ul while
the background thread is chugging along. If the work that the
background thread is doing is altered or invalidated by the user
input, you will need to communicate this to the background thread.
Android includes many classes in the java.util.concurrent package
that will help you communicate safely with your background
thread.

The possibility that the activity will be killed off while background
work is going on. For example, after starting your activity, the user
might have a call come in, followed by a text message, followed by a
need to look up a contact...all of which might be sufficient to kick
your activity out of memory. The next chapter will cover the various
events Android will take your activity through; hook the proper
ones and be sure to shut down your background thread cleanly
when you have the chance.

The possibility that your user will get irritated if you chew up a lot
of CPU time and battery life without giving any payback. Tactically,
this means using ProgressBar or other means of letting the user
know that something is happening. Strategically, this means you
still need to be efficient at what you do - background threads are no
panacea for sluggish or pointless code.

The possibility that you will encounter an error during background
processing. For example, if you are gathering information off the
Internet, the device might lose connectivity. Alerting the user of the
problem via a Notification and shutting down the background
thread may be your best option.

282

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 22

Creating Intent Filters

Up to now, the focus of this book has been on activities opened directly by
the user from the device's launcher. This, of course, is the most obvious
case for getting your activity up and visible to the user. And, in many cases
it is the primary way the user will start using your application.

However, remember that the Android system is based upon lots of loosely-
coupled components. What you might accomplish in a desktop GUI via
dialog boxes, child windows, and the like are mostly supposed to be
independent activities. While one activity will be "special”, in that it shows
up in the launcher, the other activities all need to be reached...somehow.

The "how" is via intents.

An intent is basically a message that you pass to Android saying, "Yo! I want
to do...er...something! Yeah!" How specific the "something" is depends on
the situation - sometimes you know exactly what you want to do (e.g., open
up one of your other activities), and sometimes you do not.

In the abstract, Android is all about intents and receivers of those intents.
So, now that we are well-versed in creating activities, let's dive into intents,
so we can create more complex applications while simultaneously being
"good Android citizens".

283

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating Intent Filters

What's Your Intent?

When Sir Tim Berners-Lee cooked up the Hypertext Transfer Protocol -
HTTP - he set up a system of verbs plus addresses in the form of URLs. The
address indicated a resource, such as a Web page, graphic, or server-side
program. The verb indicated what should be done: GET to retrieve it, POST
to send form data to it for processing, etc.

Intents are similar, in that they represent an action plus context. There are
more actions and more components to the context with Android intents
than there are with HTTP verbs and resources, but the concept is still the
same.

Just as a Web browser knows how to process a verb+URL pair, Android
knows how to find activities or other application logic that will handle a
given intent.

Pieces of Intents

The two most important pieces of an intent are the action and what
Android refers to as the "data". These are almost exactly analogous to HTTP
verbs and URLs - the action is the verb, and the "data" is a uri, such as
content://contacts/people/1 representing a contact in the contacts
database. Actions are constants, such as ACTION_VIEW (to bring up a viewer
for the resource), acTion_EDIT (to edit the resource), or ACTION_PICK (to
choose an available item given a uri representing a collection, such as
content://contacts/people).

If you were to create an intent combining ACTION_VIEW with a content Uri of
content://contacts/people/1, and pass that intent to Android, Android
would know to find and open an activity capable of viewing that resource.

There are other criteria you can place inside an intent (represented as an
Intent object), besides the action and "data" uri, such as:

284

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating Intent Filters

« A category. Your "main" activity will be in the LAUNCHER category,
indicating it should show up on the launcher menu. Other activities
will probably be in the DEFAULT or ALTERNATIVE categories.

- A MIME type, indicating the type of resource you want to operate
on, if you do not know a collection uri.

« A component, which is to say, the class of the activity that is
supposed to receive this intent. Using components this way obviates
the need for the other properties of the intent. However, it does
make the intent more fragile, as it assumes specific
implementations.

« "Extras", which is a Bundle of other information you want to pass
along to the receiver with the intent, that the receiver might want
to take advantage of. What pieces of information a given receiver
can use is up to the receiver and (hopefully) is well-documented.

You will find rosters of the standard actions and categories in the Android
SDK documentation for the Intent class.

Intent Routing

As noted above, if you specify the target component in your intent, Android
has no doubt where the intent is supposed to be routed to - it will launch
the named activity. This might be OK if the target intent is in your
application. It definitely is not recommended for sending intents to other
applications. Component names, by and large, are considered private to the
application and are subject to change. Content uri templates and MIME
types are the preferred ways of identifying services you wish third-party
code to supply.

If you do not specify the target component, then Android has to figure out
what activities (or other receivers) are eligible to receive the intent. Note
the use of the plural "activities”", as a broadly-written intent might well
resolve to several activities. That is the...ummm...intent (pardon the pun),
as you will see later in this chapter. This routing approach is referred to as
implicit routing.

285

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating Intent Filters

Basically, there are three rules, all of which must be true for a given activity
to be eligible for a given intent:

1. The activity must support the specified action
2. The activity must support the stated MIME type (if supplied)

3. The activity must support all of the categories named in the intent

The upshot is that you want to make your intents specific enough to find
the right receiver(s), and no more specific than that.

This will become clearer as we work through some examples later in this
chapter.

Stating Your Intent(ions)

All Android components that wish to be notified via intents must declare
intent filters, so Android knows which intents should go to that
component. To do this, you need to add intent-filter elements to your
AndroidManifest.xml file.

All of the example projects have intent filters defined, courtesy of the
Android application-building script (android create project or the IDE
equivalent). They look something like this:

<?xml version="1.0"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.skeleton">
<application>
<activity android:name=".Now" android:label="Now">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>
</activity>
</application>
<supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

286

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating Intent Filters

Note the intent-filter element under the activity element. Here, we
declare that this activity:

« Is the main activity for this application

« Itisin the LAUNCHER category, meaning it gets an icon in the Android
main menu

Because this activity is the main one for the application, Android knows
this is the component it should launch when somebody chooses the
application from the main menu.

You are welcome to have more than one action or more than one category
in your intent filters. That indicates that the associated component (e.g.,
activity) handles multiple different sorts of intents.

More than likely, you will also want to have your secondary (non-MAIN)
activities specify the MIME type of data they work on. Then, if an intent is
targeted for that MIME type - either directly, or indirectly by the uri
referencing something of that type - Android will know that the
component handles such data.

For example, you could have an activity declared like this:

<activity android:name=".TourViewActivity">
<intent-filter>
<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.DEFAULT" />
<data android:mimeType="vnd.android.cursor.item/vnd.commonsware.tour" />
</intent-filter>
</activity>

This activity will get launched by an intent requesting to view a uri
representing a vnd.android.cursor.item/vnd.commonsware.tour piece of
content. That Intent could come from another activity in the same
application (e.g., the MAIN activity for this application) or from another
activity in another Android application that happens to know a uri that this
activity handles.

287

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating Intent Filters

Narrow Receivers

In the examples shown above, the intent filters were set up on activities.
Sometimes, tying intents to activities is not exactly what we want:

« Some system events might cause us to want to trigger something in
a service rather than an activity

« Some events might need to launch different activities in different
circumstances, where the criteria are not solely based on the intent
itself, but some other state (e.g., if we get intent X and the database
has a Y, then launch activity M; if the database does not have a Y,
then launch activity N)

For these cases, Android offers the receiver, defined as a class implementing
the BroadcastReceiver interface. Broadcast receivers are disposable objects
designed to receive intents - specifically, broadcast intents - and take
action.

The BroadcastReceiver interface has only one method: onReceive().
Receivers implement that method, where they do whatever it is they wish
to do upon an incoming intent. To declare an receiver, add a receiver
element to your AndroidManifest.xml file:

|<receiver‘ android:name=".MyIntentReceiverClassName" /> |

An receiver is only alive for as long as it takes to process onReceive() - as
soon as that method returns, the receiver instance is subject to garbage
collection and will not be reused. This means receivers are somewhat
limited in what they can do, mostly to avoid anything that involves any sort
of callback. For example, they cannot bind to a service, and they cannot
open a dialog box.

The exception is if the BroadcastReceiver is implemented on some longer-
lived component, such as an activity or service - in that case, the receiver
lives as long as its "host" does (e.g., until the activity is frozen). However, in
this case, you cannot declare the receiver via AndroidManifest.xml. Instead,
you need to call registerReceiver() on your Activity's onResume() callback

288

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating Intent Filters

to declare interest in an intent, then call unregisterReceiver() from your
Activity's onPause() when you no longer need those intents.

The Pause Caveat

There is one hiccup with using Intent objects to pass arbitrary messages
around: it only works when the receiver is active. To quote from the
documentation for BroadcastReceiver:

If registering a receiver in your Activity.onResume()
implementation, you should unregister it in
Activity.onPause(). (You will not receive intents when
paused, and this will cut down on unnecessary system
overhead). Do not unregister in
Activity.onSaveInstanceState(), because this will not be
called if the user moves back in the history stack.

Hence, you can only really use the Intent framework as an arbitrary
message bus if:

« Your receiver does not care if it misses messages because it was not
active, or

+ You provide some means of getting the receiver "caught up" on
messages it missed while it was inactive, or

« Your receiver is registered in the manifest

289

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 23

Launching Activities and Sub-
Activities

The theory behind the Android UI architecture is that developers should
decompose their application into distinct activities. For example, a calendar
application could have activities for viewing the calendar, viewing a single
event, editing an event (including adding a new one), and so forth.

This, of course, implies that one of your activities has the means to start up
another activity. For example, if somebody clicks on an event from the
view-calendar activity, you might want to show the view-event activity for
that event. This means that, somehow, you need to be able to cause the
view-event activity to launch and show a specific event (the one the user
clicked upon).

This can be further broken down into two scenarios:

1. You know what activity you want to launch, probably because it is
another activity in your own application

2. You have a content uri to...something, and you want your users to
be able to do..something with it, but you do not know up front
what the options are

This chapter covers the first scenario; the companion advanced Android
book handles the second.

291

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid

Launching Activities and Sub-Activities

Peers and Subs

One key question you need to answer when you decide to launch an activity
is: does your activity need to know when the launched activity ends?

For example, suppose you want to spawn an activity to collect
authentication information for some Web service you are connecting to -
maybe you need to authenticate with OpenlD in order to use an OAuth
service. In this case, your main activity will need to know when the
authentication is complete so it can start to use the Web service.

On the other hand, imagine an email application in Android. When the
user elects to view an attachment, neither you nor the user necessarily
expect the main activity to know when the user is done viewing that
attachment.

In the first scenario, the launched activity is clearly subordinate to the
launching activity. In that case, you probably want to launch the child as a
sub-activity, which means your activity will be notified when the child
activity is complete.

In the second scenario, the launched activity is more a peer of your activity,
so you probably want to launch the “child” just as a regular activity. Your
activity will not be informed when the “child” is done, but, then again, your
activity really does not need to know.

Start 'Em Up

The two pieces for starting an activity are an intent and your choice of how
to start it up.

Make an Intent

As discussed in a previous chapter, intents encapsulate a request, made to
Android, for some activity or other receiver to do something.

292

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://oauth.net/
http://openid.net/

Launching Activities and Sub-Activities

If the activity you intend to launch is one of your own, you may find it
simplest to create an explicit intent, naming the component you wish to
launch. For example, from within your activity, you could create an intent
like this:

|new Intent(this, HelpActivity.class); |

This would stipulate that you wanted to launch the HelpActivity. This
activity would need to be named in your AndroidManifest.xml file, though
not necessarily with any intent filter, since you are trying to request it
directly.

Or, you could put together an intent for some uri, requesting a particular
action:

Uri uri=Uri.parse("geo:"+lat.toString()+","+lon.toString());
Intent i=new Intent(Intent.ACTION_VIEW, uri);

Here, given that we have the latitude and longitude of some position (lat
and lon, respectively) of type Double, we construct a geo scheme uri and
create an intent requesting to view this uri (ACTION_VIEW).

Make the Call

Once you have your intent, you need to pass it to Android and get the child
activity to launch. You have two choices:

1. The simplest option is to call startActivity() with the Intent - this
will cause Android to find the best-match activity and pass the
intent to it for handling. Your activity will not be informed when
the “child” activity is complete.

2. You can call startActivityForResult(), passing it the Intent and a
number (unique to the calling activity). Android will find the best-
match activity and pass the intent over to it. However, your activity
will be notified when the child activity is complete via the
onActivityResult() callback (see below).

293

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Launching Activities and Sub-Activities

With startActivityForResult(), as noted, you can implement the
onActivityResult() callback to be notified when the child activity has
completed its work. The callback receives the unique number supplied to
startActivityForResult(), so you can determine which child activity is the
one that has completed. You also get:

« A result code, from the child activity calling setResult(). Typically
this is RESULT_OK or RESULT_CANCELED, though you can create your own
return codes (pick a number starting with RESULT_FIRST_USER)

« An optional string containing some result data, possibly a URL to
some internal or external resource - for example, a ACTION_PICK
intent typically returns the selected bit of content via this data
string

« An optional Bundle containing additional information beyond the
result code and data string

To demonstrate launching a peer activity, take a peek at the
Activities/Launch sample application. The XML layout is fairly
straightforward: two fields for the latitude and longitude, plus a button:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent”
>
<TablelLayout
android:layout_width="fill_parent"
android:layout_height="wrap_content”
android:stretchColumns="1,2"

<TableRow>

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:paddinglLeft="2dip"
android:paddingRight="4dip"
android:text="Location:"

/>

<EditText android:id="@+id/lat"
android:layout_width="fill_parent"
android:layout_height="wrap_content”
android:cursorVisible="true"
android:editable="true"
android:singleLine="true"

294

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Launching Activities and Sub-Activities

android:layout_weight="1"
/>
<EditText android:id="@+id/lon"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:cursorVisible="true"
android:editable="true"
android:singleLine="true"
android:layout_weight="1"
/>
</TableRow>
</TableLayout>
<Button android:id="@+id/map"
android:layout_width="fill_parent"
android:layout_height="wrap_content”
android:text="Show Me!"
android:onClick="showMe"
/>
</LinearLayout>

The button's showMe() callback method simply takes the latitude
longitude, pours them into a geo scheme uri, then starts the activity.

and

package com.commonsware.android.activities;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;

import android.os.Bundle;
import android.view.View;
import android.widget.EditText;

public class LaunchDemo extends Activity {
private EditText lat;
private EditText lon;

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

lat=(EditText)findvViewById(R.id.lat);
lon=(EditText)findViewById(R.id.lon);
}

public void showMe(View v) {
String _lat=lat.getText().toString();
String _lon=lon.getText().toString();

Uri uri=Uri.parse("geo:"+_lat+","+_lon);

startActivity(new Intent(Intent.ACTION_VIEW, uri));

295

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Launching Activities and Sub-Activities

The activity is not much to look at:

Ml @ 2:11pPm

LaunchDemo

4 38.8891 -77.0492

Figure 97. The LaunchDemo sample application, with a location filled in

If you fill in a location (e.g., 38.88091 latitude and -77.0492 longitude) and
click the button, the resulting map is more interesting. Note that this is the
built-in Android map activity — we did not create our own activity to display
this map.

296

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Launching Activities and Sub-Activities

Hl & 2:11prm
s

S MNIS P

o
Q:"b@
&
T

& m@m Wemorig/ Cir A

e

Lincoln Mational
Memarial

h A0 O

Lincoiq uemer®

i %)
West %’2\
EIOI“SC[PSFK %)}
kLz00gle)

%ng = Independan-g L o
Figure 98. The map launched by Launch Demo, showing the Lincoln Memorial
in Washington DC

In a later chapter, you will see how you can create maps in your own
activities, in case you need greater control over how the map is displayed.

Tabbed Browsing, Sort Of

One of the main features of the modern desktop Web browser is tabbed
browsing, where a single browser window can show several pages split
across a series of tabs. On a mobile device, this may not make a lot of sense,
given that you lose screen real estate for the tabs themselves.

In this book, however, we do not let little things like sensibility stop us, so
let us demonstrate a tabbed browser, using TabActivity and Intent objects.

As you may recall from the section on tabbed views from earlier in this
book, a tab can have a view as its contents. It can also have an Activity as its
contents. If you want to use an Activity as the content of a tab, you provide
an Intent that will launch the desired Activity; Android's tab-management
framework will then pour the Activity's user interface into the tab.

297

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Launching Activities and Sub-Activities

Your natural instinct might be to use an http: Uri the way we used a geo:
uri in the previous example:

Intent i=new Intent(Intent.ACTION_VIEW);
i.setData(Uri.parse("http://commonsware.com"));

That way, you could use the built-in Browser application and get all of the
features that it offers.

Alas, this does not work. You cannot host other applications' activities in
your tabs, only your own activities, for security reasons.

So, we dust off our webview demos from the chapter on WebKit and use
those instead, repackaged as Activities/IntentTab.

Here is the source to the main activity, the one hosting the Tabview:

package com.commonsware.android.intenttab;

import android.app.Activity;
import android.app.TabActivity;
import android.content.Intent;
import android.net.Uri;

import android.os.Bundle;
import android.webkit.WebView;
import android.widget.TabHost;

public class IntentTabDemo extends TabActivity {
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

TabHost host=getTabHost();
Intent i=new Intent(this, CWBrowser.class);

i.putExtra(CWBrowser.URL, "http://commonsware.com");
host.addTab(host.newTabSpec("one"
.setIndicator("CW")
.setContent(i));

i=new Intent(i);
i.putExtra(CWBrowser.URL, "http://www.android.com");
host.addTab(host.newTabSpec("two")
.setIndicator("Android")
.setContent(i));

298

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Launching Activities and Sub-Activities

As you can see, we are using TabActivity as the base class, and so we do not
need our own layout XML - TabActivity supplies it for us. All we do is get
access to the TabHost and add two tabs, each specifying an Intent that
directly refers to another class. In this case, our two tabs will each host a
cwBrowser, with a URL to load supplied via an Intent extra.

The cwBrowser activity is simple modification to the earlier browser demos:

package com.commonsware.android.intenttab;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;

import android.os.Bundle;
import android.webkit.WebView;

public class CWBrowser extends Activity {
public static final String URL="com.commonsware.android.intenttab.URL";
private WebView browser;

@Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

browser=new WebView(this);

setContentView(browser);

browser.loadUrl(getIntent().getStringExtra(URL));
}

}

They simply load a different URL into the browser: the CommonsWare
home page in one, the Android home page in the other.

The resulting UI shows what tabbed browsing could look like on Android:

299

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Launching Activities and Sub-Activities

Ml € 6:09 Pm

IntentTabDemo

Android

€@ CoMMONSWARE

LR |

Three Android
Books, One Low
Price.

Fresh

e i LS lities
vanced n o ares Android
iﬂ;‘:;?f AndfOId Programming from

Development Development Tutorials the

Figure 99. The IntentTabDemo sample application, showing the first tab

O Gl @ 5:37 pm

IntentTabDemo

Android

Qn>30i12

SDK Dev Guide

Developer Announcements

m DEVELOPER 1
CONFERENCE t“;i

VIC

Figure 100. The IntentTabDemo sample application, showing the second tab

However, this approach is rather wasteful. There is a fair bit of overhead in
creating an activity, that one does not need just to populate tabs in a
TabHost. In particular, it increases the amount of stack space needed by your

300

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Launching Activities and Sub-Activities

application, and running out of stack space is a significant problem in
Android, as will be described in a later chapter.

301

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PART lll - Data Stores, Network
Services, and APIs

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 24

Accessing Files

While Android offers structured storage, via preferences and databases,
sometimes a simple file will suffice. Android offers two models for accessing
files: one for files pre-packaged with your application, and one for files
created on-device by your application.

You And The Horse You Rode In On

Let's suppose you have some static data you want to ship with the
application, such as a list of words for a spell-checker. The easiest way to
deploy that is to put the file in the res/raw directory, so it gets put in the
Android application .apk file as part of the packaging process as a raw
resource.

To access this file, you need to get yourself a Resources object. From an
activity, that is as simple as calling getResources(). A Resources object offers
openRawResource() to get an InputStream on the file you specify. Rather than
a path, openRawResource() expects an integer identifier for the file as
packaged. This works just like accessing widgets via findviewById() - if you
put a file named words.xml in res/raw, the identifier is accessible in Java as
R.raw.words.

Since you can only get an InputStream, you have no means of modifying this
file. Hence, it is really only useful for static reference data. Moreover, since
it is unchanging until the user installs an updated version of your

305

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Files

application package, either the reference data has to be valid for the
foreseeable future, or you will need to provide some means of updating the
data. The simplest way to handle that is to use the reference data to
bootstrap some other modifiable form of storage (e.g., a database), but this
makes for two copies of the data in storage. An alternative is to keep the
reference data as-is but keep modifications in a file or database, and merge
them together when you need a complete picture of the information. For
example, if your application ships a file of URLs, you could have a second
file that tracks URLs added by the user or reference URLs that were deleted
by the user.

In the Files/static sample project, you will find a reworking of the listbox
example from earlier, this time using a static XML file instead of a
hardwired array in Java. The layout is the same:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent" >
<TextView
android:id="@+id/selection”
android:layout_width="fill_parent"
android:layout_height="wrap_content”
/>
<ListView
android:id="@android:id/list"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:drawSelectorOnTop="false"
/>
</LinearLayout>

In addition to that XML file, you also need an XML file with the words to
show in the list:

<words>
<word value="lorem" />
<word value="ipsum" />
<word value="dolor" />
<word value="sit" />
<word value="amet" />
<word value="consectetuer" />
<word value="adipiscing" />
<word value="elit" />

306

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Files

<word value="morbi" />
<word value="vel" />
<word value="ligula" />
<word value="vitae" />
<word value="arcu" />
<word value="aliquet" />
<word value="mollis" />
<word value="etiam" />
<word value="vel" />
<word value="erat" />
<word value="placerat" />
<word value="ante" />
<word value="porttitor" />
<word value="sodales" />
<word value="pellentesque" />
<word value="augue" />
<word value="purus" />
</words>

While this XML structure is not exactly a model of space efficiency, it will

suffice for a demo.

The Java code now must read in that XML file, parse out the words, and put
them someplace for the list to pick up:

TextView selection;

@0verride

super.onCreate(icicle);
setContentView(R.layout.main);

try {

public class StaticFileDemo extends ListActivity {

ArraylList<String> items=new ArraylList<String>();

public void onCreate(Bundle icicle) {

selection=(TextView)findViewById(R.id.selection);

InputStream in=getResources().openRawResource(R.raw.words);

DocumentBuilder builder=DocumentBuilderFactory
.newInstance()
.newDocumentBuilder();

Document doc=builder.parse(in, null);

NodeList words=doc.getElementsByTagName ("word");

for (int i=@;i<words.getLength();i++) {
items.add(((Element)words.item(i)).getAttribute("value"));
¥

in.close();

¥
catch (Throwable t) {
Toast

Subscribe to updates at http://commonsware.com

307

Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Files

.makeText(this, "Exception: "+t.toString(), Toast.LENGTH_LONG)
.show();

}

setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_ 1,
items));

}

public void onListItemClick(ListView parent, View v, int position,
long id) {
selection.setText(items.get(position).toString());

}

}

The differences mostly lie within onCreate(). We get an InputStream for the
XML file (getResources().openRawResource(R.raw.words)), then use the built-
in XML parsing logic to parse the file into a DOM Document, pick out the
word elements, then pour the value attributes into an ArrayList for use by
the ArrayAdapter.

The resulting activity looks the same as before, since the list of words is the
same, just relocated:

Ml @ s8:51pPM

StaticFileDemo

lorem

ipsum

dolor

sit

amet

consectetuer

Figure 101. The StaticFileDemo sample application

308

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Files

Of course, there are even easier ways to have XML files available to you as
pre-packaged files, such as by using an XML resource. That is covered in
the next chapter. However, while this example used XML, the file could just
as easily have been a simple one-word-per-line list, or in some other format
not handled natively by the Android resource system.

Readin' 'n Writin'

Reading and writing your own, application-specific data files is nearly
identical to what you might do in a desktop Java application. The key is to
use openFileInput() and openFileOutput() on your Activity or other Context
to get an InputStream and OutputStream, respectively. From that point
forward, it is not much different than regular Java I/O logic:

« Wrap those streams as needed, such as using an InputStreamReader
or outputStreamhWriter for text-based I/O

« Read or write the data

+ Use close() to release the stream when done

If two applications both try reading a notes.txt file via openFileInput(),
they will each access their own edition of the file. If you need to have one
file accessible from many places, you probably want to create a content
provider, as will be described in an upcoming chapter.

Note that openfFileInput() and openFileoutput() do not accept file paths
(e.g., path/to/file.txt), just simple filenames.

Below you will see the layout for the world's most trivial text editor, pulled
from the Files/ReadWrite sample application:

<?xml version="1.0" encoding="utf-8"?>

<EditText xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/editor"
android:layout_width="fill_parent"
android:layout_height="fill_parent”
android:singlelLine="false"
android:gravity="top"
/>

309

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Files

All we have here is a large text-editing widget...which is pretty boring.

The Java is only slightly more complicated:

package com.commonsware.android.readwrite;

import android.app.Activity;
import android.os.Bundle;

import android.view.View;

import android.widget.Button;
import android.widget.EditText;
import android.widget.Toast;
import java.io.BufferedReader;
import java.io.File;

import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.io.OutputStreamWriter;

public class ReadWriteFileDemo extends Activity {
private final static String NOTES="notes.txt";
private EditText editor;

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
editor=(EditText)findViewById(R.id.editor);

}

public void onResume() {
super.onResume();

try {
InputStream in=openFileInput(NOTES);

if (in!=null) {
InputStreamReader tmp=new InputStreamReader(in);
BufferedReader reader=new BufferedReader(tmp);
String str;
StringBuilder buf=new StringBuilder();

while ((str = reader.readLine()) != null) {
buf.append(str+"\n");

}

in.close();
editor.setText (buf.toString());
¥

catch (java.io.FileNotFoundException e) {
// that's OK, we probably haven't created it yet

310

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Files

¥
catch (Throwable t) {

Toast
.makeText(this, "Exception: "+t.toString(), Toast.LENGTH_LONG)
.show();
¥
}

public void onPause() {
super.onPause();

try {
OutputStreamWriter out=
new OutputStreamWriter (openFileOutput(NOTES, ©0));

out.write(editor.getText().toString());
out.close();

¥
catch (Throwable t) {
Toast
.makeText(this, "Exception: "+t.toString(), Toast.LENGTH_LONG)
.show();

First, we hook into onResume(), so we get control when our editor is coming
back to life, from a fresh launch or after having been frozen. We use
openFileInput() to read in notes.txt and pour the contents into the text
editor. If the file is not found, we assume this is the first time the activity
was run (or the file was deleted by other means), and we just leave the
editor empty.

Finally, we hook into onPause(), so we get control as our activity gets hidden
by another activity or is closed, such as via the device's BACK button. Here,
we use openFileOutput() to open notes.txt, into which we pour the contents
of the text editor.

The net result is that we have a persistent notepad: whatever is typed in will
remain until deleted, surviving our activity being closed (e.g., via the BACK
button), the phone being turned off, or similar situations.

311

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Files

25 Ml @ 9:39am

ReadWriteFileDemo

— |
Figure 102. The ReadWriteFileDemo sample application, as initially launched

il & 9:39am
ReadWriteFileDemo

Hi, Mom!

|
Figure 103. The same application, after entering some text

312

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Files

Another approach for working with application-local files is to use
getFilesDir(). This returns a File object pointing to a place in the on-board
flash where an application can store files. This directory is where
openFileInput() and openFileOuptut() work. However, while openFileInput()
and openFileoutput() do not support subdirectories, the File from
getFilesDir() can be used to create and navigate subdirectories if desired.

The files stored here are accessible only to your application, by default.
Other applications on the device have no rights to read, let alone write, to
this space. However, bear in mind that some users "root" their Android
phones, gaining superuser access. These users will be able to read and write
whatever files they wish. As a result, please consider application-local files
to be secure against malware but not necessarily secure against interested
users.

External Storage: Giant Economy-Size Space

In addition to application-local storage, you also have access to "external
storage". This may come in the form of a removable media card, like an SD
card or microSD card. This may come in the form of additional on-board
flash set aside to serve in the "external storage" role.

On the plus side, external storage tends to have more space available. On-
board storage can be rather limited - the original T-Mobile G1 (HTC
Dream) had a total of 70MB for all applications combined. While newer
phones offer more space, external storage is usually at least 2GB and can be
as big as 32GB.

On the minus side, all applications can, if they wish, read and write external
storage, and so these files are not very secure. Furthermore, external
storage can be mounted on a host computer as a USB mass storage device —
when it is in use in this mode, Android applications cannot access it. As a
result, files on external storage may or may not be available to you at any
given moment.

313

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Files

Where to Write

If you have files that are tied to your application that are simply too big to
risk putting in the application-local file area, you can use
getExternalFilesDir(), available on any activity or other context. This will
give you a File object pointing to an automatically-created directory on
external storage, unique for your application. While not secure against
other applications, it does have one big advantage: when your application is
uninstalled, these files are automatically deleted, just like the ones in the
application-local file area.

If you have files that belong more to the user than to your app - pictures
taken by the camera, downloaded MP3 files, etc. — a better solution is to use
getExternalStoragePublicDirectory(), available on the Environment class.
This will give you a File object pointing to a directory set aside for a certain
type of file, based on the type you pass into
getExternalStoragePublicDirectory(). For example, you can ask for
DIRECTORY_MOVIES, DIRECTORY_MUSIC, or DIRECTORY_PICTURES for storing MP4,
MP3, or JPEG files, respectively. These files will be left behind when your
application is uninstalled.

You will also find a getExternalStorageDirectory() method on Environment,
pointing to the root of the external storage. This is no longer the preferred
approach - the methods described above help keep the user's files better
organized. However, if you are supporting older Android devices, you may
need to use getExternalStorageDirectory(), simply because the newer
options may not be available to you.

When to Write

Starting with Android 1.6, you will also need to hold permissions to work
with external storage (e.g., WRITE_EXTERNAL_STORAGE) — the concept of
permissions will be covered in a later chapter.

Also, external storage may be tied up by the user having mounted it as a
USB storage device. You can use getExternalStorageState() (a static method

314

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Files

on Environment) to determine if there external storage is presently available
or not.

StrictMode: Avoiding Janky Code

Users are more likely to like your application if, to them, it feels responsive.
Here, by "responsive", we mean that it reacts swiftly and accurately to user
operations, like taps and swipes.

Conversely, users are less likely to be happy with you if they perceive that
your Ul is "janky" - sluggish to respond to their requests. For example,
maybe your lists do not scroll as smoothly as they would like, or tapping a
button does not yield the immediate results they seek.

While threads and AsyncTask and the like can help, it may not always be
obvious where you should be applying them. A full-scale performance
analysis, using Traceview or similar Android tools, is certainly possible.
However, there are a few standard sorts of things that developers do,
sometimes quite by accident, on the main application thread that will tend
to cause sluggishness:

« Flash I/O, both for the on-board storage and for "external storage"
(e.g., the SD card)

+ Network I/O

However, even here, it may not be obvious that you are performing these
operations on the main application thread. This is particularly true when
the operations are really being done by Android's code that you are simply
calling.

That is where StrictMode comes in. Its mission is to help you determine
when you are doing things on the main application thread that might cause
a janky user experience.

315

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Files

Setting up Strict Mode

StrictMode works on a set of policies. There are presently two categories of
policies: VM policies and thread policies. The former represent bad coding
practices that pertain to your entire application, notably leaking SQLite
cursor objects and kin. The latter represent things that are bad when
performed on the main application thread, notably flash I/O and network
I/0.

Each policy dictates what strictMode should watch for (e.g., flash reads are
OK but flash writes are not) and how StrictMode should react when you
violate the rules, such as:

+ Loga message to LogCat
« Display a dialog

+ Crash your application (seriously!)

The simplest thing to do is call the static enablebDefaults() method on
StrictMode from onCreate() of your first activity. This will set up normal
operation, reporting all violations by simply logging to LogCat. However,
you can set your own custom policies via Builder objects if you so choose.

Seeing It In Action

The Threads/ReadWritestrict sample application is a reworking of the
Files/ReadWrite sample shown earlier in this chapter. All it adds is a custom
StrictMode thread policy:

StrictMode.setThreadPolicy(new StrictMode.ThreadPolicy.Builder()
.detectAll()
.penaltyLog()
.build());

If you run the application, the user will see no difference. However, you will
have a debug-level log message in LogCat with the following stack trace:

316

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Files

12-28 17:19:40.009: DEBUG/StrictMode(480): StrictMode policy violation;
~duration=169 ms: android.os.StrictMode$StrictModeDiskReadViolation: policy=23
violation=2

12-28 17:19:40.009: DEBUG/StrictMode(480): at
android.os.StrictMode$AndroidBlockGuardPolicy.onReadFromDisk(StrictMode.java:745

)

12-28 17:19:40.009: DEBUG/StrictMode(480): at
dalvik.system.BlockGuard$WrappedFileSystem.open(BlockGuard.java:228)

12-28 17:19:40.009: DEBUG/StrictMode(480): at
android.app.ContextImpl.openFileOutput(ContextImpl.java:410)

12-28 17:19:40.009: DEBUG/StrictMode(480): at
android.content.ContextWrapper.openFileOutput(ContextWrapper.java:158)

12-28 17:19:40.009: DEBUG/StrictMode(480): at
com.commonsware.android.readwrite.ReadWriteFileDemo.onPause(ReadWriteFileDemo.ja
va:82)

Here, StrictMode is warning you that you attempted a flash write on the
main application thread (the thread on which you set the StrictMode
policy). Ideally, we would rewrite this project to use an AsyncTask or
something for writing out the data.

Development Only, Please!

Do not use strictMode in production code. It is designed for use when you
are building, testing, and debugging your application. It is not designed to
be used in the field.

To deal with this, you could:

« Simply comment out or remove the StrictMode setup code when you
prepare your production builds

« Use some sort of production flag to skip the strictMode setup code
when needed

Linux Filesystems: You Sync, You Win

Android is built atop a Linux kernel and uses Linux filesystems for holding
its files. Classically, Android used YAFFS (Yet Another Flash File System),
optimized for use on low-power devices for storing data to flash memory.
Many devices still use YAFFS today.

317

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Files

YAFFS has one big problem: only one process can write to the filesystem at
a time. For those of you into filesystems, rather than offering file-level
locking, YAFFS has partition-level locking. This can become a bit of a
bottleneck, particularly as Android devices grow in power and start wanting
to do more things at the same time like their desktop and notebook
brethren.

Android is starting to move towards ext4, another Linux filesystem aimed
more at desktops/notebooks. Your applications will not directly perceive
the difference. However, ext4 does a fair bit of buffering, and it can cause
problems for applications that do not take this buffering into account.
Linux application developers ran headlong into this in 2008-2009, when
ext4 started to become popular. Android developers will need to think
about it now...for your own file storage.

If you are using SQLite or SharedPreferences, you do not need to worry
about this problem. Android (and SQLite, in the case of SQLite) handle all
the buffering issues for you. If, however, you write your own files, you may
wish to contemplate an extra step as you flush your data to disk.
Specifically, you need to trigger a Linux system call known as fsync(),
which tells the filesystem to ensure all buffers are written to disk.

If you are using java.io.RandomAccessFile in a synchronous mode, this step
is handled for you as well, so you will not need to worry about it. However,
Java developers tend to use FileOutputStream, which does not trigger an
fsync(), even when you call close() on the stream. Instead, you call
getFD().sync() on the FileOutputStream to trigger the fsync(). Note that this
may be time-consuming, and so disk writes should be done off the main
application thread wherever practical, such as via an AsyncTask.

318

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 25
Working with Resources

Resources are static bits of information held outside the Java source code.
You have seen one type of resource - the layout - frequently in the
examples in this book. There are many other types of resource, such as
images and strings, that you can take advantage of in your Android
applications.

The Resource Lineup

Resources are stored as files under the res/ directory in your Android
project layout. With the exception of raw resources (res/raw/), all the other
types of resources are parsed for you, either by the Android packaging
system or by the Android system on the device or emulator. So, for
example, when you lay out an activity's Ul via a layout resource
(res/layout/), you do not have to parse the layout XML yourself - Android
handles that for you.

In addition to layout resources (first seen in an earlier chapter), there are
several other types of resource available to you, including:

+ Images (res/drawable/), for putting static icons or other pictures in a
user interface

« Raw (res/raw/), for putting arbitrary files that have meaning to your
application but not necessarily to Android frameworks

319

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

- Strings, colors, arrays, and dimensions (res/values/), to both give
these sorts of constants symbolic names and to keep them separate
from the rest of the code (e.g., for internationalization and
localization)

« XML (res/xml/), for static XML files containing your own data and
structure

String Theory

Keeping your labels and other bits of text outside the main source code of
your application is generally considered to be a very good idea. In
particular, it helps with internationalization (I18N) and localization (LioN),
covered later in this chapter. Even if you are not going to translate your
strings to other languages, it is easier to make corrections if all the strings
are in one spot instead of scattered throughout your source code.

Android supports regular externalized strings, along with "string formats",
where the string has placeholders for dynamically-inserted information. On
top of that, Android supports simple text formatting, called "styled text", so
you can make your words be bold or italic intermingled with normal text.

Plain Strings

Generally speaking, all you need to do is have an XML file in the res/values
directory (typically named res/values/strings.xml), with a resources root
element, and one child string element for each string you wish to encode as
a resource. The string element takes a name attribute, which is the unique
name for this string, and a single text element containing the text of the
string;:

<resources>
<string name="quick">The quick brown fox...</string>
<string name="laughs">He who laughs last...</string>
</resources>

The only tricky part is if the string value contains a quote (") or an
apostrophe (). In those cases, you will want to escape those values, by

320

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

preceding them with a backslash (e.g., These are the times that try men\'s
souls). Or, if it is just an apostrophe, you could enclose the value in quotes
(e.g., "These are the times that try men's souls.“).

You can then reference this string from a layout file (as @string/. .., where
the ellipsis is the unique name - e.g., @string/laughs). Or you can get the
string from your Java code by calling getstring() with the resource ID of
the string resource, that being the unique name prefixed with R.string.
(e.g., getString(R.string.quick)).

String Formats

As with other implementations of the Java language, Android's Dalvik VM
supports string formats. Here, the string contains placeholders
representing data to be replaced at runtime by variable information (e.g., My
name is %1$s). Plain strings stored as resources can be used as string
formats:

String strFormat=getString(R.string.my_name);
String strResult=String.format(strFormat, "Tim");
((TextView)findViewById(R.id.some_label)).setText(strResult);

There is also a flavor of getstring() that does the String.format() call for
you:

String strResult=getString(R.string.my_name, "Tim");
((TextView)findViewById(R.id.some_label)).setText(strResult);

It is very important that you use the version of the placeholders that take an
index — %1$s instead of just %s. Strategically, translations of your string
resources may cause you to apply the variable data in a different order than
did your original translation, and using non-indexed placeholders lock you
into a particular order. Tactically, your project will fail to compile, as the
Android build tools reject non-indexed placeholders nowadays.

321

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

Styled Text

If you want really rich text, you should have raw resources containing
HTML, then pour those into a WebKit widget. However, for light HTML
formatting, using inline elements like , <i>, and <u>, you can just use
them in a string resource:

<resources>
<string name="b">This has bold in it.</string>
<string name="i">Whereas this has <i>italics</i>!</string>
</resources>

You can access these via getText(), where you will get back an object
supporting the android.text.Spanned interface and therefore has all of the
formatting applied:

((TextView)findViewById(R.id.another_label))
.setText(getText(R.string.b));

Styled Text and Formats

Where styled text gets tricky is with styled string formats, as
String.format() works on string objects, not Spanned objects with
formatting instructions. If you really want to have styled string formats,
here is the workaround:

1. Entity-escape the angle brackets in the string resource (e.g., this is
&1t;b>%1$s&1t; /b>)

2. Retrieve the string resource as normal, though it will not be styled
at this point (e.g., getString(R.string.funky_format))

3. Generate the format results, being sure to escape any string values
you substitute in, in case they contain angle brackets or ampersands

String.format(getString(R.string.funky_ format),
TextUtils.htmlEncode(strName));

4. Convert the entity-escaped HTML into a Spanned object via
Html.fromHtml()

322

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

someTextView.setText (Html
.fromHtml(resultFromStringFormat));

To see this in action, let's look at the Resources/strings demo. Here is the
layout file:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent”
>
<LinearLayout
android:orientation="horizontal"
android:layout_width="fill_parent"
android:layout_height="wrap_content”
>
<Button android:id="@+id/format"
android:layout_width="wrap_content"
android:layout_height="wrap_content”
android:text="@string/btn_name"
android:onClick="applyFormat"
/>
<EditText android:id="@+id/name"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>
</LinearLayout>
<TextView android:id="@+id/result"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>
</LinearLayout>

As you can see, it is just a button, a field, and a label. The intent is for
somebody to enter their name in the field, then click the button to cause
the label to be updated with a formatted message containing their name.

The Button in the layout file references a string resource (@string/btn_name),
so we need a string resource file (res/values/strings.xml):

<?xml version="1.0" encoding="utf-8"?>
<resources>

<string name="app_name">StringsDemo</string>

<string name="btn_name">Name:</string>

<string name="funky_ format">My name is &1t;b>%1$s&1t;/b></string>
</resources>

323

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

The app_name resource is automatically created by the android create
project command. The btn_name string is the caption of the Button, while
our styled string format is in funky_format.

Finally, to hook all this together, we need a pinch of Java:

package com.commonsware.android.strings;

import android.app.Activity;
import android.os.Bundle;
import android.text.TextUtils;
import android.text.Html;
import android.view.View;
import android.widget.EditText;
import android.widget.TextView;

public class StringsDemo extends Activity {
EditText name;
TextView result;

@0Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

name=(EditText)findViewById(R.id.name);
result=(TextView)findViewById(R.id.result);

}

public void applyFormat(View v) {
String format=getString(R.string.funky_format);
String simpleResult=String.format(format,
TextUtils.htmlEncode(name.getText().toString()));
result.setText(Html.fromHtml(simpleResult));

}

}

The string resource manipulation can be found in applyFormat(), which is
called when the button is clicked. First, we get our format via getString() -
something we could have done at oncreate() time for efficiency. Next, we
format the value in the field using this format, getting a string back, since
the string resource is in entity-encoded HTML. Note the use of
TextUtils.htmlEncode() to entity-encode the entered name, in case
somebody decides to use an ampersand or something. Finally, we convert
the simple HTML into a styled text object via Html.fromHtml() and update
our label.

324

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

When the activity is first launched, we have an empty label:

hHl & 1:03PMm
StringsDemo

Figure 104. The StringsDemo sample application, as initially launched

but if we fill in a name and click the button, we get:

325

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

hMl & 1:03Pm
StringsDemo

Inigo Montoya
My

= |s Inigo Montoya

Figure 105. The same application, after filling in some heroic figure's name

Got the Picture?

Android supports images in the PNG, JPEG, and GIF formats. GIF is
officially discouraged, however; PNG is the overall preferred format. Images
can be used anywhere that requires a Drawable, such as the image and
background of an Imageview.

Using images is simply a matter of putting your image files in res/drawable/
and then referencing them as a resource. Within layout files, images are
referenced as @drawable/... where the ellipsis is the base name of the file
(e.g., for res/drawable/foo.png, the resource name is @drawable/foo). In Java,
where you need an image resource ID, use R.drawable. plus the base name
(e.g., R.drawable.fo0).

So, let's update the previous example to use an icon for the button instead
of the string resource. This can be found as Resources/Images. First, we
slightly adjust the layout file, using an ImageButton and referencing a
drawable named @drawable/icon, which refers to an image file in

326

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

res/drawable with a base name of icon. In this case, we use a 32x32 PNG file
from the Nuvola icon set:

>

>

/>
<EditText

android
/>

/>

android:
android:
android:
android:

android:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill_parent”

<LinearLayout
android:orientation="horizontal"
android:layout_width="fill_parent"
android:layout_height="wrap_content"

<ImageButton android:id="@+id/format"
layout_width="wrap_content"
layout_height="wrap_content"

src="@drawable/icon"
onClick="applyFormat"

android:id="@+id/name"

layout_width="fill_parent”
:layout_height="wrap_content”

</LinearLayout>

<TextView android:id="@+id/result"
android:layout_width="fill_parent"
android:layout_height="wrap_content”

</LinearlLayout>

Now, our button has the desired icon:

Subscribe to updates at http://commonsware.com

327

Special Creative Commons BY-NC-SA 3.0 License Edition

http://en.wikipedia.org/wiki/Nuvola

Working with Resources

Al @ 1:04apPMm

ImagesDemo

7] —

Figure 106. The ImagesDemo sample application

XML: The Resource Way

If you wish to package static XML with your application, you can use an
XML resource. Simply put the XML file in res/xml/, and you can access it by
getXml() on a Resources object, supplying it a resource ID of R.xml. plus the
base name of your XML file. So, in an activity, with an XML file of words.xm1,
you could call getResources().getXml(R.xml.words).

This returns an instance of an xmlPullParser, found in the org.xmlpull.vi
Java namespace. An XML pull parser is event-driven: you keep calling
next() on the parser to get the next event, which could be START_TAg,
END_TAG, END_DOCUMENT, etc. On a START_TAG event, you can access the tag's
name and attributes; a single TEXT event represents the concatenation of all
text nodes that are direct children of this element. By looping, testing, and
invoking per-element logic, you parse the file.

To see this in action, let's rewrite the Java code for the Files/Static sample
project to use an XML resource. This new project, Resources/XML, requires
that you place the words.xml file from Static not in res/raw/, but in

328

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

res/xml/. The layout stays the same, so all that needs replacing is the Java
source:

package com.commonsware.android.resources;

import android.app.Activity;

import android.os.Bundle;

import android.app.ListActivity;
import android.view.View;

import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.ListView;
import android.widget.TextView;
import android.widget.Toast;

import java.io.InputStream;

import java.util.Arraylist;

import org.xmlpull.vl.XmlPullParser;
import org.xmlpull.vl.XmlPullParserException;

public class XMLResourceDemo extends ListActivity {
TextView selection;
ArraylList<String> items=new ArraylList<String>();

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);

try {
XmlPullParser xpp=getResources().getXml(R.xml.words);

while (xpp.getEventType()!=XmlPullParser.END_DOCUMENT) {
if (xpp.getEventType()==XmlPullParser.START_TAG) {
if (xpp.getName().equals("word")) {
items.add(xpp.getAttributeValue(©));
¥
}

xpp.next();

}
catch (Throwable t) {
Toast
.makeText(this, "Request failed: "+t.toString(), Toast.LENGTH_LONG)
.show();

setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_1,
items));

329

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

public void onListItemClick(ListView parent, View v, int position,
long id) {
selection.setText(items.get(position).toString());

}

}

Now, inside our try...catch block, we get our xmlPullParser and loop until
the end of the document. If the current event is START_TAG and the name of
the element is word (xpp.getName().equals("word")), then we get the one-
and-only attribute and pop that into our list of items for the selection
widget. Since we're in complete control over the XML file, it is safe enough
to assume there is exactly one attribute. But, if you were not as comfortable
that the XML is properly defined, you might consider checking the
attribute count (getAttributeCount()) and the name of the attribute
(getAttributeName()) before blindly assuming the e-index attribute is what
you think it is.

The result looks the same as before, albeit with a different name in the title
bar:

EhMl & 1:06 Pm

XMLResourceDemo

lorem

ipsum

dolor

sit

amet

consectetuer

Figure 107. The XMLResourceDemo sample application

330

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

Miscellaneous Values

In the res/values/ directory, in addition to string resources, you can place
one (or more) XML files describing other simple resources, such as
dimensions, colors, and arrays. We have already seen uses of dimensions
and colors in previous examples, where they were passed as simple strings
(e.g., "16px") as parameters to calls. You can, of course, set these up as Java
static final objects and use their symbolic names...but this only works
inside Java source, not in layout XML files. By putting these values in
resource XML files, you can reference them from both Java and layouts,
plus have them centrally located for easy editing.

Resource XML files have a root element of resources; everything else is a
child of that root.

Dimensions

Dimensions are used in several places in Android to describe distances,
such as a widget's padding. While this book usually uses pixels (e.g., 10px
for ten pixels), there are several different units of measurement available to
you:

« in and mm for inches and millimeters, respectively, based on the
actual size of the screen

+ pt for points, which in publishing terms is 1/72nd of an inch (again,
based on the actual physical size of the screen)

- dip and sp for device-independent pixels and scale-independent
pixels — one pixel equals one dip for a 160dpi resolution screen, with
the ratio scaling based on the actual screen pixel density (scale-
independent pixels also take into account the user's preferred font
size)

To encode a dimension as a resource, add a dimen element, with a name
attribute for your unique name for this resource, and a single child text
element representing the value:

331

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

<resources>
<dimen name="thin">1@px</dimen>
<dimen name="fat">1lin</dimen>
</resources>

In a layout, you can reference dimensions as @dimen/. .., where the ellipsis is
a placeholder for your unique name for the resource (e.g., thin and fat from
the sample above). In Java, you reference dimension resources by the
unique name prefixed with R.dimen. (e.g.
Resources.getDimen(R.dimen.thin)).

Colors

Colors in Android are hexadecimal RGB values, also optionally specifying
an alpha channel. You have your choice of single-character hex values or
double-character hex values, leaving you with four styles:

* #RGB
* #ARGB
* #RRGGBB

* #AARRGGBB

These work similarly to their counterparts in Cascading Style Sheets (CSS).

You can, of course, put these RGB values as string literals in Java source or
layout resources. If you wish to turn them into resources, though, all you
need to do is add color elements to the resources file, with a name attribute
for your unique name for this color, and a single text element containing
the RGB value itself:

<resources>
<color name="yellow_orange" >#FFD555</color>
<color name="forest_green">#005500</color>
<color name="burnt_umber">#8A3324</color>
</resources>

In a layout, you can reference colors as @color/..., replacing the ellipsis
with your unique name for the color (e.g., burnt_umber). In Java, you

332

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

reference color resources by the unique name prefixed with R.color. (e.g.,
Resources.getColor(R.color.forest_green))

Arrays

Array resources are designed to hold lists of simple strings, such as a list of
honorifics (Mr., Mrs., Ms., Dr., etc.).

In the resource file, you need one string-array element per array, with a
name attribute for the unique name you are giving the array. Then, add one
or more child item elements, each of which having a single text element
with the value for that entry in the array:

<?xml version="1.0" encoding="utf-8"?>
<resources>
<string-array name="cities">
<item>Philadelphia</item>
<item>Pittsburgh</item>
<item>Allentown/Bethlehem</item>
<item>Erie</item>
<item>Reading</item>
<item>Scranton</item>
<item>Lancaster</item>
<item>Altoona</item>
<item>Harrisburg</item>
</string-array>
<string-array name="airport_codes">
<item>PHL</item>
<item>PIT</item>
<item>ABE</item>
<item>ERI</item>
<item>RDG</item>
<item>AVP</item>
<item>LNS</item>
<item>A00</item>
<item>MDT</item>
</string-array>
</resources>

From your Java code, you can then use Resources.getStringArray() to get a
string[] of the items in the list. The parameter to getStringArray() is your
unique name for the array, prefixed with R.array. (e.g,
Resources.getStringArray(R.array.honorifics))

333

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

Different Strokes for Different Folks

One set of resources may not fit all situations where your application may
be used. One obvious area comes with string resources and dealing with
internationalization (I18N) and localization (LioN). Putting strings all in
one language works fine - probably at least for the developer - but only
covers one language.

That is not the only scenario where resources might need to differ, though.
Here are others:

« Screen orientation: is the screen in a portrait orientation?
Landscape? Is the screen square and, therefore, does not really have
an orientation?

« Screen size: how many pixels does the screen have, so you can size
your resources accordingly (e.g., large versus small icons)?

« Touchscreen: does the device have a touchscreen? If so, is the
touchscreen set up to be used with a stylus or a finger?

« Keyboard: what keyboard does the user have (QWERTY, numeric,
neither), either now or as an option?

« Other input: does the device have some other form of input, like a
directional pad or click-wheel?

The way Android currently handles this is by having multiple resource
directories, with the criteria for each embedded in their names.

Suppose, for example, you want to support strings in both English and
Spanish. Normally, for a single-language setup, you would put your strings
in a file named res/values/strings.xml. To support both English and
Spanish, you would create two folders, res/values-en/ and res/values-es/,
where the value after the hyphen is the ISO 639-1 two-letter code for the
language you want. Your English-language strings would go in res/values-
en/strings.xml and the Spanish ones in res/values-es/strings.xml. Android
will choose the proper file based on the user's device settings.

334

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://en.wikipedia.org/wiki/ISO_639-1

Working with Resources

An even better approach is for you to consider some language to be your
default, and put those strings in res/values/strings.xml. Then, create other
resource directories for your translations (e.g., res/values-es/strings.xml
for Spanish). Android will try to match a specific language set of resources;
failing that, it will fall back to the default of res/values/strings.xml.

Seems easy, right?

Where things start to get complicated is when you need to use multiple
disparate criteria for your resources. For example, let us suppose you want
to develop both for the T-Mobile Gi, the Samsung Galaxy Tab, and the
Motorola Charm.

« The T-Mobile G1 has a normal-size, medium-density screen and a
hardware keyboard

« The Samsung Galaxy Tab has a large size, high-density screen and
no hardware keyboard

« The Motorola Charm has a small size, medium-density screen and a
hardware keyboard

You may want to have somewhat different layouts for these devices, to take
advantage of different screen real estate and different input options.
Specifically:

+ You want different layouts for each combination of size, orientation,
and keyboard

« You want different drawables for each density

Once you get into these sorts of situations, though, all sorts of rules come
into play, such as:

« The configuration options (e.g., -en) have a particular order of
precedence, and they must appear in the directory name in that
order. The Android documentation outlines the specific order in
which these options can appear. For the purposes of this example,
screen size is more important than screen orientation, which is

335

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://developer.android.com/guide/topics/resources/providing-resources.html#AlternativeResources

Working with Resources

more important than screen density, which is more important than
whether or not the device has a keyboard.

« There can only be one value of each configuration option category
per directory.

« Options are case sensitive

So, for the scenario described above, in theory, we would need the
following directories, representing the possible combinations:
* res/layout-large-port-mdpi-qwerty
* res/layout-large-port-mdpi-nokeys
. res/layout-large-port-hdpi-qwerty
. res/layout-large-port-hdpi-nokeys
* res/layout-large-land-mdpi-qwerty
* res/layout-large-land-mdpi-nokeys
. res/layout-large-land-hdpi-qwerty
. res/layout-large-land-hdpi-nokeys
* res/layout-normal-port-mdpi-qwerty
* res/layout-normal-port-mdpi-nokeys
. res/layout-normal-port-finger-qwerty
. res/layout-normal-port-hdpi-nokeys
* res/layout-normal-land-mdpi-qwerty
* res/layout-normal-land-mdpi-nokeys
. res/layout-normal-land-hdpi-qwerty
. res/layout-normal-land-hdpi-nokeys
* res/drawable-large-port-mdpi-qwerty
* res/drawable-large-port-mdpi-nokeys
. res/drawable-large-port-hdpi-qwerty
. res/drawable-large-port-hdpi-nokeys
* res/drawable-large-land-mdpi-qwerty
* res/drawable-large-land-mdpi-nokeys

. res/drawable-large-land-hdpi-qwerty

336

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

. res/drawable-large-land-hdpi-nokeys

* res/drawable-normal-port-mdpi-qwerty

* res/drawable-normal-port-mdpi-nokeys

. res/drawable-normal-port-finger-qwerty
. res/drawable-normal-port-hdpi-nokeys

* res/drawable-normal-land-mdpi-qwerty

* res/drawable-normal-land-mdpi-nokeys

. res/drawable-normal-land-hdpi-qwerty

. res/drawable-normal-land-hdpi-nokeys

Don't panic! We will shorten this list in just a moment!

Note that there is nothing preventing you from also having a directory with
the unadorned base name (res/layout). In fact, this is really a good idea, in
case future editions of the Android runtime introduce other configuration
options you did not consider - having a default layout might make the
difference between your application working or failing on that new device.

Also, we can cut the number of required directories a lot by decoding the
rules Android uses for determining which, among a set of candidates, is the
"right" resource directory to use:

1. First up, Android tosses out ones that are specifically invalid. So, for
example, if the screen size of the device is "normal", the -large
directories would be dropped as candidates, since they call for some
other size.

2. Next, Android counts the number of matches for each folder, and
only pays attention to those with the most matches.

3. Finally, Android goes in the order of precedence of the options - in
other words, it goes from left to right in the directory name.

Also, our drawables are only varying by density, and our layouts are not
varying by density, so we can clear out a lot of combinations by focusing on
only the relevant platform differences.

337

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

So we could skate by with only the following configurations:

. res/layout-large-land-qwerty
* res/layout-large-qwerty

* res/layout-large-1land

* res/layout-large

. res/layout-normal-land-qwerty
* res/layout-normal-quwerty

* res/layout-normal-land

* res/layout

* res/drawable-hdpi

. res/drawable

Here, we take advantage of the fact that specific matches take precedence
over "unspecified" values. So, a device with a QWERTY keyboard will
choose a resource with qwerty in the directory over a resource that does not
specify its keyboard type.

We could refine this even further, to only cover the specific devices we are
targeting (e.g., there is no large device with querty):

. res/layout-large-land

* res/layout-large

* res/layout-land-qwerty

. res/layout-qwerty

. res/layout-land

* res/layout

* res/drawable-hdpi

. res/drawable

If we did not care about having different layouts for whether the device had
a hardware keyboard, we could drop the two -qwerty resource sets.

We will see these resource sets again in the chapter on supporting multiple
screen sizes, later in the book.

338

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

RTL Languages: Going Both Ways

Android 2.3 added support for many more languages than had existed in
previous versions of the platform. As such, you now have greater
opportunity to localize your application where it is needed.

In particular, Android 2.3 added support for right-to-left (RTL) languages,
notably Hebrew and Arabic. Previously, Android only supported languages
written horizontally from left to right, such as English. This not only means
you have the potential for creating localized versions for RTL languages,
but you may need to consider whether your Ul in general will work
properly for RTL languages. For example:

« Are your Textview widgets aligned on the left side with other
widgets or containers? If so, is that the right answer for your RTL
users?

« Will there be any issues with your EditText widgets when users start
entering RTL text, such as inappropriate scrolling because you have
not properly constrained the EditText widget's width?

« Ifyou created your own forms of text input, outside of EditText and
the input method framework (e.g., custom on-screen virtual
keyboards), will they support RTL languages?

339

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 26

Using Preferences

Android has many different ways for you to store data for long-term use by
your activity. The simplest to use is the preferences system.

Android allows activities and applications to keep preferences, in the form
of key/value pairs (akin to a Map), that will hang around between
invocations of an activity. As the name suggests, the primary purpose is for
you to store user-specified configuration details, such as the last feed the
user looked at in your feed reader, or what sort order to use by default on a
list, or whatever. Of course, you can store in the preferences whatever you
like, so long as it is keyed by a string and has a primitive value (boolean,
String, etc.)

Preferences can either be for a single activity or shared among all activities
in an application. Other components, such as services, also can work with
shared preferences.

Getting What You Want

To get access to the preferences, you have three APIs to choose from:

1. getPreferences() from within your Activity, to access activity-
specific preferences

2. getSharedPreferences() from within your Activity (or other
application Context), to access application-level preferences

341

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

3. getDefaultSharedPreferences(), on PreferenceManager, to get the
shared preferences that work in concert with Android's overall
preference framework

The first two take a security mode parameter - for now, pass in o. The
getSharedPreferences() method also takes a name of a set of preferences —
getPreferences() effectively calls getSharedPreferences() with the activity's
class name as the preference set name. The getDefaultSharedPreferences()
method takes the context for the preferences (e.g., your Activity).

All of those methods return an instance of SharedPreferences, which offers a
series of getters to access named preferences, returning a suitably-typed
result (e.g., getBoolean() to return a boolean preference). The getters also
take a default value, which is returned if there is no preference set under
the specified key.

Unless you have a good reason to do otherwise, you are best served using
the third option above - getDefaultSharedPreferences() — as that will give
you the SharedPreferences object that works with a PreferenceActivity by
default, as will be described later in this chapter.

Stating Your Preference

Given the appropriate SharedPreferences object, you can use edit() to get an
"editor” for the preferences. This object has a set of setters that mirror the
getters on the parent SharedPreferences object. It also has:

+ remove() to get rid of a single named preference
« clear() to get rid of all preferences

« commit() to persist your changes made via the editor

The last one is important - if you modify preferences via the editor and fail
to commit() the changes, those changes will evaporate once the editor goes
out of scope. Note that Android 2.3 has an apply() method, that works like
commit(), but runs faster.

342

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

Conversely, since the preferences object supports live changes, if one part
of your application (say, an activity) modifies shared preferences, another
part of your application (say, a service) will have access to the changed
value immediately.

And Now, a Word From Our Framework

Beginning with the 0.9 SDK, Android has introduced a framework for
managing preferences. Ironically, this framework does not change anything
shown above. Instead, the framework is more for presenting a consistent
set of preference-setting options for users, so different applications do not
have to "reinvent the wheel".

The linchpin to the preferences framework is yet another XML data
structure. You can describe your application's preferences in an XML file
stored in your project's res/xml/ directory. Given that, Android can present
a pleasant UI for manipulating those preferences, which are then stored in
the sharedPreferences you get back from getDefaultSharedPreferences().

Below, you will find the preference XML for the prefs/simple preferences
sample project:

<PreferenceScreen
xmlns:android="http://schemas.android.com/apk/res/android">
<CheckBoxPreference
android:key="checkbox"
android:title="Checkbox Preference"
android:summary="Check it on, check it off" />
<RingtonePreference
android:key="ringtone"
android:title="Ringtone Preference"
android:showDefault="true"
android:showSilent="true"
android:summary="Pick a tone, any tone" />
</PreferenceScreen>

The root of the preference XML is a PreferenceScreen element. We will
explain why it is named that later in this chapter; for now, take it on faith
that it is a sensible name.

343

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

One of the things you can have inside a PreferenceScreen element, not
surprisingly, are preference definitions. These are subclasses of Preference,
such as CheckBoxPreference or RingtonePreference, as shown above. As one
might expect, these allow you to check a checkbox or choose a ringtone,
respectively. In the case of RingtonePreference, you have your option of
allowing users to choose the system default ringtone, or to choose "silence”
as a ringtone.

Letting Users Have Their Say

Given that you have set up the preference XML, you can use a nearly-built-
in activity for allowing your users to set their preferences. The activity is
nearly "built-in" because you merely need to subclass it and point it to your
preference XML, plus hook the activity into the rest of your application.

So, for example, here is the EditPreferences activity of the Prefs/Simple
project:

package com.commonsware.android.simple;

import android.app.Activity;
import android.os.Bundle;
import android.preference.PreferenceActivity;

public class EditPreferences extends PreferenceActivity {
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

addPreferencesFromResource(R.xml.preferences);

}
}

As you can see, there is not much to see. All you need to do is call
addPreferencesFromResource() and specify the XML resource containing your
preferences.

You will also need to add this as an activity to your AndroidManifest.xml file:

344

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.simple">
<application android:label="@string/app_name" android:icon="@drawable/cw">
<activity android:name=".SimplePrefsDemo"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>
</activity>
<activity android:name=".EditPreferences"
android:label="@string/app_name">
</activity>
</application>
<supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

And you will need to arrange to invoke the activity, such as from a menu
option, here pulled from SimplePrefsDemo:

public boolean onCreateOptionsMenu(Menu menu) {
menu.add(Menu.NONE, EDIT_ID, Menu.NONE, "Edit Prefs")
.setIcon(R.drawable.misc)
.setAlphabeticShortcut('e");

return(super.onCreateOptionsMenu(menu));

}

@0verride
public boolean onOptionsItemSelected(MenuItem item) {
switch (item.getItemId()) {
case EDIT_ID:
startActivity(new Intent(this, EditPreferences.class));
return(true);

}

return(super.onOptionsItemSelected(item));

}
}

However, that is all that is needed, and it really is not that much code
outside of the preferences XML. What you get for your effort is an Android-
supplied preference Ul:

345

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

£ SRl @ 4:26 PM

Checkbox Preference o
i it off -

Ringtone Preference
Pi on 2

Figure 108. The Simple project's preferences Ul

The checkbox can be directly checked or unchecked. To change the
ringtone preference, just click on the entry in the preference list to bring up
a selection dialog:

346

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

Ml & 5:40 P

Default ringtone

Silent o)

‘ l Cancel

Figure 109. Choosing a ringtone preference

Note that there is no explicit "save" or "commit" button or menu on the
PreferenceActivity — changes are persisted automatically.

The simplePrefsDemo activity, beyond having the aforementioned menu, also
displays the current preferences via a TableLayout:

<?xml version="1.0" encoding="utf-8"?>

<TablelLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill parent"

<TableRow>
<TextView
android:text="Checkbox:"
android:paddingRight="5px"
/>
<TextView android:id="@+id/checkbox"
/>
</TableRow>
<TableRow>
<TextView
android:text="Ringtone:"
android:paddingRight="5px"
/>
<TextView android:id="@+id/ringtone"

347

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

/>
</TableRow>
</TablelLayout>

The fields for the table are found in onCreate():

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

checkbox=(TextView)findViewById(R.id.checkbox);
ringtone=(TextView)findViewById(R.id.ringtone);

}

The fields are updated on each onResume():

public void onResume() {
super.onResume();

SharedPreferences prefs=PreferenceManager
.getDefaultSharedPreferences(this);

checkbox.setText (new Boolean(prefs
.getBoolean("checkbox", false))

.toString());
ringtone.setText(prefs.getString("ringtone", "<unset>"));

}

This means the fields will be updated when the activity is opened and after
the preferences activity is left (e.g., via the back button):

348

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

hMl & s:19Pm

SimplePrefsDemo

Figure 110. The Simple project's list of saved preferences

Adding a Wee Bit O' Structure

If you have a lot of preferences for users to set, having them all in one big
list may become troublesome. Android's preference Ul gives you a few ways
to impose a bit of structure on your bag of preferences, including categories
and screens.

Categories are added via a PreferenceCategory element in your preference
XML and are used to group together related preferences. Rather than have
your preferences all as children of the root Preferencescreen, you can put a
few PreferenceCategory elements in the PreferenceScreen, and then put your
preferences in their appropriate categories. Visually, this adds a divider
with the category title between groups of preferences.

If you have lots and lots of preferences — more than is convenient for users
to scroll through - you can also put them on separate "screens" by
introducing the PreferenceScreen element.

Yes, that PreferenceScreen element.

349

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

Any children of pPreferenceScreen go on their own screen. If you nest
PreferenceScreens, the parent screen displays the screen as a placeholder
entry - tapping that entry brings up the child screen.

For example, from the Prefs/structured sample project, here is a preference
XML file that contains both PreferenceCategory and nested PreferenceScreen
elements:

<PreferenceScreen
xmlns:android="http://schemas.android.com/apk/res/android">
<PreferenceCategory android:title="Simple Preferences">
<CheckBoxPreference
android:key="checkbox"
android:title="Checkbox Preference"
android:summary="Check it on, check it off"
/>
<RingtonePreference
android:key="ringtone"
android:title="Ringtone Preference"
android:showDefault="true"
android:showSilent="true"
android:summary="Pick a tone, any tone"
/>
</PreferenceCategory>
<PreferenceCategory android:title="Detail Screens">
<PreferenceScreen
android:key="detail"
android:title="Detail Screen"
android:summary="Additional preferences held in another page">
<CheckBoxPreference
android:key="checkbox2"
android:title="Another Checkbox"
android:summary="0On. Off. It really doesn't matter."
/>
</PreferenceScreen>
</PreferenceCategory>
</PreferenceScreen>

The result, when you use this preference XML with your preferenceActivity
implementation, is a categorized list of elements:

350

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

£ SRl @ 4:26 PM

Simple Preferences

Checkbox Preference o

Ringtone Preference

Detail Screens

Detail Screen
Additional pre held in another e

ditional pre

Figure 111. The Structured project's preference Ul, showing categories and a
screen placeholder

And, if you tap on the Detail Screen entry, you are taken to the child
preference screen:

351

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

EhMl & 6:39Pm

Another Checkbox
On. Off. It 't m

Figure 112. The child preference screen of the Structured project's preference
ul

The Kind Of Pop-Ups You Like

Of course, not all preferences are checkboxes and ringtones.

For others, like entry fields and lists, Android uses pop-up dialogs. Users do
not enter their preference directly in the preference Ul activity, but rather
tap on a preference, fill in a value, and click OK to commit the change.

Structurally, in the preference XML, fields and lists are not significantly
different from other preference types, as seen in this preference XML from
the Prefs/Dialogs sample project:

<PreferenceScreen
xmlns:android="http://schemas.android.com/apk/res/android">
<PreferenceCategory android:title="Simple Preferences">
<CheckBoxPreference
android:key="checkbox"
android:title="Checkbox Preference"
android:summary="Check it on, check it off"
/>
<RingtonePreference

352

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

android:key="ringtone"
android:title="Ringtone Preference”
android:showDefault="true"
android:showSilent="true"
android:summary="Pick a tone, any tone"
/>
</PreferenceCategory>
<PreferenceCategory android:title="Detail Screens">
<PreferenceScreen
android:key="detail"
android:title="Detail Screen"
android:summary="Additional preferences held in another page">
<CheckBoxPreference
android:key="checkbox2"
android:title="Another Checkbox"
android:summary="0On. Off. It really doesn't matter."
/>
</PreferenceScreen>
</PreferenceCategory>
<PreferenceCategory android:title="Other Preferences">
<EditTextPreference
android:key="text"
android:title="Text Entry Dialog"
android:summary="Click to pop up a field for entry"
android:dialogTitle="Enter something useful"
/>
<ListPreference
android:key="1list"
android:title="Selection Dialog"
android:summary="Click to pop up a list to choose from"
android:entries="@array/cities”
android:entryValues="@array/airport_codes"
android:dialogTitle="Choose a Pennsylvania city" />
</PreferenceCategory>
</PreferenceScreen>

With the field (EditTextPreference), in addition to the title and summary
you put on the preference itself, you can also supply the title to use for the
dialog.

With the list (ListPreference), you supply both a dialog title and two string-
array resources: one for the display names, one for the values. These need
to be in the same order - the index of the chosen display name determines
which value is stored as the preference in the sharedpreferences. For
example, here are the arrays for use by the ListPreference shown above:

<?xml version="1.0" encoding="utf-8"?>
<resources>
<string-array name="cities">

353

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

<item>Philadelphia</item>
<item>Pittsburgh</item>
<item>Allentown/Bethlehem</item>
<item>Erie</item>
<item>Reading</item>
<item>Scranton</item>
<item>Lancaster</item>
<item>Altoona</item>
<item>Harrisburg</item>
</string-array>
<string-array name="airport_codes">
<item>PHL</item>
<item>PIT</item>
<item>ABE</item>
<item>ERI</item>
<item>RDG</item>
<item>AVP</item>
<item>LNS</item>
<item>A00</item>
<item>MDT</item>
</string-array>
</resources>

When you bring up the preference UlI, you start with another category with
another pair of preference entries:

O A€ 12:50 Pm

| DialogsDemo

Simple Preferences

Checkbox Preference
Check | ¢ It off

Ringtone Preference

Pic e @
Detail Screens

Detail Screen

Additional preferences held in anothe

Other Preferences

Text Entry Dialog

Selection Dialog

p up alis

Figure 113. The preference screen of the Dialogs project's preference Ul

354

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

Tapping the Text Entry Dialog one brings up...a text entry dialog - in this
case, with the prior preference entry pre-filled-in:

Ml @ 6:54 PM

o Enter something useful

Cancel

Figure 114. Editing a text preference

Tapping the Selection Dialog one brings up...a selection dialog, showing the
display names from the one array:

355

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

Al @ e:54PM

@ Choose a Pennsylvania city

Fhiladelpnia J

Pittsburgh O

Allentown/Bethlehem

Erie O
Reading O

Cancel

Figure 115. Editing a list preference

356

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 27

Managing and Accessing Local
Databases

SQLite is a very popular embedded database, as it combines a clean SQL
interface with a very small memory footprint and decent speed. Moreover,
it is public domain, so everyone can use it. Lots of firms (Adobe, Apple,
Google, Sun, Symbian) and open source projects (Mozilla, PHP, Python) all
ship products with SQLite.

For Android, SQLite is "baked into" the Android runtime, so every Android
application can create SQLite databases. Since SQLite uses a SQL interface,
it is fairly straightforward to use for people with experience in other SQL-
based databases. However, its native API is not JDBC, and JDBC might be
too much overhead for a memory-limited device like a phone, anyway.
Hence, Android programmers have a different API to learn - the good news
being is that it is not that difficult.

This chapter will cover the basics of SQLite use in the context of working
on Android. It by no means is a thorough coverage of SQLite as a whole. If
you want to learn more about SQLite and how to use it in environments
other than Android, a fine book is The Definitive Guide to SQLite by
Michael Owens.

Much of the sample code shown in this chapter comes from the
Database/Constants application. This application presents a list of physical
constants, with names and values culled from Android's SensorManager:

357

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.amazon.com/Definitive-Guide-SQLite/dp/1590596730
http://www.sqlite.org/

Managing and Accessing Local Databases

E N & 9:10 Am

Figure 116. The Constants sample application, as initially launched

You can pop up a menu to add a new constant, which brings up a dialog to
fill in the name and value of the constant:

Ml & 9:10 am

@ Add Constant

Display Name; |

Value:

‘ { Cancel

Figure 117. The Constants sample application's add-constant dialog

358

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Managing and Accessing Local Databases

The constant is then added to the list. A long-tap on an existing constant
will bring up a context menu with a "Delete" option - after confirmation,
that will delete the constant.

And, of course, all of this is stored in a SQLite database.

A Quick SQLite Primer

SQLite, as the name suggests, uses a dialect of SQL for queries (SELECT),
data manipulation (INSERT, et. al.), and data definition (CREATE TABLE, et. al.).
SQLite has a few places where it deviates from the SQL-92 standard, no
different than most SQL databases. The good news is that SQLite is so
space-efficient that the Android runtime can include all of SQLite, not
some arbitrary subset to trim it down to size.

The biggest difference from other SQL databases you will encounter is
probably the data typing. While you can specify the data types for columns
in a CREATE TABLE statement, and while SQLite will use those as a hint, that
is as far as it goes. You can put whatever data you want in whatever column
you want. Put a string in an INTEGER column? Sure! No problem! Vice versa?
Works too! SQLite refers to this as "manifest typing", as described in the
documentation:

In manifest typing, the datatype is a property of the value
itself, not of the column in which the value is stored. SQLite
thus allows the user to store any value of any datatype into
any column regardless of the declared type of that column.

Start at the Beginning

No databases are automatically supplied to you by Android. If you want to
use SQLite, you have to create your own database, then populate it with
your own tables, indexes, and data.

359

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.sqlite.org/different.html

Managing and Accessing Local Databases

To create and open a database, your best option is to craft a subclass of
sQLiteopenHelper. This class wraps up the logic to create and upgrade a
database, per your specifications, as needed by your application. Your
subclass of sQLite0OpenHelper will need three methods:

The constructor, chaining upward to the sQLiteOpenHelper
constructor. This takes the context (e.g., an Activity), the name of
the database, an optional cursor factory (typically, just pass null),
and an integer representing the version of the database schema you
are using.

onCreate(), which passes you a sQLiteDatabase object that you use to
populate with tables and initial data, as appropriate.

onUpgrade (), which passes you a sQLiteDatabase object and the old
and new version numbers, so you can figure out how best to convert
the database from the old schema to the new one. The simplest,
albeit least friendly, approach is to simply drop the old tables and
create new ones.

For example, here is a DatabaseHelper class from Database/Constants that, in
onCreate(), creates a table and adds a number of rows, and in onUpgrade()
"cheats" by dropping the existing table and executing onCreate():

import
import
import
import
import
import
import

public

package com.commonsware.android.constants;

private static final String DATABASE_NAME="db";
static final String TITLE="title";
static final String VALUE="value";

public DatabaseHelper(Context context) {
super(context, DATABASE_NAME, null, 1);

}
@0verride
public void onCreate(SQLiteDatabase db) {
db.execSQL("CREATE TABLE constants (_id INTEGER PRIMARY KEY AUTOINCREMENT,

android.content.ContentValues;
android.content.Context;
android.database.Cursor;
android.database.SQLException;
android.database.sqlite.SQLiteOpenHelper;
android.database.sqlite.SQLiteDatabase;
android.hardware.SensorManager;

class DatabaseHelper extends SQLiteOpenHelper {

360

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Managing and Accessing Local Databases

cv

cv

cv

cv

cv

title TEXT, value REAL);");
ContentValues cv=new ContentValues();

.put(TITLE, "Gravity, Death Star I");
.put(VALUE, SensorManager.GRAVITY_DEATH_STAR_I);
.insert("constants", TITLE, cv);

.put(TITLE, "Gravity, Earth");
.put (VALUE, SensorManager.GRAVITY_EARTH);
.insert("constants", TITLE, cv);

cv.
cv.
db.

.put(TITLE, "Gravity, Mars");
cv.
db.

cv.
cv.
db.

cv.
.put(VALUE, SensorManager.GRAVITY_MOON);
db.

cv.
cv.
db.

.put(TITLE, "Gravity, Pluto");
cv.
db.

cv.
cv.
db.

cv.
.put(VALUE, SensorManager.GRAVITY_SUN);
db.

cv.
cv.
db.

cv.
cv.
db.

.put(TITLE, "Gravity, Venus");
cv.

put(TITLE, "Gravity, Jupiter");
put(VALUE, SensorManager.GRAVITY_JUPITER);
insert("constants", TITLE, cv);

put(VALUE, SensorManager.GRAVITY_MARS);
insert("constants", TITLE, cv);

put(TITLE, "Gravity, Mercury");
put(VALUE, SensorManager.GRAVITY_MERCURY);
insert("constants", TITLE, cv);

put(TITLE, "Gravity, Moon");
insert("constants", TITLE, cv);
put(TITLE, "Gravity, Neptune");

put (VALUE, SensorManager.GRAVITY_NEPTUNE);
insert("constants", TITLE, cv);

put(VALUE, SensorManager.GRAVITY_PLUTO);
insert("constants", TITLE, cv);

put(TITLE, "Gravity, Saturn");
put(VALUE, SensorManager.GRAVITY_SATURN);
insert("constants", TITLE, cv);

put(TITLE, "Gravity, Sun");
insert("constants", TITLE, cv);

put(TITLE, "Gravity, The Island");

put(VALUE, SensorManager.GRAVITY_THE_ISLAND);
insert("constants", TITLE, cv);

put(TITLE, "Gravity, Uranus");

put (VALUE, SensorManager.GRAVITY_URANUS);
insert("constants", TITLE, cv);

put (VALUE, SensorManager.GRAVITY_VENUS);

361

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Managing and Accessing Local Databases

db.insert("constants", TITLE, cv);
}

@Override
public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
android.util.Log.w("Constants", "Upgrading database, which will destroy all
old data");
db.execSQL("DROP TABLE IF EXISTS constants");
onCreate(db);
}
¥

We will take a closer look at what oncCreate() is doing - in terms of
execSQL() and insert() calls - later in this chapter.

To use your sQLiteOpenHelper subclass, create and hold onto an instance of
it. Then, when you need a sQLiteDatabase object to do queries or data
modifications, ask your sQLiteOpenHelper to getReadableDatabase() or
getWriteableDatabase(), depending upon whether or not you will be
changing its contents. For example, our ConstantsBrowser activity opens the
database in onCreate() as part of doing a query:

constantsCursor=db
.getReadableDatabase()
.rawQuery("SELECT _ID, title, value "+
"FROM constants ORDER BY title",
null);

When you are done with the database (e.g., your activity is being closed),
simply call close() on your sQLiteOpenHelper to release your connection.

Setting the Table

For creating your tables and indexes, you will need to call execsQL() on your
SQLiteDatabase, providing the DDL statement you wish to apply against the
database. Barring a database error, this method returns nothing.

So, for example, you can call execsQL() to create the constants table, as
shown in the DatabaseHelper onCreate() method:

362

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Managing and Accessing Local Databases

db.execSQL("CREATE TABLE constants (_id INTEGER PRIMARY KEY AUTOINCREMENT, title
TEXT, value REAL);");

This will create a table, named constants, with a primary key column
named _id that is an auto-incremented integer (i.e., SQLite will assign the
value for you when you insert rows), plus two data columns: title (text)
and value (a float, or "real" in SQLite terms). SQLite will automatically
create an index for you on your primary key column - you could add other
indexes here via some CREATE INDEX statements, if you so chose to.

Most likely, you will create tables and indexes when you first create the
database, or possibly when the database needs upgrading to accommodate
a new release of your application. If you do not change your table schemas,
you might never drop your tables or indexes, but if you do, just use
execSQL () to invoke DROP INDEX and DROP TABLE statements as needed.

Makin' Data

Given that you have a database and one or more tables, you probably want
to put some data in them and such. You have two major approaches for
doing this.

You can always use execsQL(), just like you did for creating the tables. The
execSQL() method works for any SQL that does not return results, so it can
handle INSERT, UPDATE, DELETE, etc. just fine.

Your alternative is to use the insert(), update(), and delete() methods on
the sqQLiteDatabase object, which eliminate much of the SQL syntax
required to do basic operations.

For example, here we insert() a new row into our constants table:

private void processAdd(DialogWrapper wrapper) {
ContentValues values=new ContentValues(2);

values.put(DatabaseHelper.TITLE, wrapper.getTitle());
values.put(DatabaseHelper.VALUE, wrapper.getValue());

363

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Managing and Accessing Local Databases

db.getWritableDatabase().insert("constants", DatabaseHelper.TITLE, values);
constantsCursor.requery();

}

These methods make use of contentvalues objects, which implement a Map-
esque interface, albeit one that has additional methods for working with
SQLite types. For example, in addition to get() to retrieve a value by its key,
you have getAsInteger(), getAsString(), and so forth.

The insert() method takes the name of the table, the name of one column
as the "null column hack", and a Contentvalues with the initial values you
want put into this row. The "null column hack" is for the case where the
ContentValues instance is empty - the column named as the "null column
hack" will be explicitly assigned the value nuLL in the SQL INSERT statement
generated by insert(). This is required due to a quirk in SQLite's support
for the SQL INSERT statement.

The update() method takes the name of the table, a Contentvalues
representing the columns and replacement values to use, an optional WHERE
clause, and an optional list of parameters to fill into the WHERE clause, to
replace any embedded question marks (?). Since update() only replaces
columns with fixed values, versus ones computed based on other
information, you may need to use execSQL() to accomplish some ends. The
WHERE clause and parameter list works akin to the positional SQL
parameters you may be used to from other SQL APIs.

The delete() method works akin to update(), taking the name of the table,
the optional wHERE clause, and the corresponding parameters to fill into the
WHERE clause. For example, here we delete() a row from our constants table,
given its _ID:

private void processDelete(long rowId) {
String[] args={String.valueOf(rowld)};

db.getWritableDatabase().delete("constants"”, "_ID=?", args);
constantsCursor.requery();

}

364

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Managing and Accessing Local Databases

What Goes Around, Comes Around
As with INSERT, UPDATE, and DELETE, you have two main options for retrieving
data from a SQLite database using SELECT:

1. You can use rawQuery() to invoke a SELECT statement directly, or

2. You can use query() to build up a query from its component parts

Confounding matters further is the sQLiteQueryBuilder class and the issue
of cursors and cursor factories. Let's take all of this one piece at a time.

Raw Queries

The simplest solution, at least in terms of the API, is rawQuery(). Simply call
it with your SQL SELECT statement. The SELECT statement can include
positional parameters; the array of these forms your second parameter to
rawQuery (). So, we wind up with:

constantsCursor=db
.getReadableDatabase()
.rawQuery("SELECT _ID, title, value "+
"FROM constants ORDER BY title",
null);

The return value is a cursor, which contains methods for iterating over
results (see below).

If your queries are pretty much "baked into" your application, this is a very
straightforward way to use them. However, it gets complicated if parts of
the query are dynamic, beyond what positional parameters can really
handle. For example, if the set of columns you need to retrieve is not
known at compile time, puttering around concatenating column names
into a comma-delimited list can be annoying...which is where query()
comes in.

365

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Managing and Accessing Local Databases

Regular Queries

The query() method takes the discrete pieces of a SELECT statement and
builds the query from them. The pieces, in order that they appear as
parameters to query(), are:

+ The name of the table to query against

« The list of columns to retrieve

« The wHeRE clause, optionally including positional parameters

« The list of values to substitute in for those positional parameters
« The GrouP BY clause, if any

+ The HAVING clause, if any

« The orDER BY clause, if any

These can be null when they are not needed (except the table name, of
course):

String[] columns={"ID", "inventory"};

String[] parms={"snicklefritz"};

Cursor result=db.query("widgets", columns, "name=?",
parms, null, null, null);

Building with Builders

Yet another option is to use sQLiteQueryBuilder, which offers much richer
query-building options, particularly for nasty queries involving things like
the wunion of multiple sub-query results. More importantly, the
SQLiteQueryBuilder interface dovetails nicely with the CcontentProvider
interface for executing queries. Hence, a common pattern for your content
provider's query() implementation is to create a sQLiteQueryBuilder, fill in
some defaults, then allow it to build up (and optionally execute) the full
query combining the defaults with what is provided to the content provider
on the query request.

For example, here is a snippet of code from a content provider using
SQLiteQueryBuilder:

366

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Managing and Accessing Local Databases

@Override
public Cursor query(Uri url, String[] projection, String selection,

String[] selectionArgs, String sort) {
SQLiteQueryBuilder gb=new SQLiteQueryBuilder();

gb.setTables(getTableName());

if (isCollectionUri(url)) {
gb.setProjectionMap(getDefaultProjection());

}

else {
gb.appendWhere (getIdColumnName()+"="+url.getPathSegments().get(1));

}

String orderBy;

if (TextUtils.isEmpty(sort)) {
orderBy=getDefaultSortOrder();
} else {
orderBy=sort;

}

Cursor c=gb.query(db, projection, selection, selectionArgs,

null, null, orderBy);
c.setNotificationUri(getContext().getContentResolver(), url);
return c;

Here, we see:

+ A sQLiteQueryBuilder is constructed
 Itis told the table to use for the query (setTables(getTableName()))

« It is either told the default set of columns to return
(setProjectionMap()), or is given a piece of a WHERE clause to identify
a particular row in the table by an identifier extracted from the uri
supplied to the query() call (appendnhere())

« Finally, it is told to execute the query, blending the preset values
with those supplied on the call to query() (gb.query(db, projection,
selection, selectionArgs, null, null, orderBy))

Instead of having the sQLiteQueryBuilder execute the query directly, we
could have called buildQuery() to have it generate and return the SQL

SELECT statement we needed, which we could then execute ourselves.

367

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Managing and Accessing Local Databases

Using Cursors

No matter how you execute the query, you get a cursor back. This is the
Android/SQLite edition of the database cursor, a concept used in many
database systems. With the cursor, you can:

+ Find out how many rows are in the result set via getCount()

+ Iterate over the rows via moveToFirst(), moveToNext(), and
isAfterLast()

+ Find out the names of the columns via getColumnNames(), convert
those into column numbers via getColumnIndex(), and get values for
the current row for a given column via methods like getstring(),
getInt(), etc.

« Re-execute the query that created the cursor via requery()

+ Release the cursor's resources via close()

For example, here we iterate over a widgets table entries:

Cursor result=
db.rawQuery("SELECT ID, name, inventory FROM widgets", null);

result.moveToFirst();

while (!result.isAfterLast()) {
int id=result.getInt(0);

String name=result.getString(1);
int inventory=result.getInt(2);
// do something useful with these

result.moveToNext();

}

result.close();

You can also wrap a cursor in a SimpleCursorAdapter or other
implementation, then hand the resulting adapter to a Listview or other
selection widget. Note, though, that if you are going to use CursorAdapter or
its subclasses (like SimplecursorAdapter), your result set of your query must
contain an integer column named _ID that is unique for the result set.

368

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Managing and Accessing Local Databases

For example, after retrieving the sorted list of constants, we pop those into
the Listview for the ConstantsBrowser activity in just a few lines of code:

ListAdapter adapter=new SimpleCursorAdapter(this,
R.layout.row, constantsCursor,
new String[] {DatabaseHelper.TITLE,
DatabaseHelper.VALUE},
new int[] {R.id.title, R.id.value});

Custom CursorAdapters

You may recall from an earlier chapter that you can override getview() in
ArrayAdapter to provide more custom control over how rows are displayed.

However, CursorAdapter and its subclasses have a default implementation of
getview(). What getview() does is inspect the supplied view to recycle and,
if it is null, calls newview() then bindview(), or just calls bindview() if it is not
null. If you are extending CursorAdapter — used for displaying results of a
database or content provider query - you should override newview() and
bindview() instead of getview().

All this does is remove your if() test you would have had in getview() and
putting each branch of that test in an independent method, akin to the
following:

public View newView(Context context, Cursor cursor,
ViewGroup parent) {
LayoutInflater inflater=getLayoutInflater();
View row=inflater.inflate(R.layout.row, null);
ViewWrapper wrapper=new ViewWrapper(row);

row.setTag(wrapper);

return(row);

}

public void bindView(View row, Context context, Cursor cursor) {
ViewWrapper wrapper=(ViewWrapper)row.getTag();

// actual logic to populate row from Cursor goes here

}

369

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Managing and Accessing Local Databases

Making Your Own Cursors

There may be circumstances in which you want to use your own cCursor
subclass, rather than the stock implementation provided by Android. In
those cases, you can use queryWithFactory() and rawQueryWithFactory() that
take a sQLiteDatabase.CursorFactory instance as a parameter. The factory, as
one might expect, is responsible for creating new cursors via its newCursor()
implementation.

Finding and implementing a valid use for this facility is left as an exercise
for the reader. Suffice it to say that you should not need to create your own
cursor classes much, if at all, in ordinary Android development.

Flash: Sounds Faster Than It Is

Your database will be stored on flash memory, normally the on-board flash
for the device.

Reading data off of flash is relatively quick. While the memory is not
especially fast, there is no "seek time" to move hard drive heads around like
you find with magnetic media, and so performing a query against a SQLite
database will tend to be speedy.

Writing data to flash is another matter entirely.

Sometimes, this may happen fairly quickly, on the order of a couple of
milliseconds. Sometimes, though, it may take hundreds of milliseconds,
even for writing small amounts of data. Moreover, flash tends to get slower
the more full it is, so the speed your users will see varies even more.

The net result is that you should seriously consider doing all database write
operations off the main application thread, such as via an AsyncTask, as is
described in the chapter on threads. This way, the database write
operations will not slow down your user interface.

370

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Managing and Accessing Local Databases

Note that the emulator behaves differently, because it is typically using a
file on your hard drive for storing data, rather than flash. While the
emulator tends to be much slower than hardware for CPU and GPU
operations, the emulator will tend to be much faster for writing data to
flash. Hence, just because you are not seeing any UI slowdowns due to
database I/O in the emulator, do not assume that will be the same when
your code is running on a real Android device.

Data, Data, Everywhere

If you are used to developing for other databases, you are also probably
used to having tools to inspect and manipulate the contents of the
database, beyond merely the database's API. With Android's emulator, you
have two main options for this.

First, the emulator is supposed to bundle in the sqlite3 console program
and makes it available from the adb shell command. Once you are in the
emulator's shell, just execute sqlite3, providing it the path to your database
file. Your database file can be found at:

|/data/data/your‘.app.package/databases/your‘-db-name |

Here your.app.package is the Java package for your application (e.g.,
com.commonsware.android) and your-db-name is the name ofyour database, as
supplied to createDatabase().

The sqlite3 program works, and if you are used to poking around your
tables using a console interface, you are welcome to use it. If you prefer
something a little bit friendlier, you can always copy the SQLite database
off the device onto your development machine, then use a SQLite-aware
client program to putter around. Note, though, that you are working off a
copy of the database; if you want your changes to go back to the device, you
will need to transfer the database back over.

To get the database off the device, you can use the adb pull command (or
the equivalent in your IDE, or the File Manager in DDMS), which takes the

371

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Managing and Accessing Local Databases

path to the on-device database and the local destination as parameters. To
store a modified database on the device, use adb push, which takes the local
path to the database and the on-device destination as parameters.

One of the most-accessible SQLite clients is the SQLite Manager extension
for Firefox, as it works across all platforms.

@ SONLEMETEOET El@

Database Table |ndex View Trigger Tools Help Profile Database: l(Sslsct Profile Database) :l[Go I

Refresh DNawDatabase @Ccnnact Database Eicreats Table ﬁDmp Table D::iz'creats Index HDrop Index

Database

Database Not Selected

Structure | Browse & Search ‘ Execute SQL ‘ DB Settings

Figure 118 thé SQLite Manager Firefox extension

You can find other client tools on the SQLite Web site.

372

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.sqlite.org/
http://www.sqlite.org/cvstrac/wiki?p=SqliteTools
https://addons.mozilla.org/en-US/firefox/addon/5817

CHAPTER 28
Leveraging Java Libraries

Java has as many, if not more, third-party libraries than any other modern
programming language. Here, "third-party libraries" refer to the
innumerable JARs that you can include in a server or desktop Java
application - the things that the Java SDKs themselves do not provide.

In the case of Android, the Dalvik VM at its heart is not precisely Java, and
what it provides in its SDK is not precisely the same as any traditional Java
SDK. That being said, many Java third-party libraries still provide
capabilities that Android lacks natively and therefore may be of use to you
in your project, for the ones you can get working with Android's flavor of
Java.

This chapter explains what it will take for you to leverage such libraries and
the limitations on Android's support for arbitrary third-party code.

Ants and Jars

You have two choices for integrating third-party code into your project: use
source code, or use pre-packaged JARs.

If you choose to use their source code, all you need to do is copy it into your
own source tree (under src/ in your project), so it can sit alongside your
existing code, then let the compiler perform its magic.

373

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Leveraging Java Libraries

If you choose to use an existing JAR, perhaps one for which you do not have
the source code, you will need to teach your build chain how to use the
JAR. First, place the JAR in the 1ibs/ directory in your Android project.
Then, if you are using an IDE, you probably need to add the JAR to your
build path (Ant will automatically pick up all JARs found in 1ibs/) - this is
definitely required for Eclipse.

And that's it. Adding third-party code to your Android application is fairly
easy.

Getting to actually work may be somewhat more complicated, however.

The Outer Limits

Not all available Java code will work well with Android. There are a number
of factors to consider, including:

- Expected Platform APIs: Does the code assume a newer JVM than
the one Android is based on? Or, does the code assume the
existence of Java APIs that ship with J2SE but not with Android,
such as Swing?

- Size: Existing Java code designed for use on desktops or servers
need not worry too much about on-disk size, or, to some extent,
even in-RAM size. Android, of course, is short on both. Using third-
party Java code, particularly when pre-packaged as JARs, may
balloon the size of your application.

- Performance: Does the Java code effectively assume a much more
powerful CPU than what you may find on many Android devices?
Just because a desktop can run it without issue does not mean your
average mobile phone will handle it well.

« Interface: Does the Java code assume a console interface? Or is it a
pure API that you can wrap your own interface around?

« Operating System: Does the Java code assume the existence of
certain console programs? Does the Java code assume it can use a
Windows DLL?

374

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Leveraging Java Libraries

- Language Version: Was the JAR compiled with an older version of
Java (1.4.2 or older)? Was the JAR compiled with a different compiler
than the official one from Sun (e.g., GCJ)?

« Dependencies: Does the Java code depend on other third-party JARs
that might have some of these problems as well? Does the Java code
depend upon third-party libraries (e.g., the org.json JSON library)
that are built into Android, but the third party expects a different
version of that library?

One trick for addressing some of these concerns is to use open source Java
code, and actually work with the code to make it more Android-friendly.
For example, if you are only using 10% of the third-party library, maybe it's
worthwhile to recompile the subset of the project to be only what you need,
or at least removing the unnecessary classes from the JAR. The former
approach is safer, in that you get compiler help to make sure you are not
discarding some essential piece of code, though it may be more tedious to

do.

Following the Script

Unlike other mobile device operating systems, Android has no restrictions
on what you can run on it, so long as you can do it in Java using the Dalvik
VM. This includes incorporating your own scripting language into your
application, something that is expressly prohibited on some other devices.

One possible Java scripting language is BeanShell. BeanShell gives you Java-
compatible syntax with implicit typing and no compilation required.

So, to add BeanShell scripting, you need to put the BeanShell interpreter's
JAR file in your libs/ directory. The 2.0b4 JAR available for download from
the BeanShell site, unfortunately, does not work out of the box with the
Android 0.9 and newer SDKs, perhaps due to the compiler that was used to
build it. Instead, you should probably check out the source code from
Subversion and execute ant jarcore to build it, then copy the resulting JAR
(in BeanShell's dist/ directory) to your own project's libs/. Or, just use the

375

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://beanshell.org/

Leveraging Java Libraries

BeanShell JAR that accompanies the source code for this book, up on the
CommonsWare site, in the Java/AndShell project.

From there, using BeanShell on Android is no different than using
BeanShell in any other Java environment:

1. Create an instance of the BeanShell 1nterpreter class
2. Set any “globals” for the script’s use via Interpreter#set()

3. Call Interpretersteval() to run the script and, optionally, get the
result of the last statement

For example, here is the XML layout for the world’s smallest BeanShell IDE:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>

<Button
android:id="@+id/eval"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Go!"
android:onClick="go"
/>

<EditText
android:id="@+id/script"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:singlelLine="false"
android:gravity="top"
/>

</LinearLayout>

Couple that with the following activity implementation:

package com.commonsware.android.andshell;

import android.app.Activity;
import android.app.AlertDialog;
import android.os.Bundle;
import android.view.View;
import android.widget.EditText;
import android.widget.Toast;
import bsh.Interpreter;

376

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/Android/

Leveraging Java Libraries

public class MainActivity extends Activity {
private Interpreter i=new Interpreter();

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

}

public void go(View v) {
EditText script=(EditText)findvViewById(R.id.script);
String src=script.getText().toString();

try {
i.set("context", MainActivity.this);
i.eval(src);

catch (bsh.EvalError e) {
AlertDialog.Builder builder=
new AlertDialog.Builder(MainActivity.this);

builder
.setTitle("Exception!")
.setMessage(e.toString())
.setPositiveButton("0OK", null)
.show();

Compile and run it (including incorporating the BeanShell JAR as
mentioned above), and install it on the emulator. Fire it up, and you get a
trivial IDE, with a large text area for your script and a big "Go!" button to
execute it:

377

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Leveraging Java Libraries

hHl & 1:57Pm

Beanshell Demo

Figure 119. The AndShell BeanShell IDE

import android.widget.Toast;

Toast.makeText(context, "Hello, world!", Toast.LENGTH_LONG).show();

Note the use of context to refer to the activity when making the Toast. That
is the global set by the activity to reference back to itself. You could call this
global variable anything you want, so long as the set() call and the script
code use the same name.

Then, click the Go! button, and you get:

378

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Leveraging Java Libraries

Al @ 2:01pPm

Beanshell Demo

Go!

import android.widget.Toast;

Toast.makeText(context, "Hello,
world!", 5000).show();

Hello, world!

Figure 120. The AndShell BeanShell IDE, executing some code

And now, some caveats...

First, not all scripting languages will work. For example, those that
implement their own form of just-in-time (JIT) compilation, generating
Java bytecodes on the fly, would probably have to be augmented to
generate Dalvik VM bytecodes instead of those for stock Java
implementations. Simpler languages that execute off of parsed scripts,
calling Java reflection APIs to call back into compiled classes, will likely
work better. Even there, though, not every feature of the language may
work, if it relies upon some facility in a traditional Java API that does not
exist in Dalvik - for example, there could be stuff hidden inside BeanShell
or the add-on JARs that does not work on today’s Android.

Second, scripting languages without JIT will inevitably be slower than
compiled Dalvik applications. Slower may mean users experience
sluggishness. Slower definitely means more battery life is consumed for the
same amount of work. So, building a whole Android application in
BeanShell, simply because you feel it is easier to program in, may cause
your users to be unhappy.

379

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Leveraging Java Libraries

Third, scripting languages that expose the whole Java API, like BeanShell,
can pretty much do anything the underlying Android security model
allows. So, if your application has the READ_CONTACTS permission, expect any
BeanShell scripts your application runs to have the same permission.

Last, but certainly not least, is that language interpreter JARs tend to
be...portly. The BeanShell JAR used in this example is 200KB. That is not
ridiculous, considering what it does, but it will make applications that use
BeanShell that much bigger to download, take up that much more space on
the device, etc.

Reviewing the Script

Since this chapter covers scripting in Android, you may be interested to
know that you have options beyond embedding BeanShell directly in your
project.

Some experiments have been conducted with other JVM-based
programming languages, such as JRuby and Jython. At present, their
support for Android is incomplete, but progress is being made.

Beyond that, though, there is the Scripting Layer for Android (SL4A). SL4A
allows you to write scripts in a wide range of scripting languages, beyond
BeanShell, such as:

« Perl

« Python
« JRuby

« Lua

« Javascript (implemented via Rhino, the Mozilla Javascript
interpreter written in Java)

- PHP

380

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://code.google.com/p/android-scripting/

Leveraging Java Libraries

These scripts are not full-fledged applications, though the SL4A team is
working on allowing you to turn them into APK files complete with basic
Uls. For on-device development, SL4A is a fine choice.

381

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 29
Communicating via the Internet

The expectation is that most, if not all, Android devices will have built-in
Internet access. That could be WiFi, cellular data services (EDGE, 3G, etc.),
or possibly something else entirely. Regardless, most people - or at least
those with a data plan or WiFi access — will be able to get to the Internet
from their Android phone.

Not surprisingly, the Android platform gives developers a wide range of
ways to make use of this Internet access. Some offer high-level access, such
as the integrated WebKit browser component we saw in an earlier chapter.
If you want, you can drop all the way down to using raw sockets. Or, in
between, you can leverage APIs — both on-device and from 3rd-party JARs -
that give you access to specific protocols: HTTP, XMPP, SMTP, and so on.

The emphasis of this book is on the higher-level forms of access: the
WebKit component and Internet-access APIs, as busy coders should be
trying to reuse existing components versus rolling one's own on-the-wire
protocol wherever possible.

REST and Relaxation

Android does not have built-in SOAP or XML-RPC client APIs. However, it
does have the Apache HttpClient library baked in. You can either layer a
SOAP/XML-RPC layer atop this library, or use it "straight" for accessing
REST-style Web services. For the purposes of this book, "REST-style Web

383

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Communicating via the Internet

services" is defined as "simple HTTP requests for ordinary URLs over the
full range of HTTP verbs, with formatted payloads (XML, JSON, etc.) as
responses".

More expansive tutorials, FAQs, and HOWTOs can be found at the
HttpClient Web site. Here, we'll cover the basics, while checking the
weather.

HTTP Operations via Apache HttpClient

The first step to using HttpClient is, not surprisingly, to create an
HttpClient object. The client object handles all HTTP requests upon your
behalf. Since HttpClient is an interface, you will need to actually instantiate
some implementation of that interface, such as DefaultHttpClient.

Those requests are bundled up into HttpRequest instances, with different
HttpRequest implementations for each different HTTP verb (e.g., HttpGet for
HTTP GET requests). You create an HttpRequest implementation instance, fill
in the URL to retrieve and other configuration data (e.g., form values if you
are doing an HTTP PosT via HttpPost), then pass the method to the client to
actually make the HTTP request via execute().

What happens at this point can be as simple or as complicated as you want.
You can get an HttpResponse object back, with response code (e.g,. 200 for
OK), HTTP headers, and the like. Or, you can use a flavor of execute() that
takes a ResponseHandler<String> as a parameter - the net result there being
that execute() returns just the string representation of the response body.
In practice, this is not a recommended approach, because you really should
be checking your HTTP response codes for errors. However, for trivial
applications, like book examples, the ResponseHandler<string> approach
works just fine.

For example, let's take a look at the Internet/weather sample project. This
implements an activity that retrieves weather data for your current location
from the National Weather Service (NOTE: this probably only works for
geographic locations in the US). That data is converted into an HTML page,

384

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://hc.apache.org/

Communicating via the Internet

which is poured into a webkit widget for display. Rebuilding this demo
using a Listview is left as an exercise for the reader. Also, since this sample
is relatively long, we will only show relevant pieces of the Java code here in
this chapter, though you can always download the full source from the
CommonsWare Web site.

To make this a bit more interesting, we use the Android location services to
figure out where we are...sort of. The full details of how that works is
described in the chapter on location services.

In the onResume() method, we toggle on location updates, so we will be
informed where we are now and when we move a significant distance
(10km). When a location is available - either at the start or based on
movement - we retrieve the National Weather Service data via our
updateForecast() method:

private void updateForecast(Location loc) {
String url=String.format(format, loc.getLatitude(),
loc.getLongitude());
HttpGet getMethod=new HttpGet(url);

try {
ResponseHandler<String> responseHandler=new BasicResponseHandler();

String responseBody=client.execute(getMethod,
responseHandler);
buildForecasts (responseBody);

String page=generatePage();

browser.loadDataWithBaseURL (null, page, "text/html",
"UTF-8", null);

catch (Throwable t) {
android.util.Log.e("WeatherDemo", "Exception fetching data", t);
Toast
.makeText(this, "Request failed: "+t.toString(), Toast.LENGTH_LONG)
.show();

The updatefForecast() method takes a Location as a parameter, obtained
from the location update process. For now, all you need to know is that
Location sports getLatitude() and getLongitude() methods that return the
latitude and longitude of the device's position, respectively.

385

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/Android/

Communicating via the Internet

We hold the URL to the National Weather Service XML in a string resource,
and pour in the latitude and longitude at runtime. Given our HttpClient
object created in onCreate(), we populate an HttpGet with that customized
URL, then execute that method. Given the resulting XML from the REST
service, we build the forecast HTML page (see below) and pour that into
the webkit widget. If the Httpclient blows up with an exception, we provide
that error as a Toast.

Note that we also shut down the HttpClient object in onDestroy().

Parsing Responses

The response you get will be formatted using some system - HTML, XML,
JSON, whatever. It is up to you, of course, to pick out what information you
need and do something useful with it. In the case of the weatherDemo, we
need to extract the forecast time, temperature, and icon (indicating sky
conditions and precipitation) and generate an HTML page from it.

Android includes:

« Three XML parsers: the traditional W3C DOM (org.w3c.dom), a SAX
parser (org.xml.sax), and the XML pull parser discussed in the
chapter on resources

+ AJSON parser (org.json)

You are also welcome to use third-party Java code, where possible, to
handle other formats, such as a dedicated RSS/Atom parser for a feed
reader. The use of third-party Java code is discussed in a separate chapter.

For weatherDemo, we use the W3C DOM parser in our buildForecasts()
method:

void buildForecasts(String raw) throws Exception {
DocumentBuilder builder=DocumentBuilderFactory
.newInstance()
.newDocumentBuilder();
Document doc=builder.parse(new InputSource(new StringReader(raw)));
NodeList times=doc.getElementsByTagName("start-valid-time");

386

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Communicating via the Internet

for (int i=0;i<times.getLength();i++) {
Element time=(Element)times.item(i);
Forecast forecast=new Forecast();

forecasts.add(forecast);
forecast.setTime(time.getFirstChild().getNodeValue());

}

NodeList temps=doc.getElementsByTagName("value");

for (int i=0;i<temps.getLength();i++) {
Element temp=(Element)temps.item(i);
Forecast forecast=forecasts.get(i);

forecast.setTemp(new Integer(temp.getFirstChild().getNodeValue()));
}

NodeList icons=doc.getElementsByTagName("icon-1ink");

for (int i=@;i<icons.getLength();i++) {
Element icon=(Element)icons.item(i);
Forecast forecast=forecasts.get(i);

forecast.setIcon(icon.getFirstChild().getNodeValue());
}

}

The National Weather Service XML format is...curiously structured, relying
heavily on sequential position in lists versus the more object-oriented style
you find in formats like RSS or Atom. That being said, we can take a few
liberties and simplify the parsing somewhat, taking advantage of the fact
that the elements we want (start-valid-time for the forecast time, value for
the temperature, and icon-1link for the icon URL) are all unique within the
document.

The HTML comes in as an InputStream and is fed into the DOM parser.
From there, we scan for the start-valid-time elements and populate a set of
Forecast models using those start times. Then, we find the temperature
value elements and icon-1ink URLs and fill those in to the Forecast objects.

In turn, the generatePage() method creates a rudimentary HTML table with
the forecasts:

String generatePage() {
StringBuilder bufResult=new StringBuilder("<html><body><table>");

387

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Communicating via the Internet

bufResult
bufResult
bufResult

bufResult

bufResult
}

bufResult.append("<tr><th width=\"50%\">Time</th>"+

"<th>Temperature</th><th>Forecast</th></tr>");

for (Forecast forecast : forecasts) {
.append("<tr><td align=\"center\">");
.append(forecast.getTime());
.append("</td><td align=\"center\">");
bufResult.

append(forecast.getTemp());

.append("</td><td><img src=\"");
bufResult.

append(forecast.getIcon());

.append("\"></td></tr>");

bufResult.append("</table></body></html>");

return(bufResult.toString());

The result looks like this:

EhMl & 9:40pPm
WeatherDemo

Time Temperature Forecast
s o [
S
A
A
oo o B
oo Bl
2008-09-01 EI

Figure 121. The WeatherDemo samp.le application

Stuff To Consider

If you need to use SSL, bear in mind that the default HttpClient setup does
not include SSL support. Mostly, this is because you need to decide how to

Subscribe to updates at http://commonsware.com

388

Special Creative Commons BY-NC-SA 3.0 License Edition

Communicating via the Internet

handle SSL certificate presentation — do you blindly accept all certificates,
even self-signed or expired ones? Or do you want to ask the user if they
really want to use some strange certificates?

Similarly, HttpClient, by default, is designed for single-threaded use. If you
will be using HttpClient from some other place where multiple threads
might be an issue, you can readily set up HttpClient to support multiple
threads.

For these sorts of topics, you are best served by checking out the HttpClient
Web site for documentation and support.

AndroidHttpClient

Starting in Android 2.2 (API level 8), you can use the AndroidHttpClient
class, found in the android.net.http package. This is an implementation of
the HttpClient interface, like DefaultHttpClient. However, it is pre-
configured with settings that the core Android team feels make sense for
the platform.

What you gain is:
+ SSL management

« A direct way to specify the user agent string - this is supplied in

your call to the static newInstance() method to get an instance of
AndroidHttpClient

- Utility methods for working with material compressed via GZIP, for
parsing dates in HTTP headers, etc.

What you lose is automatic cookie storage. A regular DefaultHttpClient will
cache cookies in memory and use them on subsequent requests where they
are needed. AndroidHttpClient does not. There are ways to fix that, by using
an HttpContext object, as is described in the AndroidHttpClient
documentation.

389

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://hc.apache.org/
http://hc.apache.org/

Communicating via the Internet

Since this class is only available in Android 2.2 and beyond, it may not
make sense to do much with it until such time as you are only supporting
API level 8 or higher.

Leveraging Internet-Aware Android
Components

Wherever possible, aim to use built-in Android components that can
handle your Internet access for you. Such components will have been fairly
rigorously tested and are more likely to handle edge cases well, such as
dealing with users on WiFi who move out of range of the access point and
fail over to mobile data connections (e.g., 3G).

For example, the webview widget (introduced in a previous chapter) and the
Mapview widget (covered in a later chapter) both handle Internet access for
you. While you still need the INTERNET permission, you do not have to
perform HTTP requests or the like yourself.

This section outlines some other ways you can take advantage of built-in
Internet capability.

Downloading Files

Android 2.3 has introduced a DownloadManager, designed to handle a lot of
the complexities of downloading larger files, such as:

« Determining whether the user is on WiFi or mobile data, and if so,
whether the download should occur

- Handling when the user, previously on WiFi, moves out of range of
the access point and "fails over" to mobile data

« Ensuring the device stays awake while the download proceeds

DownloadManager itself is less complicated than the alternative of writing all
of it yourself. However, it does present a few challenges. In this section, we

390

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Communicating via the Internet

will examine the Internet/Download sample project that uses
DownloadManager.

The Permissions

To use DownloadManager, you will need to hold the INTERNET permission.
Depending on where you elect to download the file, you may also need the
WRITE_EXTERNAL_STORAGE permission.

However, at the time of this writing, if you lack sufficient permissions, you
may get an error complaining that you are missing ACCESS_ALL_DOWNLOADS.
This appears to be a bug in the DownloadManager implementation - it should
be complaining about INTERNET and/or WRITE_EXTERNAL_STORAGE. You do not
need to hold the ACCESS_ALL_DOWNLOADS permission, which is not even
documented as of Android 2.3.

For example, here is the manifest for the Internet/Download application:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.download" android:versionCode="1"
android:versionName="1.0">
<!-- <uses-permission android:name="android.permission.ACCESS_ALL_DOWNLOADS"
/> -->
<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
<application android:label="@string/app_name" android:icon="@drawable/icon">
<activity android:name="DownloadDemo" android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>
</activity>
</application>
<supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

The Layout

Our sample application has a simple layout, consisting of three buttons:

391

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://code.google.com/p/android/issues/detail?id=13043

Communicating via the Internet

« One to kick off a download
« One to query the status of a download

« One to display a system-supplied activity containing the roster of
downloaded files

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent”
>
<Button
android:id="@+id/start"
android:text="Start Download"
android:layout_width="fill_parent"
android:layout_height="0px"
android:layout_weight="1"
android:onClick="startDownload"
/>
<Button
android:id="@+id/query"
android:text="Query Status"
android:layout_width="fill_parent"
android:layout_height="0px"
android:layout_weight="1"
android:onClick="queryStatus"
android:enabled="false"
/>
<Button
android:text="View Log"
android:layout_width="fill_parent"
android:layout_height="0px"
android:layout_weight="1"
android:onClick="viewLog"
/>
</LinearlLayout>

Requesting the Download

To kick off a download, we first need to get access to the DownloadManager.
This is a so-called "system service". You can call getSystemService() on any
activity (or other Context), provide it the identifier of the system service you
want, and receive the system service object back. However, since
getSystemService() supports a wide range of these objects, you need to cast
it to the proper type for the service you requested.

392

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Communicating via the Internet

So, for example, here is a line from onCreate() of the DownloadDemo activity
where we get the DownloadManager:

|mgr:(DownloadManager)getSystemService(DOWNLOAD_SERVICE); |

Most of these managers have no close() or release() or goAwayPlease() sort
of methods - you can just use them and let garbage collection take care of
cleaning them up.

Given the manager, we can now call an enqueue() method to request a
download. The name is relevant - do not assume that your download will
begin immediately, though often times it will. The enqueue() method takes
a DownloadManager.Request object as a parameter. The Request object uses the
builder pattern, in that most methods return the Request itself, so you can
chain a series of calls together with less typing.

For example, the top-most button in our layout is tied to a startbownload()
method in Downloadbemo, shown below:

public void startDownload(View v) {
Uri uri=Uri.parse("http://commonsware.com/misc/test.mp4d");

Environment
.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWNLOADS)
.mkdirs();

lastDownload=
mgr.enqueue (new DownloadManager.Request(uri)
.setAllowedNetworkTypes (DownloadManager.Request .NETWORK_WIFI |
DownloadManager .Request.NETWORK_MOBILE)
.setAllowedOverRoaming(false)
.setTitle("Demo")
.setDescription("Something useful. No, really.")
.setDestinationInExternalPublicDir (Environment.DIRECTORY_DOWNLOA
DS,
"test.mpd"));

v.setEnabled(false);
findViewById(R.id.query).setEnabled(true);

}

We are downloading a sample MPj file, and we want to download it to the
external storage area. To do the latter, we are using
getExternalStoragePublicDirectory() on Environment, which gives us a

393

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Communicating via the Internet

directory suitable for storing a certain class of content. In this case, we are
going to store the download in the Environment.DIRECTORY_DOWNLOADS, though
we could just as easily have chosen Environment.DIRECTORY_MOVIES, since we
are downloading a video clip. Note that the File object returned by
getExternalStoragePublicDirectory() may point to a not-yet-created
directory, which is why we call mkdirs() on it, to ensure the directory exists.

We then create the DownloadManager.Request object, with the following
attributes:

« We are downloading the specific URL we want, courtesy of the uri
supplied to the Request constructor

« We are willing to use either mobile data or WiFi for the download
(setAllowedNetworkTypes()), but we do not want the download to
incur roaming charges (setAllowedOverRoaming())

« We want the file downloaded as test.mp4 in the downloads area on
the external storage (setDestinationInExternalPublicDir())

We also provide a name (setTitle()) and description (setDescription()),
which are used as part of the notification drawer entry for this download.
The user will see these when they slide down the drawer while the
download is progressing.

The enqueue() method returns an ID of this download, which we hold onto
for use in querying the download status.

Keeping Track of Download Status

If the user presses the Query Status button, we want to find out the details
of how the download is progressing. To do that, we can call query() on the
DownloadManager. The query() method takes a DownloadManager.Query object,
describing what download(s) you are interested in. In our case, we use the
value we got from the enqueue() method when the user requested the
download:

public void queryStatus(View v) {
Cursor c=mgr.query(new DownloadManager.Query().setFilterById(lastDownload));

394

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Communicating via the Internet

if (c==null) {

Toast.makeText(this, "Download not found!", Toast.LENGTH_LONG).show();
}
else {

c.moveToFirst();

Log.d(getClass().getName(), "COLUMN_ID: "+
c.getLong(c.getColumnIndex(DownloadManager.COLUMN_ID)));
Log.d(getClass().getName(), "COLUMN_BYTES_DOWNLOADED SO_FAR: "+
c.getLong(c.getColumnIndex(DownloadManager.COLUMN_BYTES_DOWNLOADED_SO_
FAR)));
Log.d(getClass().getName(), "COLUMN_LAST_MODIFIED_TIMESTAMP: "+
c.getLong(c.getColumnIndex(DownloadManager.COLUMN_LAST_MODIFIED_TIMEST
AMP)));
Log.d(getClass().getName(), "COLUMN_LOCAL_URI: "+
c.getString(c.getColumnIndex(DownloadManager.COLUMN_LOCAL_URI)));
Log.d(getClass().getName(), "COLUMN_STATUS: "+
c.getInt(c.getColumnIndex(DownloadManager.COLUMN_STATUS)));
Log.d(getClass().getName(), "COLUMN_REASON: "+
c.getInt(c.getColumnIndex(DownloadManager.COLUMN_REASON)));

Toast.makeText(this, statusMessage(c), Toast.LENGTH_LONG).show();
}

}

The query() method returns a cCursor, containing a series of columns
representing the details about our download. There are a series of constants
on the DownloadManager class outlining what is possible. In our case, we
retrieve (and dump to LogCat):

« The ID of the download (coLUMN_ID)

« The amount of data that has been downloaded to date
(COLUMN_BYTES_DOWNLOADED_SO_FAR)

« What the Ilast-modified timestamp is on the download
(COLUMN_LAST_MODIFIED_TIMESTAMP)

+ Where the file is being saved to locally (COLUMN_LOCAL_URT)
« What the actual status is (COLUMN_STATUS)

« What the reason is for that status (COLUMN_REASON)

There are a number of possible status codes (e.g., STATUS_FAILED,
STATUS_SUCCESSFUL, STATUS_RUNNING). Some, like STATUS_FAILED, may have an
accompanying reason to provide more details.

395

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Communicating via the Internet

What the User Sees

The user, upon launching the application, sees our three pretty buttons:

Start Download

View Log

Figure 122. The Download sample application, as initially launched

Clicking the first disables the button while the download is going on, and a
download icon appears in the status bar (though it is a bit difficult to see,
given the poor contrast between Android's icon and Android's status bar):

396

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Communicating via the Internet

= il ® 853

Download Demo

Query Status

View Log

Figure 123. The Download sample application, performing a download

Sliding down the notification drawer shows the user the progress in the
form of a ProgressBar widget:

397

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Communicating via the Internet

December 9, 2010

& ull @ 853

0l
Ongoing

3 Demo Something useful. No, really.

61% —

Figure 124. The notification drawer, during a download using
DownloadManager

Tapping on the entry in the notification drawer returns control to our
original activity, where they see a Toast:

398

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Communicating via the Internet

i ol B 8:43

Download Demo

Query Status

Figure 125. The Download sample application, after coming to the foreground
from the notification

If they tap the middle button during the download, a Toast will appear
indicating that the download is in progress:

399

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Communicating via the Internet

= mll @ 845

[Download Demo

Query Status

. Download in progress!

Figure 126. The Download sample application, showing the status mid-
download

Additional details are also dumped to LogCat, visible via DDMS or adb

logcat:

12-10 ©8:45:01.289: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_ID: 12

12-10 ©8:45:01.289: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_BYTES_DOWNLOADED_SO_FAR: 615400

12-10 ©8:45:01.289: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_LAST_MODIFIED_TIMESTAMP: 1291988696232

12-10 08:45:01.289: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_LOCAL_URI: file:///mnt/sdcard/Download/test.mp4

12-10 ©8:45:01.299: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_STATUS: 2

12-10 ©8:45:01.299: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_REASON: ©

Once the download is complete, tapping the middle button will indicate
that the download is, indeed, complete, and final information about the

download is emitted to LogCat:

400

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Communicating via the Internet

12-10 ©8:49:27.360: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_ID: 12

12-10 ©8:49:27.360: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_BYTES_DOWNLOADED_SO_FAR: 6219229

12-10 ©8:49:27.370: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_LAST_MODIFIED_TIMESTAMP: 1291988713409

12-10 ©8:49:27.370: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_LOCAL_URI: file:///mnt/sdcard/Download/test.mp4

12-10 ©8:49:27.370: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_STATUS: 8

12-10 ©8:49:27.370: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_REASON: ©

Tapping the bottom button brings up the activity displaying all downloads,
including both successes and failures:

& oull B 840

Demo
Something useful. No, really.
Complete 5.93MB 8:45 AM
Demo

Y Something useful. No, really.
Failed 5.93MB 8:43 AM

Figure 127. The Downloads screen, showing everything downloaded by the
DownloadManager

And, of course, the file is downloaded. In Android 2.3, in the emulator, our
chosen location maps to /mnt/sdcard/Downloads/test.mp4.

401

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Communicating via the Internet

Limitations

DownloadManager works with HTTP URLs, but not HTTPS (SSL) URLs. This is
unfortunate, as more and more sites are switching to SSL encryption across
the board, to deal with various security challenges. Hopefully, in the future,
DownloadManager will have more options here.

If you display the list of all downloads, and your download is among them,
it is a really good idea to make sure that some activity (perhaps one of
yours) is able to respond to an ACTION_VIEW Intent on that download's MIME
type. Otherwise, when the user taps on the entry in the list, they will get a
Toast indicating that there is nothing available to view the download. This
may confuse users. Alternatively, use setvisibleInDownloadsUi() on your
request, passing in false, to suppress it from this list.

402

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PART IV - Services

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 30

Services: The Theory

As noted previously, Android services are for long-running processes that
may need to keep running even when decoupled from any activity.
Examples include playing music even if the "player” activity gets garbage-
collected, polling the Internet for RSS/Atom feed updates, and maintaining
an online chat connection even if the chat client loses focus due to an
incoming phone call.

Services are created when manually started (via an API call) or when some
activity tries connecting to the service via inter-process communication
(IPC). Services will live until specifically shut down or until Android is
desperate for RAM and destroys them prematurely. Running for a long time
has its costs, though, so services need to be careful not to use too much
CPU or keep radios active too much of the time, lest the service cause the
device's battery to get used up too quickly.

This chapter outlines the basic theory behind creating and consuming
services. The next chapter will outline a few specific patterns for services,
ones that may closely match your particular needs. Hence, this chapter is
short on code examples - you will find them and more in the next chapter.

Why Services?

Services are a "Swiss Army knife" for a wide range of functions that do not
require direct access to an activity's user interface, such as:

405

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Services: The Theory

« Performing operations that need to continue even if the user leaves
the application's activities, like a long download (as seen with the
Android Market) or playing music (as seen with Android music

apps)
« Performing operations that need to exist regardless of activities

coming and going, such as maintaining a chat connection in
support of a chat application

« Providing a local API to remote APIs, such as might be provided by
a Web service

« Performing periodic work without user intervention, akin to cron
jobs or Windows scheduled tasks

Even things like home screen app widgets often involve a service to assist
with long-running work.

Many applications will not need any services. Very few applications will
need more than one. However, the service is a powerful tool for an Android
developer's toolbox and is a subject with which any qualified Android
developer should be familiar.

Setting Up a Service

Creating a service implementation shares many characteristics with
building an activity. You inherit from an Android-supplied base class,
override some lifecycle methods, and hook the service into the system via
the manifest.

The Service Class

Just as an activity in your application extends either Activity or an Android-
supplied Activity subclass, a service in your application extends either
Service or an Android-supplied service subclass. The most common
Service subclass is IntentService, used primarily for the command pattern,
described later in this chapter. That being said, many services simply
extend Service.

406

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Services: The Theory

Lifecycle Methods

Just as activities have onCreate(), onResume(), onPause() and kin, Service
implementations have their own lifecycle methods, such as:

1. onCreate(), which, as with activities, is called when the service
process is created, by any means

2. onStartCommand(), which is called each time the service is sent a
command via startService()

3. onBind(), which is called whenever a client binds to the service via
bindService()

4. onDestroy() which is called as the service is being shut down

As with activities, services initialize whatever they need in onCreate() and
clean up those items in onDestroy(). And, as with activities, the onDestroy()
method of a service might not be called, if Android terminates the entire
application process, such as for emergency RAM reclamation.

The onstartCommand() and onBind() lifecycle methods will be implemented
based on your choice of communicating to the client, as will be explained
later in this chapter.

Manifest Entry

Finally, you need to add the service to your AndroidManifest.xml file, for it to
be recognized as an available service for use. That is simply a matter of
adding a <service> element as a child of the application element, providing
android:name to reference your service class.

Since the service class is in the same Java namespace as everything else in
this application, we can use the shorthand ("WeatherService" or
" .WeatherService") to reference our class.

407

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Services: The Theory

If you wish to require some permission of those who wish to start or bind to
the service, add an android:permission attribute naming the permission you
are mandating - see the chapter on permissions for more details.

For example, here is a manifest showing the <service> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.downloader" android:versionCode="1"
android:versionName="1.0">
<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
<application android:label="@string/app_name">
<activity android:name="DownloaderDemo"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>
</activity>
<service android:name="Downloader"/>
</application>
<supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

Communicating To Services

Clients of services - frequently activities, though not necessarily - have two
main ways to send requests or information to a service. One approach is to
send a command, which creates no lasting connection to the service. The
other approach is to bind to the service, establishing a bi-directional
communications channel that lasts as long as the client needs it.

Sending Commands with startService()

The simplest way to work with a service is to call startService(). The
startService() method takes an Intent parameter, much like
startActivity() does. In fact, the Intent supplied to startService() has the
same two-part role as it does with startActivity():

« Identify the service to communicate with

408

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Services: The Theory

« Supply parameters, in the form of Intent extras, to tell the service
what it is supposed to do

For a local service - the focus of this book - the simplest form of Intent is
one that identifies the class that implements the Intent (e.g., new
Intent(this, MySer‘vice.class);).

The call to startService() is asynchronous, so the client will not block. The
service will be created if it is not already running, and it will receive the
Intent via a call to the onstartCommand() lifecycle method. The service can do
whatever it needs to in onStartCommand(), but since onStartCommand() is
called on the main application thread, it should do its work very quickly.
Anything that might take a while should be delegated to a background
thread.

The onstartCommand() method can return one of several values, mostly to
indicate to Android what should happen if the service's process should be
killed while it is running. The most likely return values are:

« START_STICKY, meaning that the service should be moved back into
the started state (as if onstartcommand() had been called), but do not
re-deliver the Intent to onStartCommand()

« START_REDELIVER_INTENT, meaning that the service should be
restarted via a call to onStartCommand(), supplying the same Intent as
was delivered this time

« START_NOT_STICKY, meaning that the service should remain stopped
until explicitly started by application code

By default, calling startService() not only sends the command, but tells
Android to keep the service running until something tells it to stop. One
way to stop a service is to call stopService(), supplying the same Intent
used with startService(), or at least one that is equivalent (e.g., identifies
the same class). At that point, the service will stop and will be destroyed.
Note that stopService() does not employ any sort of reference counting, so
three calls to startService() will result in a single service running, which
will be stopped by a call to stopService().

409

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Services: The Theory

Another possibility for stopping a service is to have the service call
stopself() on itself. You might do this if you use startService() to have a
service begin running and doing some work on a background thread, then
having the service stop itself when that background work is completed.

Binding with bindService()

Binding allows a service to expose an API to activities (or other services)
that bind to it. When an activity (or other client) binds to a service, it
primarily is requesting to be able to access the public API exposed by that
service via the service's "binder", as returned by the service's onBind()
method. When doing this, the activity can also indicate, via the
BIND_AUTO_CREATE flag, to have Android automatically start up the service if
it is not already running.

The service's "binder" is usually a subclass of Binder, on which you can put
whatever methods you want to expose to clients. For local services, you can
have as many methods as you want, with whatever method signatures
(parameters, return type, etc.) that you want. The service returns an
instance of the Binder subclass in onBind().

Clients call bindService(), supplying the Intent that identifies the service, a
ServiceConnection object representing the client side of the binding, and an
optional BIND_AuTO_CREATE flag. As with startService(), bindService() is
asynchronous. The client will not know anything about the status of the
binding until the ServiceConnection object is called with
onserviceConnected(). This not only indicates the binding has been
established, but for local services it provides the Binder object that the
service returned via onBind(). At this point, the client can use the Binder to
ask the service to do work on its behalf. Note that if the service is not
already running, and if you provide BIND_AUTO_CREATE, then the service will
be created first before being bound to the client. If you skip
BIND_AUTO_CREATE, bindService() will return false, indicating there was no
existing service to bind to.

410

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Services: The Theory

Eventually, the client will need to call unbindService(), to indicate it no
longer needs to communicate with the service. For example, an activity
might call bindService() in its onCreate() method, then call unbindService()
in its onbestroy() method. The call to unbindService() eventually triggers
onServiceDisconnected() to be called on the ServiceConnection object - at
this point, the client can no longer safely use the Binder object.

If there are no other bound clients to the service, Android will shut down
the service as well, releasing its memory. Hence, we do not need to call
stopService() ourselves — Android handles that, if needed, as a side effect of
unbinding.

If the client is an activity, there are two important steps to take to ensure
that the binding survives a configuration change, like a screen rotation:

1. Instead of calling bindservice() on the activity itself, call
bindService() on the Application Context (obtained via
getApplicationContext()).

2. Make sure the ServiceConnection gets from the old instance of the
activity to the new one, probably via
onRetainNonConfigurationInstance().

This allows the binding to persist between activity instances.

Communicating From Services

Of course, the approaches listed in the previous section only work for a
client calling out to a service. The reverse is also frequently needed, so the
service can let an activity or something know about asynchronous events.

Callback/Listener Objects

An activity or other service client can provide some sort of "callback" or
"listener” object to the service, which the service could then call when
needed. To make this work, you would need to:

411

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Services: The Theory

1. Define a Java interface for that listener object
2. Give the service a public API to register and retract listeners

3. Have the service use those listeners at appropriate times, to notify
those who registered the listener of some event

4. Have the activity register and retract a listener as needed

Have the activity respond to the listener-based events in some
suitable fashion

The biggest catch is to make sure that the activity retracts the listeners
when it is done. Listener objects generally know their activity, explicitly
(via a data member) or implicitly (by being implemented as an inner class).
If the service is holding onto defunct listener objects, the corresponding
activities will linger in memory, even if the activities are not being used by
Android any more. This represents a big memory leak. You may wish to use
WeakReferences, SoftReferences, or similar constructs to ensure that if an
activity is destroyed, any listeners it registers with your service will not
keep that activity in memory.

Broadcast Intents

An alternative approach, first mentioned in the chapter on Intent filters, is
to have the service send a broadcast Intent that can be picked up by the
activity...assuming the activity is still around and is not paused. The service
can call sendBroadcast(), supplying an Intent that identifies the broadcast,
designed to be picked up by a BroadcastReceiver. This could be a
component-specific broadcast (e.g., new Intent(this, MyReceiver.class)), if
the BroadcastReceiver is registered in the manifest. Or, it can be based on
some action string, perhaps one even documented and designed for third-
party applications to listen for.

The activity, in turn, can register a BroadcastReceiver via
registerReceiver(), though this approach will only work for Intent objects
specifying some action, not ones identifying a particular component. But,
when the activity's BroadcastReceiver receives the broadcast, it can do what
it wants to inform the user or otherwise update itself.

412

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Services: The Theory

Pending Results

Your activity can call createPendingResult(). This returns a PendingIntent —
an object that represents an Intent and the corresponding action to be
performed upon that Intent (e.g., use it to start an activity). In this case, the
PendingIntent will cause a result to be delivered to your activity's
implementation of onActivityResult(), just as if another activity had been
called with startActivityForResult() and, in turn, called setResult() to
send back a result.

Since a PendingIntent is Parcelable, and can therefore be put into an Intent
extra, your activity can pass this PendingIntent to the service. The service, in
turn, can call one of several flavors of the send() method on the
PendingIntent, to notify the activity (via onActivityResult()) of an event,
possibly even supplying data (in the form of an Intent) representing that
event.

Messenger

Yet another possibility is to use a Messenger object. A Messenger sends
messages to an activity's Handler. Within a single activity, a Handler can be
used to send messages to itself, as was demonstrated in the chapter on
threads. However, between components - such as between an activity and a
service — you will need a Messenger to serve as the bridge.

As with a PendingIntent, a Messenger is Parcelable, and so can be put into an
Intent extra. The activity calling startService() or bindService() would
attach a Messenger as an extra on the Intent. The service would obtain that
Messenger from the Intent. When it is time to alert the activity of some
event, the service would:

« (Call Message.obtain() to get an empty Message object

« Populate that Message object as needed, with whatever data the
service wishes to pass to the activity

« Call send() on the Messenger, supplying the Message as a parameter

413

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Services: The Theory

The Handler will then receive the message via handleMessage(), on the main
application thread, and so can update the Ul or whatever is necessary.

Notifications

Another approach is for the service to let the user know directly about the
work that was completed. To do that, a service can raise a Notification -
putting an icon in the status bar and optionally shaking or beeping or
something. This technique is covered in an upcoming chapter.

414

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 31

Basic Service Patterns

Now that you have seen the pieces that make up services and their clients,
let us examine a few scenarios that employ services and how those
scenarios might be implemented.

The Downloader

If you elect to download something from the Android Market, you are
welcome to back out of the Market application entirely. This does not
cancel the download - the download and installation run to completion,
despite no Market activity being on-screen.

You may have similar circumstances in your application, from downloading
a purchased e-book to downloading a map for a game to downloading a file
from some sort of "drop box" file-sharing service.

Android 2.3 introduced the bownloadManager (covered in a previous chapter),
which would handle this for you. However, you might need that sort of
capability on older versions of Android, at least through 2o11.

The Design

This sort of situation is a perfect use for the command pattern and an
IntentService. The IntentService has a background thread, so downloads

415

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

can take as long as needed. An IntentService will automatically shut down
when the work is done, so the service will not linger and you do not need to
worry about shutting it down yourself. Your activity can simply send a
command via startService() to the IntentService to tell it to go do the
work.

Admittedly, things get a bit trickier when you want to have the activity find
out when the download is complete. This example will show the use of
Messenger for this.

The Service Implementation

Here is the implementation of this IntentService, named Downloader:

package com.commonsware.android.downloader;

import android.app.Activity;

import android.app.IntentService;

import android.content.Intent;

import android.os.Bundle;

import android.os.Environment;

import android.os.Message;

import android.os.Messenger;

import android.util.log;

import java.io.File;

import java.io.FileOutputStream;

import java.io.IOException;

import org.apache.http.client.ResponseHandler;

import org.apache.http.client.HttpClient;

import org.apache.http.client.methods.HttpGet;

import org.apache.http.impl.client.BasicResponseHandler;
import org.apache.http.impl.client.DefaultHttpClient;

public class Downloader extends IntentService {
public static final String
EXTRA_MESSENGER="com.commonsware.android.downloader.EXTRA_MESSENGER" ;
private HttpClient client=null;

public Downloader() {
super("Downloader");

}

@0verride

public void onCreate() {
super.onCreate();

client=new DefaultHttpClient();

416

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

}

}

}
}

@0verride
public void onDestroy() {

@0verride
public void onHandleIntent(Intent i) {

super.onDestroy();

client.getConnectionManager().shutdown();

HttpGet getMethod=new HttpGet(i.getData().toString());
int result=Activity.RESULT_CANCELED;

try {
ResponseHandler<byte[]> responseHandler=new ByteArrayResponseHandler();

byte[] responseBody=client.execute(getMethod, responseHandler);
File output=new File(Environment.getExternalStorageDirectory(),
i.getData().getLastPathSegment());

if (output.exists()) {
output.delete();
¥

FileOutputStream fos=new FileOutputStream(output.getPath());

fos.write(responseBody);
fos.close();
result=Activity.RESULT_OK;

¥
catch (IOException e2) {
Log.e(getClass().getName(), "Exception in download", e2);

Bundle extras=i.getExtras();

if (extras!=null) {
Messenger messenger=(Messenger)extras.get(EXTRA_MESSENGER) ;
Message msg=Message.obtain();

msg.argl=result;

try {
messenger.send(msg) ;

catch (android.os.RemoteException el) {
Log.w(getClass().getName(), "Exception sending message", el);

}
}

417

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

In onCreate(), we obtain a DefaultHttpClient object, as was described in the
chapter on Internet access. In onDestroy(), we shut down the client. This
way, if several download requests are invoked in sequence, we can use a
single DefaultHttpClient object — the IntentService will only shut down
after all enqueued work has been completed.

The bulk of the work is accomplished in onHandleIntent(), which is called
on the IntentService, on a background thread, every time startService() is
called. For the Intent, we obtain the URL of the file to download via a call to
getData() on the supplied Intent. Actually downloading the file uses the
DefaultHttpClient object, along with an HttpGet object. However, since the
file might be binary (e.g., MP3) instead of text, we cannot use a
BasicResponseHandler. Instead, we use a ByteArrayResponseHandler - a
custom ResponseHandler cloned from the source for BasicResponseHandler,
but one that returns a byte[] instead of a String:

package com.commonsware.android.downloader;

import java.io.IOException;

import org.apache.http.HttpEntity;

import org.apache.http.HttpResponse;

import org.apache.http.StatusLine;

import org.apache.http.client.ResponseHandler;
import org.apache.http.client.HttpResponseException;
import org.apache.http.util.EntityUtils;

public class ByteArrayResponseHandler implements ResponseHandler<byte[]> {
public byte[] handleResponse(final HttpResponse response)
throws IOException, HttpResponseException {
StatusLine statusLine=response.getStatusLine();

if (statusLine.getStatusCode()>=300) {
throw new HttpResponseException(statuslLine.getStatusCode(),
statusLine.getReasonPhrase());

¥
HttpEntity entity=response.getEntity();
if (entity==null) {

return(null);

}

return(EntityUtils.toByteArray(entity));

418

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

Once the file is downloaded to external storage, we need to alert the
activity that the work is completed. If the activity is interested in this sort
of message, it will have attached a Messenger object as EXTRA_MESSENGER to the
Intent. Downloader gets the Messenger, creates an empty Message object, and
puts a result code in the argi field of the Message. It then sends the Message
to the activity. If the activity was destroyed before this point, the request to
send the message will fail with a RemoteobjectException.

Since this is an IntentService, it will automatically shut down when
onHandleIntent() completes, if there is no more work queued to be done.

Using the Service

The activity demonstrating the use of Downloader has a trivial Ul, consisting
of one large button:

<?xml version="1.0" encoding="utf-8"?>

<Button xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/button”
android:layout_width="fill_parent"
android:layout_height="fill parent"
android:text="Do the Download"
android:onClick="doTheDownload"

/>

That Ul is initialized in onCreate(), as usual:

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

b=(Button)findvViewById(R.id.button);

}

When the user clicks the button, doThebDownload() is called to disable the
button (to prevent accidental duplicate downloads) and call startservice():

public void doTheDownload(View v) {
b.setEnabled(false);

Intent i=new Intent(this, Downloader.class);

419

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

i.setData(Uri.parse("http://commonsware.com/Android/excerpt.pdf"));
i.putExtra(Downloader.EXTRA_MESSENGER, new Messenger(handler));

startService(i);

}

Here, the Intent we pass over has the URL of the file to download (in this
case, a URL pointing to a PDF), plus a Messenger in the EXTRA_MESSENGER
extra. That Messenger is created with an attachment to the activity's Handler:

private Handler handler=new Handler() {
@Override
public void handleMessage(Message msg) {
b.setEnabled(true);

Toast
.makeText (DownloaderDemo.this, "Download complete!",
Toast.LENGTH_LONG)
.show();
}
}s

If the activity is still around when the download is complete, the Handler
enables the button and displays a Toast to let the user know that the
download is complete. Note that the activity is ignoring the result code
supplied by the service, though in principle it could do something different
in both the success and failure cases.

The Music Player

Most audio player applications in Android - for music, audiobooks, or
whatever - do not require the user to remain in the player application itself.
Rather, the user can go on and do other things with their device, with the
audio playing in the background. This is similar in many respects to the
download scenario from the previous section. However, in this case, the
user is the one that controls when the work (playing audio) ends.

420

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

The Design

Once again, we will use startService(), since we want the service to run
even when the activity starting it has been destroyed. However, this time,
we will use a regular Service, rather than an IntentService. An
IntentService is designed to do work and stop itself, whereas in this case,
we want the user to be able to stop the music playback.

Since music playback is outside the scope of this book, the service will
simply stub out those particular operations.

The Service Implementation

Here is the implementation of this Service, named PlayerService:

package com.commonsware.android.fakeplayer;

import android.app.Service;
import android.content.Intent;
import android.os.Bundle;
import android.os.IBinder;
import android.util.Log;

public class PlayerService extends Service {
public static final String EXTRA_PLAYLIST="EXTRA_PLAYLIST";
public static final String EXTRA_SHUFFLE="EXTRA_SHUFFLE";
private boolean isPlaying=false;

@0verride

public int onStartCommand(Intent intent, int flags, int startId) {
String playlist=intent.getStringExtra(EXTRA_PLAYLIST);
boolean useShuffle=intent.getBooleanExtra(EXTRA_SHUFFLE, false);

play(playlist, useShuffle);

return(START_NOT_STICKY);
}

@Override

public void onDestroy() {
stop();

}

@0verride
public IBinder onBind(Intent intent) {
return(null);

421

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

}

private void play(String playlist, boolean useShuffle) {
if (!isPlaying) {
Log.w(getClass().getName(), "Got to play()!");
isPlaying=true;
¥
}

private void stop() {
if (isPlaying) {
Log.w(getClass().getName(), "Got to stop()!");
isPlaying=false;
¥
}
)

In this case, we really do not need anything for oncreate(), so that lifecycle
method is skipped. On the other hand, we have to implement onBind(),
because that is a required method of Service subclasses. IntentService
implements onBind() for us, which is why that was not needed for the
Downloader sample.

When the client calls startService(), onStartCommand() is called in
Playerservice. Here, we get the Intent and pick out some extras to tell us
what to play back (EXTRA_PLAYLIST) and other configuration details (e.g.,
EXTRA_SHUFFLE). onStartCommand() calls play(), which simply flags that we are
playing and logs a message to LogCat - a real music player would use
MediaPlayer to start playing the first song in the playlist. onstartCommand()
returns START_NOT_STICKY, indicating that if Android has to kill off this
service (e.g., low memory), it should not restart it once conditions improve.

onDestroy() stops the music from playing - theoretically, anyway - by
calling a stop() method. Once again, this just logs a message to LogCat,
plus updates our internal are-we-playing flag.

In the upcoming chapter on notifications, we will revisit this sample and
discuss the use of startForeground() to make it easier for the user to get
back to the music player, plus let Android know that the service is
delivering part of the foreground experience and therefore should not be
shut down.

422

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

Using the Service

The FakePlayer activity demonstrating the use of PlayerService has a Ul
twice as complex as the previous sample, consisting of two large buttons:

<?xml version="1.0" encoding="utf-8"?>

android:orientation="vertical”
android:layout_width="fill_parent"
android:layout_height="fill_parent"

>

<Button
android:layout_width="fill_parent"
android:layout_height="fill_parent”
android:layout_weight="1"
android:text="Start the Player"
android:onClick="startPlayer"
/>

<Button
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:layout_weight="1"
android:text="Stop the Player"
android:onClick="stopPlayer"
/>

</LinearLayout>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

The activity itself is not much more complex:

package com.commonsware.android.fakeplayer;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;

public class FakePlayer extends Activity {
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

}

public void startPlayer(View v) {
Intent i=new Intent(this, PlayerService.class);

i.putExtra(PlayerService.EXTRA_PLAYLIST, "main");
i.putExtra(PlayerService.EXTRA_SHUFFLE, true);

startService(i);

423

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

}

public void stopPlayer(View v) {
stopService(new Intent(this, PlayerService.class));

}

}

The oncreate() method merely loads the Ul The startPlayer() method
constructs an Intent with fake values for EXTRA_PLAYLIST and EXTRA_SHUFFLE,
then calls startService(). After you press the top button, you will see the
corresponding message in LogCat. Similarly, stopPlayer() calls
stopService(), triggering the second LogCat message. Notably, you do not
need to keep the activity running in between those button clicks - you can
exit the activity via BACK and come back later to stop the service.

The Web Service Interface

If you are going to consume a REST-style Web service, you may wish to
create a Java client-side API for that service. This allows you to isolate
details about the Web service (URLs, authorization credentials, etc.) in one
place, with the rest of your application just able to use the published API. If
the client-side API might involve state, such as a session ID or cached
results, you may wish to use a service to implement the client-side API. In
this case, the most natural form of service would be one that publishes a
Binder, so clients can call a "real" API, that the service translates into HTTP
requests.

In this case, we want to create a client-side Java API for the US National
Weather Service's forecast Web service, so we can get a weather forecast
(timestamps, projected temperatures, and projected precipitation) for a
given latitude and longitude. As you may recall, we examined this Web
service back in the chapter on Internet access.

The Design

To use the binding pattern, we will need to expose an API from a "binder"
object. Since the weather forecast arrives in a singularly awful XML
structure, we will have the binder be responsible for parsing the XML.

424

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

Hence, we can say that the binder will have a getForecast() method and
return an ArraylList of Forecast objects, each Forecast representing one
timestamp/temperature/precipitation triple.

Once again, to supply the latitude and longitude of the forecast roster to
retrieve, we will use a Location object, which will be obtained from GPS.
This part of the sample will be described in greater detail in the chapter on
location management.

Since the Web service call may take a while, it is unsafe to do this on the
main application thread. In this sample, we will have the activity use an
AsyncTask to call our weather API, so the service and binder can be ignorant
of threading issues.

The Rotation Challenge

Back in the chapter on threading, we noted the issues involved with
orientation changes (or other configuration changes) and background
threads in activities. The solution was to use
onRetainNonConfigurationInstance() with a static inner class AsyncTask
implementation, which we would manually associate with the new, post-
configuration-change activity.

That same problem crops up with the binding pattern as well, one of the
reasons why binding is difficult to use. If you bind to a service from an
activity, that binding will not magically pass to the new activity instance
after an orientation change. Instead, you need to do two things:

1. Bind to the service not using the activity as the context, but rather
by using getApplicationContext(), as that Context is one that will live
for the lifetime of your process

2. Pass the ServiceConnection representing this binding from the old
activity instance to the new one as part of the configuration change

To accomplish the second feat, you will need to use the same
onRetainNonConfigurationInstance() trick as was used with threads.

425

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

The Service Implementation

Our service-side logic is broken into three classes, Forecast, WeatherBinder,
and WeatherService.

The Forecast

The Forecast class merely encapsulates the three pieces of the forecast data
triple: the timestamp, the temperature, and the icon indicating the
expected precipitation (if any):

package com.commonsware.android.weather;

class Forecast {
String time="";
Integer temp=null;

String iconUrl="";
String getTime() {

return(time);

}

void setTime(String time) {
this.time=time.substring(0,16).replace('T', ' ');
}

Integer getTemp() {
return(temp);

}

void setTemp(Integer temp) {
this.temp=temp;
}

String getIcon() {
return(iconurl);

}

void setIcon(String iconUrl) {
this.iconUrl=iconuUrl;

}

}

426

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

The Binder

The wWeatherBinder extends Binder, a requirement for the local binding
pattern. Other than that, the API is up to us.

Hence, we expose three methods:

onCreate(), to be called when the weatherBinder is set up, so we can
get a DefaultHttpClient object to use with the Web service

onDestroy(), to be called when the weatherBinder is no longer
needed, so we can shut down that DefaultHttpClient object

getForecast(), the main public API for use by our activity, to
retrieve an ArrayList of Forecast objects given a Location

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

}

android.
android.
android.
android.
android.
android.
java.io.
java.io.

org.
org.
org.
org.
org.
org.
org.
org.
org.

apache
apache
apache
apache
apache

w3c.dom.Document;
w3c.dom.Element;
w3c.dom.NodelList;
xml.sax.InputSource;

package com.commonsware.android.weather;

app.Service;
content.Context;
content.Intent;
location.Location;
os.Binder;

os.Bundle;

IOException;

StringReader;
java.util.Arraylist;
javax.xml.parsers.DocumentBuilder;
javax.xml.parsers.DocumentBuilderFactory;

.http.
.http.
.http.
.http.
.http.

public class WeatherBinder extends Binder {
private String forecast=null;
private HttpClient client=null;
private String format=null;

void onCreate(Context ctxt) {
client=new DefaultHttpClient();
format=ctxt.getString(R.string.url);

client.ResponseHandler;
client.HttpClient;
client.methods.HttpGet;
impl.client.BasicResponseHandler;
impl.client.DefaultHttpClient;

427

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

void onDestroy() {
client.getConnectionManager () .shutdown();

}

ArraylList<Forecast> getForecast(Location loc) throws Exception {
String url=String.format(format, loc.getLatitude(),
loc.getLongitude());
HttpGet getMethod=new HttpGet(url);
ResponseHandler<String> responseHandler=new BasicResponseHandler();
String responseBody=client.execute(getMethod, responseHandler);

return(buildForecasts(responseBody));

}

private ArraylList<Forecast> buildForecasts(String raw) throws Exception {
ArrayList<Forecast> forecasts=new ArrayList<Forecast>();
DocumentBuilder builder=DocumentBuilderFactory
.newInstance()
.newDocumentBuilder();
Document doc=builder.parse(new InputSource(new StringReader(raw)));
NodelList times=doc.getElementsByTagName("start-valid-time");

for (int i=@;i<times.getLength();i++) {
Element time=(Element)times.item(i);
Forecast forecast=new Forecast();

forecasts.add(forecast);
forecast.setTime(time.getFirstChild().getNodeValue());
¥

NodelList temps=doc.getElementsByTagName("value");
for (int i=0;i<temps.getLength();i++) {
Element temp=(Element)temps.item(i);

Forecast forecast=forecasts.get(i);

forecast.setTemp(new Integer(temp.getFirstChild().getNodeValue()));
¥

NodelList icons=doc.getElementsByTagName("icon-1ink");
for (int i=0;i<icons.getLength();i++) {
Element icon=(Element)icons.item(i);

Forecast forecast=forecasts.get(i);

forecast.setIcon(icon.getFirstChild().getNodeValue());
)

return(forecasts);

428

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

Most of this is merely doing the Web service request using
DefaultHttpClient and an HttpGet object, plus using the DOM parser to
convert the XML into the Forecast objects.

The Service

The weatherservice, therefore, is fairly short, with the business logic
delegated to weatherBinder:

package com.commonsware.android.weather;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;

public class WeatherService extends Service {
private final WeatherBinder binder=new WeatherBinder();

@0verride
public void onCreate() {
super.onCreate();

binder.onCreate(this);

}

@0Override
public IBinder onBind(Intent intent) {
return(binder);

}

@0Override
public void onDestroy() {
super.onDestroy();

binder.onDestroy();

}

}

Our onCreate() and onDestroy() methods delegate to the WeatherBinder, and
onBind() returns the weatherBinder itself.

Using the Service

On the surface, the WeatherDemo activity should be simple:

429

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

« Bind to the service in onCreate()
« Arrange to get GPS fixes, in the form of Location objects

« When a fix comes in, use the WeatherBinder to get a forecast, convert
it to HTML, and display it in a WebView

+ Unbind from the service in onbDestroy()

However, our decision to use the binding pattern and to have the activity
deal with the background thread means there is more work involved than
those bullet points.

First, here is the full weatherDemo implementation:

package com.commonsware.android.weather;

import android.app.Activity;

import android.app.AlertDialog;

import android.content.ComponentName;
import android.content.Context;

import android.content.Intent;

import android.content.IntentFilter;
import android.content.ServiceConnection;
import android.location.LlLocation;

import android.location.LocationListener;
import android.location.LocationManager;
import android.os.AsyncTask;

import android.os.Bundle;

import android.os.DeadObjectException;
import android.os.RemoteException;

import android.os.IBinder;

import android.util.Log;

import android.webkit.WebView;

import java.util.Arraylist;

public class WeatherDemo extends Activity {
private WebView browser;
private LocationManager mgr=null;
private State state=null;
private boolean isConfigurationChanging=false;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

browser=(WebView)findViewById(R.id.webkit);
state=(State)getLastNonConfigurationInstance();

430

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

if (state==null) {
state=new State();
getApplicationContext()
.bindService(new Intent(this, WeatherService.class),
state.svcConn, BIND_AUTO_CREATE);

else if (state.lastForecast!=null) {
showForecast();

}

state.attach(this);

mgr=(LocationManager)getSystemService (LOCATION_SERVICE);
mgr.requestLocationUpdates (LocationManager.GPS_PROVIDER,
3600000, 0, onLocationChange);

}

@0verride
public void onDestroy() {
super.onDestroy();

if (mgr!=null) {
mgr.removeUpdates (onLocationChange);
}

if (!isConfigurationChanging) {
getApplicationContext().unbindService(state.svcConn);

}

@0Override
public Object onRetainNonConfigurationInstance() {
isConfigurationChanging=true;

return(state);

}

private void goBlooey(Throwable t) {
AlertDialog.Builder builder=new AlertDialog.Builder(this);

builder
.setTitle("Exception!")
.setMessage(t.toString())
.setPositiveButton("OK", null)
.show();

}

static String generatePage(ArraylList<Forecast> forecasts) {
StringBuilder bufResult=new StringBuilder("<html><body><table>");

bufResult.append("<tr><th width=\"50%\">Time</th>"+
"<th>Temperature</th><th>Forecast</th></tr>");

for (Forecast forecast : forecasts) {

431

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

bufResult.append("<tr><td align=\"center\">");
bufResult.append(forecast.getTime());
bufResult.append("</td><td align=\"center\">");
bufResult.append(forecast.getTemp());
bufResult.append("</td><td><img src=\"");
bufResult.append(forecast.getIcon());
bufResult.append("\"></td></tr>");

}

bufResult.append("</table></body></html>");

return(bufResult.toString());
}

void showForecast() {
browser.loadDataWithBaseURL (null, state.lastForecast,
"text/html", "UTF-8", null);

}

LocationListener onLocationChange=new LocationListener() {
public void onLocationChanged(Location location) {
if (state.weather!=null) {
new FetchForecastTask(state).execute(location);

else {
Log.w(getClass().getName(), "Unable to fetch forecast - no
WeatherBinder");
¥
¥

public void onProviderDisabled(String provider) {
// required for interface, not used

}

public void onProviderEnabled(String provider) {
// required for interface, not used

}

public void onStatusChanged(String provider, int status,
Bundle extras) {
// required for interface, not used
}
¥

static class FetchForecastTask extends AsyncTask<Location, Void, String> {
Exception e=null;
State state=null;

FetchForecastTask(State state) {
this.state=state;

}

@Override
protected String doInBackground(Location... locs) {

432

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

try {
return(generatePage(state.weather.getForecast(locs[0])));

catch (Exception e) {
this.e=e;

}

return(null);

}

@Override
protected void onPostExecute(String page) {
if (e==null) {
state.lastForecast=page;
state.activity.showForecast();
¥
else {
state.activity.goBlooey(e);
}
¥
}

static class State {
WeatherBinder weather=null;
WeatherDemo activity=null;
String lastForecast=null;

void attach(WeatherDemo activity) {
this.activity=activity;

}

ServiceConnection svcConn=new ServiceConnection() {
public void onServiceConnected(ComponentName className,
IBinder rawBinder) {
weather=(WeatherBinder)rawBinder;

}

public void onServiceDisconnected(ComponentName className) {
weather=null;
¥
s

Now, let us look at the highlights of the service connection and the
background thread.

433

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

Managing the State

We need to ensure that our ServiceConnection can be passed between
activity instances on a configuration change. Hence, we have a state static
inner class to hold that, plus two other bits of information: the Activity the
state is associated with, and a string showing the last forecast we retrieved:

static class State {
WeatherBinder weather=null;
WeatherDemo activity=null;
String lastForecast=null;

void attach(WeatherDemo activity) {
this.activity=activity;

}

ServiceConnection svcConn=new ServiceConnection() {
public void onServiceConnected(ComponentName className,
IBinder rawBinder) {
weather=(WeatherBinder)rawBinder;

}

public void onServiceDisconnected(ComponentName className) {
weather=null;
¥
s

}

The lastForecast String is to allow us to re-display the generated HTML
after a configuration change. Otherwise, if the user rotates the screen, we
will lose our forecast (only held in the old instance's webview) and either
have to retrieve a fresh one or wait for a GPS fix.

We return this State object from onRetainNonConfigurationInstance():

@Override
public Object onRetainNonConfigurationInstance() {
isConfigurationChanging=true;

return(state);

}

In oncCreate(), if there is no non-configuration instance, we create a fresh
state and bind to the service, since we do not have a service connection at
present. On the other hand, if onCreate() gets a sState from

434

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

getLastNonConfigurationInstance(), it simply holds onto that state and
reloads our forecast in the webview. In either case, onCreate() indicates to
the state that the new activity instance is the current one:

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

browser=(WebView)findViewById(R.id.webkit);
state=(State)getLastNonConfigurationInstance();

if (state==null) {
state=new State();
getApplicationContext ()
.bindService(new Intent(this, WeatherService.class),
state.svcConn, BIND_AUTO_CREATE);

else if (state.lastForecast!=null) {
showForecast();

}

state.attach(this);

mgr=(LocationManager)getSystemService (LOCATION_SERVICE);
mgr.requestLocationUpdates (LocationManager.GPS_PROVIDER,
3600000, 0, onLocationChange);

The AsyncTask

The FetchForecastTask subclass of AsyncTask itself has a few interesting
characteristics, compared to previous AsyncTask objects shown in this book:

- It is a static inner class, following the safe threading pattern
documented in the chapter on threads.

« It holds onto the state, obtained via the constructor.

« It does not reference the activity in doInBackground(), since that is
not safe - it can only use the activity in methods executed on the
main application thread.

+ Since the getForecast() method from the weatherBinder can raise an
Exception, and since we cannot display an Exception to the user from
doInBackground(), we hold onto it if it is raised. Then, in

435

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

onPostExecute(), we can safely display the Exception information to
the user, if an Exception was indeed raised.

static class FetchForecastTask extends AsyncTask<Location, Void, String> {
Exception e=null;
State state=null;

FetchForecastTask(State state) {
this.state=state;

}

@0verride
protected String doInBackground(Location... locs) {
try {
return(generatePage(state.weather.getForecast(locs[0])));
}
catch (Exception e) {
this.e=e;

}

return(null);

}

@Override
protected void onPostExecute(String page) {
if (e==null) {
state.lastForecast=page;
state.activity.showForecast();
¥
else {
state.activity.goBlooey(e);
¥
}

}

You may be wondering why we are not storing the AsyncTask in our State, to
be passed between activity instances. In this case, that is not necessary. In
the previous demonstration of an rotation-aware AsyncTask, the only "state"
was the AsyncTask, and we needed to pass it to the new instance so the
AsyncTask could be updated to reflect which activity instance was the one it
should work with. FetchForecastTask, however, gets the activity via the
state itself. So long as we are passing the state to the new instance, and so
long as we are updating the state with the right activity, the AsyncTask will
have access to the right activity. The AsyncTask will not be garbage-
collected, simply because it will be strongly held either by a Thread (while
doInBackground() is running) or by a Message (after doInBackground() ends, to
pass control to the main application thread and trigger onPostExecute()).

436

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

Time to Unbind

We bind to the service when oncCreate() is called, if it did not receive a State
via getLastNonConfigurationInstance() (in which case, we are already
bound). This begs the question: when do we unbind from the service?

We want to unbind when the activity is destroyed...but not if the activity is
being destroyed because of a configuration change.

Unfortunately, there is no built-in way to make that determination from
onDestroy(). There is an isFinishing() method you can call on an Activity,
which will return true if the activity is going away for good or false
otherwise. This does return false for a configuration change, but it will also
return false if the activity is being destroyed to free up RAM and the user
might be able to return to it via the BACK button.

This is why onRetainNonConfigurationInstance() flips a
isConfigurationChanging flag in WeatherDemo to true. That flag is initially
false. We then check that flag to see if we should unbind from the service
or not:

@0verride
public void onDestroy() {
super.onDestroy() ;

if (mgr!l=null) {
mgr.removeUpdates (onLocationChange);

}

if (!isConfigurationChanging) {
getApplicationContext().unbindService(state.svcConn);
}
}

Simplification Strategies

On the surface, one might think it is easier to have the activities deal with
the background thread - you are new to services, and services are scary!

437

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Basic Service Patterns

However, generally speaking, services are much better at dealing with
threads than are activities. Activities come and go, while services can
remain more stable. Had we implemented weatherService and WeatherDemo
to have weatherservice use the AsyncTask (or perhaps be an IntentService),
WeatherDemo would not have needed to deal with the AsyncTask when
handling configuration changes, such as re-associating it with the new
activity instance in onCreate().

That being said, it is difficult to design an activity->service interface that
can completely avoid the issue of configuration changes. You have to pass
the serviceConnection between activity instances for binding, or you have to
deal with challenges in the various asynchronous mechanisms for services
to pass results back to the activity.

438

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 32
Alerting Users Via Notifications

Pop-up messages. Tray icons and their associated "bubble" messages.
Bouncing dock icons. You are no doubt used to programs trying to get your
attention, sometimes for good reason.

Your phone also probably chirps at you for more than just incoming calls:
low battery, alarm clocks, appointment notifications, incoming text
message or email, etc.

Not surprisingly, Android has a whole framework for dealing with these
sorts of things, collectively called "notifications".

Notification Configuration

A service, running in the background, needs a way to let users know
something of interest has occurred, such as when email has been received.
Moreover, the service may need some way to steer the user to an activity
where they can act upon the event - reading a received message, for
example. For this, Android supplies status bar icons, flashing lights, and
other indicators collectively known as "notifications".

Your current phone may well have such icons, to indicate battery life, signal
strength, whether Bluetooth is enabled, and the like. With Android,
applications can add their own status bar icons, with an eye towards having
them appear only when needed (e.g., a message has arrived).

439

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Alerting Users Via Notifications

In Android, you can raise notifications via the NotificationManager. The
NotificationManager is a system service. To use it, you need to get the
service object via getSystemService(NOTIFICATION_SERVICE) from your
activity.

The NotificationManager gives you three methods: one to raise a
Notification (notify()) and two to get rid of an existing Notification
(cancel() and cancelAll()).

The notify() method takes a Notification, which is a data structure that
spells out what form your pestering should take - the capabilities of this
object are described in the following sections.

Hardware Notifications

You can flash LEDs on the device by setting lights to true, also specifying
the color (as an #ARGB value in ledARGB) and what pattern the light should
blink in (by providing off/on durations in milliseconds for the light via
ledonMs and ledoffMs). Note, however, that Android devices will apply "best
efforts” to meet your color request, meaning that different devices may give
you different colors, or perhaps no control over color at all. For example,
the Motorola CLIQ only has a white LED, so you can ask for any color you
want, and you will get white. Note that you will have to OR (|) in the
Notification.FLAG_SHOW_LIGHTS value into the public flags field on the
Notification object for flashing the LED to work.

You can play a sound, using a uri to a piece of content held, perhaps, by a
ContentManager (sound). Think of this as a "ringtone" for your application.

You can vibrate the device, controlled via a long[] indicating the on/off
patterns (in milliseconds) for the vibration (vibrate). You might do this by
default, or you might make it an option the user can choose when
circumstances require a more subtle notification than a ringtone. To use
this, though, you will need to request the VIBRATE permission.

440

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Alerting Users Via Notifications

All of these, by default, happen once (e.g., one LED flash, one playback of
the sound). If you want to have them persist until the Notification is
canceled, you will need to set the flags public field in your Notification to
include FLAG_INSISTENT.

Instead of manually specifying the hardware options, you can also use the
defaults field in the Notification, setting it to DEFAULT_LIGHTS,
DEFAULT_SOUND, DEFAULT_VIBRATE, or DEFAULT_ALL, which will use platform
defaults for all hardware options.

Icons

While the flashing lights, sounds, and vibrations are aimed at getting
somebody to look at the device, icons are designed to take them the next
step and tell them what's so important.

To set up an icon for a Notification, you need to set two public fields: icon,
where you provide the identifier of a Drawable resource representing the
icon, and contentIntent, where you supply a PendingIntent to be raised
when the icon is clicked. A pendingIntent is a wrapper around a regular
Intent that allows the Intent to be invoked later, by another process, to
start an activity or whatever. Typically, a Notification will trigger an
activity, in which case you would create the pendingIntent via the static
getActivity() method and give it an Intent that identifies one of your
activities. That being said, you could have the Notification send a
broadcast Intent instead by using a getBroadcast() version of a
PendingIntent.

You can also supply a text blurb to appear when the icon is put on the
status bar (tickerText).

If you want all three, the simpler approach is to call setLatestEventInfo(),
which wraps all three of those in a single call.

You can also set a value in the number public field of your Notification. This
will cause the number you supply to be drawn over top of the icon in one

441

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Alerting Users Via Notifications

corner. This is used, for example, to show the number of unread email
messages, to save you from having to have a bunch of different icons, one
for each possible number of unread messages. By default, the number will be
ignored and not used.

Note that the size of the icons used with a Notification changed with
Android 2.3. It used to be that 25px square was the desired size. Now, they
prefer per-density icons in a more rectangular shape:

+ 24px square (inside a 24px wide by 38px high bounding box) for
high-density screens

+ 16px square (inside a 16px by 25px bounding box) for medium-
density screens

+ 12px square (inside a 12px by 19px bounding box) for low-density
screens

Applications following these rules will want to use specific resource sets for
the new icons:
+ res/drawable-hdpi-v9/ for the high-density Android 2.3 editions
+ res/drawable-mdpi-v9/ for the medium-density Android 2.3 editions
+ res/drawable-1dpi-v9/ for the low-density Android 2.3 editions

+ res/drawable/ for the icon to use on Android 2.2 and earlier

More details on guidelines for all icons, including status bar icons, can be
found in the Android developer documentation.

Notifications in Action

Let us now take a peek at the Notifications/Notifyl sample project, in
particular the NotifyDemo class:

package com.commonsware.android.notify;

import android.app.Activity;
import android.app.Notification;

442

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://developer.android.com/guide/practices/ui_guidelines/icon_design.html

Alerting Users Via Notifications

import android.app.NotificationManager;
import android.app.PendingIntent;
import android.content.Intent;

import android.os.Bundle;

import android.view.View;

public class NotifyDemo extends Activity {
private static final int NOTIFY_ME_ID=1337;
private int count=0;
private NotificationManager mgr=null;

@0Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

mgr=(NotificationManager)getSystemService (NOTIFICATION_SERVICE);
}

public void notifyMe(View v) {
Notification note=new Notification(R.drawable.stat_notify_chat,
"Status message!",
System.currentTimeMillis());
PendingIntent i=PendingIntent.getActivity(this, 0,
new Intent(this, NotifyMessage.class),
0);

note.setLatestEventInfo(this, "Notification Title",

"This is the notification message", i);
note.number=++count;
note.vibrate=new long[] {500L, 200L, 200L, 500L};
note.flags|=Notification.FLAG_AUTO_CANCEL;

mgr.notify (NOTIFY_ME_ID, note);
}

public void clearNotification(View v) {
mgr.cancel (NOTIFY_ME_ID);
}

}

This activity sports two large buttons, one to kick off a notification after a
five-second delay, and one to cancel that notification (if it is active):

443

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Alerting Users Via Notifications

25 Ml € 10:10am

Click to raise a notification

Click to clear the notification

Figure 128. The NotifyDemo activity main view

Creating the notification, in notifyMe(), is accomplished in a handful of
steps:

1. Create a Notification object with our icon, a message to flash on the
status bar as the notification is raised, and the time associated with
this event

2. Create a pendingIntent that will trigger the display of another
activity (NotifyMessage)

3. Use setLatestEventInfo() to specify that, when the notification is
clicked on, we are to display a certain title and message, and if that
is clicked on, we launch the pendingIntent

4. Update the "number" associated with the notification

5. Specify a vibration pattern — 5ooms on, 200ms off, 20oms on, 500ms
off

6. Include FLAG_AUTO_CANCEL in the Notification object's flags field

444

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Alerting Users Via Notifications

7. Tell the NotificationManager (obtained in oncCreate())to display the
notification

Hence, if we click the top button, our icon will appear in the status bar,
briefly along with our status message.

9 Status message!

Click to raise a notification

Click to clear the notification

Figure 129. Our notification as it appears on the status bar, with our status
message

After the status message goes away, the icon will have our number (initially
1) superimposed on the lower-right corner - you might use this to signify
the number of unread messages.

445

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Alerting Users Via Notifications

D 25 Ml € 10:10am

Click to raise a notification

Click to clear the notification

Figure 130. Our notification with the superimposed number

If you drag down the icon, a drawer will appear beneath the status bar.
Drag that drawer all the way to the bottom of the screen to show the
outstanding notifications, including our own:

446

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Alerting Users Via Notifications

October 22, 2010 25 Ml & 10:11 am

Android Clear

T h——
&3 Notification Title
This is the notification message 10:10 AM

Figure 131. The notifications drawer, fully expanded, with our notification

If you click on the notification entry in the drawer, you'll be taken to a
trivial activity displaying a message - though in a real application, this
activity would do something useful based upon the event that occurred
(e.g., take users to the newly-arrived mail messages).

Clicking on the cancel button, or clicking on the Clear button in the
drawer, or clicking on the notification entry in the drawer, will remove the
icon from the status bar. The latter is because we included FLAG_AUTO_CANCEL
in the Notification, indicating that a tap on the drawer entry should cancel
the Notification itself.

Staying in the Foreground

Notifications have another use: keeping select services around.

Services do not live forever. Android may terminate your application's
process to free up memory in an emergency situation, or just because it

447

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Alerting Users Via Notifications

seems to have been hanging around memory too long. Ideally, you design
your services to deal with the fact that they may not run indefinitely.

However, some services will be missed by the user if they mysteriously
vanish. For example, the default music player application that ships with
Android uses a service for the actual music playback. That way, the user can
listen to music while continuing to use their phone for other purposes. The
service only stops when the user goes in and presses the stop button in the
music player activity. If that service were to be shut down unexpectedly, the
user might wonder what is wrong.

Services like this can declare themselves as being part of the "foreground".
This will cause their priority to rise and make them less likely to be bumped
out of memory. The trade-off is that the service has to maintain a
Notification, so the user knows that this service is claiming part of the
foreground. And, ideally, that Notification provides an easy path back to
some activity where the user can stop the service.

To do this, on oncreate() of your service (or wherever else in the service's
life it would make sense), call startForeground(). This takes a Notification
and a locally-unique integer, just like the notify() method on
NotificationManager. It causes the Notification to appear and moves the
service into foreground priority. Later on, you can call stopForeground() to
return to normal priority.

Note that this method was added with Android 2.0 (API level 5). There was
an earlier method, setForeground(), that performs a similar function in
earlier versions of Android.

FakePlayer, Redux

In the chapter on service patterns, we showed a fake music player,
implemented with an Activity (FakePlayer) and a Service (PlayerService).
The Playerservice is actually what is playing the music, so the music can
play even while the FakePlayer activity is gone.

448

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Alerting Users Via Notifications

However, Android may not consider PlayerService to be part of the user
experience, since services normally interact very little directly with users.
This means Android may run PlayerService in a way that caps CPU usage
(not necessarily bad) and might elect to shut down the service if it thinks it
has been running too long (probably bad).

The answer is to use startForeground() and stopForeground(). We can call
startForeground() when we start the music playing in our play() method:

private void play(String playlist, boolean useShuffle) {
if (!isPlaying) {
Log.w(getClass().getName(), "Got to play()!");
isPlaying=true;

Notification note=new Notification(R.drawable.stat_notify_chat,
"Can you hear the music?",
System.currentTimeMillis());
Intent i=new Intent(this, FakePlayer.class);

i.setFlags(Intent.FLAG_ACTIVITY CLEAR_TOP|
Intent.FLAG_ACTIVITY_SINGLE_TOP);

PendingIntent pi=PendingIntent.getActivity(this, o,
i, @);

note.setLatestEventInfo(this, "Fake Player",
"Now Playing: Ummmm, Nothing\"",
pi);
note.flags|=Notification.FLAG_NO_CLEAR;

startForeground (1337, note);

The plus side is that our service will have more CPU availability if needed
and will be far less likely to be killed. The user will see an icon in the status
bar, though. If they slide down the notification drawer and tap on our
Notification's entry, they will be taken back to FakePlayer - the existing
instance if there is one, otherwise a fresh instance, courtesy of our Intent
flags (Intent.FLAG_ACTIVITY_CLEAR_TOP| Intent.FLAG_ACTIVITY_SINGLE_TOP).
For a music player, this Ul pattern is a good thing, as it makes it easy for the
user to quickly go back to stop the music when needed.

Stopping the music, via our stop() method, will call stopForeground():

449

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Alerting Users Via Notifications

private void stop() {
if (isPlaying) {
Log.w(getClass().getName(), "Got to stop()!");
isPlaying=false;
stopForeground(true);

}

}

The true value passed to stopForeground() tells Android to remove the
Notification, which would be the typical approach for this pattern.

450

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 33
Requesting and Requiring
Permissions

In the late 1990's, a wave of viruses spread through the Internet, delivered
via email, using contact information culled from Microsoft Outlook. A virus
would simply email copies of itself to each of the Outlook contacts that had
an email address. This was possible because, at the time, Outlook did not
take any steps to protect data from programs using the Outlook API, since
that API was designed for ordinary developers, not virus authors.

Nowadays, many applications that hold onto contact data secure that data
by requiring that a user explicitly grant rights for other programs to access
the contact information. Those rights could be granted on a case-by-case
basis or all at once at install time.

Android is no different, in that it requires permissions for applications to
read or write contact data. Android's permission system is useful well
beyond contact data, and for content providers and services beyond those
supplied by the Android framework.

You, as an Android developer, will frequently need to ensure your
applications have the appropriate permissions to do what you want to do
with other applications' data. You may also elect to require permissions for
other applications to use your data or services, if you make those available
to other Android components. This chapter covers how to accomplish both
these ends.

451

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Requesting and Requiring Permissions

Mother, May I?

Requesting the use of other applications' data or services requires the uses-
permission element to be added to your AndroidManifest.xml file. Your
manifest may have zero or more uses-permission elements, all as direct
children of the root manifest element.

The uses-permission element takes a single attribute, android:name, which is
the name of the permission your application requires:

<uses-permission
android:name="android.permission.ACCESS_LOCATION" />

The stock system permissions all begin with android.permission and are
listed in the Android SDK documentation for Manifest.permission. Third-
party applications may have their own permissions, which hopefully they
have documented for you. Here are some of the permissions we will see in
this book:

« INTERNET, if your application wishes to access the Internet through
any means, from raw Java sockets through the webview widget

+ WRITE_EXTERNAL_STORAGE, for writing data to the SD card (or whatever
the device has designated as "external storage")

+ ACCESS_COARSE_LOCATION and ACCESS_FINE_LOCATION, for determining
where the device is

+ CALL_PHONE, to allow the application to place phone calls directly,
without user intervention

Permissions are confirmed at the time the application is installed - the user
will be prompted to confirm it is OK for your application to do what the
permission calls for. Hence, it is important for you to ask for as few
permissions as possible and to justify those you ask for, so users do not
elect to skip installing your application because you ask for too many
unnecessary permissions. This prompt will not appear when loading an
application via USB, such as during development.

452

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Requesting and Requiring Permissions

If you do not have the desired permission and try to do something that
needs it, you should get a SecurityException informing you of the missing
permission. Note that you will only fail on a permission check if you forgot
to ask for the permission - it is impossible for your application to be
running and not have been granted your requested permissions.

Halt! Who Goes There?

The other side of the coin, of course, is to secure your own application. If
your application is mostly activities, security may be just an “outbound”
thing, where you request the right to use resources of other applications. If,
on the other hand, you put content providers or services in your
application, you will want to implement “inbound” security to control
which applications can do what with the data.

Note that the issue here is less about whether other applications might
“mess up” your data, but rather about privacy of the user's information or
use of services that might incur expense. That is where the stock
permissions for built-in Android applications are focused - can you read or
modify contacts, can you send SMS, etc. If your application does not store
information that might be considered private, security is less an issue. If, on
the other hand, your application stores private data, such as medical
information, security is much more important.

The first step to securing your own application using permissions is to
declare said permissions, once again in the AndroidManifest.xml file. In this
case, instead of uses-permission, you add permission elements. Once again,
you can have zero or more permission elements, all as direct children of the
root manifest element.

Declaring a permission is slightly more complicated than using a
permission. There are three pieces of information you need to supply:

1. The symbolic name of the permission. To keep your permissions
from colliding with those from other applications, you should use
your application's Java namespace as a prefix

453

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Requesting and Requiring Permissions

2. A label for the permission: something short that would be
understandable by users

3. A description for the permission: something a wee bit longer that is
understandable by your users

<permission
android:name="vnd.tlagency.sekrits.SEE_SEKRITS"
android:label="@string/see_sekrits_label"
android:description="@string/see_sekrits_description" />

This does not enforce the permission. Rather, it indicates that it is a
possible permission; your application must still flag security violations as
they occur.

Enforcing Permissions via the Manifest

There are two ways for your application to enforce permissions, dictating
where and under what circumstances they are required. The easier one is to
indicate in the manifest where permissions are required.

Activities, services, and receivers can all declare an attribute named
android:permission, whose value is the name of the permission that is
required to access those items:

<activity
android:name=".SekritApp"
android:label="Top Sekrit"
android:permission="vnd.tlagency.sekrits.SEE_SEKRITS">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category
android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

Only applications that have requested your indicated permission will be
able to access the secured component. In this case, “access” means:

« Activities cannot be started without the permission

454

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Requesting and Requiring Permissions

« Services cannot be started, stopped, or bound to an activity without
the permission

+ Intent receivers ignore messages sent via sendBroadcast() unless the
sender has the permission

Enforcing Permissions Elsewhere

In your code, you have two additional ways to enforce permissions.

Your services can check permissions on a per-call basis via
checkCallingPermission(). This returns PERMISSION GRANTED or
PERMISSION_DENIED depending on whether the caller has the permission you
specified. For example, if your service implements separate read and write
methods, you could require separate read versus write permissions in code
by checking those methods for the permissions you need from Java.

Also, you can include a permission when you call sendBroadcast(). This
means that eligible broadcast receivers must hold that permission; those
without the permission are ineligible to receive it. We will examine
sendBroadcast() in greater detail elsewhere in this book.

May | See Your Documents?

There is no automatic discovery of permissions at compile time; all
permission failures occur at runtime. Hence, it is important that you
document the permissions required for your public APIs, including content
providers, services, and activities intended for launching from other
activities. Otherwise, the programmers attempting to interface with your
application will have to find out the permission rules by trial and error.

Furthermore, you should expect that users of your application will be
prompted to confirm any permissions your application says it needs.
Hence, you need to document for your users what they should expect, lest
they get confused by the question posed by the phone and elect to not
install or use your application. You may wish to use string resources for this,

455

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Requesting and Requiring Permissions

so you can internationalize your permission details the way you
internationalize all the other messages and prompts in your application.

456

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PART V - Other Android Capabilities

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 34

Accessing Location-Based
Services

A popular feature on current-era mobile devices is GPS capability, so the
device can tell you where you are at any point in time. While the most
popular use of GPS service is mapping and directions, there are other things
you can do if you know your location. For example, you might set up a
dynamic chat application where the people you can chat with are based on
physical location, so you are chatting with those you are nearest. Or, you
could automatically "geotag" posts to Twitter or similar services.

GPS is not the only way a mobile device can identify your location.
Alternatives include:

« The European equivalent to GPS, called Galileo, which is still under
development at the time of this writing

« Cell tower triangulation, where your position is determined based
on signal strength to nearby cell towers

« Proximity to public WiFi "hotspots" that have known geographic
locations

Android devices may have one or more of these services available to them.
You, as a developer, can ask the device for your location, plus details on
what providers are available. There are even ways for you to simulate your
location in the emulator, for use in testing your location-enabled
applications.

459

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Location-Based Services

Location Providers: They Know Where You're
Hiding

Android devices can have access to several different means of determining
your location. Some will have better accuracy than others. Some may be
free, while others may have a cost associated with them. Some may be able
to tell you more than just your current position, such as your elevation over
sea level, or your current speed.

Android, therefore, has abstracted all this out into a set of LocationProvider
objects. Your Android environment will have zero or more LocationProvider
instances, one for each distinct locating service that is available on the
device. Providers know not only your location, but their own
characteristics, in terms of accuracy, cost, etc.

You, as a developer, will use a LocationManager, which holds the
LocationProvider set, to figure out which LocationProvider is right for your
particular circumstance. You will also need a permission in your
application, or the various location APIs will fail due to a security violation.
Depending on which location providers you wish to use, you may need
ACCESS_COARSE_LOCATION, ACCESS_FINE_LOCATION, or both.

Finding Yourself

The obvious thing to do with a location service is to figure out where you
are right now.

To do that, you need to get a LocationManager - call
getSystemService(LOCATION_SERVICE) from your activity or service and cast it
to be a LocationManager.

The next step to find out where you are is to get the name of the
LocationProvider you want to use. Here, you have two main options:

1. Ask the user to pick a provider

2. Find the best-match provider based on a set of criteria

460

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Location-Based Services

If you want the user to pick a provider, calling getProviders() on the
LocationManager will give you a List of providers, which you can then
present to the user for selection.

Or, you can create and populate a criteria object, stating the particulars of
what you want out of a LocationProvider, such as:

+ setAltitudeRequired() to indicate if you need the current altitude or
not

+ setAccuracy() to set a minimum level of accuracy, in meters, for the
position

+ setCostAllowed() to control if the provider must be free or if it can
incur a cost on behalf of the device user

Given a filled-in criteria object, call getBestProvider() on your
LocationManager, and Android will sift through the criteria and give you the
best answer. Note that not all of your criteria may be met - all but the
monetary cost criterion might be relaxed if nothing matches.

You are also welcome to hard-wire in a LocationProvider name (e.g.,
GPS_PROVIDER), perhaps just for testing purposes.

Once you know the name of the LocationProvider, you can call
getLastknownPosition() to find out where you were recently. However,
unless something else is causing the desired provider to collect fixes (e.g.,
unless the GPS radio is on), getlLastKnownPosition() will return null,
indicating that there is no known position. On the other hand,
getLastknownPosition() incurs no monetary or power cost, since the
provider does not need to be activated to get the value.

These methods return a Location object, which can give you the latitude
and longitude of the device in degrees as a Java double. If the particular
location provider offers other data, you can get at that as well:

« For altitude, hasAltitude() will tell you if there is an altitude value,
and getAltitude() will return the altitude in meters.

461

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Location-Based Services

« For bearing (i.e., compass-style direction), hasBearing() will tell you
if there is a bearing available, and getBearing() will return it as
degrees east of true north.

« For speed, hasspeed() will tell you if the speed is known and
getSpeed() will return the speed in meters per second.

A more likely approach to getting the Location from a LocationProvider,
though, is to register for updates, as described in the next section.

On the Move

Not all location providers are necessarily immediately responsive. GPS, for
example, requires activating a radio and getting a fix from the satellites
before you get a location. That is why Android does not offer a
getMeMyCurrentLocationNow() method. Combine that with the fact that your
users may well want their movements to be reflected in your application,
and you are probably best off registering for location updates and using
that as your means of getting the current location.

The Internet/Weather and Service/WeatherAPI sample applications show how
to register for updates - call requestLocationUpdates() on your
LocationManager instance. This takes four parameters:

1. The name of the location provider you wish to use

2. How long, in milliseconds, should have elapsed before we might get
a location update

3. How far, in meters, must the device have moved before we might
get a location update

4. A LocationListener that will be notified of key location-related
events, as shown below:

LocationListener onLocationChange=new LocationListener() {
public void onLocationChanged(Location location) {
if (state.weather!=null) {
new FetchForecastTask(state).execute(location);

}

else {

462

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Location-Based Services

Log.w(getClass().getName(), "Unable to fetch forecast - no
WeatherBinder");
b
}

public void onProviderDisabled(String provider) {
// required for interface, not used

}

public void onProviderEnabled(String provider) {
// required for interface, not used

}

public void onStatusChanged(String provider, int status,
Bundle extras) {
// required for interface, not used
}
}s

Here, all we do is trigger a FetchForecastTask with the Location supplied to
the onLocationChanged() callback method.

Bear in mind that the time parameter is only a guide to help steer Android
from a power consumption standpoint. You may get many more location
updates than this. To get the maximum number of location updates, supply
o for both the time and distance constraints.

When you no longer need the updates, call removeupdates() with the
LocationListener you registered. If you fail to do this, your application will
continue receiving location updates even after all activities and such are
closed up, which will also prevent Android from reclaiming your
application's memory.

There is another version of requestlLocationUpdates() that takes a
PendingIntent rather than a LocationListener. This is useful if you want to
be notified of changes in your position even when your code is not running.
For example, if you are logging movements, you could use a pPendingIntent
that triggers a BroadcastReceiver (getBroadcast()) and have the
BroadcastReceiver add the entry to the log. This way, your code is only in
memory when the position changes, so you do not tie up system resources
while the device is not moving.

463

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Location-Based Services

Are We There Yet? Are We There Yet? Are
We There Yet?

Sometimes, you want to know not where you are now, or even when you
move, but when you get to where you are going. This could be an end
destination, or it could be getting to the next step on a set of directions, so
you can give the user the next turn.

To accomplish this, LocationManager offers addProximityAlert(). This
registers an PendingIntent, which will be fired off when the device gets
within a certain distance of a certain location. The addProximityAlert()
method takes, as parameters:

+ The latitude and longitude of the position that you are interested in

« Aradius, specifying how close you should be to that position for the
Intent to be raised

« A duration for the registration, in milliseconds - after this period,
the registration automatically lapses. A value of -1 means the
registration lasts until you manually remove it via
removeProximityAlert().

« The pendingIntent to be raised when the device is within the "target
zone" expressed by the position and radius

Note that it is not guaranteed that you will actually receive an Intent, if
there is an interruption in location services, or if the device is not in the
target zone during the period of time the proximity alert is active. For
example, if the position is off by a bit, and the radius is a little too tight, the
device might only skirt the edge of the target zone, or go by so quickly that
the device's location isn't sampled while in the target zone.

It is up to you to arrange for an activity or receiver to respond to the Intent
you register with the proximity alert. What you then do when the Intent
arrives is up to you: set up a notification (e.g., vibrate the device), log the
information to a content provider, post a message to a Web site, etc. Note
that you will receive the Intent whenever the position is sampled and you
are within the target zone - not just upon entering the zone. Hence, you

464

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Location-Based Services

will get the Intent several times, perhaps quite a few times depending on
the size of the target zone and the speed of the device's movement.

Testing...Testing...

The Android emulator does not have the ability to get a fix from GPS,
triangulate your position from cell towers, or identify your location by some
nearby WiFi signal. So, if you want to simulate a moving device, you will
need to have some means of providing mock location data to the emulator.

For whatever reason, this particular area has undergone significant changes
as Android itself has evolved. It used to be that you could provide mock
location data within your application, which was very handy for
demonstration purposes. Alas, those options have all been removed as of
Android 1.0.

One likely option for supplying mock location data is the Dalvik Debug
Monitor Service (DDMS). This is an external program, separate from the
emulator, where you can feed it single location points or full routes to
traverse, in a few different formats. DDMS is described in greater detail in
the chapter on Android development tools.

465

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 35
Mapping with MapView and
MapActivity

One of Google's most popular services — after search, of course - is Google
Maps, where you can find everything from the nearest pizza parlor to
directions from New York City to San Francisco (only 2,905 miles!) to street
views and satellite imagery.

Most Android devices, not surprisingly, integrate Google Maps. For those
that do, there is a mapping activity available to users straight off the main
Android launcher. More relevant to you, as a developer, are Mapview and
MapActivity, which allow you to integrate maps into your own applications.
Not only can you display maps, control the zoom level, and allow people to
pan around, but you can tie in Android's location-based services to show
where the device is and where it is going.

Fortunately, integrating basic mapping features into your Android project
is fairly easy. However, there is a fair bit of power available to you, if you
want to get sophisticated.

Terms, Not of Endearment

Google Maps, particularly when integrated into third party applications,
requires agreeing to a fairly lengthy set of legal terms. These terms include
clauses that you may find unpalatable.

467

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Mapping with MapView and MapActivity

If you are considering Google Maps, please review these terms closely to
determine if your intended use will not run afoul of any clauses. You are
strongly recommended to seek professional legal counsel if there are any
potential areas of conflict.

Also, keep your eyes peeled for other mapping options, based off of other
sources of map data, such as OpenStreetMap.

Piling On

As of Android 1.5, Google Maps are not strictly part of the Android SDK.
Instead, they are part of the Google APIs Add-On, an extension of the stock
SDK. The Android add-on system provides hooks for other subsystems that
may be part of some devices but not others.

After all, Google Maps is not part of the Android open source project, and
undoubtedly there will be some devices that lack Google Maps due to
licensing issues. For example, at the time of this writing, the ARCHOS 5
Android tablet does not have Google Maps.

By and large, the fact that Google Maps is in an add-on does not affect your
day-to-day development. However, bear in mind:

« You will need to create your project with an appropriate target to
ensure the Google Maps APIs will be available

« To test your Google Maps integration, you will also need an AVD
that uses an appropriate target

The Key To It All

If you download the source code for the book, compile the Maps/NooYawk
project, install it in your emulator, and run it, you will probably see a screen
with a grid and a couple of push-pins, but no actual maps.

468

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.openstreetmap.org/

Mapping with MapView and MapActivity

That's because the API key in the source code is invalid for your
development machine. Instead, you will need to generate your own API
key(s) for use with your application. This also holds true for any map-
enabled projects you create on your own from scratch.

Full instructions for generating API keys, for development and production
use, can be found on the Android Web site. In the interest of brevity, let's
focus on the narrow case of getting NooYawk running in your emulator.
Doing this requires the following steps:

1. Visit the API key signup page and review the terms of service.

2. Re-read those terms of service and make really really sure you want
to agree to them.

3. Find the MDs5 digest of the certificate used for signing your debug-
mode applications (described in detail below)

4. On the API key signup page, paste in that MDs5 signature and
submit the form

5. On the resulting page, copy the API key and paste it as the value of
apikey in your Mapview-using layout

The trickiest part is finding the MD5 signature of the certificate used for
signing your debug-mode applications...and much of the complexity is
merely in making sense of the concept.

All Android applications are signed using a digital signature generated from
a certificate. You are automatically given a debug certificate when you set
up the SDK, and there is a separate process for creating a self-signed
certificate for use in your production applications. This signature process
involves the use of the Java keytool and jarsigner utilities. For the purposes
of getting your API key, you only need to worry about keytool.

To get your MDs5 digest of your debug certificate, if you are on OS X or
Linux, use the following command:

keytool -list -alias androiddebugkey -keystore ~/.android/debug.keystore
-storepass android -keypass android

469

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://code.google.com/android/add-ons/google-apis/mapkey.html

Mapping with MapView and MapActivity

On other development platforms, you will need to replace the value of the
-keystore switch with the location for your platform and user account:

« XP:C:\Documents and Settings\<user>\.android\debug.keystore

« Vista: C:\Users\<user>\.android\debug.keystore

(where <user> is your account name)

The second line of the output contains your MDs5 digest, as a series of pairs
of hex digits separated by colons.

The Bare Bones

To put a map into your application, you need to create your own subclass of
MapActivity. Like ListActivity, which wraps up some of the smarts behind
having an activity dominated by a Listview, MapActivity handles some of
the nuances of setting up an activity dominated by a Mapview. A Mapview can
only be used by a MapActivity, not any other type of Activity.

In your layout for the MapActivity subclass, you need to add an element
named com.google.android.maps.MapView. This is the "longhand" way to spell
out the names of widget classes, by including the full package name along
with the class name. This is necessary because Mapview is not in the
com.google.android.widget namespace. You can give the Mapview widget
whatever android:id attribute value you want, plus handle all the layout
details to have it render properly alongside your other widgets.

However, you do need to have:

« android:apikey, your Google Maps API key

« android:clickable = "true", if you want users to be able to click and
pan through your map

For example, from the Maps/NooYawk sample application, here is the main
layout:

470

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Mapping with MapView and MapActivity

<?xml version="1.0" encoding="utf-8"?>
<RelativelLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout_height="fill_parent">
<com.google.android.maps.MapView android:id="@+id/map"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:apiKey="00yHjok7_7vxbuQ9zwyXI4bNMIrAjYrl9KKHgbQ"
android:clickable="true" />
</RelativelLayout>

In addition, you will need a couple of extra things in
AndroidManifest.xml file:

your

« The INTERNET and ACCESS_FINE_LOCATION permissions (the latter for
use with the MyLocationoOverlay class, described later in this chapter)

« Inside your <application>, a <uses-library> element

with

android:name = "com.google.android.maps", to indicate you are using

one of the optional Android APIs

Here is the AndroidManifest.xml file for NooYawk:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.maps">
<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>

<application android:label="@string/app_name" android:icon="@drawable/cw">
<uses-library android:name="com.google.android.maps"/>
<activity android:name=".NooYawk" android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>
</activity>
</application>
<supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

That is pretty much all you need for starters, plus to subclass your activity
from MapActivity. If you were to do nothing else, and built that project and
tossed it in the emulator, you'd get a nice map of the world. Note, however,
that MapActivity is abstract — you need to implement isRouteDisplayed() to
indicate if you are supplying some sort of driving directions or not. Since

471

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Mapping with MapView and MapActivity

displaying driving directions is not supported by the current edition of the
terms of service, you should have isRouteDisplayed() return false.

Optional Maps

Not every Android device will have Google Maps, because they did not elect
to license it from Google. While most mainstream devices will have Google
Maps, a few percent of Android devices will be without it.

You need to decide if having Google Maps is essential for your application's
operation, or not.

If it is, the <uses-1library> element shown above is the right answer, as that
will require any device running your app to have Google Maps.

If, however, you want Google Maps to be optional, there is an
undocumented android:required attribute available on <uses-1library>. Set
that to false, and then Google Maps will be loaded into your application if
it is available, but your application will run regardless. You will then need to
use something like Class.forName("com.google.android.maps.MapView") to see
if Google Maps is available to you. If it is not, you can disable the menu
items or whatever would lead the user to your MapActivity. While this
attribute is undocumented, Google has indicated that it is an available
option, and hopefully it will be officially documented in a future Android
release.

Exercising Your Control

You can find your Mapview widget by findviewById(), no different than any
other widget. The widget itself then offers a getMapController() method.
Between the Mapview and MapController, you have a fair bit of capability to
determine what the map shows and how it behaves. Here are some likely
features you will want to use:

472

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Mapping with MapView and MapActivity

Zoom

The map of the world you start with is rather broad. Usually, people
looking at a map on a phone will be expecting something a bit narrower in
scope, such as a few city blocks.

You can control the zoom level directly via the setzoom() method on the
MapController. This takes an integer representing the level of zoom, where 1
is the world view and 21 is the tightest zoom you can get. Each level is a
doubling of the effective resolution: 1 has the equator measuring 256 pixels
wide, while 21 has the equator measuring 268,435,456 pixels wide. Since the
phone's display probably does not have 268,435,456 pixels in either
dimension, the user sees a small map focused on one tiny corner of the
globe. A level of 17 will show you several city blocks in each dimension and
is probably a reasonable starting point for you to experiment with.

If you wish to allow wusers to change the zoom level, «call
setBuiltInzoomControls(true);, and the user will be able to zoom in and out
of the map via zoom controls found in the bottom center of the map.

Center

Typically, you will need to control what the map is showing, beyond the
zoom level, such as the user's current location, or a location saved with
some data in your activity. To change the map's position, call setcenter() on
the MapController.

This takes a GeoPoint as a parameter. A GeoPoint represents a location, via
latitude and longitude. The catch is that the GeoPoint stores latitude and
longitude as integers representing the actual latitude and longitude in
microdegrees (degrees multiplied by 1E6). This saves a bit of memory versus
storing a float or double, and it greatly speeds up some internal calculations
Android needs to do to convert the GeoPoint into a map position. However,
it does mean you have to remember to multiply the "real world" latitude
and longitude by 1Es.

473

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Mapping with MapView and MapActivity

Rugged Terrain

Just as the Google Maps you use on your full-size computer can display
satellite imagery, so too can Android maps.

MapView offers togglesatellite(), which, as the name suggests, toggles on
and off this perspective on the area being viewed. You can have the user
trigger these via an options menu or, in the case of NooYawk, via keypresses:

@Override
public boolean onKeyDown(int keyCode, KeyEvent event) {
if (keyCode == KeyEvent.KEYCODE_S) {
map.setSatellite(!map.isSatellite());
return(true);

else if (keyCode == KeyEvent.KEYCODE_Z) {
map.displayZoomControls (true);
return(true);

}

return(super.onKeyDown (keyCode, event));

}

Layers Upon Layers

If you have ever used the full-size edition of Google Maps, you are probably
used to seeing things overlaid atop the map itself, such as "push-pins"
indicating businesses near the location being searched. In map parlance -
and, for that matter, in many serious graphic editors - the push-pins are on
a separate layer than the map itself, and what you are seeing is the
composition of the push-pin layer atop the map layer.

Android's mapping allows you to create layers as well, so you can mark up
the maps as you need to based on user input and your application's
purpose. For example, NooYawk uses a layer to show where select buildings
are located in the island of Manhattan.

474

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Mapping with MapView and MapActivity

Overlay Classes

Any overlay you want to add to your map needs to be implemented as a
subclass of overlay. There is an ItemizedOverlay subclass available if you are
looking to add push-pins or the like; 1temizedoverlay simplifies this process.

To attach an overlay class to your map, just call getoverlays() on your
MapView and add() your Overlay instance to it, as we do here with a custom
SitesOverlay:

marker.setBounds (9, 0, marker.getIntrinsicWidth(),
marker.getIntrinsicHeight());

map.getOverlays().add(new SitesOverlay(marker));

We will explain that marker in just a bit.

Drawing the ItemizedOverlay

As the name suggests, ItemizedOverlay allows you to supply a list of points
of interest to be displayed on the map - specifically, instances of
overlayItem. The overlay, then, handles much of the drawing logic for you.
Here are the minimum steps to make this work:

First, override ItemizedOverlay<OverlayItem> as your own subclass
(in this example, sitesOverlay)

« In the constructor, build your roster of overlayItem instances, and
call populate() when they are ready for use by the overlay

« Implement size() to return the number of items to be handled by
the overlay

« Override createItem() to return OverlayItem instances given an
index

« When you instantiate your ItemizedOverlay subclass, provide it with
a Drawable that represents the default icon (e.g., push-pin) to display
for each item, on which you call boundCenterBottom() to enable the
drop-shadow effect

475

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Mapping with MapView and MapActivity

The marker from the NooYawk constructor is the brawable used for the last
bullet above - it shows a push-pin.

For example, here is SitesOverlay:

private class SitesOverlay extends ItemizedOverlay<OverlayItem> {
private List<OverlayItem> items=new ArrayList<OverlayItem>();
private Drawable marker=null;

public SitesOverlay(Drawable marker) {
super(marker);
this.marker=marker;

boundCenterBottom(marker);

items.add(new OverlayItem(getPoint(40.748963847316034,
-73.96807193756104),
"UN", "United Nations"));
items.add(new OverlayItem(getPoint(40.76866299974387,
-73.98268461227417),
"Lincoln Center",
"Home of Jazz at Lincoln Center"));
items.add(new OverlayItem(getPoint(40.765136435316755,
-73.97989511489868),
"Carnegie Hall",
"Where you go with practice, practice, practice"));
items.add(new OverlayItem(getPoint(40.70686417491799,
-74.01572942733765),
"The Downtown Club",
"Original home of the Heisman Trophy"));

populate();

@Override
protected OverlayItem createItem(int i) {
return(items.get(i));

}

@0Override
protected boolean onTap(int i) {
Toast.makeText (NooYawk.this,
items.get(i).getSnippet(),
Toast.LENGTH_SHORT).show();

return(true);

}

@0verride
public int size() {
return(items.size());

476

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Mapping with MapView and MapActivity

Handling Screen Taps

An overlay subclass can also implement onTap(), to be notified when the
user taps on the map, so the overlay can adjust what it draws. For example,
in full-size Google Maps, clicking on a push-pin pops up a bubble with
information about the business at that pin's location. With onTap(), you can
do much the same in Android.

The onTap() method for Itemizedoverlay receives the index of the
overlayItem that was clicked. It is up to you to do something worthwhile
with this event.

In the case of sitesoverlay, as shown above, onTap() looks like this:

@Override
protected boolean onTap(int i) {
Toast.makeText (NooYawk.this,
items.get(i).getSnippet(),
Toast.LENGTH_SHORT) .show();

return(true);

}

Here, we just toss up a short Toast with the "snippet” from the overlayItem,
returning true to indicate we handled the tap.

My, Myself, and MyLocationOverlay

Android has a built-in overlay to handle two common scenarios:
1. Showing where you are on the map, based on GPS or other location-
providing logic

2. Showing where you are pointed, based on the built-in compass
sensor, where available

a77

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Mapping with MapView and MapActivity

All you need to do is create a MyLocationOverlay instance, add it to your
Mapview's list of overlays, and enable and disable the desired features at

appropriate times.

The "at appropriate times" notion is for maximizing battery life. There is no
sense in updating locations or directions when the activity is paused, so it is
recommended that you enable these features in onResume() and disable

them in onPause().

For example, Nooyawk will display a compass rose using MyLocationOverlay.
To do this, we first need to create the overlay and add it to the list of

overlays:

me=new MyLocationOverlay(this, map);
map.getOverlays().add(me);

Then, we enable and disable the compass rose as appropriate:

@Override
public void onResume() {
super.onResume();

me .enableCompass();

¥

@Override

public void onPause() {
super.onPause();

me.disableCompass();

}

This gives us a compass rose while the activity is on-screen:

478

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Mapping with MapView and MapActivity

=) 11:51 Am

fempeosg
L%

h Ave
M :naw [| Q \D

Q,ﬁn Q. g,

Figure 132. The NooYawk map, showmg a compass rose and two Overlayltems

Rugged Terrain

Just as the Google Maps you use on your full-size computer can display
satellite imagery, so too can Android maps.

MapView offers togglesatellite(), which, as the name suggests, toggles on
and off this perspective on the area being viewed. You can have the user
trigger these via an options menu or, in the case of NooYawk, via keypresses:

@Override
public boolean onKeyDown(int keyCode, KeyEvent event) {

if (keyCode == KeyEvent.KEYCODE_S) {
map.setSatellite(!map.isSatellite());
return(true);

¥

else if (keyCode == KeyEvent.KEYCODE_Z) {
map.displayZoomControls (true);
return(true);

}

479

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Mapping with MapView and MapActivity

return(super.onKeyDown (keyCode, event));

}

So, for example, here is NooYawk showing a satellite view, courtesy of
pressing the s key:

: a7/ e
Figure 133. The NooYawk map, showing a compass rose and two Overlayltems,
overlaid on the satellite view

480

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 36

Handling Telephone Calls

Many, if not most, Android devices will be phones. As such, not only will
users be expecting to place and receive calls using Android, but you will
have the opportunity to help them place calls, if you wish.

Why might you want to?

Maybe you are writing an Android interface to a sales management
application (a la Salesforce.com) and you want to offer users the
ability to call prospects with a single button click, and without them
having to keep those contacts both in your application and in the
phone's contacts application

Maybe you are writing a social networking application, and the
roster of phone numbers that you can access shifts constantly, so
rather than try to "sync" the social network contacts with the
phone's contact database, you let people place calls directly from
your application

Maybe you are creating an alternative interface to the existing
contacts system, perhaps for users with reduced motor control (e.g.,
the elderly), sporting big buttons and the like to make it easier for
them to place calls

Whatever the reason, Android has the means to let you manipulate the
phone just like any other piece of the Android system.

481

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Telephone Calls

Report To The Manager

To get at much of the phone API, you use the TelephonyManager. That class
lets you do things like:

« Determine if the phone is in use via getCallState(), with return
values of cALL_STATE_IDLE (phone not in use), CALL_STATE_RINGING
(call requested but still being connected), and CALL_STATE_OFFHOOK
(call in progress)

« Find out the SIM ID (IMSI) via getSubscriberId()

+ Find out the phone type (e.g., GSM) via getPhoneType() or find out
the data connection type (e.g., GPRS, EDGE) via getNetworkType()

You Make the Call!

You can also initiate a call from your application, such as from a phone
number you obtained through your own Web service. To do this, simply
craft an ACTION_DIAL Intent with a Uri of the form tel:NNNNN (where NNNNN is
the phone number to dial) and use that Intent with startActivity(). This
will not actually dial the phone; rather, it activates the dialer activity, from
which the user can then press a button to place the call.

For example, let's look at the Phone/Dialer sample application. Here's the
crude-but-effective layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical”
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<LinearLayout
android:orientation="horizontal"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
>
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Number to dial:"
/>

482

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Telephone Calls

<EditText android:id="@+id/number"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:cursorVisible="true"
android:editable="true"
android:singlelLine="true"
/>
</LinearLayout>
<Button android:id="@+id/dial"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_weight="1"
android:text="Dial It!"
android:onClick="dial"
/>
</LinearLayout>

We have a labeled field for typing in a phone number, plus a button for
dialing said number.

The Java code simply launches the dialer using the phone number from the
field:

package com.commonsware.android.dialer;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;

import android.os.Bundle;
import android.view.View;
import android.widget.EditText;

public class DialerDemo extends Activity {
@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

}

public void dial(View v) {
EditText number=(EditText)findViewById(R.id.number);
String toDial="tel:"+number.getText().toString();

startActivity(new Intent(Intent.ACTION_DIAL, Uri.parse(toDial)));
}

}

The activity's own Ul is not that impressive:

483

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Telephone Calls

Ml @ 7:32aPm

DialerDemo

Dial It!

]
Figure 134. The DialerDemo sample application, as initially launched

However, the dialer you get from clicking the dial button is better, showing
you the number you are about to dial:

Bl @ 7:34PMm

Contacts Favorites

@ 1-212-555-1212 |+

2 3

Figure 135. The Android Dialer activity, as launched from DialerDemo

484

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Telephone Calls

No, Really, You Make the Call!

The good news is that AcTIoN_DIAL works without any special permissions.
The bad news is that it only takes the user to the Dialer - the user still has
to take action (pressing the green call button) to actually place the phone
call.

An alternative approach is to use ACTION_CALL instead of ACTION_DIAL. Calling
startActivity() on an ACTION_CALL Intent will immediately place the phone
call, without any other UI steps required. However, you need the CALL_PHONE
permission in order to use ACTION_CALL.

485

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 37
More Development Tools

The Android SDK is more than a library of Java classes and API calls. It also
includes a number of tools to assist in application development. Eclipse, of
course, tends to dominate the discussion. However, that is not the only tool
at your disposal, so, let's take a quick tour of what else is available to you.

Hierarchy Viewer: How Deep Is Your Code?

Android comes with a Hierarchy Viewer tool, designed to help you visualize
your layouts as they are seen in a running activity in a running emulator.
So, for example, you can determine how much space a certain widget is
taking up, or try to find where a widget is hiding that does not appear on
the screen.

To use the Hierarchy Viewer, you first need to fire up your emulator, install
your application, launch your activity, and navigate to the spot you wish to
examine. Note that you cannot use Hierarchy Viewer with a production
Android device.

You can launch the Hierarchy Viewer via the hierarchyviewer program,
found in the tools/ directory in your Android SDK installation, or from
inside of Eclipse:

487

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Development Tools

File Devices Help
& Refresh

~ @ emulator-5554
Keyguard
StatusBar
StatusBarExpanded
TrackingView
com.commonsware.android.readwrite/com.commonsware.android.readwrite.ReadWriteFileDemo
com.android.launcher/com.android.launcher2.Launcher
com.android.internal.service.wallpaper.imageWallpaper

Figure 136. Hierarchy Viewer main window

The roots of the table show the emulator instances presently running on
your development machine. The leaves represent applications running on
that particular emulator. Your activity will be identified by application
package and class (e.g., com.commonsware.android.files/...).

Where things get interesting, though, is when you choose a window and
click Load View Hierarchy. After a few seconds, the details spring into, er,
view:

488

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Development Tools

File Treeview Help

H save as PNG B capture Layers i} Load View Hierarchy

[show Extras # Load All Views

E|| == Filter by class orid: 20% [< | »| 200%
Figure 137. Hierarchy Viewer Layout View

The main area of the Layout View shows a tree of the various widgets and
stuff that make up your activity, starting from the overall system window
and driving down into the individual UI widgets that users are supposed to
interact with. This includes both widgets and containers defined by your
application and others that are supplied by the system, including the title
bar.

Clicking on one of the views adds more information to this perspective:

489

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Development Tools

3 Applcations Places_system ©) L o B B an>won 37 ®) ERa - I YR

[Dalvik Debug Monitor
s

SnTracker | sysinfo | Emulator control | Event Log

© Load Allviews

o000

o(=)e
L
D200

il Lo ls o [Jo sl

[l e oo | o
——rE

28): Gtk-WARNI

28) : Gk-wARNTY
ss: ELFCLASS64

Ln: 1 Col: 1 25/12/2010 17:08.17

§ 5554:2.3WVGABOD

Figure 138. Hierarchy Viewer View pro‘;erties

Now, in the right region of the Viewer, we see properties of the selected
widget or container, plus timing details for how long it took to render that
container and its children.

Also, the widget is highlighted in red in the wireframe of the activity,
shown beneath the properties (by default, views are shown as white
outlines on a black background). This can help you ensure you have
selected the right widget, if, say, you have several buttons and cannot
readily tell from the tree what is what.

You can also:

+ Save the tree diagram as a PNG file

« Save the Ul as a Photoshop PSD file, with different layers for the
different widgets and containers

« Force the UI to repaint in the emulator or re-load the hierarchy, in
case you have made changes to a database or to the app's contents
and need a fresh diagram

490

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Development Tools

Back on the main screen, instead of clicking Load View Hierarchy, you
could have clicked Inspect Screenshot. This puts the Viewer in a whole new
perspective, called the Pixel Perfect View:

Eile PixelPerfect Help

[J &) Auto Refresh

-3} Refresh Tree ¥ Load Overlay

H save as PNG || 2 Refresh Screenshot H

< @ com.android.internal.policy.impL.P|
~ @@ android.widget.LinearLayout
~ @8 android.widget.FrameLayout,
android.widget.TextView
~ @8 android.widget.FramelLayout,
android.widget.EditText

[L1 100%
Refresh Rate: 1s (<] [E00] [>] 40s [~]
a [>] Zoom: 2x (<] | Blaax [] | B

Figure 139. Hierarchy Viewer Pixel Perfect View

On the left, you see a tree representing the widgets and other views in your
activity. In the middle, you see a zoomed view of your activity, shown at
normal size on the right.

The crosshairs overlaying the activity show the position being zoomed
upon — just click on a new area to change where what you are seeing.
There is a slider to control the level of zoom. Clicking on a pixel also
indicates the position and color of that pixel.

If you toggle the Auto Refresh checkbox in the toolbar, the Viewer will poll
and reload the UI from your activity periodically, with the frequency
controlled by another slider.

491

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Development Tools

DDMS: Under Android's Hood

Another tool in the Android developer's arsenal is the Dalvik Debug
Monitor Service (DDMS). This is a "Swiss army knife", allowing you to do
everything from browse log files, update the GPS location provided by
emulator, simulate incoming calls and messages, and browse the on-
emulator storage to push and pull files.

Eventually, this section will contain a complete overview of DDMS.
However, DDMS has a wide range of uses, so this section will gradually
expand over time to try to cover them all.

To launch DDMS, run the ddms program inside the tools/ directory in your
Android SDK distribution, or open the DDMS perspective in Eclipse. It will
initially display just a tree of emulators and running programs on the left:

492

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Development Tools

File Edit Actions Device Help
% 6 o ﬂ Info |Thread5 l WM Heap l Allocation Tracker l Sysinfo I»
= DDM-aware? -
Name =i L
- App description: -
< B emulator-555¢ Online 1.0
- WM version: -
systermn_prc 48 E:Y 8600
Process ID: -
com.androi 83 kY 8601
android.pro 89 E:S 8602
com.google 110 % 8603
com.androi 125 % 8604
com.androi 134 % 8605 M
android.pro 142 % 8606
com.comm 166 % 2607 =
+ & @00 ® B R
Log
Time pid | tag Message
(<] [v]
Filter: [l

Figure 140. DDMS initial view

Clicking on an emulator allows you to browse the event log on the bottom
and manipulate the emulator via the tabs on the right:

493

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Development Tools

|
File Edit Actions

Device

Pizihylle Bizieiije)yule 0

Help

4| Alocation Tracker | sysinfo || Emulstor Con:

09-28 18:43:15. D
09-28 18:43:15. D

Telephony Status
Name
. Voice: Speed: |Full
< B emulator-555¢ Online 1.0 - P --
oyamrc 45 B oo oata: [reme =] tatncy: [[
. Rl L
com.androi 83 % 8601 Telephany Actions
’ <
android.pro 89 35 8602 el G I]
com.google 110 % 8603
com.androi 125 % 8604
com.androi 134 % 8605 M
android.pro 142 % 8606
com.comm 166 % 2607 = [~
+ ©0000 & H
Log
Time pid | tag Message =

a3
a3

PackageN Activities: com.commonsware.android fancyTabDemo

PackageM Scanning package com.commonsware.android fancy

Logging

00-28 12:43:15, | 48 PackageN /datafapp/vmdl13291.tmp changed; unpacking
09-28 18:43:15. D 27 installd Dexinv, --- BEGIN /datafappivmdl13291.tmp' ---
N9-78 18:43:15. N 552 dalvikwm DexOnt: lnad 49ms. verifv 139ms. ont ?ms %
D}
Filter: l
Figure 141. DDMS, with emulator selected

Rather than use adb logcat, DDMS lets you view your logging information
in a scrollable table. Just highlight the emulator or device you want to
monitor, and the bottom half of the screen shows the logs.

In addition, you can:

- Filter the Log tab by any of the five logging levels, shown as the V
through E toolbar buttons.

« Create a custom filter, so you can view only those tagged with your
application's tag, by pressing the + toolbar button and completing
the form (shown below). The name you enter in the form will be

494

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Development Tools

used as the name of another logging output tab in the bottom
portion of the DDMS main window.

« Save the log information to a text file for later perusal, or for

searching.
f Loje) Fiiesly =)
Filter Name: [|]
by Log Tag: | |
by pid: | |
by Log level: |¢none:» E]

Figure 142. DDMS logging filter

File Push and Pull

While you can use adb pull and adb push to get files to and from an
emulator or device, DDMS lets you do that visually. Just highlight the
emulator or device you wish to work with, then choose Device|File
Explorer... from the main menu. That will bring up your typical directory
browser:

495

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Development Tools

= (=)
Name Size| Date Time Permission Info
~ @ data 2008-09-22 16:44 drwxrwx--x
b @@ anr 2008-10-28 20:03 drwsxrwxrwx
b @9 app 2008-09-22 16:44 drwxrwx--x
b @B app-private 2008-10-28 20:02 drwxrwx--x
b @8 dalvik-cache 2008-10-28 20:02 drwxrwx--x
< @8 data 2008-10-28 20:02 drwxrwx--x =
> @8 com.android.alarmclock 2008-10-28 20:03 drwxr-xr-x
P @8 com.android.browser 2008-10-28 20:03 drwxr-xr-x
> @8 com.android.calculatorz 2008-10-28 20:03 drwxr-xr-x
> @@ com.android.camera 2008-10-28 20:03 drwxr-xr-x
I @@ com.android.contacts 2008-10-28 20:03 drwxr-xr-x
b @8 com.android.development 2008-10-28 20:03 drwr-xr-x
P @8 com.android fallback 2008-10-28 20:03 drwxr-xr-x
P @8 com.andreid.googlesearch 2008-10-28 20:03 drwxrxr-x
P @8 com.android.htmlviewer 2008-10-28 20:03 drwxr-xr-x
P @8 com.android.launcher 2008-10-28 20:03 drwxr-xr-x
I @@ com.android.mms 2008-10-28 20:03 drwxr-xr-x
b @@ carm.android music 2008-10-78 20:03 druser-xr-x | =)
3

Figure 143. DDMS File Explorer

Just browse to the file you want and click either the pull (left-most) or push
(middle) toolbar button to transfer the file to/from your development
machine. Or, click the delete (right-most) toolbar button to delete the file.

There are a few caveats to this:

« You cannot create directories through this tool. You will either need
to use adb shell or create them from within your application.

« While you can putter through most of the files on an emulator, you
can access very little outside of /sdcard on an actual device, due to
Android security restrictions.

Screenshots

To take a screenshot of the Android emulator or device, simply press
<Ctrl>-<S> or choose Device| Screen capture... from the main menu. This
will bring up a dialog box containing an image of the current screen:

496

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Development Tools

‘Refresh H Rotate || Save || Copy H Done ‘

Captured image:

TMl & 6:00 Pm

IntentTabDemo

Android

€@ ComMMONSWARE

Three Android
Books, One Low
Price.

Fresh

T o e The By Cosder's Gulle t- titles
N + Android
’:ﬂ‘é‘[;.“;f Android Programming from

Development Development Tutorials the
=1 et

Figure 144. DDMS screen capture

From here, you can click [Save] to save the image as a PNG file somewhere
on your development machine, [Refresh] to update the image based on the
current state of the emulator or device, or [Done] to close the dialog.

Location Updates

To use DDMS to supply location updates to your application, the first thing
you must do is have your application use the gps LocationProvider, as that is
the one that DDMS is set to update.

Then, click on the Emulator Control tab and scroll down to the Location
Controls section. Here, you will find a smaller tabbed pane with three
options for specifying locations: Manual, GPX, and KML:

497

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Development Tools

Pizihylle Bizieiije)yule 0

File Edit Actions Device Help

‘I Allocation Tracker l Sysinfo |

ulator Cont

Dh

Location Controls
Name

- Manual | GPX | KML
< B emulator-555¢ Online 1.0

8600 (@ Decimal

systermn_prc 48
8601 () Sexagesimal

8602 Longitude |-122.084095
8603 Latitude |37.422006

com.androi 83
android.pro 89
com.google 110

ot b b b g e e

com.androi 125 8604
com.androi 134 8605] =
android.pro 142 8606
com.comm 166 2607 = [~
+ ®@eOo@® 8 H
Log
Time pid | tag Message =

09-28 18:43:15. D 48 PackageN Activities: com.commonsware.android fancy.TabDemo
09-28 18:43:15. D 48 PackageM Scanning package com.commonsware.android.fancy
00-28 12:43:15, | 48 PackageN /datafapp/vmdl13291.tmp changed; unpacking

09-28 18:43:15. D 27 installd Dexinv, --- BEGIN /datafappivmdl13291.tmp' ---

C1|

N9-78 18:43:15. N 552 dalvikvm Nex0Ont: lnad 49ms. verifv 130ms. nnt ?ms

[

Filter: l

Figure 145. DDMS location controls
The Manual tab is fairly self-explanatory: provide a latitude and longitude

and click the Send button to submit that location to the emulator. The
emulator, in turn will notify any location listeners of the new position.

Discussion of the GPX and KML options is reserved for a future edition of
this book.

Placing Calls and Messages

If you want to simulate incoming calls or SMS messages to the Android
emulator, DDMS can handle that as well.

498

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Development Tools

On the Emulator Control tab, above the Location Controls group, is the
Telephony Actions group:

File Edit Actions Device Help
Info Threads VM Heap Allocation Tracker Sysinfo Emulator Control | Event Log
Telephony Status =
Name .
o e lemulatorsasd oy || Voice: | home < | speed: | Full o]
system_process 61 Data: | home < | Latency: | None ¢ \
com.android.inputmethod.latin 118 .
~ Telephony Actions
com.android.phone 122 i
com.android.launcher 129 Incoming number: [17035551212]
com.android.systemui 126 @ Voice
com.google.process.gapps 198 O sSMs
android.process.media 235
com.android.quicksearchbox 334
com.commonsware.android.readwrite 363
|call| | Hang up | i
Location Controls
Manual | GPX KML
Decimal
O Sexagesimal
Longitude |-122.084095
a) grtuce [122.084995 =
* RO0COE & H
Log
Time pid tag Message
12-28 15:20:45.768 I3 DEBUG debuggerd: Nov 24 2010 13:29:00
12-28 15:20:45.828 D 38 gemud entering main loop
12-28 15:20:45.848 | 30 Netd Netd 1.0 starting
12-28 15:20:45.868 I 29 Vold Vold 2.1 (the revenge) firing up
12-28 15:20:45.868 D 29 Vold USB mass storage supportis not enabled in the kernel
12-28 15:20:45.868 D 29 Vold usb_configuration switch is not enabled in the kernel o
i o) . P P e o)
Filter: [I

Figure 146. DDMS telephony controls

To simulate an incoming call, fill in a phone number, choose the Voice
radio button, and click Call. At that point, the emulator will show the
incoming call, allowing you to accept it (via the green phone button) or
reject it (via the red phone button):

499

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Development Tools

BBl & 11:02am

Incoming call

Jane Doe
Mohile 1- 55-1

Figure 147. Simulated incoming call

To simulate in an incoming text message, fill in a phone number, choose
the SMS radio button, enter a message in the provided text area, and click
Send. The text message will then appear as a notification:

500

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Development Tools

November 30, 2008 gy]| €@ 11:02 AM

Android Clear notifications

Jane Doe
This is a test text message 11:58 AM

Figure 148. Simulated text message

And, of course, you can click on the notification to view the message in the
full-fledged Messaging application:

Tl & 11:02 Am
Jane Doe

Jane Doe: This is a test text message
Sent: 11:58 AM

rOpen keyboard to compose 1
message

Send

Figure 149. Simulated text message, in Messaging application

501

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Development Tools

Memory Management

DDMS also helps you diagnose issues related to how your application
makes use of memory, particularly heap space.

On the "Sysinfo" tab, you can see a pie chart of the overall memory
allocation for the emulator:

File Edit Actions Device Help

Info Threads VM Heap Allocation Tracker | Sysinfo | Emulator Control Event Log

e [Memoryusage || Load From File || update from Device |
system_process 61
com.android.inputmethod.latin 118 ot}
com.android.phone 122 [zygotd
com.android.launcher 129
com.android.systemui 126 android proces
com.google.process.gapps 198 media)
android.process.media 235 [rom-zndraid phonf:
com.android.quicksearchbox 334

com.android.

com.commonsware.android.readwrite 363 nputmethod. it

[com.google.proces!

Sabrs

fcom.android [Fomandroid]
systemui launcher

(] D]
+ o006 B M
[Log]
Time pid tag Message m
12-2815:20:45.768 I3 DEBUG debuggerd: Nov 24 2010 13:29:00
12-28 15:20:45.828 D 38 gemud entering main loop
12-2815:20:45.848 | 30 Netd Netd 1.0 starting
12-28 15:20:45.868 I 29 Vold Vold 2.1 (the revenge) firing up
12-28 15:20:45.868 D 29 Vold USB mass storage supportis not enabled in the kernel
12-28 15:20:45.868 D 29 Vold usb_configuration switchis not enabled in the kernel g

o - - i FE P =

Filter: [I

Figure 150. DDMS memory usage chart

On the "Allocation Tracker” tab, you can record each and every time your
code (or code you call inside of Android) allocates memory. Simply
highlight your application's process in the tree-table, then click the Start
Tracking button on the Allocation Tracker tab. When you want to see what
you have allocated since you clicked Start Tracking, click the Get
Allocations button, which will fill in a table showing each allocation, how
much memory it was, and where in the code the memory was allocated:

502

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Development Tools

File Edit Actions Device Help
& o |g‘ 2 @ Info Threads VM Heap | Allocation Tracker | Sysinfo | Emulator Control | Event Log
Name Cetrm Trarkine | [cor Allmrabinme | .
. ‘StupTra:klng‘ |GetAllu(atlons‘ Filter: l 1 [Inc. trace
< Bl emulator-5554 onlin| — ——— =
system_process 61
com.android.inputmethod.latin 118 Alloc order rAllocationsiz Allocated Class Threadid Allocatedin Allocated in m
com.android.phone 122 >0 1 oatll i .
com.android.launcher 129 491, 300 android.widget.Tes 1 android.widg <init>
] p=s 475! 300 android.widget.Tes 1 android.wide <init>
com.google.process.gapps 198 466 300 android.widget.Tes 1 android.wide <init>
com.commonsware.android.readwrite 363 258 164, byte[] 5 org.apache.l, getThreadstats
490! 160 | android.widget.Poi 1 android.wid¢ <init>
474! 160 android.widaet.Po: 1 android.wide <init>
@ | B
Class Method File Line
android.view.Motionl <init> MotionEvent.java 354
android.view.Motionl obtain MotionEvent.java 368
android.os.MessageC nativePollOnce | MessageQueue.java -2
android.os.Message¢ next MessageQueue.java 119
android.os.Looper loop Looper.java 110
android.app.Activityl main ActivityThread.java 3647 5
a [B] @ I3
+ CeCee B H
[Log]
Time pid tag Message m
12-28 15:120:45.768 I3 DEBUG debuggerd: Nov 24 2010 13:29:00
12-28 15:20:45.828 D 38 gemud entering main loop
12-2815:120:45.848 | 30 Netd Netd 1.0 starting
12-28 15:20:45.868 I 29 vold Vold 2.1 (the revenge) firing up
12-28 15:20:45.868 D 29 Vvold USB mass storage supportis not enabled in the kernel
12-28 15:20:45.868 D 29 Vvold usb_configuration switch is not enabled in the kernel &
P — ..) . P P P, 5
Filter: [I

Figure 151. DDMS allocation tracker

And, you can even dump the entire heap for your application via the Dump
HPROF option, available via a toolbar button (looks like a half-empty can
with a downward-pointing arrow to its right). The resulting HPROF file can
be used with MAT, an add-in for Eclipse, to see what objects are still on the
heap and who is causing them to stick around.

Before dumping the HPROF file, you may wish to force a garbage collection
run on your process — this can be done by clicking the toolbar button that
looks like a classic metal garbage can.

adb: Like DDMS, With More Typing

The Android Debug Bridge, or adb utility, serves two roles:

503

Subscribe to updates at http://commonsware.com

Special Creative Commons BY-NC-SA 3.0 License Edition

More Development Tools

Behind the scenes, it serves as a bridge between your
emulators/devices and the rest of the tools. For example, ADT,
Hierarchy Viewer, and DDMS all communicate with your emulator
via the adb bridge. This bridge comes in the form of a daemon
process, spawned the first time you try using any of those tools
since your last reboot.

It offers command-line equivalents for many features of the other
tools, notably DDMS.

Some of the things you can do with adb include:

Start (adb start-ser‘ver‘) or stop (adb kill-ser‘ver‘) the
aforementioned daemon process

List all of the recognized Android devices and emulators presently
visible (adb devices)

Get access to a Linux shell inside your device or emulator (adb
shell)

Install or uninstall Android applications on your device or emulator
(adb install)

Copy files to (adb push) or from (adb pull) the emulator, much like
DDMS's File Explorer

Examine LogCat (adb logcat)

504

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PART VI - The Ever-Evolving Android

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 38
Handling Multiple Screen Sizes

For the first year or so since Android 1.0 was released, all production
Android devices had the same screen resolution (HVGA, 320x480) and size
(around 3.5" / gcm). Starting in the fall of 2009, though, devices started
arriving with widely disparate screen sizes and resolutions, from tiny QVGA
(240x320) screens to much larger WVGA (480x800) screens. And, in the fall
of 2010, tablets and Google TV devices appeared, offering yet more screen
sizes.

Of course, users will be expecting your application to be functional on all of
these, and perhaps take advantage of larger screen sizes to add greater
value. To that end, Android 1.6 added new capabilities to help better
support these differing screen sizes and resolutions, and these capabilities
have been extended in subsequent Android releases.

The Android documentation has extensive coverage of the mechanics of
handling multiple screen sizes. You are encouraged to read that page along
with this chapter, to get the best understanding of how best to cope with,
and perhaps take advantage of, multiple screen sizes. After a number of
sections discussing the options and theory, the chapter wraps with an in-
depth look at making a fairly simple application handle multiple screen
sizes well.

507

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://d.android.com/guide/practices/screens_support.html

Handling Multiple Screen Sizes

Taking the Default

Let's suppose, though, that you start off by totally ignoring the issue of
screen sizes and resolutions. What happens?

If your application is compiled for Android 1.5 or lower, Android will
assume your application was designed to look good on the classic screen
size and resolution. Android will then automatically do the following:

« If your application is installed on a device with a larger screen,
Android will run your application in "compatibility mode", scaling
everything based on the actual screen size. So, suppose you have a
24px square PNG file, and Android install and runs your application
on a device with the standard physical size but a WVGA resolution
(a so-called "high-density" screen). Android might scale your PNG
file to be 36px when it displays it, so it will take up the same visible
space on the screen. On the plus side, Android handles this
automatically; on the minus side, bitmap scaling algorithms tend to
make the images a bit fuzzy.

+ Android will block your application from running on a device with a
smaller screen. Hence, QVGA devices, like the HTC Tattoo, will be
unable to get your application, even if it is available on the Android
Market.

As an example of how this affects your app, take a peek at the
Containers/Table sample application as viewed on an HTC Tattoo, with its
QVGA screen:

508

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

e

Figure 152. TableLayout sample in QVGA via compatibility mode

If your application is compiled for Android 1.6 or higher, Android assumes
that you are properly handling all screen sizes, and therefore will not run
your application in "compatibility mode". We will see how to tailor this in a
later section.

Whole in One

The simplest approach to handling multiple screen sizes in Android is to
design your user interfaces such that they automatically scale for the screen
size, without any size-specific code or resources. In other words, "it just
works".

This implies, though, that everything you use in your user interface can be
gracefully scaled by Android and that everything will fit, even on a QVGA
screen.

Here are some tips for achieving this "all in one" solution:

509

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

Don't Think About Positions, Think About Rules

Some developers, perhaps those coming from the "drag-and-drop" school of
UI development, think first and foremost about the positions of widgets.
They think that they want certain widgets to be certain fixed sizes at certain
fixed locations. They get frustrated with Android layout manager
(containers) and may gravitate to the deprecated AbsolutelLayout as a way to
design Uls they way they used to.

That rarely works well even on desktops, as can be seen by applications that
do not handle window resizing very well. Similarly, it will not work on
mobile devices, particularly Android, with its range of screen sizes and
resolutions.

Instead of thinking about positions, think about rules. You need to teach
Android the "business rules" about where widgets should be sized and
placed, with Android then interpreting those rules based upon what the
device's screen actually supports in terms of resolution.

The simplest rules are the fill_parent and wrap_content values for
android:layout_width and android:layout_height. Those do not specify
specific sizes, but rather adapt to the space available.

The richest environment for easily specifying rules is to use RelativeLayout.
While complicated on the surface, RelativeLayout does an excellent job of
letting you control your layout while still adapting it to other screen sizes.
For example, you can:

« Explicitly anchor widgets to the bottom or right side of the screen,
rather than hoping they will wind up there courtesy of some other
layout

+ Control the distances between widgets that are "connected” (e.g., a
label for a field should be to the left of the field) without having to
rely on padding or margins

The greatest control for specifying rules is to create your own layout class.
For example, suppose you are creating a series of applications that

510

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

implement card games. You may want to have a layout class that knows
about playing cards: how they overlap, which are face up versus face down,
how big to be to handle varying number of cards, etc. While you could
achieve the desired look with, say, a RelativeLayout, you may be better
served implementing a PlayingCardLayout or a HandOfCardsLayout oOr
something that is more explicitly tailored for your application.
Unfortunately, creating custom layout classes is under-documented at this
point in time.

Consider Physical Dimensions

Android offers a wide range of available units of measure for dimensions.
The most popular has been the pixel (px), because it is easy to "wrap your
head around" the concept. After all, all Android devices will have screens
with such-and-so number of pixels in each direction.

However, pixels start to become troublesome as screen density changes. As
the number of pixels in a given screen size increases, the pixels effectively
shrink. A 32px icon on a traditional Android device might be finger-friendly,
but on a high-density device (say, WVGA in a mobile phone form factor),
32px may be a bit small for use with a finger.

If you have something intrinsically scalable (e.g., a Button) where you had
been specifying a size in pixels, you might consider switching to using
millimeters (mm) or inches (in) as the unit of measure. 10mm is 16mm regardless
of the screen resolution or the screen size. This way, you can ensure that
your widget is sized to be finger-friendly, regardless of the number of pixels
that might take.

Avoid "Real" Pixels

In some circumstance using millimeters for dimensions will not make
sense. Then, you may wish to consider using other units of measure while
still avoiding "real" pixels.

511

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

Android offers dimensions measured in density-independent pixels (dip).
These map 1:1 to pixels for a 160dpi screen (e.g., a classic HVGA Android
device) and scale from there. For example, on a 240dpi device (e.g., a
phone-sized WVGA device), the ratio is 2:3, so 5edip = 5epx at 160dpi = 75px
at 240dpi. The advantage to the user of going with dip is that the actual size
of the dimension stays the same, so visibly there is no difference between
sedip at 160dpi and sedip at 240dpi.

Android also offers dimensions measured in scaled pixels (sp). Scaled
pixels, in theory, are scaled based on the user's choice of font size
(FONT_SCALE value in System.Settings).

Choose Scalable Drawables

Classic bitmaps - PNG, JPG, GIF - are not intrinsically scalable. If you are
not running in "compatibility mode", Android will not even try to scale
them for you based on screen resolution and size. Whatever size of bitmap
you supply is the size it will be, even if that makes the image too large or
too small on some screens.

One way to address this is to try to avoid static bitmaps, using nine-patch
bitmaps and XML-defined drawables (e.g., GradientDrawable) as
alternatives. A nine-patch bitmap is a PNG file specially encoded to have
rules indicating how that image can be stretched to take up more space.
XML-defined drawables use a quasi-SVG XML language to define shapes,
their strokes and fills, and so on.

Tailor Made, Just For You (And You, And You,
And...)

There will be times, though, when you want to have different looks or
behaviors based upon screen size or density. Android has ways for you to
switch out resources or code blocks based on the environment in which
your application runs. When properly used in combination with the above
techniques, achieving screen size- and density-independence is eminently
possible, at least for devices running Android 1.6 and newer.

512

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

<supports-screens>

The first step to proactively supporting screen sizes is to add the <supports-
screens> element to your AndroidManifest.xml file. This specifies which
screen sizes you explicitly support and which you do not. Those that you do
not will be handled by the automatic "compatibility mode" described
previously.

Here is a manifest containing a <supports-screens> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.eudyou"
android:versionCode="1"
android:versionName="1.0">
<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"
android:anyDensity="true"
/>
<application android:label="@string/app_name"
android:icon="@drawable/cw">
<activity android:name=".EU4You"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

Three of these attributes are almost self-explanatory: android:smallScreens,
android:normalScreens, and android:largeScreens each take a boolean value
indicating if your application explicitly supports those screens (true) or
requires "compatibility mode" assistance (false). Android 2.3 has also
added an android:xlargeScreens for larger tablets and (perhaps) televisions.

The android:anyDensity attribute indicates whether you are taking density
into account in your calculations (true) or not (false). If false, Android will
pretend as though all of your dimensions (e.g., 4px) are for a normal-density
(160dpi) screen. If your application is running on a screen with lower or
higher density, Android will scale your dimensions accordingly. If you

513

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

indicate that android:anyDensity = "true", you are telling Android not to do
that, putting the onus on you to use density-independent units, such as dip,
mm, OT in.

Resources and Resource Sets

The primary way to "toggle" different things based on screen size or density
is to create resource sets. By creating resource sets that are specific to
different device characteristics, you teach Android how to render each, with
Android switching among those sets automatically.

Default Scaling

By default, Android will scale all drawable resources. Those that are
intrinsically scalable, as described in the previous section, will scale nicely.
Ordinary bitmaps will be scaled just using a normal scaling algorithm,
which may or may not give you great results. It also may slow things down a
bit. If you wish to avoid this, you will need to set up separate resource sets
containing your non-scalable bitmaps.

Density-Based Sets

If you wish to have different layouts, dimensions, or the like based upon
different screen densities, you can use the -1dpi, -mdpi, -hdpi, and -xhdpi
resource set labels. For example, res/values-hdpi/dimens.xml would contain
dimensions used in high-density devices.

Note that there is a bug in Android 1.5 (API level 3) when it comes to
working with these screen density resource sets. Even though all Android
1.5 devices are medium density, Android 1.5 might pick one of the other
densities by accident. So long as you are aiming to support Android 1.5 and
use screen density resource sets, you will need to clone the contents of your
-mdpi set, with the clone named -mdpi-v3. This "version-based set" is
described in greater detail a bit later in this section.

514

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

Size-Based Sets

Similarly, if you wish to have different resource sets based upon screen size,
Android offers -small, -normal, and -large resource set labels. Creating
res/layout-large-land/ would indicate layouts to use on large screens (e.g.,
WVGA) in landscape orientation.

Version-Based Sets

There may be times when earlier versions of Android get confused by newer
resource set labels. To help with that, you can include a version label to
your resource set, of the form -vN, where N is an API level. Hence,
res/drawable-large-v4/ indicates these drawables should be used on large
screens at API level 4 (Android 1.6) and newer.

So, if you find that Android 1.5 emulators or devices are grabbing the wrong
resource sets, consider adding -v4 to their resource set names to filter them
out.

Finding Your Size

If you need to take different actions in your Java code based on screen size
or density, you have a few options.

If there is something distinctive in your resource sets, you can "sniff" on
that and branch accordingly in your code. For example, as will be seen in
the code sample at the end of this chapter, you can have extra widgets in
some layouts (e.g., res/layout-large/main.xml) — simply seeing if an extra
widget exists will tell you if you are running a "large" screen or not.

You can also find out your screen size class via a Configuration object,
typically obtained by an Activity via getResources().getConfiguration(). A
Configuration object has a public field named screenLayout that is a bitmask
indicating the type of screen the application is running on. You can test to
see if your screen is small, normal, or large, or if it is "long" or not (where

515

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

"long" indicates a 16:9 or similar aspect ratio, compared to 4:3). For
example, here we test to see if we are running on a large screen:

if (getResources().getConfiguration().screenLayout
& Configuration.SCREENLAYOUT_SIZE_LARGE)
==Configuration.SCREENLAYOUT_SIZE_LARGE) {
// yes, we are large
}
else {
// no, we are not

}

Similarly, you can find out your screen density, or the exact number of
pixels in your screen size, using the DisplayMetrics class.

Ain't Nothing Like the Real Thing

The Android emulators will help you test your application on different
screen sizes. However, that will only get you so far, because mobile device
LCDs have different characteristics than your desktop or notebook, such as:

« Mobile device LCDs may have a much higher density than does
your development machine

« A mouse allows for much more precise "touchscreen” input than
does an actual fingertip

Where possible, you are going to need to either use the emulator in new

and exciting ways, or try to get your hands on actual devices with
alternative screen resolutions.

Density Differs

The Motorola DROID has a 240dpi, 3.7-inch, 480x854 pixel screen.

To emulate a DROID screen, based on pixel count, takes up one third of a
19" 1280x1024 LCD monitor, because the LCD monitor's density is much
lower than that of the DROID - around 96dpi. So, when you fire up your

516

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

Android emulator for an FWVGA display like that of the DROID, you will
get a massive emulator window.

This is still perfectly fine for determining the overall look of your
application in an FWVGA environment. Regardless of density, widgets will
still align the same, sizes will have the same relationships (e.g., Widget A
might be twice as tall as Widget B, and that will be true regardless of
density), and so on.

However:

« Things that might appear to be a suitable size when viewed on a 19"
LCD may be entirely too small on a mobile device screen of the
same resolution

« Things that you can easily click upon in the emulator with a mouse
may be much too small to pick out on a physically smaller and
denser screen when used with a finger

Adjusting the Density

By default, the emulator will keep the pixel count accurate at the expense of
density, which is why you get the really big emulator window. You do have
an option, though, of having the emulator keep the density accurate at the
expense of pixel count.

The easiest way to do this is to use the new Android AVD Manager,
introduced in Android 1.6. The Android 2.0 edition of this tool has a
"Launch Options" dialog that pops up when you go to start an emulator
instance via the Start... button:

517

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

skin: WWGAB00 (480x800)
Density: High (240)

[« Scale display to real size

Screen Size (in): |L|

Monitor dpi: |86 | ?

Wipe user data

N

Launch Cancel

Figure 153. The Launch Options dialog

By default, the "Scale display to real size" checkbox is unchecked, and
Android will open the emulator window normally. You can, however, check
that checkbox and then provide two bits of scaling information:

1. The screen size of the device you wish to emulate, in inches (e.g., 3.7
inches for the Motorola DROID)

2. The dpi of your monitor - click the ? button to bring up a calculator
to help you determine what your dpi value is

This will give you an emulator window that more accurately depicts what
your user interface will look like on a physical device, at least in terms of
sizes. However, since the emulator is using far fewer pixels than will a
device, fonts may be difficult to read, images may be blocky, etc.

Accessing Actual Devices

Of course, the best possible way to see what your application looks like on
different devices is to actually test it on different devices. You do not
necessarily have to get every Android device ever made, but you may want
to have access to ones with distinctive hardware that impacts your
application...and screen size impacts just about everyone.

518

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

You can virtually test devices using services like DeviceAnywhere. This is an
improvement over the emulator, but it is not free and certainly cannot test
everything (e.g., changes in location).

You can purchase devices, perhaps through back channels like eBay.
Unlocked GSM phones can readily share a SIM when you need to test
telephony operations or go SIM-less otherwise.

If you live in or near a city, it may be you can set up some form of user
group and use that group for testing applications on your collective set of
hardware.

You can also always take the user-testing route, releasing your application
as a free beta or something, then letting user feedback guide adjustments.
You may wish to distribute this outside of the Android Market, lest beta
test feedback harm your application's market rating.

Some device manufacturers, such as SonyEricsson, are starting to offer
device loaner programs.

Ruthlessly Exploiting the Situation

So far, we have focused on how you can ensure your layouts look decent on
other screen sizes. And, for smaller screens than the norm (e.g., QVGA),
that is perhaps all you can ask for.

Once we get into larger screens, though, another possibility emerges: using
different layouts designed to take advantage of the extra screen space. This
is particularly useful when the physical screen size is larger (e.g., a 5" LCD
like on the Dell Streak Android tablet, a 7" LCD like on the Samsung Galaxy
Tab), rather than simply having more pixels in the same physical space.

Here are some ways you might take advantage of additional space:

519

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

https://www.viennachannels.com/register.php?P=se1
http://www.deviceanywhere.com/

Handling Multiple Screen Sizes

Replace Menus with Buttons

An option menu selection requires two physical actions: press the MENU
button, then tap on the appropriate menu choice. A context menu selection
requires two physical actions as well: long-tap on the widget, then tap on
the menu choice. Context menus have the additional problem of being
effectively invisible — users may not realize that your Listview, for example,
has a context menu.

You might consider augmenting your user interface to provide direct on-
screen ways of accomplishing things that might otherwise be hidden away
on a menu. Not only does this reduce the number of steps a user needs to
take to do things, but it makes those options more obvious.

For example, let us suppose you are creating a media player application,
and you want to offer manual playlist management. You have an activity
that displays the songs in a playlist in a Listview. On an option menu, you
have an "add" choice, to add a new song from the ones on the device to the
playlist. On a context menu on the Listview, you have a "remove" choice,
plus "move up" and "move down" choices to reorder the songs in the list.
On a large screen, though, you might consider adding four ImageButton
widgets to your UI for these four options, with the three from the context
menu enabled only when a row is selected by the D-pad or trackball. On
regular or small screens, you would stick with just using the menus.

Replace Tabs with a Simple Activity

You may have introduced a TabHost into your Ul to allow you to display
more widgets in the available screen space. So long as the widget space you
"save" by moving them to a separate tab is more than the space taken up by
the tabs themselves, you win. However, having multiple tabs means more
user steps to navigate your UI, particularly if they need to flip back and
forth between tabs frequently.

If you only have two tabs, consider changing your Ul to offer a large-screen
layout that removes the tabs and puts all the widgets on one screen. This

520

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

puts everything in front of the user, without having to switch tabs all the
time.

If you have three or more tabs, you probably will lack screen space to put all
those tabs' contents on one activity. However, you might consider going
half-and-half: have popular widgets be on the activity all of the time,
leaving your TabHost to handle the rest on (roughly) half of the screen.

Consolidate Multiple Activities

The most powerful technique is to use a larger screen to get rid of activity
transitions outright. For example, if you have a ListActivity where clicking
on an item brings up that item's details in a separate activity, consider
supporting a large-screen layout where the details are on the same activity
as the Listview (e.g., Listview on the left, details on the right, in a landscape
layout). This eliminates the user having to constantly press the BACK
button to leave one set of details before viewing another.

We will see this technique applied in the sample code presented in the
following section.

Example: EU4You

To examine how to use some of these techniques, let us look at the
ScreenSizes/EU4You sample application. This application has one activity
(Euayou) that contains a Listview with the roster of European Union
members and their respective flags. Clicking on one of the countries brings
up the mobile Wikipedia page for that country.

In the source code to this book, you will find four versions of this
application, as we start with an application that is ignorant of screen size
and slowly add in more screen-related features.

521

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.wpclipart.com/flags/Countries/index.html

Handling Multiple Screen Sizes

The First Cut

First, here is our AndroidManifest.xml file, which looks distinctly like one
shown earlier in this chapter:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.eudyou"
android:versionCode="1"
android:versionName="1.0">
<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"
android:anyDensity="true"
/>
<application android:label="@string/app_name"
android:icon="@drawable/cw">
<activity android:name=".EU4You"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

You will note we have the <supports-screens> element, saying that we
indeed do support all screen sizes. This blocks most of the automatic

scaling that Android would do if we said we did not support certain screen
sizes.

Our main layout is size-independent, as it is just a full-screen Listview:

<?xml version="1.0" encoding="utf-8"?>

<ListView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@android:id/1list"
android:layout_width="fill_parent"
android:layout_height="fill parent"

/>

Our row, though, will eventually need some tweaking:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

522

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

/>

/>

android:
android:
android:
android:

<TextView
android:
android:
android:
android:

android:layout_width="fill_parent"
android:layout_height="wrap_content”
android:padding="2dip"
android:minHeight="?android:attr/listPreferredItemHeight"

<ImageView android:id="@+id/flag"
layout_width="wrap_content"
layout_height="wrap_content"
layout_gravity="center_vertical|left"
paddingRight="4px"

</LinearLayout>

android:id="@+id/name"
layout_width="wrap_content”
layout_height="wrap_content"
layout_gravity="center_vertical|right"
textSize="20px"

For example, right now, our font size is set to be 20px, which will not vary
by screen size or density.

Our EU4You activity is a bit verbose, mostly because there are a lot of EU
members, and we have to have the smarts to display the flag and the text in
the row:

import
import
import
import
import
import
import
import
import
import
import

public

package com.commonsware.android.eudyou;

android.
android.
android.
android.
android.
android.
android.
android.
android.
android.
java.util.Arraylist;

class EU4You extends ListActivity {
static private ArrayList<Country> EU=new ArrayList<Country>();

static {
EU.add(new Country(R.string.austria, R.drawable.austria,

EU.add(new Country(R.string.belgium, R.drawable.belgium,

EU.add(new Country(R.string.bulgaria, R.drawable.bulgaria,

app.ListActivity;
content.Intent;
net.Uri;

os.Bundle;
view.View;
view.ViewGroup;
widget.ArrayAdapter;
widget.ImageView;
widget.ListView;
widget.TextView;

R.string.austria_url));

R.string.belgium_url));

R.string.bulgaria_url));

523

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

EU.add(new Country(R.string.cyprus, R.drawable.cyprus,
R.string.cyprus_url));

EU.add(new Country(R.string.czech_republic,
R.drawable.czech_republic,
R.string.czech_republic_url));

EU.add(new Country(R.string.denmark, R.drawable.denmark,
R.string.denmark_url));

EU.add(new Country(R.string.estonia, R.drawable.estonia,
R.string.estonia_url));

EU.add(new Country(R.string.finland, R.drawable.finland,
R.string.finland_url));

EU.add(new Country(R.string.france, R.drawable.france,
R.string.france_url));

EU.add(new Country(R.string.germany, R.drawable.germany,
R.string.germany_url));

EU.add(new Country(R.string.greece, R.drawable.greece,
R.string.greece_url));

EU.add(new Country(R.string.hungary, R.drawable.hungary,
R.string.hungary_url));

EU.add(new Country(R.string.ireland, R.drawable.ireland,
R.string.ireland_url));

EU.add(new Country(R.string.italy, R.drawable.italy,
R.string.italy url));

EU.add(new Country(R.string.latvia, R.drawable.latvia,
R.string.latvia_url));

EU.add(new Country(R.string.lithuania, R.drawable.lithuania,
R.string.lithuania_url));

EU.add(new Country(R.string.luxembourg, R.drawable.luxembourg,
R.string.luxembourg_url));

EU.add(new Country(R.string.malta, R.drawable.malta,
R.string.malta_url));

EU.add(new Country(R.string.netherlands, R.drawable.netherlands,
R.string.netherlands_url));

EU.add(new Country(R.string.poland, R.drawable.poland,
R.string.poland_url));

EU.add(new Country(R.string.portugal, R.drawable.portugal,
R.string.portugal_url));

EU.add(new Country(R.string.romania, R.drawable.romania,
R.string.romania_url));

EU.add(new Country(R.string.slovakia, R.drawable.slovakia,
R.string.slovakia_url));

EU.add(new Country(R.string.slovenia, R.drawable.slovenia,
R.string.slovenia_url));

EU.add(new Country(R.string.spain, R.drawable.spain,
R.string.spain_url));

EU.add(new Country(R.string.sweden, R.drawable.sweden,
R.string.sweden_url));

EU.add(new Country(R.string.united_kingdom,
R.drawable.united_kingdom,
R.string.united_kingdom_url));

}

@0verride
public void onCreate(Bundle savedInstanceState) {

524

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

setListAdapter(new CountryAdapter());
}

@Override
protected void onListItemClick(ListView 1, View v,
int position, long id) {
startActivity(new Intent(Intent.ACTION_VIEW,
Uri.parse(getString(EU.get(position).url))));
}

static class Country {
int name;
int flag;
int url;

Country(int name, int flag, int url) {
this.name=name;
this.flag=flag;
this.url=url;
}
}

class CountryAdapter extends ArrayAdapter<Country> {
CountryAdapter() {
super(EU4You.this, R.layout.row, R.id.name, EU);
¥

@Override
public View getView(int position, View convertView,
ViewGroup parent) {
CountryWrapper wrapper=null;

if (convertView==null) {
convertView=getLayoutInflater().inflate(R.layout.row, null);
wrapper=new CountryWrapper (convertView);
convertView.setTag(wrapper);

¥

else {
wrapper=(CountryWrapper)convertView.getTag();

¥
wrapper.populateFrom(getItem(position));

return(convertView);
¥
}

class CountryWrapper {
private TextView name=null;
private ImageView flag=null;
private View row=null;

525

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

CountryWrapper (View row) {
this.row=row;

}

TextView getName() {
if (name==null) {
name=(TextView)row.findViewById(R.id.name);

}

return(name);

}

ImageView getFlag() {
if (flag==null) {
flag=(ImageView)row.findViewById(R.id.flag);
¥

return(flag);

void populateFrom(Country nation) {
getName().setText(nation.name);
getFlag().setImageResource(nation.flag);

Here is what the activity looks like in an ordinary HVGA emulator:

8] TN @ s5:05pPMm

| EU4dYou

i GEIrmany

E=creece

i Hungary

Bl reland

I Italy

Figure 154. EU4You, original version, HVGA

526

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

Here is what the activity looks like in a WVGA emulator:

Z Ml @ 5:08 Pm

EGreece

[Hungary

. Ireland

I Italy

(NGUELIE]

I L uxembourg

Figure 155. EU4You, original version, WVGA (800x480 pixels)

And, here is what it looks like in a QVGA screen:

527

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

@l & s:13em

m— Hungary

Bl reland

B italy

— | atvia

=== Lithuania
Figure 156. EU4You, original version, QVGA

Fixing the Fonts

The first problem that should be fixed is the font size. As you can see, with
a fixed 20px size, the font ranges from big to tiny, depending on screen size
and density. For a WVGA screen, the font may be rather difficult to read.

We could put the dimension as a resource (res/values/dimens.xml) and have
different versions of that resource based upon screen size or density.
However, it is simpler to just specify a density-independent size, such as
5mm, as seen in the ScreenSizes/EU4You_2 project:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:padding="2dip"
android:minHeight="?android:attr/listPreferredItemHeight"

<ImageView android:id="@+id/flag"
android:layout_width="wrap_content"
android:layout_height="wrap_content”
android:layout_gravity="center_vertical|left"
android:paddingRight="4px"

/>

<TextView android:id="@+id/name"
android:layout_width="wrap_content"

528

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

android:layout_height="wrap_content”
android:layout_gravity="center_vertical|right"
android:textSize="5mm"
/>
</LinearLayout>

Here is what the new activity looks like in HVGA:

&1} Tl @ 6:03PMm

I Belgium

®*= Bulgaria

Il Cyprus

W Czech Republic

== Denmark

Cetmanina

Figure 157. EU4You, 5mm font version, HVGA

...and WVGA:

529

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

Z Ml @ s:10pm

I Belgium

™= Bulgaria
Bl Cyprus
W (Czech Republic

4= Denmark

= EStONIA

Figure 158. EU4You, 5mm font version, WVGA (800x480 pixels)

....and QVGA:

@l @ 6:01em

EUdYou

mmm Austria
I Belgium

™™ Bulgaria

Bl Cyprus

" Czech Republic

== Denmark

Figure 159. EU4You, 5mm font version, QVGA

530

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

Now our font is a consistent size, and large enough to match the flags.

Fixing the Icons

So, what about those icons? By rights, they should be varying in size as well,
since they are the same for all three emulators.

However, Android automatically scales bitmap resources, even with
<supports-screens> and its attributes set to true. On the plus side, this
means you may not have to do anything with these bitmaps. However, you
are relying upon a device to do the scaling, which definitely costs CPU time
(and, hence battery life). Also, the scaling algorithms that the device uses
may not be optimal, compared to what you can do with graphics tools on
your development machine.

The Screensizes/EU4You_3 project creates res/drawable-ldpi and
res/drawable-hdpi, putting in smaller and larger renditions of the flags,
respectively. This project also renames res/drawable to res/drawable-mdpi.
Android will use the flags for the appropriate screen density, depending on
what the device or emulator needs.

This effect is subtle in this case and will not really show up well in this
book.

Using the Space

While the activity looks fine on WVGA in portrait mode, it really wastes a
lot of space in landscape mode:

531

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

LMl @ 6:36 PMm

EU4You

A (stria

I Belgium

Bulgaria

Cyprus

Figure 160. EU4You, landscape WVGA (800x480 pixels)

We can put that to better use by having the Wikipedia content appear right
on the main activity when in large-screen landscape mode, instead of
having to spawn a separate Browser activity.

To do this, we first must clone the main.xml layout into a res/layout-large-
land rendition that incorporates a Webview widget, as seen in
ScreenSizes/EU4You_4:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent”
>
<ListView
android:id="@android:id/list"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:layout_weight="1"
/>
<WebView
android:id="@+id/browser"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:layout_weight="1"
/>
</LinearLayout>

Then, we need to adjust our activity to look for that webview and use it when
found, defaulting to launching a Browser activity otherwise:

@Override
public void onCreate(Bundle savedInstanceState) {

532

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

browser=(WebView)findViewById(R.id.browser);

setListAdapter(new CountryAdapter());
¥

@Override
protected void onListItemClick(ListView 1, View v,
int position, long id) {
String url=getString(EU.get(position).url);

if (browser==null) {
startActivity(new Intent(Intent.ACTION_VIEW,
Uri.parse(url)));
}
else {
browser.loadUrl(url);
}
¥

This gives us a more space-efficient edition of the activity:

8] A H @ 6:49 PMm
W|Austria ‘ Q
| Text WIKI to 25383 to donate $10 to Wikipedial

I Belgium Austria

This article is about the country. For other uses of terms redirecting
here, see Austria (disambiguation) and Osterreich {disambiguation).

= Bulgaria

Republic of Austria
Republik Osterreich

Bl Cyprus

W Czech Republic

Coat of arms

ge, Land am Strome (German}

== Denmark

Cetmnia

Figure 161. EU4You, landscape WVGA (800x480 pixels), set for normal density,
and showing the embedded WebView

Of course, if the user clicks a link in the Wikipedia page, that will open up
the full Browser, for easier surfing.

533

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

Note that testing this version of the activity, to see this behavior, requires a
bit of extra emulator work. By default, Android sets up WVGA devices as
being high-density, meaning WVGA is not large in terms of resource sets,
but rather normal. You will need to create a different emulator AVD that is
set for normal (medium) density, which will result in a large screen size.

What If It Is Not a Browser?

Of course, EU4You does cheat a bit. The second activity is a Browser (or
Webview in the embedded form), not some activity of your own creation.
Things get slightly more complicated if the second activity is some activity
of yours, with many widgets in a layout, and you want to use it both as an
activity (for smaller screens) and have it embedded in your main activity Ul
(for larger screens).

Here is one pattern to deal with this scenario:

1. Initially develop and test the second activity as an activity

2. Have all of the second activity's lifecycle methods delegate their
logic to an inner class, and move all data members of the activity
that are only needed by the inner class to that inner class, and
ensure that still works

3. Pull the inner class out into a separate public class, and ensure that
still works

4. For your first (or main) activity, create a separate layout for large
screens and use the <include> directive to blend in the contents of
your second activity's layout into the proper spot in the large-screen
first activity's layout

5. In the first activity, if it finds the second activity's layout has been
inflated as part of its own (e.g., by checking for the existence of
some widget via findviewById()), create an instance of the public
class you created in step #3 above and have it deal with all of those
widgets, and adjust your code to reference that class directly rather
than start the second activity as shown in the previous section
above

534

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://android-developers.blogspot.com/2009/02/android-layout-tricks-2-reusing-layouts.html

Handling Multiple Screen Sizes

In short, use a public class and reusable layout to keep your code and
resources in one place, yet use them from both a standalone activity and as
part of a large-screen version of the main activity.

535

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 39

Dealing With Devices

Android is "free as in beer" for device manufacturers, as it is an open source
project. Hence, device manufacturers have carte blanche to do what they
want with Android as they put it on their devices. This means a breadth of
choices for device users, who will be able to have Android devices in all
shapes, sizes, and colors. This also means developers will have some device
differences and idiosyncrasies to take into account.

This chapter will give you some tips and advice for dealing with these
device-specific issues, to go along with the screen size material from the
previous chapter.

This App Contains Explicit...Instructions

Originally, the only Android device was the T-Mobile Gi1. Hence, if you were
writing an Android application, you could assume the existence of a
hardware QWERTY keyboard, a trackball for navigation, and so on. Now,
though, over one hundred other devices exist, many with different
hardware capabilities (e.g., no keyboard).

Ideally, your application can work regardless of the existence of various
types of hardware. Some applications, though, will be unusable without
certain hardware characteristics. For example, a full-screen game may rely
upon a hardware keyboard or trackball to indicate player actions - soft
keyboards and touchscreens may be insufficient.

537

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing With Devices

Fortunately, starting with Android 1.5, you can now add explicit
instructions, telling Android what you need, so your application is not
installed on devices lacking such hardware.

In addition to using the target ID system to indicate what level of device
your project is targeting, you can use a new AndroidManifest.xml element to
specify hardware that is required for your application to run properly. You
can add one or more <uses-configuration> elements inside the <manifest>
element. Each <uses-configuration> element specifies one valid
configuration of hardware that your application will work with. At the
present time, there are five possible hardware requirements you can specify
this way:

+ android:reqFiveWayNav to indicate you need a 5-way navigation
pointing device of some form (e.g, android:reqFiveWayNav = “"true")

+ android:regNavigation to restrict the s5-way navigation pointing
device to a specific type (e.g, android:reqNavigation = "trackball")

+ android:regHardKeyboard to specify if a hardware (physical) keyboard
is required (e.g, android:reqHardKeyboard = "true")

+ android:regKeyboardType, probably used in conjunction with
android:regHardKeyboard, to indicate a specific type of hardware
keyboard that is required (e.g, android:reqkeyboardType = "quwerty")

+ android:reqTouchScreen to indicate what type of touchscreen is
required, if any (e.g, android:reqTouchScreen = "finger")

Starting in Android 1.6, there is a similar manifest element, <uses-feature>,
which is designed to document requirements an application has of other
optional features on Android devices. Specifically, the following attributes
can be placed in a <uses-feature> element:

+ android:glEsVersion indicates that your application requires
OpenGL, where the value of the attribute indicates what level of
OpenGL support (e.g., exeee10002 for OpenGL 1.2 or higher)

« android:name = "android.hardware.camera" indicates that your
application needs a camera, while android:name =

538

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing With Devices

"android.hardware.camera.autofocus" indicates that your application
specifically needs an auto-focus camera

A Guaranteed Market

As mentioned in the introduction to the chapter, Android is open source.
Specifically, it is mostly available under the Apache Software License 2.0.
This license places few restrictions on device manufacturers. Therefore, it is
very possible for a device manufacturer to create a device that, frankly, does
not run Android very well. It might work fine for standard applications
shipped on the device but do a poor job of handling third-party
applications, like the ones you might write.

To help address this, Google has some applications, such as the Android
Market, that it has not released as open source. While these applications
are available to device manufacturers, the devices that run the Android
Market are tested first, to help ensure that a user's experience with the
device will be reasonable.

A Google engineer cited one case where a device manufacturer was
readying a phone that had a QVGA screen, before the release of Android 1.6
where QVGA support was officially added to the platform. While that
manufacturer had arranged for the built-in applications to work acceptably
on the smaller-resolution screen, third party applications were a mess.
Google apparently declined to provide the Android Market to the
manufacturer for this device.

Hence, the existence of the Android Market on a device, beyond providing
a distribution means for your applications, also serves as a bit of a "seal of
approval” that the device should support well-written third-party
applications.

Some Down and Dirty Details

Unfortunately, the Android Market neither guarantees problem-free
deployment on Market-enabled devices, nor does it prevent manufacturers

539

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing With Devices

from shipping Android devices sans the Market. Inevitably, devices will
have some quirks or idiosyncrasies that might impact your applications —
the following sections outline some examples of this.

ARCHOS 5 Android Internet Tablet

The ARCHOS 5 Android Internet Tablet was the first mainstream device to
be built purely off of the Android open source project. Unlike the phones
from HTC, Motorola, and others, the ARCHOS 5 is not a "Google
Experience” device and does not have the Android Market, Google Maps, or
other proprietary Google applications

The ARCHOS 5 is a WVGA device, but shipped with Android 1.5. Hence, an
original ARCHOS 5 will not honor the new -large resource set designation
as documented previously. Given that this device is not selling in major
quantities, you may wind up with it simply having an unoptimized Ul until
the ARCHOS 5 has Android 1.6 support.

The ARCHOS 5's touchscreen is resistive, not capacitive. This means users
will be using fingernails or styli to manipulate the screen, more so than
fingertips. Bear this in mind when designing "finger-friendly" user
interfaces.

The ARCHOS 5, as of firmware 1.1.01, returned a somewhat invalid value for
ANDROID_ID (a unique ID assigned to each Android device). ANDROID_ID is null
in the emulator and is supposed to be a hex string in devices. On the
ARCHOS 5, ANDROID_ID is a non-null but non-hex string. If all you care
about is null versus non-null, then the ARCHOS 5 is fine; if you need a hex
value for ANDROID_ID, you will experience some problems.

Since the ARCHOS 5 is not a phone, all telephony related features, such as
dialing via ACTION_DIAL, are unavailable. Similarly, since the ARCHOS 5
lacks a camera, all camera-related features are unavailable. Also, the
ARCHOS 5 lacks Google Maps, the Android Market, and other proprietary
Google applications.

540

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing With Devices

Also, the ARCHOS IMEI value is fake, since it is not a phone.

Motorola CLIQ/DEXT

The Motorola CLIQ (or DEXT, as it is known outside of the United States)
is an HVGA device, originally shipping with Android 1.5.

The CLIQ has a directional pad (D-pad) for non-touchscreen navigation.
However, the D-pad is on a side-slider QWERTY keyboard, and as such, the
D-pad is not available to users when the device is in portrait mode, unless
you force portrait mode for your activity via the manifest and force users to
use their CLIQ with the keyboard slid out. Do not write applications that
assume the D-pad is always available!

The CLIQ also ships with MOTOBLUR, Motorola's social media
presentation layer. This means that the home application, contacts, and
select other features that Android normally ships with have been replaced
by MOTOBLUR-specific replacements. This should not cause too many
problems if you stick to the SDK. The one area that does get a bit
interesting is that not all MOTOBLUR contacts will be available to you via
the Android Contacts content provider. For example, Facebook contacts are
available to MOTOBLUR but not to third-party applications, perhaps for
licensing reasons. This situation may change when the CLIQ is updated to
the new ContactsContract system with Android 2.0.1 and beyond.

Motorola DROID/Milestone

The Motorola DROID (or Milestone, as it is known outside of the United
States) is a WVGAS854 device, originally shipping with Android 2.0, though
most of these devices will now be running Android 2.0.1.

The DROID, like the CLIQ, has a D-pad on the side-slider keyboard,
meaning the D-pad is not readily available to users when the device is in
portrait mode.

541

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing With Devices

Because the DROID has a WVGAS854 screen on a normal phone-sized
device, Android will consider the DROID to have a high-density screen, so
-hdpi resource sets will be used.

Motorola BACKFLIP

The not-yet-released Motorola BACKFLIP has yet another take on pointing
devices. Rather than a trackball or a D-pad, the BACKFLIP has two non-
touchscreen navigation options:

1. The QWERTY keyboard has PC-style arrow keys, which should
generate standard DPAD key events

2. The BACKFLIP touchpad on the reverse side of the touchscreen,
which will generate trackball events (or ppAD key events, if the
trackball events are not consumed)

542

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 40
Handling Platform Changes

Android is going to undergo rapid evolution over the next few years.
Perhaps, in time, the rate of change will decline some. However, for the
here and now, you have to assume significant Android releases every 6-12
months, and changes to the lineup of possible Android hardware on an
ongoing basis. So, while right now, the focus of Android is phones, soon
you will see Android netbooks, Android tablets, Android media players,
and so on.

Many of these changes will have little impact on your existing code. Some,
though, will necessitate at least new rounds of testing for your applications,
and perhaps changes to those applications based upon the test results.

In this chapter, we cover a number of the areas which may cause you
trouble in the future as Android evolves, and how to deal with them.

Brand Management

A few Android devices are "Google experience" phones, such as the Nexus
One and Nexus S. This means they get the standard Android interface - the
things you find in the emulator - along with the standard roster of add-on
applications like Google Maps and GMail. In turn, manufacturers are
allowed to put the "with Google" brand on the device.

Not all devices will be this way.

543

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Platform Changes

Some manufacturers will take Android as a base and change up what is
included, adding some of their own applications, perhaps even changing
the look-and-feel (menu icons, home screen structure, etc.).

Others may use Android solely from the open source repository, and while
they may ship with the standard look-and-feel, they will lack the
commercial add-on applications.

If your application is independent of all of this, then it should run
anywhere. However, if your application code or documentation assumes
the existence of Google Maps, GMail, Amazon MP3 store, etc., you may run
into trouble. Be certain to test your application thoroughly in environments
where these applications are not available.

More Things That Make You Go "Boom"

Most of the above was focused on hardware changes. Now, let us examine
some ways in which Android can cause difficulty to you when the operating
system itself changes.

View Hierarchy

Android is not designed to handle arbitrarily-complicated view hierarchies.
Here, "view hierarchy" means containers holding containers holding
containers holding widgets. The hierarchyviewer program, described in an
earlier chapter, depicts such view hierarchies well.

Android has always had limits as to how deep the view hierarchy can be. In
Android 1.5, though, the limit was reduced, so some applications that
worked fine on Android 1.1 would crash with a stackoverflowException in the
newer Android. This, of course, was frustrating to developers who never
realized there was an issue with view hierarchy depth and then got caught
by this change.

The lessons to take from this:

544

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Platform Changes

« Keep your view hierarchies shallow - once you drift into double-
digit depth, you are increasingly likely to run out of stack space

« Ifyou encounter a StackoverflowException, and the stack trace looks
like it is somewhere in the middle of drawing your widgets, your
view hierarchy is probably too complex

Changing Resources

The core Android team may change resources with an Android upgrade,
and those may have unexpected effects in your application. For example, in
Android 1.5, they changed the stock Button background, to allow for smaller
buttons. However, applications that implicitly relied upon the former larger
minimum size wound up "breaking" and needing some Ul adjustment.

Similarly, applications can reuse public resources, such as icons, available
inside of Android proper. While doing so saves some storage space, many of
these resources are public by necessity and are not considered part of the
SDK. For example, hardware manufacturers may change the icons to fit
some alternative Ul look-and-feel. Relying upon the existing ones to always
look as they do is a bit dangerous. You are better served copying those
resources out of the Android open source project into your own code base.

Handling APl Changes

The core Android team has generally done a good job of keeping APIs
stable, and supporting a deprecation model where they change APIs. In
Android, being deprecated does not mean it is going away, just that its
continued use is discouraged. And, of course, new APIs are released with
every new Android update. Changes to the APIs are well-documented with
each release via an API differences report.

Unfortunately, the Android Market - the primary distribution channel for
Android applications - only allows you to upload one APK for each
application. Hence, you need that one APK to deal with as many Android
versions as possible. Many times, your code will "just work" and not require
changing. Other times, though, you will need to make adjustments,

545

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://source.android.com/

Handling Platform Changes

particularly if you want to support new APIs on new versions while not
breaking on old versions. Let us examine some techniques for handling
these cases.

Minimum, Maximum, Target, and Build Versions

Android goes to great lengths to help you deal with the fact that at any
point in time, there will be many Android OS versions out on the market.
Unfortunately, the tools supplied by Android have given us a somewhat
confusing set of overlapping concepts, such as targets and SDK versions.
This section will attempt to explain a bit more about what is all going on
here.

Targets versus SDK Versions versus OS Versions

Way back towards the beginning of this book, we introduced the concept of
targets. Targets are used when defining AVDs, to determine what sort of
device those AVDs support. Targets are also used when creating new
projects, primarily to determine what version of the SDK build tools will be
used to build your project.

A target combines an API version with an indicator of whether or not the
target includes Google APIs (e.g., Google Maps support).

An API version is an integer representing...well...a version of the Android
API. Each Android OS release that makes changes to the Android API
triggers a new API version. So, we have:

« Android 1.511, 1.5r2, and 1.5r3 all using API version 3
« Android 1.6r1and 1.6r2 using API version 4

« Android 2.0 using API version 5

« Android 2.0.1 using API version 6

« Android 2.1 using API version 7

« Android 2.2 using API version 8

546

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Platform Changes

« Android 2.3 using API version 9

Note that "Android 2.0" was used only on early versions of the Motorola
DROID and Milestone and was replaced by 2.0.1 on those devices by the
end of 2009. Hence, you should not see anything "in the wild" that uses API
version 5 — it will either be 3, 4, or 6.

Google maintains a Web page outlining which versions of Android are in
use today, based on requests made to the Android Market. At the time of
this writing, only Android 1.5, 1.6, and 2.1 are being used significantly,
though Android 2.2 will start to become a bit more prevalent in the next
few months.

Minimum SDK Version

In your AndroidManifest.xml file, you should add a <uses-sdk> element. This
element will describe how your application relates to the various SDK
versions.

The most critical attribute to have in <uses-sdk> is android:minSdkversion.
This indicates what the lowest API level is that you will support. Devices
running Android OS versions associated with lower API levels will not be
able to install your application. Your application may not even appear to
those devices in the Android Market listings, should you elect to publish via
that distributor.

If you skip this attribute, Android assumes you work on all Android API
versions. That may be true, but it is rather dangerous to assume if you have
not tested it. Hence, set android:minSdkversion to the lowest level you are
testing and are willing to support.

Target SDK Version

Another <uses-sdk> attribute is android:targetSdkversion. This represents
the version of the Android API that you are primarily developing for. Any
Android device running a newer version of the OS may elect to apply some

547

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://developer.android.com/resources/dashboard/platform-versions.html

Handling Platform Changes

"compatibility settings" that will help apps like yours, targeting an older
API, run on the newer version.

Most of the time, you should set this to be the then-current Android API
version, as of the time you are publishing your application.

Maximum SDK Version

The third <uses-sdk> attribute is android:maxSdkversion. Any Android device
running a newer Android OS than is indicated by this API level will be
prohibited from running your application.

On the plus side, this ensures that your application will not be used on API
levels you have not tested, particularly if you set this to be the then-current
Android API version as of your publication date.

However, bear in mind that your application may be spontaneously
removed from users' devices, once they upgrade their devices to an Android
OS release newer than your max level. Users may be confused and
frustrated if your app vanishes. Hence, if you are going to specify
android:maxSdkVersion, you are effectively committing yourself to quickly
testing and publishing new versions for new API levels, before the newer
Android OS is available to the public at large. Since Android is not known
for giving much warning between SDK update and Android OS upgrade
rollout, this is a dangerous proposition.

The core Android team recommends not using this option and relying upon
Android's intrinsic backwards compatibility — particularly leveraging your
android:targetSdkVersion value - to allow your application to continue to
run on new Android OS versions.

Detecting the Version

If all you need to do is take different branches in your code based upon
version, the easiest thing to do is inspect android.os.Build.VERSION.SDK_INT.
This public static integer value will reflect the same API level as you use

548

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Platform Changes

when creating AVDs and specifying API levels in the manifest. So, you can
compare that value to, say, android.os.Build.VERSION_CODES.DONUT to see
whether you are running on Android 1.6 or newer.

549

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 41
Where Do We Go From Here?

Obviously, this book does not cover everything. And while your #1 resource
(besides the book) is going to be the Android SDK documentation, you are
likely to need information beyond what's covered in either of those places.

Searching online for "android" and a class name is a good way to turn up
tutorials that reference a given Android class. However, bear in mind that
tutorials written before late August 2008 are probably written for the M5
SDK and, as such, will require considerable adjustment to work properly in
current SDKs.

Beyond randomly hunting around for tutorials, though, this chapter
outlines some other resources to keep in mind.

Questions. Sometimes, With Answers.

The "official" places to get assistance with Android are the Android Google
Groups. With respect to the SDK, there are three to consider following:

« StackOverflow's android tag
« android-developers, for SDK questions and answers

« android-discuss, designed for free-form discussion of anything
Android-related, not necessarily for programming questions and
answers

551

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://groups.google.com/group/android-discuss
http://groups.google.com/group/android-developers
http://stackoverflow.com/questions/tagged/android

Where Do We Go From Here?

You might also consider:

The Android tutorials and programming forums over at anddev.org
The AndMob wiki
The #android-dev IRC channel on freenode (irc.freenode.net)

The Android board on JavaRanch

It is important, particularly for StackOverflow and the Google Groups, to
write well-written questions:

Include relevant portions of the source code (e.g., the method in
which you are getting an exception)

The stack trace from LogCat, if the problem is an unhandled
exception

On StackOverflow, make sure you source code and stack trace are
formatted as source code; on Google Groups, consider posting long
listings on gist.github.com or a similar sort of code-paste site

Explain thoroughly what you are trying to do, how you are trying to
do it, and why you are doing it this way (if you think your goal or
approach may be a little offbeat)

On StackOverflow, respond to answers and comments with your
own comments, addressing the person using the @ syntax (e.g.,
@CommonsWare), to maximize the odds you will get a reply

On the Google Groups, do not "ping" or reply to your own message
to try to elicit a response until a reasonable amount of time has
gone by (e.g., 24 hours)

Heading to the Source

The source code to Android is now available. Mostly this is for people
looking to enhance, improve, or otherwise fuss with the insides of the
Android operating system. But, it is possible that you will find the answers
you seek in that code, particularly if you want to see how some built-in
Android component "does it's thing".

552

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://gist.github.com/
http://www.coderanch.com/forums/f-93/Android
http://wiki.andmob.org/
http://anddev.org/

Where Do We Go From Here?

The source code and related resources can be found at
http://source.android.com. Here, you can:

« Download or browse the source code
- File bug reports against the operating system itself

« Submit patches and learn about the process for how such patches
get evaluated and approved

« Join a separate set of Google Groups for Android platform
development

Rather than download the multi-gigabyte Android source code snapshot,
you may wish to use Google Code Search instead. Just add the
android:package constraint to your search query, and it will only search in
Android and related projects.

Getting Your News Fix

Ed Burnette, a nice guy who happened to write his own Android book, is
also the manager of Planet Android, a feed aggregator for a number of
Android-related blogs. Subscribing to the planet's feed will let you monitor
quite a bit of Android-related blog posts, though not exclusively related to
programming.

To try to focus more on programming-related Android-referencing blog
posts, you can search DZone for "android" and subscribe to a feed based off
that search.

553

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.dzone.com/links/feed/search/android/rss.xml
http://www.planetandroid.com/
http://www.google.com/codesearch
http://source.android.com/community/index.html
http://source.android.com/submit-patches
http://source.android.com/report-bugs
http://git.source.android.com/
http://source.android.com/download
http://source.android.com/

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

L@ 7 TN

AbsoluteLayout 185, 510
ACHONEVENL ..ot 67
ActionlListener..... . . .67
Activity......38, 81, 121, 146, 169, 231, 232, 238, 253,

266, 268, 277, 278, 280, 288, 289, 297, 309, 341,
342, 360, 406, 433, 436, 448, 470, 515

Adapter...121, 140, 142
AdapterView.......c.ccccveeeenecuveneeeinieeciennnenes 142
AdapterView.AdapterContextMenulnfo.......208
AddStringsTask.........cccccceeueueenncinencnnenne 275
AddStringTask ...273, 275
AlertDialog........cccovveiiviiiiiininnnnn, 206, 232-234
AnalogClock.........cvuvviriniiiiieiceee 164, 174
android.text.Spanned...........cccceiccurinierrincnenns 322

AndroidHttpClient....

APPLCAtION.....c.uuiiiiiicieieieeieeeere e 41

ArrayAdapter....120-124, 131, 141-144, 149, 151, 152,
155, 205, 207, 208, 273, 274, 308, 369

ArraylList.... ...205, 308, 424, 427

AssetManager...........cccccceveeeiiiniiiccieiecn 218

Keyword Index

AsyncTask......268-271, 273-277, 281, 315, 317, 318,
370, 425, 435-437

AutoCompleteTextView.............. 85, 133, 135, 186
BasicResponseHandler............ccccccocvveirunnnnes 418
Binder......cceeueeeerreeeieeene 410, 411, 424, 426
BOXuuiviiiiieiciiete e 93
BoxLayout .93
BroadcastReceiver................... 288, 289, 412, 463
Builder.....c.cceueueeieieiiiieieiccnee 232, 233, 316
Bundle................ 239, 241, 244, 251, 253, 285, 294

Button...71, 73-76, 80-82, 90, 97, 102, 103, 110, 113,
176, 177,179, 180, 182, 234, 241, 323, 511, 545

ByteArrayResponseHandler............cc.cceuueee. 418
Calendar........ccccvcueinieiniiciccees 162
CheckBOoX.....c.ccveveeriieireeeecieereeee e 85, 88, 91
CheckBoxPreference............ocoeeeeeeeeeeennns 344
CheckedTeXtVIeW........cccoceueeeeeucueuerererenieenienes 185
Chronometer 165, 185
ColorStateLiSt....ccveveerererieerereererere e 91, 92
CompoundButton..........ovveverececceceieeeienes 88
Configuration.........c.coceeeveueuererereuereunrneeenenne 515

Subscribe to updates at http://commonsware.com

555

Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

ConstantsBrowser..........cccceveveeeenveennennne 362, 369
ContactsContract ..541
ContentManager..........ccoeveeenerererinieueennnnees 440
ContentProvider..........ooveeeereeeieeseeenenns 366
ContentValues.........ccceueveueveueeninininennnseene 364
Context....... 120, 232, 277, 309, 314, 341, 342, 360,

392, 411, 425

ContextMenu ...202, 212
ContextMenu.ContextMenulnfo.................... 202
CTIEETIA. ouruevveeeieeeeeeete ettt 461
Cursor..

CursorAdapter.........coovvecniviecrnicccennnne 368, 369
CWBIOWSET...c.ovviiieieneinieieereeeeieesee e 299
DatabaseHelper..........c.cccocceveeeereencne. 360, 362
DateFormat.........cccoevvivueuiiniieciiiieniciicieenens 162
DatePicker 159
DatePickerDialog...........cccceeueueiiriniucnnnaes 159, 162
DefaultHttpClient.....384, 389, 417, 418, 426-428
DigitalClock ...164
DisplayMetrics......c.ceuevevevreririrnininenenerenieieene 516
Document 308
Double......oooviieiieteecee e 293
DownloadDemo........c.ccceuvererirninnencncniceeeennes 393
Downloader.........cccoveeeneeneeneennes 416, 419, 422
DownloadManager...........cccccrveuueee 390-395, 402

DownloadManager.Query... ...394

DownloadManager.Request................... 393, 394
Drawable.............. 137, 170, 251, 326, 441, 475, 476
DrawerDemo . e 185
DynamicDemo .144, 145
EditPreferences.........ocveeueeeeueereeereneeseenenens 344

EditText....83, 108, 133, 159, 187, 188, 190, 192-197,
241, 245, 339

EditTextPreference..........cocoveeueeececerereeerecnennns 353
Environment....314, 315, 393
EUgYou........ ...521, 523
Exception ...219, 435
ExpandableListView.........c.ccoceenierincuecninnene 185
FakePlayer........cocovvevenenencnccnieennens 422, 448, 449
FancyLists/ViewHolder..........c.ccccooevncinennnns 150
FetchForecastTasK........cccocoeoerueuenene 435, 436, 463
FieldDemo...... . e 187
File -313, 314, 394
FileOutputStream..........coeceureeuerrecreeneeeuerenns 318
FlowLayout94
FontSampler..........ccccceoeeeeeeeeeennnrneens 218
Forecast. 387, 424-427
FrameLayout.......cc.ccccceevnrinunenne. 168, 169, 176, 182
Gallery.....ooveviiciniccceceee 19, 137,185
GEOPOINt.....cvveviireieieeteeee et 473
GradientDrawable.. 512
GridView.......ccooueievincniiiniiicciiinns 129, 130, 137
Handler......240, 264-268, 276, 282, 413, 414, 420
HandOfCardsLayout.........ccoeuvevererrererecennennene 511
HelpActivity....... .293
HorizontalScrollView..........cccceveueunicuninccnnne. 18
HttpClient..

HttpContext........ocoveuereeieeieieeeeeecccne 389
HttpGet......cooovviviiiieiicies 384, 386, 418, 428
HEPPOSL ...t 384
HttpRequest...........ceeiviiiiuiiniiiiiiiiiicieie 384
HttpResponse ..384

Subscribe to updates at http://commonsware.com

556

Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

IconicAdapter.........ccccceueueurrerueneeenenenns 142,143
ImageButton..........cccccecvviiiiinnns 81, 82, 326, 520
ImageSwitcher........cooviiicccccccceiccnne 186

ImageView. 81, 82, 143, 146, 149, 150, 152, 182, 326

IMEDemo1 194

IMEDEMO2......coeiiiiiiiiciiiercciiereeeens 194, 195

InputMethodManager... ...196

InputStream..........ccccceueueurnnne. 305, 308, 309, 387
InputStreamReader..........cocoveveccccccceenens 309
INtegeT.....coiiiiiiiiiciiccc e 155

Intent....4, 167, 226, 246, 247, 285, 287, 289, 293,
297, 299, 402, 408-410, 412, 413, 418-420, 422,
424, 441, 464, 465, 482, 485

IntentService......406, 415, 416, 418-420, 422, 437
INterpreter........ovieineueecenineiieecicieeeenen 376
ItemizedOverlay.

JButton 67, 68
JCheCKBOX.....c.cueueueueieieriieieneieirnsne e 120
JCOMDBOBOX.....uceteeeieiirieiieie et 125
JLabel ...120
JLASE vt 120
JTabbedPane..........c.cccoeuvureereeeerenrrinseeeeeeenins 168
JTable..

LayoutInflater..........c.ococeveccereenenns 145, 146, 174

LinearLayout....93-98, 100, 102, 103, 109, 113, 140,
146, 155, 169, 182

List ...203, 461
ListActivity............ 121-123, 169, 207, 271, 470, 521
LiStAdapter......c.cocveeeeecececececcieierenieenienen 149, 185
ListCellRenderer...........ccveeeurecueunecenvercnennene 120
ListPreference353

ListView.....118, 121, 123-126, 137, 139-142, 144, 147,
149, 151, 152, 197, 203, 205, 208, 368, 369, 385,
470, 520-522

Location........ccccueeueees 385, 424, 427, 429, 461-463
LocationListener.........c.cccccceveuecnuenuennne. 462, 463
LocationManager............ccoeceuenen. 460-462, 464
LocationProvider..........cccoecueuneuene. 460-462, 497
Map.341, 364
MapACHIVItY.....coeievereciierecieeans 467, 470-472
MapController.........ccveureneecuneeecinnnnes 472, 473

MapView.390, 467, 469, 470, 472, 474, 475, 478,
479

MediaPlayer. 422
MeENU.....oooeeiieiereeieieereeeeeeeas 200, 201, 210-212
Menulnflater..........ccoooveeeievieeeeieeeeveeennenn 211, 212
Menultem................... 201, 202, 206, 208, 210, 211
Message............. 264, 265, 267, 268, 413, 419, 436
MesSSenger...........ccoeeieuerencnnenne 413, 416, 419, 420
MultiAutoCompleteTextView..........c.cccvuuceee. 186

MyLocationOverlay... ..471, 478

NooYawK......ccceeueerirneenns 471, 474, 476, 478-480
Notification.............. 238, 440-442, 444, 447-450
NotificationManager...........c.c.c..... 440, 445, 448
NotifyDemo .442
NotifyMessage 444
NOW oottt 75, 76
NowRedux

ODJECt.u ettt 251
OnCheckedChangelistener................ 85, 86, 100
OnClickLiStener.........cocoeeeevireeeeenuenns 67, 68, 234
OnDateChangedListener............c.cccvueurenee. 160
OnDateSetLiStener............cc.cceeeveeeeevennnnnn 160, 162

Subscribe to updates at http://commonsware.com

557

Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

OnltemSelectedListener.............ccccceeeeruennes 127
OnTimeChangedListener............ccccccccvnunnene. 160
OnTimeSetListener.........c.cccceevevveeveeennnnnn 160, 162
OUtPULSEIeam......c.cvvviiiecccceceeeeeiens 309
OutputStreamWTiter...........cccccoiiiciicninens 309
Overlay....... .. 475, 477
Overlayltem.......c.cccevevevvnnninccccneens 475, 477
Parcelable..........ccoceeueueieieieieeee 413
PendingIntent................... 413, 441, 444, 463, 464
PlayerService.........occcoeurieunennns 421, 422, 448, 449
PlayingCardLayout...........coccueuveeeueiicunienennnns 511
Preference...... . ettt 344
PreferenceActivity.........ccevveeveennnnns 342, 347, 350
PreferenceCategory..........cocceueiueurircennnne 349, 350

PreferenceManager.... ..342

PreferenceScreen..................... 343, 344, 349, 350

ProgressBar..159, 263, 265-267, 271, 275-277, 281,
282,397

ProgressDialog

QuickContactBadge...........ccceueverriniviinicnnns 186
RadioButton.........cc.c.......... 88, 90, 91, 93, 98, 100
RadioGroup........cccceueveureneucnenee 88, 90, 93, 98-101
RandomAccessFile.........cccoeiiiiieeiinenns 318
RatingAdapter..........cooveveeecececeeeneneeenenes 155
RatingBar........cccccoviviiiinnnnns 152, 155, 156, 167

RelativeLayout. 93, 104, 105, 107-110, 114, 182, 510,
511

RemoteObjectEXCeption...........cevevecuerneeeees 419
RESOUICES.....cvvrueiiiieiriciceeice s 305, 327
ResponseHandler.. 418

RingtonePreference...

RotationAsync.........cccceceueevrinunecnnene 278, 280, 281
RotationAwareTask...........c.ccoeveuvenne. 278, 280, 281
RowModel 155
Runnable........ccooevvevrenrennnne 264, 268, 270, 271
ScrollView......covvvevcncncecnnennne 93, 15-118, 194, 195
SecurityException..........ccccvveeeinieiiinieninnns 453
SeekBar 166
SenSOrManager..........cccueueueeeeueunieurereeneneneneas 357
ServiCe...ueivenerieireeieenae 406, 407, 420-422, 448
ServiceConnection............. 410, 411, 425, 433, 437
SharedPreferences..................... 318, 342, 343, 353
SimpleCursorAdapter..........c.cccoeeveueurnenennne 368
SimplePrefsDemo.........ccoveeuveeeerneceennne 345, 347
SitesOverlay........ccouceuvneerrieeuceininineennes 475-477
SlidingDrawer..
SOftReference...........ccceueeeveeeveeeeeeeeeeeeenereeeennns 412
Spanned.........cceeurieeinieeeee s 322
Spinner.......ccoccecvevevecninnnenens 125, 126, 133, 137, 142
SQLiteDatabase..........cocveereerueneenns 360, 362, 363
SQLiteDatabase.CursorFactory............c......... 370
SQLiteOpenHelper..........cccccceevernenene.

SQLiteQueryBuilder..

StackOverflowException..........cccccoueuenee 544, 545
Sttt 433-436
SEALIC. cueuveueeveereeeeeteete et e 328
StaticDemo143
StrictMOde.......ceecccciceeeeeee 315-317

String...155, 205, 232, 233, 273, 294, 322, 324, 341,
384, 418, 433, 434

System.Settings.........cccccvvvueievniiieinicnicnnienennn, 512

TabACHIVIty.....covreeerrecrerricarenne 169, 170, 297, 299

Subscribe to updates at http://commonsware.com

558

Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

TabHoSt......ccoeveerneanee 168-171, 299, 300, 520, 521 VOId...ocuiieieeeieieeeeeeeee e 273-275
TabHost.TabContentFactory.................... 172,174 WeakReference...........covvvvnencncncceenenienennens 412
TabHost. TabSpec........ccoceueveveueurnnnniciecnnene 174 WeatherBinder..........cocooveecececnnennne 425-429, 435
TableLayout............c........ 93, 111-114, 190, 194, 347 WeatherDemo........cccecuevuenne 386, 429, 430, 437
TableROW....cciiiiicciciceeeeeee e m-13 WeatherService..........cccoeeueuereuennnnne. 425, 428, 437
TabSpec... . ettt 170, 171 WEDKit.....coeueuiuereierereieiririrrneresee e 385, 386
TabView 179, 298 ‘WebSettings.. ...228
TabWidget.......cccorveuruncuenenn 168, 169, 172, 176, 179 WebView...221-228, 298, 390, 429, 434, 452, 532,

534
TelephonyManager........c.ccevuvevevenneneceeeennns 482

WebViewClient..........cccoveeeeeeveeeeenenennn. 226, 227
TeXtSWItCheT......cucviceeirecieccecece e 186

XmlPullParser.. ...327, 329
TextView......74, 79-81, 83, 85, 88, 91, 92, 97, 108,
121, 141, 143, 146, 150, 152, 155, 162, 177-179, 185,
194, 199, 218, 220, 261, 276, 277, 338 Command......cccoeeueeneenreniencencennnnnns
TextWatCher......c.covvvvnnereieeseeene 133, 135 adb 503, 504
Thread. oo 262, 436 AdDb devViCes.....ooveeemiieeicieieeeeeeee 25, 504
TimePicker. 159,160 adb install........ccocoeiiiiiiiine 504
TimePickerDialog.........cccceeeuivunnnes 159, 160, 162 adb Kill-server. s04
Toast. .231, 232, 234, 275, 378, 386, 398, 399, 402,

adb logcat.....cccevveeereeeeieicerene. 00, , 50
420, 477 g 400, 494, 504

dbpull.....cooiiiiiiiiiiiicie , 495,
ToggleButton.... ...186 acopu 371 495 504
db push .
BOOIS/ ettt 16 adbpus 372 495504
Typeface 18 adb shell.......oovvniniiiiinceee 371, 496, 504
. adDb Start-SEIVeT......c.cccoeueveuererererereiririreeierienne 504

Uri.....246, 247, 249, 253, 284, 285, 287, 291, 293,
295, 298, 367, 394, 440, 482 ANATOId. .. 9,54
View..71, 75, 81, 90, 113, 117, 127, 139, 142-147, 149~ : :
151, 156, 172, 174, 176, 202, 208, 209, 232, 268, android create project................. 37, 38, 286, 323
297,369, 491 android list targets.........oceveeeeeeeuevererererererennnnnes 31
View.OnClickLiStener...........ccooeeurecueueerueuennnns 81 android update project -p ..o v
VieWANIMAtOT.....cveiviireieienieieesesieeeesieeies 177 ant
ViewFlipper.......ccocceevvnenee 176, 177, 179-181, 186 ant -version
ViewHolder.........cccoeoeeueenrnnncne 150-152, 155, 156 ant clean install 63
ViewHolderDemo . e 151 .

ANE JATCOTE. ...t seeseeeeeeeseeeienenes 375
ViewSwitCher........ccccceeeeeeinnnrrceeee 186 ddms 492

559

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

hierarchyviewer...........c.cceeevecvnincnenne 487, 544
jarsigner. .469
KeYLOOL....c.cuiuiuiueriiiieieiririrrrr e 469
pdftk *.pdf cat output combined.pdf............... XX
sqlite3 .37
sudo service udev reload...........ccccocvueuiinininnns 26
ZIPAligN.....cuviii e 40
Constant.....cccoevveeiiiiiiiiiniieeeeeeeeeeeenn
ACCESS_COARSE_LOCATION........ccceueunee 460
ACCESS_FINE_LOCATION........ccccevverrirennee 460
ACTION_EDIT.....oouiiiirieiieieieeieeeeeseeee e 284

ACTION_PICK....

ACTION_VIEW........ccoviiiriiniiiiiens
ALTERNATIVE.......coooiiiiiiiicccceecieee 285
DEFAULT......ocoiiiiiiiiiiccccccee 285
DELETE
END_DOCUMENT.......cccovriiiinciiinenns 327
END_TAG 327
GET ot 384
HORIZONTAL
INSERT......cooviiiiiiiiiiccccce
INTEGER......cccoiiiiiiicciniciecces 359
LARGER ...ttt 229
LAUNCHER
LENGTH_LONG......cccoeviiniiniriiccinieeene 232
LENGTH_SHORT 232
MAIN. oot 287
NULL
PERMISSION_DENIED........ccccovviiiirirnennne 455

PERMISSION_GRANTED........ccccccvruereurnnnne 455
POST. .384
R . . e 75
RESULT_CANCELED......cccceoeuvvrnicieenicnnes 204
RESULT_FIRST_USER......cccooiiiiiiiiinnnn. 204
RESULT_OK.....oooviiiiiiiiiiiccce 204
SELECT ...t 359, 365, 367
SMALLEST. 229
START_TAG.......ciiieriiinieiecciiieicnnene 327,329
TEXT ..o 327
UPDATE........ooviiieeieeeeeereeeeeveeee e 363, 365
VERTICAL .94
WHERE......cooiiiiieeeeeee 364, 366, 367
_id 363

Method.......couveeeeeiineiiereiernceeneeennens

add()....

addMenu().....ceveueeveeereereeeceee e 201
addPreferencesFromResource()...........e..n.... 344
addProximityAlert().......ccceeeeerrrererreerererennnns 464
addSubMenu()......c.ceeevevereeeiereeeeeeee e 201
addTab()...ccevevevevereieiereeeeeeeeeea 171,174
afterTextChanged()......coooeeeveeieeenerereireereenienens 135
animateClose().......eevevereueeereerereeeereieereereerenns 184
animateOpen()

animateToggle().. 184
appendWhere()........cooveeeerecurinecrneeenieennns 367
apply() 342
applyFormat() 324
AtACH()vevieeerereeeeeeee e 280

Subscribe to updates at http://commonsware.com

Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

beforeTextChanged()........coccuevreeeuerieeunereeueacns 135
bindService().....covevreevererienennen 407, 410, 411, 413
BINAVIEW()...veeeeeeieeeeeceeeeeeeeeeeeee e 369
boundCenterBottom().........coveveeeeeeeereeeeennnne 475
buildForecasts()........ccccevevvrrrrrreeereereneenens 386
buildQuery()........ . . .367
cancel() .440
cancelAll() .- 440
canGoBack()...c.cuevvvevereeeieeieereeeeee e 225
canGoBackOrForward()........ccoeevevevveveiveenens 226
canGOFOrward()........ooverurueueueuerererereereeeneenns 225
check()...
checkCallingPermission()........coeceeveeeeveenenene 455
ch008eDAte().....cucvevevererererererereieieieeeeerne s 162
cho0SETIME()...vcvevevereveieiereeceeeeeeereeee e 162
ClEAT().vuvereeeeeeeeeeieie e 342
clearCache()......cccoevevevieeeeireeeee e 226
clearCheck()......coveveveveeeeeeereeereeeereeeveeeeneaeenns 88
€learHiStory ().ceveeeureceerreecreiicenereecesennenes 226
close()

COMIMUE().vvrerrereceeieieeetreetereieienscee et es 342
CTEALE()vvrrrreeirereeeeeeeeteeeeee ettt 233
createDatabase().......ccoeveeeerereeirierereeiere e 371
createFromAsset()
createFromFile().......ccoeveverereeeeerereecieeeeenen 218
createltem() 475
createPendingResult().........coeevvieieerierrienencnn, 413
createTabContent() 172
delete().eevruerrrereeieirieieeseeieeieieeeeeienas 363, 364
detach()..oeeveveceeeeereeeeeeeeeeeee e 280

dolInBackground().....270, 271, 273-275, 280, 281,
435, 436

doTheDownload().....ccceevevreriririririiriieeienee 419
AIE()eevvrrvereereeeieeeeeree e 342
enableDefaults().........ccccoeeeeereiveereireeneenene. 316
enqueue() 393,394
€XECSQL() v 362-364
€XECULE().vrvevrrererereiereieieisireeeerenens 269, 275, 384

findViewById()....75, 76, 91, 147, 149-151, 169, 171,
305, 472, 534

finish() 239, 247
FSYNC().vvverrenerereieieetieis e 318
generatePage()

BOL()urvurnrrirriisiniie s 364
GELACEIVILY().evveeeeverneeeiricierrieieeeeeereee s 441
getAltitude() 462

getApplicationContext()....

GEtASINEEZET().vvrevvrecrerincirereeireieieeereea 364
getAssets() 218
GELASSEIING().evvuvvevrvrcereeerreeeereiereeeerrererenenenes 364

getAttributeCount()....

getAttributeName().....c.ceveerereeerrecrereerrenennnn 329
2etBearing()......coveeeruerniereuereeireinireecceeeeees 462
getBestProvider()......oceeveeeerereeeirecrenncierencenns 461
getB0oolean().......coueueueiurineciriceeceecene 342
2etBroadcast(......oceweereuneuneeeeerneeneeeeerenenenenns 463
getBroadcast()......ocovevreerrirecrnreereieeseeenns 441
getCallState()......ceeeeereceerreerernicereeneereeeenens 482
getCheckedItemPositions().........ccocvevrveeeeuncne 125
getCheckedRadioButtonId()........coceveuieerrunene 88
getColumnIndex().....ccveecueueecuneneecernrecnennns 368

Subscribe to updates at http://commonsware.com

561

Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

getColumnNames().......cceureeeueeeeeeererenrecnennn 368
ELCOUNL().vuvvurrrrrnieeeeieeicereieeeeretreteeeeeee s 368
EtDALA(). vveeevereerireiereeceiees e 247, 418
getDefaultSharedPreferences().............. 342,343
getExternalFilesDir()......cocveeeeeeveenerneecvenenennn 314
getExternalStorageDirectory()........coceveeeene. 314

getExternalStoragePublicDirectory()....314, 393,
394

getExternalStorageState()........ccocevereerieeenenes 314
GEtFIleSDIT()...cueviecricieiiiereceeeece e 313
getForecast().......cveueuereriuneererencene 424, 427, 435
GELINE() vt 368
etItemId (). . ceueeeeeeeeereeeceieireieeee e 206
getLastKnownPosition()........ceeeeereececueeenen 461
getLastNonConfigurationInstance().....253, 280,
434, 436

getLatitude()....
getLayoutInflater()........ccoeeerereerrrrererenneenenenn 146
GEtLISEVIEW().vueereveeecicereceeicice e 123
2etLongitude().....ceeeereeereerereieieirereieieieieieae 385

getMapController()....

getMeMyCurrentLocationNow()........ccccceen... 462
getMenulnfo()......ccocuveveeeeerneeneernerneecne 202, 208
etNetWOrkTyPe()...c.cevvreeerrecrereireenireeirierenens 482
getOverlays() 475
tPArent()....cevueuereererceeeeeneereeeeieneesere e o1
etPhoneTYPe()....ceuveueveeieeirirercerieiereeecieienens 482
getPreferences().......cceeeveerenecereneereecnnnn. 341, 342
getProgress()

EtPrOVIAers().....ouevereeeverieeirirceerreeieees e 461
getReadableDatabase()........ccooueeeurircerereennnne 362

EtRESOUTCES().uvvivnreeireecrieeciercieeeceeeeee e 305
getRootView() .01
EtSELtINGS().cvovevreverererrrerereieieesireieeree e 228
getSharedPreferences()........c.covueveverennnns 341, 342
ZtSPEEA()...vvuvrrrerciirereieireie e 462
GELSEING().euvvereecerereeerereriecirerieninene 321, 324, 368
getStringArray() 333
getSubscriberld()

getSystemService()....eerrmevernieerreereieieneeenns 392
ELTAG()rvvevereeeeereerieecreeeieieceeveeene 150-152, 155
GELTEXE()-vuvvrereerrmrereeeeeeeeeretseeresessesceneteeieeseneeas 322
getView().... 142, 143, 147-149, 151, 155, 369
getWriteableDatabase()........coccvecverreecueinieene 362
EtXMI() e 327
GOBACK() vttt 225

goBackOrForward()....

GOFOTWArd (). ..ceueveeeemereiceneieeereireieeeee e 225
handleMessage()........oovveureevrurerenne 265, 266, 414
hasAltitude()...c.o.eveevereeeeeeeceeeeeeee e 462
hasBearing()......coceeeveveererreveeerrerneereereeerenene 462
hasSpeed()... . e ———— 462
hideSoftInputFromWindow()........cccceecuvunenee 197
incrementProgressBy()........cevevncereecenceninnnens 263
initAdapter()

insert()
ISAFEErLast()....ceevevevereeeerereeriereeeeeeere e 368
isSChecked().....cooveveveeeveeeeerereeeeeereeeveeaeenn 85, 88
isConfigurationChanging...........c.cceecevrueueucns 437
isEnabled() .01
ISFINIShING().vvvvevereieeicicireecer e 436

Subscribe to updates at http://commonsware.com

562

Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

isFocused() .91 onCreateOptionsMenu().......... 200, 201, 205, 212
isRouteDisplayed()........cveveveeerererenecenene 471, 472 onCreatePanelMenu()........c.ccceevevevevereverennnnns 201
loadData() 224 onDestroy()....... 239, 386, 407, 411, 417, 422, 427,

429, 436
10adTime()..ccevevereeeerereeeeereeeeeeeee e 227

onHandleIntent()..........coevevrvvrerrrnnennnn 418, 419
10adUTI() oo 222,224

onListltemClLick()......ccoeveveveverereennns 122, 155, 262
TOCK()cevveveeeeeeeteeeeeeeeeeee ettt eneen 184

onLocationChanged() 463
makeText() 232

onOptionsltemSelected().200, 201, 203, 206, 212
Menu#setGroupCheckable()............ccccorueuenee 201

onPageStarted()........cooveeurrerernieerereenirnnenes 226
Menultem#setCheckable()...........c..ccevevenenn. 201

onPause().....coeoeeerrenienenne 240, 289, 311, 407, 478
INKAITS ().t 394

onPostExecute().. ..271, 274, 281, 435, 436
moveToFirst()368

ONPreEXecute()......c.covuveveveueeerereeeeeeeieeveeneenns 271
MOVETONEXE()..v.veveeevereeeiereeeeeeteteeeee v 368

onPrepareOptionsMenu().........ceceeeeveereeene 200
newCursor() .370

onProgressUpdate()..........ccccueveuene. 271, 273, 274
NEWINStanCe()..vueveeeeueerererereeeieieeeeeieeesienenens 389

onRatingChanged()........cccoceueuvcurceinininceccne 155
newTabSpec()...

ONRECEIVE()...oereieieiececeeicieieieeeeeeee e 288
NEWVIEW ()t 369

onReceivedHttpAuthRequest()..........coveuenee 226
next() 327

onRestart() 239
DOV () vorvveeireieiereeeieieieiesiesiet e 440, 448

onRestorelnstanceState()....
NOHYME() . 444

onResume()......239, 240, 288, 311, 348, 385, 407,
obtainMessage().......ccoveveueveeuriniecrnincuenene 264, 265 478
onActivityResult().......ccocvveuenee 247, 293, 294, 413 onRetainNonConfiguration()..........ccceeeeeee. 281

....407, 410, 422, 429 onRetainNonConfigurationInstance(). .253, 259,

280, 411, 425, 434, 437

onCheckedChanged().......ccoceeveervevrerenenee 86, 100

onSavelnstanceState().....239, 241, 248, 249, 259
onClick().......... .68, 262

onServiceConnected().........c.ceveveverereereenerenns 410
onConfigurationChanged().........c.c........ 253, 256

onServiceDisconnected()....
onContextltemSelected()........................ 202, 212

onStart() .239, 267
onContextMenuSelected()...........ccccevvevennenn 208

onStartCommand()..........ccoevrvenes 407, 409, 422
onCreate()...67, 68, 74, 75, 90, 99, 200, 205, 222,
238-241, 249, 250, 256, 262, 280, 281, 308, 316, ONSLOP().evvvrereerercreererereeeerereeseeereeeeeees 239, 267
324, 348, 360, 362, 386, 393, 407, 411, 417, 419,
422, 424, 426, 429, 434, 436, 437, 445, 448 ONTAP()-evevvveeenisssesesresssesesisieissseee s 477
onCreateContextMenu().................. 202, 207, 212 onTextChanged()........ccoveeererrieeunreerereirienenens 135

563

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

onTooManyRedirects()........cceueeevrerererueuenenen 226
ONUPZrade()..eeeeeerermeeemeemeriereieeeeereereieeeeesenens 360
OPEN() ettt 184
openFileInput()......ccoocevvreeerrrnieeunuenne 309, 311, 313
0penFileOuptut()......cveueeeeeverreereeeneererrenenenns 313
openFileOutput().....ccoveeeererererrireeenne 300, 311, 313
0penRAWRESOUTCE()...cvuvmerinieiriceeireecseeeenae 305
play()....... 422, 449
POPULALE(). et 475
POSE() ettt 268
postDelayed() ...268

publishProgress()... 271, 273, 274

QUETY()eevereeireiereereeereerecenens 365-367, 394, 395
queryWithFactory().....oeeeeeeeeueeneeneeeerineccene 370
FAWQUETY (). vveverereenereeneeireeeneencereteeeseeceeaeae 365

rawQueryWithFactory()

registerForContextMenu().........coc.evevrerereeecne 202
registerReceiver()......cooeerveeererierenenennns 288, 412
T€l0ad().vevveerieeeeeeeeee e 225
remove()
removeProximityAlert().......cccocveevereeerrennnes 464
1emoveUpdates()......coveeereeeerneeeeerieeereneneenes 463
requery() 368
requestFocus()
requestLocationUpdates()..........cccounee 462, 463
TEStOTEME()...vvvvvveieieieiriririeeieiene 249, 250, 253
runOnUiThread().......c.cooeeveveveeerereieeereeneens 268
send() 413
5endBroadcast()........cceveeeueerieeireriereennnns 412, 455
sendEmptyMessage()......covveveveeererieerreeennnnns 265

sendMessage() 264
sendMessageAtFrontOfQueue().................... 264
sendMessageAtTime()......cooeeerreeerrererennennne 264
sendMessageDelayed()........cccoeueeurencenrecnennns 265
SEE()eeveverererererererer ettt 378
setAccuracy() . e ————— 461
setAdapter()......cceeeerereeereenennns

setAllowedNetworkTypes()

setAllowedOverRoaming().......cccoeeeeveerireurunns 394
setAlphabeticShortcut()........coeueeevrereecurercuenene 201
setAltitudeRequired().......coeeeveererrerireeccncne 461
setCellRenderer()

SELCENLET()..vurreverreeeireceeireecereeee e 473
setChecked().....ovuveveureereeieerieeeieereeieenens 85, 90
5etChoiceMOde()......ovevereeiereireirireierreeienenenes 123

setColumnCollapsed()...

setColumnShrinkable()............ccoeeevevevererennnns 14
setColumnStretchable()...........cccovererererenenene. 14
setContent() 170-172

setContentView().... ...67,75, 01

setCostAllowed().......cooveveveeevererereeereeereeneene 461
setCurrentTab().......ccoevvveveveceeieccereeie e, 171
setDefaultFontSize().......cccceveveveveveveveiereenenne. 229

setDescription()...

setDestinationInExternalPublicDir()............ 394
setDropDownViewResource()........ccccevreencee 126
setDuration(). et 232
setEnabled()........cceeveveveieeereeeeiecieeeeen, 91, 211
setFantasyFontFamily().......ccocveeeeeererrinencncne 228
5etFOreground()........ocoeeeerereermrerersmnceereerenennnnas 448

Subscribe to updates at http://commonsware.com

564

Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

SEEGTAVILY().vevevereerrreeereicieireceee st 96
setGroupCheckable()........cveveveeemeunerneereneecnnes 200
setGroupEnabled().......ccoeeuereerrieinineininienne 21
5etGroupVisible()......cccvucuerreerrenicnenieieeninnne 21
SELICON().verveirinirireieieieie ittt 233
setIndeterminate()..........ccevevevereerirereveererennennn. 263
setIndicator()...

setltemChecked()......c.cccoeverevereieereerierenrereee. 125

setJavaScriptEnabled()

setLatestEventInfo().......cccecerreririeirinnnns 441, 444
$etLiStAdAPLer()...c.cuevceemerneereereieieireienerenne 122
SEEMAX().vvrveeerererererereieree e 167, 263, 267
SEEMESSAZE() v vvvvevrvrrmieirireeeireerereieaeereenenens 233
setNegativeButton()........ccceeeveeerereecureccreucnnnns 233
setNeutralButton().........ooevevevereeeveeiveereennenns 233
setNumericShortcut().......ocoevevevevvveereeveevneenenns 201

setOnClickListener()

setOnEditorActionListener().........ccoeeveurenee 194
setOnltemSelectedListener()............ 121, 125, 129
setOnSeekBarChangeListener().............c....... 167
setOrientation()..... . . .94
setPadding()00
$etPOSItiveBULtON ()c.cuvveveeeieieieirieirrrrcenas 233
setProgress() . e 263
$etProjectionMap().......ccveeeerreecrernececrerennenes 367
$etQWertyMode().......cvvueeeeeerrerrernererireeceene 201
SEtRESULE()...uvveieerereeiieietceceee e 294, 413
SEETAG()vevrrvvrercrereierereieereseeieee e 150-152, 155
SEETEXE().vovvvererererereeeeeeeeeeeee e 68, 261

SetTeXtCOlor()...coveveveeeeerereeeerereee e 91
SEtTEXESIZE().vvvrreiieieeeeeeeeeeeieee e 229
SELTIIE().vuevvrrceerreeeeereeereeer e 233,394
SetTypeface().......cvceevreeererreecererecurieeceennnene 72, 218
SEEUP()vvevveerrrereieerereeees et 169-171
SELUPVIEWS (). vuveveeierircieirineieeeierensceeseseseaens 256
SEtUSEIAGENT()...vuvevreecrrerecieeeecerecrereeeeeveveens 229
SEEVIEW().vovvvvevevereieeeie e 232
SEtVISIBIE()..vvievveeieirereeceeeeeeeeeee e 21
setVisibleInDownloadsUi().........ccceeeueueueuennnns 402
setWebViewClient().........ccoevevveerererreenennn. 226
SEtZOOM().v.evevevvierereeeeierereeeeeee et 473
shouldOverrideUrlLoading()........c.coeuu.. 226, 227
SROW(). v 232-234
SHOWME().eceereecieicice e 205
showNext() 177
SIZE()evvereeiiereeeeie ettt 475
SEATE() cevveveveerereeeeeee ettt 165
startActivity().......... 246, 247, 293, 408, 482, 485

startActivityForResult(). ..246-248, 293, 294, 413

startDownload().......veeveveeeveenieerrieieineeieenenes 393
startForeground()...

SEArtPIayer() ... ceeeenceeeeeeereieeeeeerese e 424
startService()......407-410, 413, 416, 418-420, 422,
424

stop()...

stopForeground().........ccoeceeereerrrnueveennns 448-450
SEOPPIAYET()..cevveerercereeeeireteeeeeeteiseeseieeseeene 424
stopSelf()..... . et 410
StOPSEIVICe().vuvurvverieeerercrerreecieniaens 409, 411, 424
SWIECH().eureevivieeieiceeeee et 201

Subscribe to updates at http://commonsware.com

565

Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

toggle() ...85, 88,184
toggleSatellite() 474, 479
EOSEEING () vvevvererereereiririreesiereteeseieseeseeeesesenenene 120
unbindService().....cocovrvrireriieeeereeieann 410, 411
unlock() ...184
unregisterReceiver()........oeveerrercrernerienenene 289

update()..
UPdateFOrecast().......coeevreureeeumereerernereerenene 385
updateLabel().......... 162
updateTime()....ccoveereeeeeuneeecericeerreneereneeas 67, 68
ValUEOS() .o 92
Property......cooveiieniiirnnniiinncinncenneee.
android:autoTeXt.......cceuevererrrrerirerereneeccceenen 83
android:capitalize..........ccveeuernicrencirniereinens 83

android:collapseColumns....

android:columnWidth..........ccccccoeeinininnn.

android:completionThreshold............cc......... 133
android:digits........oooveeveuiueinieirinieirieeieeees 83
android:drawSelectorOnTop........c.c.c....... 126, 137
android:horizontalSpacing...........cccoeeveennee 129
android:id.........ccoceevevennn 73, 74, 88, 105, 169, 170
android:label..........ccoeoiviieiiinieieeeen 42
android:layout_above...

android:layout_alignBaseline......................... 107
android:layout_alignBottom............cccecennens 106
android:layout_alignLeft........ccccccecvrrnuercuennne. 106
android:layout_alignParentBottom................ 105
android:layout_alignParentLeft...................... 105
android:layout_alignParentRight................... 105

android:layout_alignParentTop..........cc.cco...... 105
android:layout_alignRight........ccccccccoeueuiinnne 107
android:layout_alignTop.......ccccccevvuvurenenne 106, 107
android:layout_below..........ccocccurerceeererreecnnn. 106
android:layout_centerHorizontal................... 105
android:layout_centerInParent...................... 105

android:layout_centerVertical...

android:layout_column........ccccccvuveueiricrennnnnnes 12
android:layout_gravity.........c.cocevrererccvrennene 96
android:layout_height........ccccoeoeueerrrueuenene. 73, 95
android:layout_span 12
android:layout_toLeftOf.........cccccoeeurururuennene. 106
android:layout_toRightOf...........ccccoovvereinnnn 106
android:layout_weight........cccooeceuririeuccinnnenns 95

android:layout_width....

android:manifest.........oovreririririreeeierieieesens Pl
android:name..........c.coeoeeueeenienenenne 42, 407, 452
android:nextFocusDown...........cccccceueuererencnnnne. 90
android:nextFocusLeft.........ccccoevrruerieeeeennne. 90
android:nextFocusRight..........ccccccvuicunincinnns 90
android:nextFocusUp.........cccovveveccccvnncnee. 90

android:numColumns...

android:orientation............ccceeeveerirreenerieeene 94
android:permission..........coeecevveveennenns 408, 454
android:shrinkColumns..........cccocovvriririririencns 14
android:singleLine..........ccocceeieininenniniccnnnns 83
android:spacing.. 137
android:spinnerSelector............coocceveevreeuenens 137
ANATOIAISTC vt 82

android:stretchColumns..

Subscribe to updates

566

at http://commonsware.com

Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

android:stretchMode..........ccccovereerrnecnnnen. 129 android:typeface........ocevecurneuerercnniecinnnne 79
ANATOIAIEEXE v 73,79 android:verticalSpacing...........ccccccceevvuriecnnnne 129
android:textColor........c.cccoeeeeenueirinennne 80, 85 android:visibility.........cococeeeerererererennirrnnee 90
android:textStyle..........cocovvnniiciccccenne 79, 83

567

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

	The Busy Coder's Guide to Android Development

	Welcome to the Book!
	Warescription
	Book Bug Bounty
	Source Code And Its License
	Creative Commons and the Four-to-Free (42F) Guarantee
	Acknowledgments
	The Big Picture
	What Androids Are Made Of
	Activities
	Services
	Content Providers
	Intents

	Stuff At Your Disposal
	Storage
	Network
	Multimedia
	GPS
	Phone Services

	The Big Picture...Of This Book

	How To Get Started
	Step #1: Java
	Install the JDK
	Learn Java

	Step #2: Install the Android SDK
	Install the Base Tools
	Install the SDKs and Add-Ons

	Step #3: Install the ADT for Eclipse
	Step #4: Install Apache Ant
	Step #5: Set Up the Emulator
	Step #6: Set Up the Device
	Windows
	OS X and Linux

	Your First Android Project
	Step #1: Create the New Project
	Eclipse
	Command Line

	Step #2: Build, Install, and Run the Application in Your Emulator or Device
	Eclipse
	Command Line

	Examining Your First Project
	Project Structure
	Root Contents
	The Sweat Off Your Brow
	And Now, The Rest of the Story
	What You Get Out Of It

	Inside Your Manifest
	In The Beginning, There Was the Root, And It Was Good
	An Application For Your Application

	A Bit About Eclipse
	What the ADT Gives You
	Coping with Eclipse
	How to Import a Non-Eclipse Project
	How to Get To DDMS
	How to Create an Emulator
	How to Run a Project
	How Not to Run Your Project

	Alternative IDEs
	IDEs...And This Book

	Enhancing Your First Project
	Supporting Multiple Screens
	Specifying Versions

	Rewriting Your First Project
	The Activity
	Dissecting the Activity
	Building and Running the Activity
	About the Remaining Examples

	Using XML-Based Layouts
	What Is an XML-Based Layout?
	Why Use XML-Based Layouts?
	OK, So What Does It Look Like?
	What's With the @ Signs?
	And We Attach These to the Java...How?
	The Rest of the Story

	Employing Basic Widgets
	Assigning Labels
	Button, Button, Who's Got the Button?
	Fleeting Images
	Fields of Green. Or Other Colors.
	Just Another Box to Check
	Turn the Radio Up
	It's Quite a View
	Padding
	Other Useful Properties
	Useful Methods
	Colors

	Working with Containers
	Thinking Linearly
	Concepts and Properties
	Example
	The Box Model

	All Things Are Relative
	Concepts and Properties
	Example
	Overlap

	Tabula Rasa
	Concepts and Properties
	Example

	Scrollwork

	Using Selection Widgets
	Adapting to the Circumstances
	Using ArrayAdapter

	Lists of Naughty and Nice
	Selection Modes

	Spin Control
	Grid Your Lions (Or Something Like That...)
	Fields: Now With 35% Less Typing!
	Galleries, Give Or Take The Art

	Getting Fancy With Lists
	Getting To First Base
	A Dynamic Presentation
	Inflating Rows Ourselves
	A Sidebar About Inflation
	And Now, Back To Our Story

	Better. Stronger. Faster.
	Using convertView
	Using the Holder Pattern

	Interactive Rows

	Still More Widgets and Containers
	Pick and Choose
	Time Keeps Flowing Like a River
	Seeking Resolution
	Putting It On My Tab
	The Pieces
	Wiring It Together
	Adding Them Up

	Flipping Them Off
	Getting In Somebody's Drawer
	Other Good Stuff

	The Input Method Framework
	Keyboards, Hard and Soft
	Tailored To Your Needs
	Tell Android Where It Can Go
	Fitting In
	Jane, Stop This Crazy Thing!

	Applying Menus
	Flavors of Menu
	Menus of Options
	Menus in Context
	Taking a Peek
	Yet More Inflation
	Menu XML Structure
	Menu Options and XML
	Inflating the Menu

	Fonts
	Love The One You're With
	Here a Glyph, There a Glyph

	Embedding the WebKit Browser
	A Browser, Writ Small
	Loading It Up
	Navigating the Waters
	Entertaining the Client
	Settings, Preferences, and Options (Oh, My!)

	Showing Pop-Up Messages
	Raising Toasts
	Alert! Alert!
	Checking Them Out

	Handling Activity Lifecycle Events
	Schroedinger's Activity
	Life, Death, and Your Activity
	onCreate() and onDestroy()
	onStart(), onRestart(), and onStop()
	onPause() and onResume()

	The Grace of State

	Handling Rotation
	A Philosophy of Destruction
	It's All The Same, Just Different
	Picking and Viewing a Contact
	Saving Your State

	Now With More Savings!
	DIY Rotation
	...But Google Does Not Recommend This

	Forcing the Issue
	Making Sense of it All

	Dealing with Threads
	The Main Application Thread
	Making Progress with ProgressBars
	Getting Through the Handlers
	Messages
	Runnables

	Where, Oh Where Has My UI Thread Gone?
	Asyncing Feeling
	The Theory
	AsyncTask, Generics, and Varargs
	The Stages of AsyncTask
	A Sample Task

	Threads and Rotation
	Manual Activity Association
	Flow of Events
	Why This Works

	And Now, The Caveats

	Creating Intent Filters
	What's Your Intent?
	Pieces of Intents
	Intent Routing

	Stating Your Intent(ions)
	Narrow Receivers
	The Pause Caveat

	Launching Activities and Sub-Activities
	Peers and Subs
	Start 'Em Up
	Make an Intent
	Make the Call

	Tabbed Browsing, Sort Of

	Accessing Files
	You And The Horse You Rode In On
	Readin' 'n Writin'
	External Storage: Giant Economy-Size Space
	Where to Write
	When to Write

	StrictMode: Avoiding Janky Code
	Setting up Strict Mode
	Seeing It In Action
	Development Only, Please!

	Linux Filesystems: You Sync, You Win

	Working with Resources
	The Resource Lineup
	String Theory
	Plain Strings
	String Formats
	Styled Text
	Styled Text and Formats

	Got the Picture?
	XML: The Resource Way
	Miscellaneous Values
	Dimensions
	Colors
	Arrays

	Different Strokes for Different Folks
	RTL Languages: Going Both Ways

	Using Preferences
	Getting What You Want
	Stating Your Preference
	And Now, a Word From Our Framework
	Letting Users Have Their Say
	Adding a Wee Bit O' Structure
	The Kind Of Pop-Ups You Like

	Managing and Accessing Local Databases
	A Quick SQLite Primer
	Start at the Beginning
	Setting the Table
	Makin' Data
	What Goes Around, Comes Around
	Raw Queries
	Regular Queries
	Building with Builders
	Using Cursors
	Custom CursorAdapters
	Making Your Own Cursors

	Flash: Sounds Faster Than It Is
	Data, Data, Everywhere

	Leveraging Java Libraries
	Ants and Jars
	The Outer Limits
	Following the Script
	Reviewing the Script

	Communicating via the Internet
	REST and Relaxation
	HTTP Operations via Apache HttpClient
	Parsing Responses
	Stuff To Consider
	AndroidHttpClient

	Leveraging Internet-Aware Android Components
	Downloading Files

	Services: The Theory
	Why Services?
	Setting Up a Service
	The Service Class
	Lifecycle Methods
	Manifest Entry

	Communicating To Services
	Sending Commands with startService()
	Binding with bindService()

	Communicating From Services
	Callback/Listener Objects
	Broadcast Intents
	Pending Results
	Messenger
	Notifications

	Basic Service Patterns
	The Downloader
	The Design
	The Service Implementation
	Using the Service

	The Music Player
	The Design
	The Service Implementation
	Using the Service

	The Web Service Interface
	The Design
	The Rotation Challenge
	The Service Implementation
	Using the Service
	Simplification Strategies

	Alerting Users Via Notifications
	Notification Configuration
	Hardware Notifications
	Icons

	Notifications in Action
	Staying in the Foreground
	FakePlayer, Redux

	Requesting and Requiring Permissions
	Mother, May I?
	Halt! Who Goes There?
	Enforcing Permissions via the Manifest
	Enforcing Permissions Elsewhere

	May I See Your Documents?

	Accessing Location-Based Services
	Location Providers: They Know Where You're Hiding
	Finding Yourself
	On the Move
	Are We There Yet? Are We There Yet? Are We There Yet?
	Testing...Testing...

	Mapping with MapView and MapActivity
	Terms, Not of Endearment
	Piling On
	The Key To It All
	The Bare Bones
	Optional Maps

	Exercising Your Control
	Zoom
	Center

	Rugged Terrain
	Layers Upon Layers
	Overlay Classes
	Drawing the ItemizedOverlay
	Handling Screen Taps

	My, Myself, and MyLocationOverlay
	Rugged Terrain

	Handling Telephone Calls
	Report To The Manager
	You Make the Call!
	No, Really, You Make the Call!

	More Development Tools
	Hierarchy Viewer: How Deep Is Your Code?
	DDMS: Under Android's Hood
	Logging
	File Push and Pull
	Screenshots
	Location Updates
	Placing Calls and Messages
	Memory Management

	adb: Like DDMS, With More Typing

	Handling Multiple Screen Sizes
	Taking the Default
	Whole in One
	Don't Think About Positions, Think About Rules
	Consider Physical Dimensions
	Avoid "Real" Pixels
	Choose Scalable Drawables

	Tailor Made, Just For You (And You, And You, And...)
	<supports-screens>
	Resources and Resource Sets
	Finding Your Size

	Ain't Nothing Like the Real Thing
	Density Differs
	Adjusting the Density
	Accessing Actual Devices

	Ruthlessly Exploiting the Situation
	Replace Menus with Buttons
	Replace Tabs with a Simple Activity
	Consolidate Multiple Activities

	Example: EU4You
	The First Cut
	Fixing the Fonts
	Fixing the Icons
	Using the Space
	What If It Is Not a Browser?

	Dealing With Devices
	This App Contains Explicit...Instructions
	A Guaranteed Market
	Some Down and Dirty Details
	ARCHOS 5 Android Internet Tablet
	Motorola CLIQ/DEXT
	Motorola DROID/Milestone
	Motorola BACKFLIP

	Handling Platform Changes
	Brand Management
	More Things That Make You Go "Boom"
	View Hierarchy
	Changing Resources

	Handling API Changes
	Minimum, Maximum, Target, and Build Versions
	Detecting the Version

