AAAAA

The Busy Coder’s Guide to

Andr()ld

Development

The Busy Coder's Guide to Android
Development

by Mark L. Murphy

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Busy Coder's Guide to Android Development
by Mark L. Murphy

Copyright © 2008-2010 CommonsWare, LLC. All Rights Reserved.
Printed in the United States of America.

CommonsWare books may be purchased in printed (bulk) or digital form for educational or
business use. For more information, contact direct@commonsware.com.

Printing History:
Nov 2010: Version 3.3 ISBN: 978-0-9816780-0-9

The CommonsWare name and logo, “Busy Coder's Guide”, and related trade dress are
trademarks of CommonsWare, LLC.

All other trademarks referenced in this book are trademarks of their respective firms.

The publisher and author(s) assume no responsibility for errors or omissions or for damages
resulting from the use of the information contained herein.

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Table of Contents

Welcome to the Warescription!..........cccovueeiviueiiiinnneeciiciiniiiininnnnnne xvii
g 3 Xix
Welcome to the BOOK!........cceiuirieiinieeeieeceeteeeee et Xix
Prer@qUISItS. ... cecveeieeiieiieiteiteterte ettt ettt ettt e st st e XX

W aT@SCTIPEION . ceiuueieiieiiteeite ettt ettt et e et et e et e st e e s e sabe e e e s e eaneees xxi
BOOK BUZ BOUNLY.....cceoviiieiiieiiicetcietieeeieenieeretnreeerees e e xxii
Source Code And IS LIiCENSE.......coceeteviererieiereneeieseseeeeee e e e xxiii
Creative Commons and the Four-to-Free (42F) Guarantee................. xXxiii
AckNOWIedgments..........coeeuerieirininieienenenee et XXiv
The Big Picture......cccccovueeiiiiiiiiiiiiiiiiinecceinnnneeccesescneecee s sssasseeeees 1
What Androids Are Made Of........cccoveeieiinenieieeneeteeeee e 3
ACEIVITIES. ...ttt ettt ettt e et e st et e e s e eabe e e e seabeeeeens 3
SOTVICES. ..ttt ettt ettt et st s s e e s 3

=) o3PS 4
CoNtent ProVIAErS.......cccueeiieieeieeiecteeieeiesee et sae e erae e e sraeesereas 4

Stuff At Your DiSposal.......ccceeerierierininiereneeeeieseeeetese et 4
SEOTAGE. .ttt ettt ettt et ettt st e 4
INEEWOTK..c.eitiieteeteteee ettt st ettt 5

1Y R 30 Y=Y | T U 5

iii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PRONE SEIVICES....cuieeieieeieeietecteeeeteste sttt e e e e e e saessesseesaesessesseesseennnans 5
Projects and Targets.......ccccceeeeiiiiiineeeiiiniiiinnneeeinnsinnneeeeesssssasseesessssssses 7
Pieces and Parts.......cocoeeevieiiieiieieeiecee et eee e eeeetneeeeraeeenre e e 7
Creating @ ProJeCt......cciiciiiieieieeeeeeeeeeee e e s 8
Project SEIUCEUTE.....ocueiiiiiiieieeteeeeee ettt ettt et enees 9
ROOt COMEENES. ...uueiiiiieiiiieiie ettt ettt ettt e e et e e s e 9

The Sweat Off YOUT BIOW.......ccuiiriririieieineeereeteteeseseee e 10

And Now, The Rest of the Story.........ccccevverievinienierireneeeieeeeeeee 10

What You Get Out Of Ttu.c..coueiiiririieieineneeeeeen e 1

Inside the Manifest.........coccoevieiiiinininenieeecereee e 1

In The Beginning, There Was the Root, And It Was Good............... 12
Permissions, Instrumentations, and Applications (Oh, My!)........... 13

Your Application Does Something, Right?...........ccccceivinineninnnnen. 14
Achieving the Minimum........cccceeererienienienennieneneeeeeieeee e 15
Version=Control.........cccccceverereninrininineeseneeeeeseeee e 16
Emulators and Targets.......ccoceeeeveerereeienieneeteienieeeetese et seesieesveesaeees 17
VArtually TRETe.....cocveiieieieeeeeeeeee e 17
AIMING At @ TATET...ccueeivieieeieiteieeeeteete et ete et e s e 19
Creating a Skeleton Application...........cccevvueeiriineiiniinecinineeeccceennnennn. 23
Begin at the Beginning..........cccceccvererienieinieninerieeeeeseeeeee e 23
THE ACHVIEY ..eouiitirieieieeeererete ettt ettt et be e 24
Dissecting the ACHIVILY......coeeuertrirerierieieteeeese ettt 25
Building and Running the ACtivity......cccecevevievererenienienieneerieeeeseeeeeen 26
Using XML-Based Layouts.......ccooueeiiiuueiiiinneeiinnnecnnnnneeeninnmmnnnneeeeee 31
What Is an XML-Based Layout?..........cccceceeerenenieninienenenienieseeeeeeseeniens 31
Why Use XML-Based Layouts?..........ccccecererenenieneeenenenienieeeeseesieneesneens 32

iv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

OK, So What Does It Look Like?........ccccocererenirrineninenieniecnenenee e 33

What's With the @ Signs?........cccevvirinenienieininereeeeeeete e 34
And We Attach These to the Java..HOW?.......cccoeeveiiiciiceeececeee, 34
The Rest Of the StOTy......ccueieiririiieieneeeeee e 35
Employing Basic Widgets........cccoovueiiiiiiiiiineeiiiiniiinniecciinninneecceeeeeeeees 39
Assigning Labels.......cccociviririiniiiiiieeee e 39
Button, Button, Who's Got the ButtOn?.......coeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenn. 40
Fleeting IMages.ccceeeueruertenieinienienietetr ettt ettt st 41
Fields of Green. Or Other Colors........cceceveierereriesieneeeeieeieesee e 43
Just Another Box to ChecK.........ccoeieeiiiiieiieiecieceeeeeeeee e 45
Turn the Radio Up....coeeeierieniiiieeceeeeeeeetee et 48
Tt'S QUILE @ VIEW...ueiiiieieiieierieeiteteste ettt ettt e st e e e neennes 50
Padding.....c.cooverieririeieneetertereet ettt 50
Other Useful Properties.........c.ccoceverierierereerieneneeseesieseeeeeseeseeeee e 50
Useful Methods........ocvicieeciiieiieceeeeeeeee ettt ree e eane e 51
COLOTS ittt sttt ettt s e sttt sae et e e e e sateens 51
Working with CONtainers........ccoovveeiriiueiiiiieeiiiineeeniiiecineeeensscsnnnnene 53
Thinking LIN€AT]Y......coceeterieririeieneeteteeseeeeeses et 54
Concepts and Properties.........ccoceveeveririrenienienieieeneneseeneeseseseeseeeens 54
EXQMIPLE...cueiiiiiiiiiniiiieieneete ettt ettt n 57
The BOX MOdel.......cooiiiiiiiiiiicircercreeeeeeeeeee e 62

All Things Are Relative........cc.ecveiririnienierieieerenienietee et 64
Concepts and Properties...........cocceeeeveereeineeneeneeeeeeeeeseeseennene 64
EXQMIPIE...iuiiiiieieieiesee ettt 67
OVETIAP ...ttt 69
TabULA RASA.....eeiueiirieeteeieecieecieeete ettt et te e reesreeeteeebe e areeeeareeeens 71
Concepts and Properties........ccccueeeceerereeeerieresreeseesesesseessesesseeseenns 72

v

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

EXQMIPIE...niiiiiiiiiieee ettt 74

SCIOIIWOTK. ...c.eeetetieiieteteceeee ettt st s aaaeens 75
Using Selection Widgets.........ccceevvvuuiiiiiniiiininneinnnnneecieinninnnnnneeeeenn 79
Adapting to the CirCuUmStanCes..........coecevveeerreereereeereeeseeeseeneeereeeneenne 79
USINgG ATTayAdQPLer.....c.ceeeuirieieieienierienieeeeeieneeste et 8o

Lists of Naughty and NiCe........ccecevererenieniniinineneeneeeeeeeree e 81
Selection MOdES........cveeeierererierienerteese ettt se e e aeesaeeeas 83

SPIN CONLTOL....uiiiiiieiieteeetee ettt ae s e e e eneeens 85
Grid Your Lions (Or Something Like That...)....ccccccooerrennenenenieieienne. 89
Fields: Now With 35% Less Typingl.......ccccoeveverenenenenenneneneneeneeneenne 93
Galleries, GIVe Or TaKe The ATT.....uuuu i eoeees 97
Getting Fancy With LiStS........ccciiiiiieeeiiiniiiiieeciiinninnecccennsnneeeeeeeeee 99
Getting To First Base......coceevueeiiiriiiieiieeeeeeeteete ettt 99

A Dynamic Presentation.......ccceceeeeerriiieieeniieniieereeeee et 102
Inflating ROWS OUISEIVES.........cocveriiririeniinieteieneeeeeeete et 104

A Sidebar About Inflation..........cccceeeveeiiecieecieeieeeceeeee e 104

And Now, Back To OUr Story......ccccecerievienerierrienenentenieeeeeieeeeenn 106

Better. Stronger. Faster.......cociiiiieiiieieeeeeeeee e 107
USING CONVETTVIEW.....eiiuiiiiiiiinienteeiteete et ettt sttt st 107

Using the Holder Pattern..........oceveveriinieneninnienenenteseneseeiee e 109
Interactive ROWS.......cccoouiiiiiiniiniiiiiiiiiccrccccee e 12
Still More Widgets and Containers..........cccooveeeriiunneeeeeceeieniiiissnnneneee 119
Pick and ChOOSE........cccveiieeiieieieceectestee ettt sse e e s 19
Time Keeps Flowing Like a RiVer........cccecerirervienenieniienenenieienieeieenne 124
Seeking ReSOIULION........ccccveruirieieiiieeeee et 126
Putting [t On MY Tab.......ccocvivieriiiiinieeeeeeetete e 127
THE PIECES.....eiiieieieieeeeee ettt s 128

Vi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

WIiring It TOether.......cooivieviiiirieireee et 129

Adding Them Up....c.cceiiiiieeeneseietecetse et saees 132
Flipping Them Off.........ccooiiririieeeeeee et 136
Getting In SOmebody's DIawer.........cccceevverienierinienenenientereeesesiese e 141
Other Good StUff.........cocerieieieereeeeeee e 145

The Input Method FrameworkK..........cccccceeeeiiiiiinneeeciiiiiinieeeneeeneeennnnne. 147
Keyboards, Hard and Soft..........ccceeeriririeninieeeceneeeeeeeeeeeesee e 147
Tailored To YOur Needs.........ccvecuieiriecrienieesieeireecteeere ettt eere e e e 148
Tell Android Where It Can GO......ccoeeevieriererieerienereeserese e 152
FIEENG TNttt e e 154
Jane, Stop This Crazy Thing!l.........ccevevirvirneniiniieneneetecereeeeee e 156

APPlying Menus.......ccoovuueeiiiiiiiineeeiiiniiinieeeecensiiis e 159
FIavors Of MENU.....c..coiiierieririeierieneetesiesestete sttt st s 159
MeNUS Of OPLIONS....ceeuieuirierririirierieneetere st stertesteseesteesteeseeeesseeseeesseenns 160
Menus IN CONEEXL..c..couiriiririiiiiinieteieeetcree et 162
TaKing @ Peek.....coouiruiiiiiiiieeeee ettt 163
Yet More INflation......c.ecceereeerinenincineenenecneeneeestee e 168

Menu XML SEIUCLUTE......eccveieieeereeecieesiereecreeereesaeeeeeesreesveesveesnnns 169

Menu Options and XML.......cccccevererenieninenenenenieneeneesieseeseeeseeene 170

Inflating the MenU.........coceveriiiininieieieeeeeeeeeeeee et 171

0 0 L N 175
Love The One You're With........ccoecveeieiiieiieeceeeceeeee e 175
Here a Glyph, There a Glyph.......cccoceviveniiininieneeeeseeeeee e 179

Embedding the WebKit BrowSer..........cccocvveiiriiueiininneeeiiciiniiiinnnnneeeee 181
A Browser, WTITt STNQAll...ccoo oo e ee e e e e e e eeeaeeens 181
LOAdINg Tt UP..couiiiriiieieieirieniesietetetee ettt ettt et s 184
Navigating the Waters........ccceceeirirenienieiinenenereeeeeniesie et 185

vii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Entertaining the CHent........cccocoviririiiininineereeece e 186

Settings, Preferences, and Options (Oh, My!)......cccceverievirinenieenenennenne. 188
Showing Pop-Up MesSages........coueiiviuuiiininneiininnneecnnnneeineeeemneeennns 101
RAISING TOASES...cueeieieiieriieriieneerteteree ettt sttt st s s s 101

FaN (S I =] PSSR 192
Checking Them OUt.........coeeuevirirenienieieieereseeet et 193
Handling Activity Lifecycle Events...........ccccevvivnnneeiiiiniiinnneccccniiinnnne 197
Schroedinger's ACHIVILY......cceererierierteieereresee ettt 197
Life, Death, and Your ACtiVity.......ccooceverrierienenerienenestesiese e sae e 198
onCreate() and ONDESLIOY().....cceeerueerererirerieenieeree et 198
onStart(), onRestart(), and onStop().....ceceevrreverrererreseseereneeeruennas 199
onPause() and oNRESUME()......ccoocvvevuiieieniiiiecieeeeeee e 199

The Grace of State.......cceorerererieneineceeeeeteeee e 200
Handling Rotation..........uueeiiiiiiiiineciiiiiiineeccinniineecccssssneeeeeeeeeees 203
A Philosophy of DeStruction..........cecuevuerereenienenersienienentereeneseeseeseeeane 203

It's All The Same, Just Different.........cccceeveereeceeseeneeneeceeseeecreeeeeeeeens 204
Picking and Viewing a Contact.......c..cceceverveeveenerieenienenenneeneeseeenes 206

SavIng YOUT State.....c.cocieiieiiiiieieteeeee ettt e 208

Now With More Savings!.......cccecerverierirerenienieieeneneneneeesesiesie e seeeeeens 21
DIY ROTQtION...cciiiiiiiieiiieriiiteeieieeeeiteessieeeseireesesareeessbneeeessssssssssssseeees 213
...But Google Does Not Recommend This........ccccceceveverererereennnnee 216
FOrcing the ISSUE......cceviiiiririeieicec ettt 217
Making Sense of it All.........cccoeririnienirinineneee e 219
Dealing with Threads........ccccoovutiiviuiiiiiiiiininieiininicineeccnneeeeeeeen. 221
The Main Application Thread...........cocceveveneniniininenerieneeeeeeeeee 221
Making Progress with ProgressBars..........ccccocevevenieciecenenensieneeneeee 223
Getting Through the Handlers..........cocooeveniiininniniineeeeeeee 224

viii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

IMESSAEES....uveeureeureerieteeieeieetteete et et et et et e bt et e s s eseneee s 224

RUNNADIES.cuiiiieieieieeieseeee ettt st 228
Where, Oh Where Has My UI Thread Gone?..........ccceceverereenerneennnens 228
AsyNCing FEeling........cocevuevieiiininiiieieeneieee ettt 228

The TREOTY..c..iiiieieeeeee et 229

AsyncTask, Generics, and Varargs........c.coeeeeeeereeereeenreneeneeneennennen 230

The Stages of ASyncTasK.......ccceceeeruerierrinenenerieeen e 230

A SAMPIE TaSK...cuieieeeieiieieieeeeee et s 231
Threads and ROtation........c.ccecererierieneneeereneeteesee e 236

Manual Activity ASSOCIAtION.coeruerieirerierienieieteerese et 237

FIOW Of EVENTS...cciiiiieiiciecieetecteee ettt 240

WHhY This WOTKS......eeeiiiriieeeiireeeeceseece ettt 241
AN NOW, The CaV@atsS....uueeeeiieeeeeeeeeeeeeeeeteeee e eeeeeteeeesseessreeeeeeeeeseseeeeeees 242

Creating Intent Filters.........ccooeeiiiiiiiineeiiiiiiiinnneeiiinniineeeecceeeeeeeeee 243
What's YOUT INTENE?......ccciiiieciieeieeeeceeceee et es e e e e e e veeeesnnee e 244

Pieces Of INEENES......ccceeciieiieieeie ettt 244

Intent ROULING.....coooiiiiiiiiieeieeeereeeer ettt 245
Stating Your INtent(10MS).......ccerveveeiererierereereenieieseesseessesesseessesesesessens 246
INQITOW RECEIVETS...c.uviieieeeieiiiieeieesiee et ssieeesteseteesseesstessseessessssaesnnns 248
The Pause Caveal........ccveeeeieerieenieeseereeseesreesteeseeesseeseesseesseesssessesssesnnns 249

Launching Activities and Sub-Activities........cccccceverrvvuereeneeenneenennnnnnne 251
Peers and SUDS........ccociiiiiieieececeese et st ens 252
Start 'EM UP...coiiieiieieierieeeeteeeetetesiestete ettt st s 252

Make an INEeNt......ccceeciieeiieierieeiieieete et ee et e s reeeeaeeesneeeenns 252

Make the Call.......ccveeieeeeieieeeceeece e 253
Tabbed Browsing, SOrt Of.........ccocevirerierieiinirereeeeeseseeeeeeee e 257

ix

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

AccesSing Files......uuiiiiiiiieiiiiiniiiieiiiiinieecccinceeeeeeeeeeeeeaaes 265

You And The Horse You Rode In On.......ccceeevecieneceeciesieceeiececeeeeeeenn 265
Readin' ' WItIN ...cc.coieieeceeeeseeeeeeeee ettt 269
Working with Resources..........coouueiiviieiiiineeiinineinnnneeennneecnnneeen. 275
The ReSoUrce LINEUP......cccoeveeieriiririeierieneeteteseeeeeesee e eeeeesseesseens 275
SEING TREOTY.c..ervieeieiieeieeree ettt st sae e 276
Plain SEIINGS....cveeeuieeenieieireeiereee ettt 276

String FOrmats.....cceeeeeiienieieeeeeeeeeee et 277

N7 (<Te B =D SRR 277

Styled Text and FOrmats.........cceceeererienienieninenenieeseeceeeesee e 278

GOt the PICtUre?.....c.oouiiiiiiieieeeeeetee ettt 282
XML: The ReSOUICE Way......ccoeeeuirrienieneeieienieeeeiesieseee e e sveesnee e 284
MiScellaneous VAlUES...........coveeeveeereeeieeeeee ettt e e eeeveeee e 287

D0 0SS 013 (o) o TSP 287
COLOTS.ceiiiiieietetee ettt ettt st e 288

ATTQYS ettt ettt ettt e st e st e s bt st e e e st e e s s nraeeas 289
Different Strokes for Different Folks..........ccceoeevvevieninceecrenieeieeceeeieene 290
Using Preferences..........oueiivieiiniiieiiniinecininiecineccnnneccssnnnnenees 297
Getting What YOU Want......c..coevieiieirinenieniececneneeeceese s 297
Stating Your Preference..........cooeeeevierieneniesieneniniesieneseeieesee e 298
And Now, a Word From Our Framework...........ccocoeevecveveenieccreennnenee, 299
Letting Users Have Their Say........cocvveverierieinenenienerteeseeieseesie e 300
Adding a Wee Bit O' StIUCLUTE.......cc.eoveiruirrirrerieieeeerieneee et 305
The Kind Of Pop-Ups YOu LiKe.......cccocovivinienienieininenieieeeeeese e 308
Managing and Accessing Local Databases..........cccoovvueeeeeiiiiiiciieinnnnnnne 313
A Quick SQLIte Primer......ccecereieeierieeeieierieseeeestesieeeeeeseeeeveesaeesseesnnens 315
Start at the Beginning.........cccecceeeuerenieniniineneniesieceesesese e 316

X

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Setting the Table........ccociveririiiiiirieeeee e 319

MaAKIN' DAta...cvicveereiierieeieierieeeetese e et e sae e eeeaeste s e e saesseeseeaessessessaenseens 319
What Goes Around, COmes ATOUN.......cceeeeereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 321
RAW QUETIES.....eioiiieiieiiieeite ettt sttt sbe e st e sbee s eee s eaes 321
Regular QUETIES......cccoerueriirieieieieeree ettt 322
Building with Builders........ccccoceverieniiniiininineeeeeeeeeeenee 322

USING CUISOTS..ccuiiriienieieeniiereenieeeeesteseesiee e see e esneee e e smeeesenees 324
Custom CUTrSOTAAAPLETS....cc.vecvireereeeierieeeeienteeeeeeteseeeseesesseeseesenes 325
Making Your OWn CUTSOTS......cccetrerueruenienieenenrenrenreneeeseesesseseesnees 326

Flash: Sounds Faster Than It IS.......ccccecvevievienenenieieseeeeceseeeee e 326
Data, Data, EveryWhere........ccccocioviinirinnienineeeeeeeeetee e 327
Leveraging Java Libraries..........cccovvviiueeiiiiniiiineeccinnniiinnincccccce, 329
ANES AN JATS ittt ettt sttt st 329
The Outer LIMILS......ccoeieieriererieierieeeetesieeeetesee et e s eeesaee e e saeeenees 330
Following the SCript.....c.coeeiiviereririerenerteeeeteeee et 331
Reviewing the SCIriPt......cocecereriiiienenireesestee et 336
Communicating via the Internet..........ccooceeevivueiiriiieeeiiiiinniiiinnnnnnneee 339
REST and RelaxXation.........cccecevirriereneniienienentesieneseetese s 339
HTTP Operations via Apache HttpClient..........ccceceveverenieniereennen. 340
Parsing ReSPONSES......c.cceeeieiriiiiiieeieieeeeeeeeee et 342

StULT TO CONSIACT......oeeeeeeereceeecteeeteecee et e et et eetreeesreeeetreeenes 344
ANdroidHttPCHENT....c.ceirieieieieeeerererieeetetee et 345
Services: The Theory.........civiiieiiiiiiiiiiieeiiiieeece e 349
WY SEIVICES?...ccueiiiiieienieeitetesteet ettt sttt sae e 349
Setting Up @ SEIVICE........cccuiviiiiiiiiiiiiiiiiciec e 350
The Service Class.......cciiveeierierieeieieieseeeete et e e ste s eeesreesaeesseeens 350
Lifecycle Methods.........coccoueieirininienieiiineseeeeteseeeee e 351

Xi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Manifest ENtry....ccooeirenereieieeneseeeeeesee ettt 351

Communicating TO SEIVICES.......cccuereerirreeneeneenieeneenreesreee e esreeesneees 352
Sending Commands with startService()........coceeeeeverevereeeeeeseeneensns 352
Binding with bindService().......cecuvvereruererieirieerieereeeeeeeeee e 354

Communicating From Services.........ccoccvverrerniniensensenienieneeneeneeenae 355
Callback/Listener ObJectS........cceeruerienieneerererenienienieeeeseeseeseeneeeens 355
Broadcast INtENLS.......ccveereereririeriereeeeeese ettt 356
Pending ReSUlts.......cccoeeverieiiiinineeeeeeeeete e 357
IMESSEIIGTeermeereeieeniierie sttt see st sttt e e snee e s e e e e semeeens 357
INOUIICALIONS. .. euveeeeeierieeteterte ettt sre et e seesae e eeteesnaeesseesnseenne 358

Basic Service Patterns.........ooiiiiiemmuunniiiiiiiiniiiiiiiiinuesinceenninneceessannns 359

The DOWNIOAET......cceeieieiieeeieiereeteese ettt es 359
The DeSIGN...cccuieuiiieriiriiieneneeterere ettt ettt st 359
The Service Implementation.........cecceeverereeriereneeriereneeeeseee e 360
USING the SEIVICe.......cocviviiririeierenteierentetese sttt 363

The MUSIC Player.......cccceviririiienieneeieseetetese st saee e 364
The DESIGN...cuiviiieieiriieirieiee ettt ettt ettt s ae e 364
The Service Implementation..........coceeceevuerereerienenensieneeseeeseeseenns 365
USINg the ServiCe.......ociviririenieninieireieteeseserese e 366

The Web Service INterface.........ccceevvieieecieecieeiieieeieeieeeeereere e enee s 368
The DeSIGN...cuirieieieiiriinieieete ettt ettt 368
The Rotation Challenge..........ccocveverieniecineninenierereeesesese e 369
The Service Implementation...........ceceverererenienirenienenieneeeeee e 369
USING the ServiCe......coivivirienieinieieseieteeeese ettt 373
Simplification Strate@ies.........ccceevevereereenirerenienierieeeeeese e reeeeeenees 381

Alerting Users Via Notifications........ccccveevvveeeiinniiniiiiiiiiiiiiiiininnnnnnnnn. 383

Notification Configuration..........ccceeueveeerererieninseneneneneeneeesese e 383

Xii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

[COMIS ettt ettt ettt s sttt e e e e e e e s s e aaeeee 385
Notifications iN ACHION......cecirereeriereeee ettt et eee e ae e s e e 386
Staying in the Foreground...........ccccocevevienirineninienieinineneieeeesceeee 390

FakePlayer, RedUX........ceceeuerieieiininirieieineeeeeteeeeeee e 391

Requesting and Requiring Permissions..........ccoecceeeiiiiiiinueeecennennennnns 395
MOther, May L7......cooiieieieeeeeeeeseete ettt st e s 396
Halt! Who Goes There?.......ccooveviieeeieiereeeeseseecee et 397

Enforcing Permissions via the Manifest........c..cccccevererenenennnennee. 398

Enforcing Permissions Elsewhere.........cccocoveiiiiininninennnncnen. 399
May I See Your Documents?..........cceeeieeieineienniienieeneeeeesseeeseee e 399

Accessing Location-Based Services...........cccevveineeeeiiniiiinnneccciniiinnneee 403
Location Providers: They Know Where You're Hiding..........ccccceueen..... 404
FInding Yourself........ccocoieinininnneeereseeeeeeeeee et 404
(O 318 s LI\, (o T USSP 406
Are We There Yet? Are We There Yet? Are We There Yet?................. 408
Testing... TESTING....cueeeuiiriieeieee ettt e et e s reeee e 409

Mapping with MapView and MapACtivity.......cccccevvvruueereeereeeeeenneennnnn. 411
Terms, Not Of ENA@arment..veceeeeveeieeeeeeeeeeeeeeeeeeereeeeseeeeeeesaeeeseseeesens 411
PIlING OMlcceiiiiiiieiieieeeteeeetete ettt ettt st 412
The Key To It All....coueiiieieieeeeeeeeeeee ettt 412
The Bare BONES.......cc.couieiiieiiiicieieteceeeete ettt s ve e s 414

OPptional Maps.....cccceevieririririenienieteteeeesie ettt sttt see e saee s 416
Exercising Your CONtrol..........coceverereinienenienienieneneesieeeieesee e 416

/003 1 s VE U SE 417

QS 1<) USRS 417
RUGZEA TOITAIN. ..c..eieiiieiieiirietetece ettt sttt 418

xiii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Layers Upon Layers........ccccociiiiiniiiiniininiiiiiniiciicccccccees 418

OVETlay ClasSes.......coivueruerieiririnienierteeetee ettt et et e e e e saeens 419
Drawing the ItemizedOverlay...........ccccocerinenenninininenienieneeiee 419
Handling Screen Taps......ccceeverievieirinienenieineniesieseeeeese e 421

My, Myself, and MyLocationOverlay..........cc.ceceeererernrenenenieneecneneenne 421
RUGZEA TOITAIN. ..c..eouiieieieierierieeetete ettt ettt 423
Handling Telephone Calls.........cccoovueiiiiiiiineeiiiiiiinnneeciinniiineeecceeeeee 425
Report To The Manager........ccccoevererueneneenieninereniesienteeeeee e see e saees 426
You Make the Calll......cc.ooouieciiiieeeeeeeeeee e 426
No, Really, You Make the Calll........ccccoirimininiinininierencereeee, 429
Development TOOIS......ccociiiiiiiiiiiiniinnneeeeeeietiieieiinenneenenssseseesseseeennsssees 431
Hierarchical Management...........coccoueveeererienienienieeeeneneeeeeee e 431
Delightful Dalvik Debugging Detailed, Demoed..........cccceccevuerueruennnen. 438
LOGGING.c..eioueirierieieeetere ettt ettt s 440

File Push and Pull..........coovioiiiiiiieeeceeteeeee e 441
SCIEENSNOLS.....uiiiieieeteeie ettt e ste e te et e et e ebe e saeeenes 442
Location UPdAtes.......coccevueruererienienieieienieeeetesieseeteseessveessessseenns 443
Placing Calls and MeSSages........ccccevververerienienereenienenessieniesseeesanens 444

Put It On MY Card......ccceoveieirinieieieinesesienie ettt see e 448
Creating a Card IMage.......cccceceevuererierienineeiereseetee et 448
"Inserting” the Card........c.ccocevererieieinineeeeeeee e 449
Handling Multiple Screen Sizes...........ccoooveiivineeiinineeiinineecciiinnninnnn. 453
Taking the Default.........ccoeverieiiiiiniinieeeeee et 454
WHhOIE N ONE.....uiceiiiiiicieeieeseeeees ettt nae e 455
Don't Think About Positions, Think About Rules.......................... 456
Consider Physical Dimensions..........ccccecererierieineneseneneereseneenaens 457

AvOid "Real” PiXels......cccceeeeeiieiiiieeieeieeeecteeeeeee ettt e 457

Xiv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Choose Scalable Drawables...........ccoeieeecierineeiereseeeeceseecee e 458

Tailor Made, Just For You (And You, And You, And...)....cc.ccevveuenn... 458
<SUPPOTES-SCICEIIS >eueeuerenreeententeuessessessententestesessessenteneeneessesnsesneas 459
Resources and ReSOUICE Sets........cceevveeveeeeeveeeeereeeeeeeeereeeeneeeens 460
FINAing YOUT SiZ€...c..oouiriiieiiiiieieeeeeneeeete et 461

Ain't Nothing Like the Real Thing.........cccceevevirenenenniniineneesieneeiee 462
Density DIffers......cccceverirrierineriereresteseee ettt 462
Adjusting the Density.......cccccceeeeerenenienineneneereererese e 463
Accessing Actual Devices........c.coevuevererenenienineninenereeeceeeeee 464

Ruthlessly Exploiting the Situation..........ccceceeeeerenienensenrieneeeneeeene 465
Replace Menus with BUttons.........ccceceevieneniecienenenierieeieenieeieenne 466
Replace Tabs with a Simple ACHIVItY.....ccecevevereerereeriereeneeeceenienns 466
Consolidate Multiple ACtiVities........ccccerverrerriererieriienieenieereeenee e 467

EXample: EUZAYOU....cooiiieieieeieiesieeecte ettt s 467
The FirSt CUt..ccceeiiecieeeeeieseereeceeseese e este e seeeesevaeesereeeearaeeensee s 468
Fixing the FONES.....cociiviiririeieieec e 474
Fixing the ICONS.....cocuirieriiiiieeetee e 477
USING the SPaCe.....coievierieieienieeeeeee et 477
What If It IS NOt @ BIOWSEI?......ccovieevieereeereereereenreeeteeeeenreeenareeensneeen 480

Dealing With Devices.........cccvvvuuiiiriuieiiiiniiiniinieinineeinnnseeeeeceenens 483

This App Contains Explicit... InStructions........c.cccceeeeereeereeneerenennens 483

Button, Button, Who's Got the Button?........ccccoeevvvveeeviiviieeeeeeeeeeeeennnns 485

A Guaranteed Market...........eecveeereeiecenieeeeieeeeeese e 485

The Down and Dirty Details.......ccccoueeieirinenenienineniresieseeeeieseeene 486
ARCHOS 5 Android Internet Tablet..........cccceceverenenenensieneenenee. 486
Motorola CLIQ/DEXTccoieeieiieerieereeereeereerreeereeeseesireeeeeseeesereeeenns 487
Motorola DROID/MIileStone..........c.ccceevueeeeeceeecieeieeeeeeeeeeeee e 488

xv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

GoOogle/HTC Nexus One......cc.coueirererienieieeninenieseesieeseeseesieesee s 488

Motorola BACKFLIP.........cceiieieierieeeeieieeeeeete e ve e e 489
Handling Platform Changes.........ccooceeiviuuiiininiiiininneinnnnnecnnnnneeeeeeen 491
Brand Management..........ccceeruerienierieenenienieieteeste e steseees e sseseesaeseeessens 491
More Things That Make You Go "Boom"........c.ccceceeerenenenenennicneennen. 492
View Hierarchy......cocooeoeiininieniiieinieeeeeete e 492
Changing ReSOUTICeS.......cc.coerverierirenenieieieeeeereete e 494
Handling API Changes..........coccveruerirninenenienieietnesieseeteeeesee e 494
Minimum, Maximum, Target, and Build Versions...........cccccc.c...... 495
Detecting the Version.........ccccceeceerereniennineneneneeeeeseseseeseeeeenees 497
Wrapping the APL......coooiiiiriieeeeeeee et 498
Where Do We Go From Here?...........ccccceviiiiiiiiiiiiiiiiiiiininiinnnnnsccensnneenens 505
Questions. Sometimes, With ANSWeTS.........cccecevvierienierieeneneneenenenenne 505
Heading to the SOUICe........ccccoivuirieiiiiriniceeeneeeeeeee e 506
Getting YOUr News FiX......coviiiiiiiiiiiniieeeeeeeieceee et 507
xvi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Welcome to the Warescription!

We hope you enjoy this ebook and its updates - subscribe to the
Warescription newsletter on the Warescription site to learn when new
editions of this book, or other books, are available.

All editions of CommonsWare titles, print and ebook, follow a software-
style numbering system. Major releases (1.0, 2.0, etc.) are available in both
print and ebook; minor releases (0.1, 0.9, etc.) are available in ebook form
for Warescription subscribers only. Releases ending in .9 are "release
candidates” for the next major release, lacking perhaps an index but
otherwise being complete.

Each Warescription ebook is licensed for the exclusive use of its subscriber
and is tagged with the subscribers name. We ask that you not distribute
these books. If you work for a firm and wish to have several employees have
access, enterprise Warescriptions are available. Just contact us at
enterprise@commonsware.com.

Also, bear in mind that eventually this edition of this title will be released
under a Creative Commons license - more on this in the preface.

Remember that the CommonsWare Web site has errata and resources (e.g.,
source code) for each of our titles. Just visit the Web page for the book you
are interested in and follow the links.

You can search through the PDF using most PDF readers (e.g., Adobe
Reader). If you wish to search all of the CommonsWare books at once, and

xvii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

mailto:enterprise@commonsware.com
http://wares.commonsware.com/

your operating system does not support that directly, you can always
combine the PDFs into one, using tools like PDF Split-And-Merge or the
Linux command pdftk *.pdf cat output combined.pdf.

xviii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.pdfsam.org/

Preface

Welcome to the Book!

Thanks!

Thanks for your interest in developing applications for Android!
Increasingly, people will access Internet-based services using so-called
"non-traditional" means, such as mobile devices. The more we do in that
space now, the more that people will help invest in that space to make it
easier to build more powerful mobile applications in the future. Android is
new - Android-powered devices appeared on the scene first in late 2008 -
but it likely will rapidly grow in importance due to the size and scope of the
Open Handset Alliance.

And, most of all, thanks for your interest in this book! I sincerely hope you
find it useful and at least occasionally entertaining.

Xix

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Prerequisites

If you are interested in programming for Android, you will need at least
basic understanding of how to program in Java. Android programming is
done using Java syntax, plus a class library that resembles a subset of the
Java SE library (plus Android-specific extensions). If you have not
programmed in Java before, you probably should learn how that works
before attempting to dive into programming for Android. Here are a list of
concepts in Java with which you should be familiar, with links to coverage
of the concept in the Java programming WikiBook:

+ Language fundamentals (flow control, etc.)
« Classes and objects

« Methods and data members

+ Public, private, and protected access modifiers
« Static and instance scope

« Exceptions

+ Threads and concurrency control

« Collections

« Generics

- Filel/O

+ Reflection

« Interfaces

The book does not cover in great detail how to download or install the
Android development tools, either the Eclipse IDE flavor or the standalone
flavor. The Android Web site covers this quite nicely. The material in the
book should be relevant whether you use an IDE or not. You should
download, install, and test out the Android development tools from the
Android Web site before trying any of the examples listed in this book.

Some chapters may reference material in previous chapters, though usually
with a link back to the preceding section of relevance. Also, not every
sample shown has the complete source code in the book, lest this book get

XX

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://developer.android.com/sdk/index.html
http://en.wikibooks.org/wiki/Java_Programming/Interfaces
http://en.wikibooks.org/wiki/Java_Programming/Reflection
http://en.wikibooks.org/wiki/Java_Programming/BasicIO
http://en.wikibooks.org/wiki/Java_Programming/Generics
http://en.wikibooks.org/wiki/Java_Programming/Collections
http://en.wikibooks.org/wiki/Java_Programming/ConcurrentProgramming
http://en.wikibooks.org/wiki/Java_Programming/Threads
http://en.wikibooks.org/wiki/Java_Programming/Exceptions
http://en.wikibooks.org/wiki/Java_Programming/Using_Static_Members
http://en.wikibooks.org/wiki/Java_Programming/Access_Modifiers
http://en.wikibooks.org/wiki/Java_Programming/Data_and_Variables
http://en.wikibooks.org/wiki/Java_Programming/Methods
http://en.wikibooks.org/wiki/Java_Programming/Classes_and_Objects
http://en.wikibooks.org/wiki/Java_Programming/Language_Fundamentals

too large. If you wish to compile the samples, download the source code
from the CommonsWare Web site.

Warescription

This book will be published both in print and in digital (ebook) form. The
ebook versions of all CommonsWare titles are available via an annual
subscription - the Warescription.

The Warescription entitles you, for the duration of your subscription, to
ebook forms of all CommonsWare titles, not just the one you are reading.
Presently, CommonsWare offers PDF and Kindle; other ebook formats will
be added based on interest and the openness of the format.

Each subscriber gets personalized editions of all editions of each title: both
those mirroring printed editions and in-between updates that are only
available in ebook form. That way, your ebooks are never out of date for
long, and you can take advantage of new material as it is made available
instead of having to wait for a whole new print edition. For example, when
new releases of the Android SDK are made available, this book will be
quickly updated to be accurate with changes in the APIs.

From time to time, subscribers will also receive access to subscriber-only
online material, both short articles and not-yet-published new titles.

Also, if you own a print copy of a CommonsWare book, and it is in good
clean condition with no marks or stickers, you can exchange that copy for a
discount off the Warescription price.

If you are interested in a Warescription, visit the Warescription section of
the CommonsWare Web site.

You can find out when new releases of this book are available via:

« The cw-android Google Group, which is also a great place to ask
questions about the book and its examples

« The commonsguy Twitter feed

XXi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://twitter.com/commonsguy
http://groups.google.com/group/cw-android
http://commonsware.com/warescription.html

« The Warescription newsletter, which you can subscribe to off of
your Warescription page

Book Bug Bounty

Find a problem in one of our books? Let us know!

Be the first to report a unique concrete problem in the current digital
edition, and we'll give you a coupon for a six-month Warescription as a
bounty for helping us deliver a better product. You can use that coupon to
get a new Warescription, renew an existing Warescription, or give the
coupon to a friend, colleague, or some random person you meet on the
subway.

By "concrete" problem, we mean things like:

« Typographical errors

« Sample applications that do not work as advertised, in the
environment described in the book

« Factual errors that cannot be open to interpretation

By "unique", we mean ones not yet reported. Each book has an errata page
on the CommonsWare Web site; most known problems will be listed there.
One coupon is given per email containing valid bug reports.

We appreciate hearing about "softer" issues as well, such as:

« Places where you think we are in error, but where we feel our
interpretation is reasonable

« Places where you think we could add sample applications, or
expand upon the existing material

« Samples that do not work due to "shifting sands" of the underlying
environment (e.g., changed APIs with new releases of an SDK)

However, those "softer" issues do not qualify for the formal bounty
program.

xXii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://wares.commonsware.com/

Questions about the bug bounty, or problems you wish to report for bounty
consideration, should be sent to bounty@commonsware.com.

Source Code And Its License

The source code samples shown in this book are available for download
from the book's GitHub repository. All of the Android projects are licensed
under the Apache 2.0 License, in case you have the desire to reuse any of it.

If you wish to use the source code from the CommonsWare Web site, bear
in mind a few things:

1. The projects are set up to be built by Ant, not by Eclipse. If you wish
to use the code with Eclipse, you will need to create a suitable
Android Eclipse project and import the code and other assets.

2. You should delete build.xml, then run android update project
-p ... (where ... is the path to a project of interest) on those
projects you wish to use, so the build files are updated for your
Android SDK version.

Creative Commons and the Four-to-Free
(42F) Guarantee

Each CommonsWare book edition will be available for use under the
Creative Commons Attribution-Noncommercial-Share Alike 3.0 license as
of the fourth anniversary of its publication date, or when 4,000 copies of
the edition have been sold, whichever comes first. That means that, once
four years have elapsed (perhaps sooner!), you can use this prose for non-
commercial purposes. That is our Four-to-Free Guarantee to our readers
and the broader community. For the purposes of this guarantee, new
Warescriptions and renewals will be counted as sales of this edition,
starting from the time the edition is published.

This edition of this book will be available under the aforementioned
Creative Commons license on 1 November 2014. Of course, watch the
CommonsWare Web site, as this edition might be relicensed sooner based
on sales.

XXiii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.apache.org/licenses/LICENSE-2.0.html
http://github.com/commonsguy/cw-android
mailto:bounty@commonsware.com

For more details on the Creative Commons Attribution-Noncommercial-
Share Alike 3.0 license, visit the Creative Commons Web site.

Note that future editions of this book will become free on later dates, each
four years from the publication of that edition or based on sales of that
specific edition. Releasing one edition under the Creative Commons license
does not automatically release all editions under that license.

Acknowledgments

I would like to thank the Android team, not only for putting out a good
product, but for invaluable assistance on the Android Google Groups.

Icons used in the sample code were provided by the Nuvola icon set.

xXXiv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.icon-king.com/?p=15

PART | - Core Concepts

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 1

The Big Picture

Android devices, by and large, will be mobile phones. While the Android
technology is being discussed for use in other areas (e.g., car dashboard
"PCs"), for the most part, you can think of Android as being used on
phones.

For developers, this has benefits and drawbacks.

On the plus side, Android-style smartphones are sexy. Offering Internet
services over mobile devices dates back to the mid-1990's and the Handheld
Device Markup Language (HDML). However, only in recent years have
phones capable of Internet access taken off. Now, thanks to trends like text
messaging and to products like Apple's iPhone, phones that can serve as
Internet access devices are rapidly gaining popularity. So, working on
Android applications gives you experience with an interesting technology
(Android) in a fast-moving market segment (Internet-enabled phones),
which is always a good thing. Plus, Android is being deployed to tablets,
televisions, and other types of products beyond phones.

The problem comes when you actually have to program the darn things.

Anyone with experience in programming for PDAs or phones has felt the
pain of phones simply being small in all sorts of dimensions:

+ Screens are small (you will not get comments like, "is that a 24-inch
LCD in your pocket, or...?")

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Big Picture

« Keyboards, if they exist, are small

Pointing devices, if they exist, are annoying (as anyone who has lost
their stylus will tell you) or inexact (large fingers and "multi-touch”
LCDs are not a good mix)

« CPU speed and memory are tight compared to desktops and servers
you may be used to

« Andsoon

Moreover, applications running on a phone have to deal with the fact that
they're on a phone.

People with mobile phones tend to get very irritated when those phones do
not work. Similarly, those same people will get irritated at you if your
program "breaks" their phone:

« ...by tying up the CPU such that calls can't be received

« ...by not working properly with the rest of the phone's OS, such that
your application does not quietly fade to the background when a
call comes in or needs to be placed

« ..by crashing the phone's operating system, such as by leaking
memory like a sieve

Hence, developing programs for a phone is a different experience than
developing desktop applications, Web sites, or back-end server processes.
You wind up with different-looking tools, different-behaving frameworks,
and "different than you are used to" limitations on what you can do with
your program.

What Android tries to do is meet you halfway:

+ You get a commonly-used programming language (Java) with some
commonly used libraries (e.g., some Apache Commons APIs), with
support for tools you may be used to (Eclipse)

« You get a fairly rigid and uncommon framework in which your
programs need to run so they can be "good citizens" on the phone

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Big Picture

and not interfere with other programs or the operation of the phone
itself

As you might expect, much of this book deals with that framework and how
you write programs that work within its confines and take advantage of its
capabilities.

What Androids Are Made Of

When you write a desktop application, you are "master of your own
domain". You launch your main window and any child windows - like
dialog boxes - that are needed. From your standpoint, you are your own
world, leveraging features supported by the operating system, but largely
ignorant of any other program that may be running on the computer at the
same time. If you do interact with other programs, it is typically through an
API, such as using JDBC (or frameworks atop it) to communicate with
MySQL or another database.

Android has similar concepts, but packaged differently, and structured to
make phones more crash-resistant.

Activities

The building block of the user interface is the activity. You can think of an
activity as being the Android analogue for the window or dialog in a
desktop application.

While it is possible for activities to not have a user interface, most likely
your "headless" code will be packaged in the form of content providers or
services, described below.

Services

Activities are short-lived and can be shut down at any time. Services, on the
other hand, are designed to keep running, if needed, independent of any

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Big Picture

activity. You might use a service for checking for updates to an RSS feed, or
to play back music even if the controlling activity is no longer operating.

Intents

Intents are system messages, running around the inside of the device,
notifying applications of various events, from hardware state changes (e.g.,
an SD card was inserted), to incoming data (e.g., an SMS message arrived),
to application events (e.g., your activity was launched from the device's
main menu). Not only can you respond to intents, but you can create your
own, to launch other activities, or to let you know when specific situations
arise (e.g., raise such-and-so Intent when the user gets within 100 meters of
this-and-such location).

Content Providers

Content providers provide a level of abstraction for any data stored on the
device that is accessible by multiple applications. The Android
development model encourages you to make your own data available to
other applications, as well as your own - building a content provider lets
you do that, while maintaining complete control over how your data gets
accessed.

Stuff At Your Disposal

Storage

You can package data files with your application, for things that do not
change, such as icons or help files. You also can carve out a small bit of
space on the device itself, for databases or files containing user-entered or
retrieved data needed by your application. And, if the user supplies bulk
storage, like an SD card, you can read and write files on there as needed.

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Big Picture

Network

Android devices will generally be Internet-ready, through one
communications medium or another. You can take advantage of the
Internet access at any level you wish, from raw Java sockets all the way up
to a built-in WebKit-based Web browser widget you can embed in your
application.

Multimedia

Android devices have the ability to play back and record audio and video.
While the specifics may vary from device to device, you can query the
device to learn its capabilities and then take advantage of the multimedia
capabilities as you see fit, whether that is to play back music, take pictures
with the camera, or use the microphone for audio note-taking.

GPS

Android devices will frequently have access to location providers, such as
GPS, that can tell your applications where the device is on the face of the
Earth. In turn, you can display maps or otherwise take advantage of the
location data, such as tracking a device's movements if the device has been
stolen.

Phone Services

And, of course, Android devices are typically phones, allowing your
software to initiate calls, send and receive SMS messages, and everything
else you expect from a modern bit of telephony technology.

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 2

Projects and Targets

As noted in the preface, this book assumes you have downloaded the SDK
(and perhaps the ADT plugin for Eclipse) and have it basically working in
your environment. That being said, this chapter covers what is involved in
starting and building an Android application.

Pieces and Parts

To create an Android application, you will need to create a corresponding
Android project. This could be an Eclipse project, if you are using Eclipse
for Android development, or not. The project will hold all of your source
code, "resources” (e.g., internationalized strings), third-party Java code
(JARs), and related materials. The Android build tools, whether Eclipse-
integrated or standalone, will then turn the contents of your project into an
APK file, which is the Android application. Those tools will also help you
get your APK onto an Android emulator or an actual Android device for
testing purposes.

One key element of a project is the "manifest” (AndroidManifest.xml). This
file contains the "table of contents" for your application, listing all of the
major application components, permissions, and so on. The manifest is
used by Android at runtime to tie your application into the operating
system. The manifest contents are also used by the Android Market (and
perhaps other independent "app stores”), so applications needing Android
2.0 will not be presented to people with Android 1.5 devices, and so on.

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Projects and Targets

To test your application with the emulator, you will need to create an
Android virtual device, or AVD. Most likely, you will create several of these,
as each AVD emulates an Android device with a particular set of hardware.
So you might have different AVDs for different screen sizes, or different
AVDs for different Android versions, and so on.

When creating projects and creating AVDs, you will need to indicate to
Android what "API level" you are working with. The API level is a simple
integer that maps to an Android version, so API level 3 means Android 1.5,
and so on. When creating a project, you will be able to tell Android the
minimum and maximum API levels your application supports. When
creating an AVD, you will tell Android which API level the AVD should
emulate, so you can see how your application runs on different (fake)
devices implementing different versions of Android.

All of these concepts will be described in greater detail later in this chapter.

Creating a Project

To create a project from the command line, for use with the command line
build tools (e.g., ant), you will need to run the android create project
command. This command takes a number of switches to indicate the Java
package that the application's code will reside in, the API level the
application is targeting, and so on. The result of running this command will
be a directory containing all of the files necessary to build a "hello, world"
Android application.

Here is an example of running android create project:

android create project --target 2 --path ./FirstApp --activity FirstApp
--package apt.tutorial

If you are intending on developing for Android using Eclipse, rather than
android create project, you will use the Eclipse new-project wizard to
create a new Android application.

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Projects and Targets

The source code that accompanies this book was set up to be built using
the command line build tools. It is possible to create empty Eclipse Android
projects and import the code into those projects, should you wish to build
any of the samples using Eclipse.

We will cover the notion of "targets" and "API levels" - which you will need
to create your projects — later in this chapter.

Project Structure

The Android build system is organized around a specific directory tree
structure for your Android project, much like any other Java project. The
specifics, though, are fairly unique to Android and what it all does to
prepare the actual application that will run on the device or emulator.
Here's a quick primer on the project structure, to help you make sense of it
all, particularly for the sample code referenced in this book.

Root Contents

When you create a new Android project (e.g., via android create project),
you get several items in the project's root directory, including:

+ AndroidManifest.xml, which is an XML file describing the application
being built and what components - activities, services, etc. — are
being supplied by that application

« build.xml, which is an Ant script for compiling the application and
installing it on the device

+ default.properties and local.properties, property files used by the
Ant build script

+ assets/, which hold other static files you wish packaged with the
application for deployment onto the device

« bin/, which holds the application once it is compiled

+ gen/, where Android's build tools will place source code that they
generate

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://ant.apache.org/

Projects and Targets

« 1libs/, which holds any third-party Java JARs your application
requires

+ src/, which holds the Java source code for the application

« res/, which holds "resources", such as icons, GUI layouts, and the
like, that get packaged with the compiled Java in the application

The Sweat Off Your Brow

When you created the project (e.g., via android create project), you
supplied the fully-qualified class name of the "main" activity for the
application (e.g., com.commonsware.android.SomeDemo). You will then find that
your project's src/ tree already has the namespace directory tree in place,
plus a stub Activity subclass representing your main activity (e.g.,
src/com/commonsware/android/SomeDemo.java). You are welcome to modify
this file and add others to the src/ tree as needed to implement your
application.

The first time you compile the project (e.g., via ant), out in the "main"
activity's namespace directory, the Android build chain will create R.java.
This contains a number of constants tied to the various resources you
placed out in the res/ directory tree. You should not modify R.java yourself,
letting the Android tools handle it for you. You will see throughout many of
the samples where we reference things in R.java (e.g., referring to a layout's
identifier via R.layout.main).

And Now, The Rest of the Story

You will also find that your project has a res/ directory tree. This holds
"resources" - static files that are packaged along with your application,
either in their original form or, occasionally, in a preprocessed form. Some
of the subdirectories you will find or create under res/ include:

+ res/drawable/ for images (PNG, JPEG, etc.)
+ res/layout/ for XML-based Ul layout specifications

« res/menu/ for XML-based menu specifications

10

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Projects and Targets

« res/raw/ for general-purpose files (e.g,. a CSV file of account
information)

+ res/values/ for strings, dimensions, and the like

« res/xml/ for other general-purpose XML files you wish to ship

We will cover all of these, and more, in later chapters of this book.

What You Get Out Of It

When you compile your project (via ant or the IDE), the results go into the
bin/ directory under your project root. Specifically:

« bin/classes/ holds the compiled Java classes

« bin/classes.dex holds the executable created from those compiled
Java classes

« bin/yourapp.ap_ holds your application's resources, packaged as a
ZIP file (where yourapp is the name of your application)

+ bin/yourapp-*.apk is the actual Android application (where * varies)

The .apk file is a ZIP archive containing the .dex file, the compiled edition
of your resources (resources.arsc), any un-compiled resources (such as
what you put in res/raw/) and the AndroidManifest.xml file. If you build a
debug version of the application - which is the default - you will have
yourapp-debug.apk and yourapp-debug-aligned.apk as two versions of your
APK. The latter has been optimized with the zipalign utility to make it run
faster.

Inside the Manifest

The foundation for any Android application is the manifest file:
AndroidManifest.xml in the root of your project. Here is where you declare
what is inside your application - the activities, the services, and so on. You
also indicate how these pieces attach themselves to the overall Android

11

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Projects and Targets

system; for example, you indicate which activity (or activities) should
appear on the device's main menu (a.k.a., launcher).

When you create your application, you will get a starter manifest generated
for you. For a simple application, offering a single activity and nothing else,
the auto-generated manifest will probably work out fine, or perhaps require
a few minor modifications. On the other end of the spectrum, the manifest
file for the Android API demo suite is over 1,000 lines long. Your production
Android applications will probably fall somewhere in the middle.

Most of the interesting bits of the manifest will be described in greater
detail in the chapters on their associated Android features. For example, the
service element will be described in greater detail in the chapter on
creating services. For now, we just need to understand what the role of the
manifest is and its general overall construction.

In The Beginning, There Was the Root, And It Was
Good

The root of all manifest files is, not surprisingly, a manifest element:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.search">

</manifest>

Note the namespace declaration. Curiously, the generated manifests only
apply it on the attributes, not the elements (e.g., it's manifest, not
android:manifest). However, that pattern works, so unless Android changes,
stick with their pattern.

The biggest piece of information you need to supply on the manifest
element is the package attribute (also curiously not-namespaced). Here, you
can provide the name of the Java package that will be considered the "base"
of your application. Then, everywhere else in the manifest file that needs a
class name, you can just substitute a leading dot as shorthand for the
package. For example, if you needed to refer to

12

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Projects and Targets

com.commonsware.android.search.Snicklefritz in this manifest shown above,
you could just use .Snicklefritz, since com.commonsware.android.search is
defined as the application's package.

Permissions, Instrumentations, and Applications (Oh,

My!)

Underneath the manifest element, you will find:

uses-permission elements, to indicate what permissions your
application will need in order to function properly - see the chapter
on permissions for more details

permission elements, to declare permissions that activities or
services might require other applications hold in order to use your
application's data or logic - again, more details are forthcoming in
the chapter on permissions

instrumentation elements, to indicate code that should be invoked
on key system events, such as starting up activities, for the purposes
of logging or monitoring

uses-library elements, to hook in optional Android components,
such as mapping services

possibly a uses-sdk element, to indicate what version of the Android
SDK the application was built for

an application element, defining the guts of the application that the
manifest describes

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android">

<uses-permission
android:name="android.permission.ACCESS_LOCATION" />

<uses-permission
android:name="android.permission.ACCESS_GPS" />

<uses-permission
android:name="android.permission.ACCESS_ASSISTED_GPS" />

<uses-permission
android:name="android.permission.ACCESS_CELL_ID" />

<application>

13

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Projects and Targets

</application>
</manifest>

In the preceding example, the manifest has uses-permission elements to
indicate some device capabilities the application will need - in this case,
permissions to allow the application to determine its current location. And,
there is the application element, whose contents will describe the activities,
services, and whatnot that make up the bulk of the application itself.

Permissions will be covered in greater detail later in this book.

One attribute of the application element that you may need in select
circumstances is the android:debuggable attribute. This needs to be set to
true if you are installing the application on an actual device and you are
using Eclipse (or another debugger) and if your device precludes debugging
without this flag. For example, the Nexus One requires android:debuggable
= "true", according to some reports.

Your Application Does Something, Right?

The children of the application element represent the core of the manifest
file.

By default, when you create a new Android project, you get a single activity
element:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.skeleton">
<application>
<activity android:name=".Now" android:label="Now">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

This element supplies android:name for the class implementing the activity,
android:label for the display name of the activity, and (frequently) an

14

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Projects and Targets

intent-filter child element describing under what conditions this activity
will be displayed. The stock activity element sets up your activity to appear
in the launcher, so users can choose to run it. As we'll see later in this book,
you can have several activities in one project, if you so choose.

You may also have one or more receiver elements, indicating non-activities
that should be triggered under certain conditions, such as when an SMS
message comes in.

You may have one or more provider elements, indicating content providers
- components that supply data to your activities and, with your permission,
other activities in other applications on the device. These wrap up
databases or other data stores into a single API that any application can use.

Finally, you may have one or more service elements, describing services -
long-running pieces of code that can operate independent of any activity.
The quintessential example is the MP3 player, where you want the music to
keep playing even if the user pops open other activities and the MP3
player's user interface is "misplaced".

Achieving the Minimum

Android, like most operating systems, goes through various revisions,
versions, and changes. Some of these affect the Android SDK, meaning
there are new classes, methods, or parameters you can use that you could
not in previous versions of the SDK.

If you want to ensure your application is only run on devices that have a
certain version (or higher) of the Android environment, you will want to
add a uses-sdk element, as a child of the root <manifest> element in your
AndroidManifest.xml file. The «<uses-sdk> element has one attribute,
minSdkVersion, indicating which SDK version your application requires:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.search">
<uses-sdk android:minSdkVersion="2" />

15

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Projects and Targets

</manifest>

At the time of this writing, there are many possible minsdkversion values:

1, indicating the original Android 1.0 SDK
2, indicating the Android 1.1 SDK

« 3, indicating the Android 1.5 SDK

4, indicating the Android 1.6 SDK

5, indicating the Android 2.0 SDK

+ 6, indicating the Android 2.0.1 SDK

+ 7, indicating the Android 2.1 SDK

+ 8, indicating the Android 2.2 SDK

If you leave the <uses-sdk> element out entirely, it will behave as though
minSdkVersion is set to 1. Note, however, that the Android Market seems to
insist that you specifically state your minsdkversion, so be certain to have a
proper <uses-sdk> element if you are going to distribute via that channel.

If you set <uses-sdk>, the application will only install on compatible devices.
You do not have to specify the latest SDK, but if you choose an older one, it
is up to you to ensure your application works on every SDK version you
claim is compatible. For example, if you leave off <uses-sdk>, in effect, you
are stipulating that your application works on every Android SDK version
ever released, and it is up to you to test your application to determine if this
is indeed the case.

Also note that a bug in the Android Market means you should make the
<uses-sdk> element be the first child of your <manifest> element.

Version=Control

Particularly if you are going to distribute your application, via the Android
Market or other means, you probably should add a pair of other attributes

16

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Projects and Targets

to the root <manifest> element: android:versionCode and
android:versionName. These assist in the process of upgrading applications.

The android:versionName attribute is some human-readable label for the
version name or number of your application. So, you can use "3.e" or
"System V" Or "5000" or "3.1" as you see fit.

The android:versionCode attribute is a pure integer indication of the version
of the application. This is used by the system to determine if one version of
your application is newer than another - "newer" is defined as "has a higher
android:versionCode value". Whether you attempt to convert your actual
version (as found in android:versionName) to a number, or you simply
increment this value by one for each release, is up to you.

Emulators and Targets

Let's take a moment to discuss the notion of "targets" in Android, since
they can be a bit confusing yet are rather important for your long-term
application development, particularly as it pertains to your use of the
Android emulator for testing your applications.

Virtually There

To use the emulator, you will need to create one or more AVDs. These
virtual devices are designed to mimic real Android devices like the T-
Mobile G1 or the HTC Magic. You tell the emulator what AVD to use, and
the emulator then can pretend it is the device described by that AVD.

When you create an AVD, whether through the android create avd
command, via Eclipse, or via the AVD Manager (below), you need to specify
a target. The target indicates what class of device the AVD will pretend to
be. You can find out the available API targets via the android list targets
command. For example, android-6 as a target means Android 2.0.1 but
without Google Maps support, whereas Google Inc.:Google APIs:6 as a
target means Android 2.0.1 with Google Maps support. The number 6
means API level 6, which corresponds to Android 2.0.1.

17

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Projects and Targets

You can create as many AVDs as you need and that you have disk space for.
Bear in mind, though, that each AVD behaves as a totally distinct device, so
installing your app on one AVD does not affect any other AVDs that you
have created.

Android 1.6 added a GUI interface for maintaining your AVDs, called the
AVD Manager. Simply run the android command without any arguments.
You will be presented with a list of AVDs already created, New... and
Delete... buttons to add and remove AVDs, a Start... button to launch an
emulator using a selected AVD, etc.

Virtual Devices List of existing Android Virtual Devices:
Installed Packages AVD Name Target Name Platform | API Level | New... |
Available Packages |||) § Maps.QuG# Google APIs (Google Inc.) 1.6 a —
Settings ~ 1.5 NoMaps : Android 1.5 1.5 3
About ~ 1.6.Maps.WVG: Google APIs (Google Inc.) 1.6 4
~ 1.6.Maps.HVG# Google APIs (Google Inc.) 1.6 4
~ 1.5.Maps Google APIs (Google Inc.) 1.5 3
~ 2.0.HVGA Google APIs (Google Inc.) 2.0 5
~ 1.6.Maps.WVG: Google APIs (Google Inc.) 1.6 4
~ 1.6.Tablet Google APIs (Google Inc.) 1.6 4
| Refresh |

~ A valid Android Virtual Device.
® An Android Virtual Device that failed to load. Clig ‘Details’ to see the error.

Figure 1. The AVD Manager GUI, showing a list of available AVDs
When you add an AVD through the GUI (via the New... button on the main

window), you will be prompted for a name, target, details about an SD card
image, and the size of screen you wish to emulate ("skin").

18

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Projects and Targets

Name: |Te5t |
Target: Google APIs (Google Inc.) - APl Level 5 |~
SD Card: R -
@® size: (64 || MiB v
O File:
skin: ~ .
® Built-in: QVGA ~
) Resolution: X
Hardware:
Property Value New...

Abstracted LCD densit 120

N

Create AVD | Cancel

Figure 2. The Add AVD dialog

Aiming at a Target

Similarly, when you create a new project (via android create project or
Eclipse), you will need to indicate what class of device this project targets.
The same values shown above hold, so creating a project with a target of
android-3 indicates Android 1.5. This primarily drives what edition of the
tools you use. You probably also want to later specify, in your
AndroidManifest.xml file, what versions of Android you support in terms of
devices that can run your application (e.g., what is the earliest Android
version you are testing against?). This topic will be covered later in this
book.

Here are some rules of thumb for dealing with targets:
19

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Projects and Targets

« Only ask for what you really need. If you are sticking with Android
1.5 APIs, you may as well ask to build with Android 1.5 APIs and
maximize the number of devices you can run on.

« Test on as many targets as you can and that are possible. For
example, you may be tempted to target android-1, to reach the
maximum possible range of Android devices. That is fine...but you
need to test on a target android-1 AVD, and a target android-2 AVD,
and so on. Right now, there are very few devices in the world using
Android versions earlier than Android 1.5, so it is probably not
worthwhile to target earlier versions.

« Check out the new target levels with each Android release. There
should be a new value with every Android point-release update
(e.g., 2.0 or 1.6), and possibly even for SDK patchlevels (e.g., 2.0
versus 2.0.1). Be sure to test your application on those new targets
whenever you can, as some people may start getting devices with
the new Android release soon.

« Testing on AVDs, regardless of target, is no substitute for testing on
hardware. AVDs are designed to give you disposable environments
that let you test a wide range of environments, even those that may
not yet exist in hardware. However, you really need to test your
application on at least one actual Android device. If nothing else,
the speed of your emulator may not match the speed of the device -
the emulator may be faster or slower depending on your system.

20

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PART Il - Activities

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 3
Creating a Skeleton Application

Every programming language or environment book starts off with the ever-
popular "Hello, World!" demonstration: just enough of a program to prove
you can build things, not so much that you cannot understand what is
going on. However, the typical "Hello, World!" program has no interactivity
(e.g., just dumps the words to a console), and so is really boring.

This chapter demonstrates a simple project, but one using Advanced Push-
Button Technology™ and the current time, to show you how a simple
Android activity works.

Begin at the Beginning

As described in the previous chapter, to work with anything in Android,
you need a project. If you are using tools that are not Android-enabled, you
can use the android create project script, found in the tools/ directory in
your SDK installation. You will need to pass to android create project the
API target (see the previous chapter), the directory where you want the
skeleton generated, the name of the default activity, and the Java package
where all of this should reside:

android create project --target android-4 \
--path /path/to/my/project/dir --activity Now \
--package com.commonsware.android.skeleton

23

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating a Skeleton Application

For the purposes of the samples shown in this book, you can download
their project directories in a ZIP file on the CommonsWare Web site. These
projects are ready for use; you do not need to run android create project on
those unpacked samples.

The Activity

Your project's src/ directory contains the standard Java-style tree of
directories based upon the Java package you chose when you created the
project (e.g., com.commonsware.android results in
src/com/commonsware/android/). Inside the innermost directory you should
find a pre-generated source file named Now.java, which is where your first
activity will go.

Open Now. java in your editor and paste in the following code:

package com.commonsware.android.skeleton;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import java.util.Date;

public class Now extends Activity implements View.OnClickListener {
Button btn;

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

btn=new Button(this);
btn.setOnClickListener(this);
updateTime();
setContentView(btn);

}

public void onClick(View view) {
updateTime();

}

private void updateTime() {
btn.setText(new Date().toString());
}
¥

24

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating a Skeleton Application

Or, if you download the source files off the Web site, you can just use the
Skeleton/Now project directly.

Dissecting the Activity

Let's examine this piece by piece:

package com.commonsware.android.skeleton;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import java.util.Date;

The package declaration needs to be the same as the one you used when
creating the project. And, like any other Java project, you need to import
any classes you reference. Most of the Android-specific classes are in the
android package.

Remember that not every Java SE class is available to Android programs!
Visit the Android class reference to see what is and is not available.

public class Now extends Activity implements View.OnClickListener {
Button btn;

Activities are public classes, inheriting from the android.app.Activity base
class. In this case, the activity holds a button (btn). Since, for simplicity, we
want to trap all button clicks just within the activity itself, we also have the
activity class implement onClickListener.

@Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

btn=new Button(this);
btn.setOnClickListener(this);
updateTime();
setContentView(btn);

25

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://code.google.com/android/reference/packages.html
http://commonsware.com/Android/

Creating a Skeleton Application

The oncreate() method is invoked when the activity is started. The first
thing you should do is chain upward to the superclass, so the stock Android
activity initialization can be done.

In our implementation, we then create the button instance (new
Button(this)), tell it to send all button clicks to the activity instance itself
(via setonClickListener()), call a private updateTime() method (see below),
and then set the activity's content view to be the button itself (via
setContentView()).

We will discuss that magical Bundle icicle in a later chapter. For the
moment, consider it an opaque handle that all activities receive upon
creation.

public void onClick(View view) {
updateTime();
}

In Swing, a JButton click raises an Actiontvent, which is passed to the
ActionListener configured for the button. In Android, a button click causes
onClick() to be invoked in the onClickListener instance configured for the
button. The listener is provided the view that triggered the click (in this
case, the button). All we do here is call that private updateTime() method:

private void updateTime() {
btn.setText(new Date().toString());

}

When we open the activity (onCreate()) or when the button is clicked
(onClick()), we update the button's label to be the current time via
setText(), which functions much the same as the JButton equivalent.

Building and Running the Activity

To build the activity, either use your IDE's built-in Android packaging tool,
or run ant in the base directory of your project. Then, to run the activity:

26

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating a Skeleton Application

« Launch the emulator by running the android command, choosing
an AVD in the AVD Manager, and clicking the Start button. You
should be able to accept the defaults on the Launch Options dialog.
Note that the first time you use an AVD with the emulator, it will
take substantially longer to start than it will subsequent times.

R @ 4:01pm

—

I Messaging

Gl

Phone Contacts Browser

Figure 3. The Android home screen
+ Install the package (e.g., run ant install)

+ View the list of installed applications in the emulator and find the
"Now" application

27

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating a Skeleton Application

M@ 4:04pPm

e &

Alarm Clock APIDemos Browser Calculator

w W R

Camera Contacts Custom

Locale

89 &

Email Gallery Gestures Messaging
Builder

O N @ =

Music Now Settings

Figure 4. The Android application "launcher"

« Open that application

You should see an activity screen akin to:

| EhMl & 9:59 Pm |

Tue Aug 19 21:59:51 GMT+00:00 2008

)]
Figure 5. The Now demonstration activity

28

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating a Skeleton Application

Clicking the button - in other words, pretty much anywhere on the phone's
screen — will update the time shown in the button's label.

Note that the label is centered horizontally and vertically, as those are the
default styles applied to button captions. We can control that formatting,
which will be covered in a later chapter.

After you are done gazing at the awesomeness of Advanced Push-Button
Technology™, you can click the back button on the emulator to return to
the launcher.

29

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 4
Using XML-Based Layouts

While it is technically possible to create and attach widgets to our activity
purely through Java code, the way we did in the preceding chapter, the
more common approach is to use an XML-based layout file. Dynamic
instantiation of widgets is reserved for more complicated scenarios, where
the widgets are not known at compile-time (e.g., populating a column of
radio buttons based on data retrieved off the Internet).

With that in mind, it's time to break out the XML and learn how to lay out
Android activity views that way.

What Is an XML-Based Layout?

As the name suggests, an XML-based layout is a specification of widgets'
relationships to each other - and to containers - encoded in XML format.
Specifically, Android considers XML-based layouts to be resources, and as
such layout files are stored in the res/layout directory inside your Android
project.

Each XML file contains a tree of elements specifying a layout of widgets and
containers that make up one view. The attributes of the XML elements are
properties, describing how a widget should look or how a container should
behave. For example, if a Button element has an attribute value of
android:textStyle = "bold", that means that the text appearing on the face
of the button should be rendered in a boldface font style.

31

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using XML-Based Layouts

Android's SDK ships with a tool (aapt) which uses the layouts. This tool
should be automatically invoked by your Android tool chain (e.g., Eclipse,
Ant's build.xml). Of particular importance to you as a developer is that aapt
generates the R.java source file within your project's gen/ directory,
allowing you to access layouts and widgets within those layouts directly
from your Java code, as will be demonstrated later in this chapter.

Why Use XML-Based Layouts?

Most everything you do using XML layout files can be achieved through
Java code. For example, you could use setTypeface() to have a button
render its text in bold, instead of using a property in an XML layout. Since
XML layouts are yet another file for you to keep track of, we need good
reasons for using such files.

Perhaps the biggest reason is to assist in the creation of tools for view
definition, such as a GUI builder in an IDE like Eclipse or a dedicated
Android GUI designer like DroidDraw. Such GUI builders could, in
principle, generate Java code instead of XML. The challenge is re-reading
the definition in to support edits - that is far simpler if the data is in a
structured format like XML than in a programming language. Moreover,
keeping the generated bits separated out from hand-written code makes it
less likely that somebody's custom-crafted source will get clobbered by
accident when the generated bits get re-generated. XML forms a nice
middle ground between something that is easy for tool-writers to use and
easy for programmers to work with by hand as needed.

Also, XML as a GUI definition format is becoming more commonplace.
Microsoft's XAML, Adobe's Flex, Google's GWT, and Mozilla's XUL all take
a similar approach to that of Android: put layout details in an XML file and
put programming smarts in source files (e.g., Javascript for XUL). Many
less-well-known GUI frameworks, such as ZK, also use XML for view
definition. While "following the herd" is not necessarily the best policy, it
does have the advantage of helping to ease the transition into Android from
any other XML-centered view description language.

32

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.zkoss.org/
http://www.mozilla.org/projects/xul/
http://www.adobe.com/products/flex/
http://windowssdk.msdn.microsoft.com/en-us/library/ms752059.aspx
http://droiddraw.org/

Using XML-Based Layouts

OK, So What Does It Look Like?

Here is the Button from the previous chapter's sample application,
converted into an XML layout file, found in the Layouts/NowRedux sample
project:

<?xml version="1.0" encoding="utf-8"?>

<Button xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/button”
android:text=""
android:layout_width="fill_parent"
android:layout_height="fill parent"/>

The class name of the widget - Button - forms the name of the XML
element. Since Button is an Android-supplied widget, we can just use the
bare class name. If you create your own widgets as subclasses of
android.view.View, you would need to provide a full package declaration as
well (e.g., com.commonsware.android.MyWidget).

The root element needs to declare the Android XML namespace:

|xmlns:android="http://schemas.android.com/apk/res/android" |

All other elements will be children of the root and will inherit that
namespace declaration.

Because we want to reference this button from our Java code, we need to
give it an identifier via the android:id attribute. We will cover this concept
in greater detail later in this chapter.

The remaining attributes are properties of this Button instance:

+ android:text indicates the initial text to be displayed on the button
face (in this case, an empty string)

+ android:layout_width and android:layout_height tell Android to have
the button's width and height fill the "parent”, in this case the entire
screen - these attributes will be covered in greater detail in a later
chapter

33

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using XML-Based Layouts

Since this single widget is the only content in our activity's view, we only
need this single element. Complex views will require a whole tree of
elements, representing the widgets and containers that control their
positioning. All the remaining chapters of this book will use the XML layout
form whenever practical, so there are dozens of other examples of more
complex layouts for you to peruse.

What's With the @ Signs?

Many widgets and containers only need to appear in the XML layout file
and do not need to be referenced in your Java code. For example, a static
label (Textview) frequently only needs to be in the layout file to indicate
where it should appear. These sorts of elements in the XML file do not need
to have the android:id attribute to give them a name.

Anything you do want to use in your Java source, though, needs an
android:id.

The convention is to use @+id/... as the id value, where the ... represents
your locally-unique name for the widget in question, for the first
occurrence of a given id value in your layout file. The second and
subsequent occurrences in the same layout file should drop the + sign - a
feature we will use in an upcoming chapter. In the XML layout example in
the preceding section, @+id/button is the identifier for the Button widget.

Android provides a few special android:id values, of the form
@android:id/... — we will see some of these in various chapters of this book.

And We Attach These to the Java...How?

Given that you have painstakingly set up the widgets and containers for
your view in an XML layout file named main.xml stored in res/layout, all you
need is one statement in your activity's onCreate() callback to use that
layout:

|setContentView(R.layout.main); |

34

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using XML-Based Layouts

This is the same setContentview() we used earlier, passing it an instance of a
view subclass (in that case, a Button). The Android-built view, constructed
from our layout, is accessed from that code-generated R class. All of the
layouts are accessible under R.layout, keyed by the base name of the layout
file - res/layout/main.xml results in R.layout.main.

To access our identified widgets, use findviewById(), passing it the numeric
identifier of the widget in question. That numeric identifier was generated
by Android in the R class as R.id.something (where something is the specific
widget you are seeking). Those widgets are simply subclasses of View, just
like the Button instance we created in the previous chapter.

The Rest of the Story

In the original Now demo, the button's face would show the current time,
which would reflect when the button was last pushed (or when the activity
was first shown, if the button had not yet been pushed).

Most of that logic still works, even in this revised demo (NowRedux).
However, rather than instantiating the Button in our activity's onCreate()
callback, we can reference the one from the XML layout:

package com.commonsware.android.layouts;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import java.util.Date;

public class NowRedux extends Activity
implements View.OnClickListener {
Button btn;

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

setContentView(R.layout.main);
btn=(Button)findvViewById(R.id.button);

btn.setOnClickListener(this);
updateTime();

35

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using XML-Based Layouts

}

public void onClick(View view) {
updateTime();
}

private void updateTime() {
btn.setText(new Date().toString());
}

}

The first difference is that rather than setting the content view to be a view
we created in Java code, we set it to reference the XML layout
(setContentview(R.layout.main)). The R.java source file will be updated
when we rebuild this project to include a reference to our layout file (stored
as main.xml in our project's res/layout directory).

The other difference is that we need to get our hands on our Button
instance, for which we use the findviewById() call. Since we identified our
button as @+id/button, we can reference the button's identifier as
R.id.button. Now, with the Button instance in hand, we can set the callback
and set the label as needed.

The results look the same as with the original Now demo:

36

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using XML-Based Layouts

ChHl & 10:33PM
NowRedux

Tue Aug 19 22:32:29 GMT+00:00 2008

-l
Figure 6. The NowRedux sample activity

37

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 5
Employing Basic Widgets

Every GUI toolkit has some basic widgets: fields, labels, buttons, etc.
Android's toolkit is no different in scope, and the basic widgets will provide
a good introduction as to how widgets work in Android activities.

Assigning Labels

The simplest widget is the label, referred to in Android as a Textview. Like
in most GUI toolkits, labels are bits of text not editable directly by users.
Typically, they are used to identify adjacent widgets (e.g., a "Name:" label
before a field where one fills in a name).

In Java, you can create a label by creating a Textview instance. More
commonly, though, you will create labels in XML layout files by adding a
Textview element to the layout, with an android:text property to set the
value of the label itself. If you need to swap labels based on certain criteria,
such as internationalization, you may wish to use a string resource
reference in the XML instead, as will be described later in this book.

Textview has numerous other properties of relevance for labels, such as:

+ android:typeface to set the typeface to use for the label (e.g.,
monospace)

+ android:textStyle to indicate that the typeface should be made bold
(bold), italic (italic), or bold and italic (bold_italic)

39

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

+ android:textColor to set the color of the label's text, in RGB hex
format (e.g., #FFeeee for red)

For example, in the Basic/Label project, you will find the following layout
file:

<?xml version="1.0" encoding="utf-8"?>

<TextView xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="You were expecting something profound?"

/>

Just that layout alone, with the stub Java source provided by Android's
project builder (e.g., android create project), gives you:

Ml @ 12:56 PM

Figure 7. The LabelDemo sample application

Button, Button, Who's Got the Button?

We've already seen the use of the Button widget in the previous two
chapters. As it turns out, Button is a subclass of Textview, so everything

40

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

discussed in the preceding section in terms of formatting the face of the
button still holds.

However, Android 1.6 added a new feature for the declaration of the "on-
click” listener for a Button. In addition to the classic approach of defining
some object (such as the activity) as implementing the
View.OnClickListener interface, you can now take a somewhat simpler
approach:

« Define some method on your Activity that holds the button that
takes a single view parameter, has a void return value, and is public

« In your layout XML, on the Button element, include the
android:onClick attribute with the name of the method you defined
in the previous step

For example, we might have a method on our Activity that looks like:

public void someMethod(View theButton) {
// do something useful here
}

Then, we could use this XML declaration for the Button itself, including
android:onClick:

<Button
android:onClick="someMethod"

/>

This is enough for Android to "wire together" the Button with the click
handler.

Fleeting Images

Android has two widgets to help you embed images in your activities:
Imageview and ImageButton. As the names suggest, they are image-based
analogues to TextVview and Button, respectively.

41

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

Each widget takes an android:src attribute (in an XML layout) to specify
what picture to use. These usually reference a drawable resource, described
in greater detail in the chapter on resources.

ImageButton, a subclass of Imageview, mixes in the standard Button behaviors,
for responding to clicks and whatnot.

For example, take a peek at the main.xml layout from the Basic/ImageView
sample project:

<?xml version="1.0" encoding="utf-8"?>

<ImageView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/icon"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:adjustViewBounds="true"
android:src="@drawable/molecule”
/>

The result, just using the code-generated activity, is simply the image:

Chil @ 12:50 Pm

ImageViewDemo

Figure 8. The ImageViewDemo sample application

42

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

Fields of Green. Or Other Colors.

Along with buttons and labels, fields are the third "anchor” of most GUI
toolkits. In Android, they are implemented via the EditText widget, which
is a subclass of the Textview used for labels.

Along with the standard Textview properties (e.g., android:textStyle),
EditText has many others that will be useful for you in constructing fields,
including:

+ android:autoText, to control if the field should provide automatic
spelling assistance

+ android:capitalize, to control if the field should automatically
capitalize the first letter of entered text (e.g., first name, city)

+ android:digits, to configure the field to accept only certain digits

« android:singleLine, to control if the field is for single-line input or
multiple-line input (e.g., does <Enter> move you to the next widget
or add a newline?)

Most of those are also available from the new android:inputType attribute,
added in Android 1.5 as part of adding "soft keyboards" to Android - this
will be discussed in an upcoming chapter.

For example, from the Basic/Field project, here is an XML layout file
showing an EditText:

<?xml version="1.0" encoding="utf-8"?>

<EditText xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/field"
android:layout_width="fill_parent"
android:layout_height="fill_parent”
android:singlelLine="false"
/>

Note that android:singleLine is false, so users will be able to enter in several
lines of text.

43

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

For this project, the FieldDemo.java file populates the input field with some
prose:

package com.commonsware.android.field;

import android.app.Activity;
import android.os.Bundle;
import android.widget.EditText;

public class FieldDemo extends Activity {
@0Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

EditText fld=(EditText)findViewById(R.id.field);

fld.setText("Licensed under the Apache License, Version 2.0 " +
"(the \"License\"); you may not use this file " +
"except in compliance with the License. You may " +

"obtain a copy of the License at " +
"http://www.apache.org/licenses/LICENSE-2.0");

The result, once built and installed into the emulator, is:

Eh#l & 1:00 PM
FieldDemo

Licensed under the Apache License,
Version 2.0 (the "License"); you may
not use this file exceptin
compliance with the License. You
may obtain a copy of the License at
http://www.apache.org/licenses/LIC
ENSE-2.0

e
Figure 9. The FieldDemo sample application

a4

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

Another flavor of field is one that offers auto-completion, to help users
supply a value without typing in the whole text. That is provided in
Android as the AutoCompleteTextview widget, discussed in greater detail later
in this book.

Just Another Box to Check

The classic checkbox has two states: checked and unchecked. Clicking the
checkbox toggles between those states to indicate a choice (e.g., "Add rush
delivery to my order").

In Android, there is a CheckBox widget to meet this need. It has Textview as
an ancestor, so you can use TextView properties like android:textColor to
format the widget.

Within Java, you can invoke:

+ isChecked() to determine if the checkbox has been checked

+ setChecked() to force the checkbox into a checked or unchecked
state

+ toggle() to toggle the checkbox as if the user checked it
Also, you can register a listener object (in this case, an instance of

onCheckedChangeListener) to be notified when the state of the checkbox
changes.

For example, from the Basic/CheckBox project, here is a simple checkbox
layout:

<?xml version="1.0" encoding="utf-8"?>

<CheckBox xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/check"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="This checkbox is: unchecked" />

45

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

The corresponding CheckBoxDemo.java retrieves and configures the behavior
of the checkbox:

public class CheckBoxDemo extends Activity
implements CompoundButton.OnCheckedChangeListener {
CheckBox cb;

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

cb=(CheckBox)findViewById(R.1id.check);
cb.setOnCheckedChangeListener(this);
}

public void onCheckedChanged(CompoundButton buttonView,
boolean isChecked) {
if (isChecked) {
cb.setText("This checkbox is: checked");
}
else {
cb.setText("This checkbox is: unchecked");
}
}

}

Note that the activity serves as its own listener for checkbox state changes
since it implements the oOnCheckedChangeListener interface (via
cb.setonCheckedChangelistener(this)). The callback for the listener is
onCheckedChanged(), which receives the checkbox whose state has changed
and what the new state is. In this case, we update the text of the checkbox
to reflect what the actual box contains.

The result? Clicking the checkbox immediately updates its text, as shown
below:

46

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

hMl & 1:38PMm

CheckBoxDemo

-This checkbox is: unchecked

Figure 10. The CheckBoxDemo sample application, with the checkbox
unchecked

Ml & 1:38PMm

CheckBoxDemo

This checkbox is: checked

Figure 11. The same application, now with the checkbox checked

47

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

Turn the Radio Up

As with other implementations of radio buttons in other toolkits, Android's
radio buttons are two-state, like checkboxes, but can be grouped such that
only one radio button in the group can be checked at any time.

Like checkBox, RadioButton inherits from CompoundButton, which in turn
inherits from Textview. Hence, all the standard Textview properties for font
face, style, color, etc. are available for controlling the look of radio buttons.
Similarly, you can call isChecked() on a RadioButton to see if it is selected,
toggle() to select it, and so on, like you can with a checkBox.

Most times, you will want to put your RadioButton widgets inside of a
RadioGroup. The RadioGroup indicates a set of radio buttons whose state is
tied, meaning only one button out of the group can be selected at any time.
If you assign an android:id to your RadioGroup in your XML layout, you can
access the group from your Java code and invoke:

« check() to check a specific radio button via its ID (e.g.,
gr‘oup.check(R.id.r‘adiol))

« clearcheck() to clear all radio buttons, so none in the group are
checked

+ getCheckedRadioButtonId() to get the ID of the currently-checked
radio button (or -1 if none are checked)

Note that the mutual-exclusion feature of RadioGroup only applies to
RadioButton widgets that are immediate children of the RadioGroup. You
cannot have other containers - discussed in the next chapter - between the
RadioGroup and its RadioButton widgets.

For example, from the Basic/RadioButton sample application, here is an
XML layout showing a RadioGroup wrapping a set of RadioButton widgets:

<?xml version="1.0" encoding="utf-8"?>

<RadioGroup
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical”
android:layout_width="fill_parent"

48

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

android:layout_height="fill_parent”
>
<RadioButton android:id="@+id/radiol"
android:layout_width="wrap_content”
android:layout_height="wrap_content"
android:text="Rock" />

<RadioButton android:id="@+id/radio2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Scissors" />

<RadioButton android:id="@+id/radio3"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Paper" />
</RadioGroup>

Using the stock Android-generated Java for the project and this layout, you
get:

Al @ 1:39PMm

RadioButtonDemo

. Rock
. Scissors
. Paper

Figure 12. The RadioButtonDemo sample application
Note that the radio button group is initially set to be completely unchecked
at the outset. To preset one of the radio buttons to be checked, use either

setChecked() on the RadioButton or check() on the RadioGroup from within
your onCreate() callback in your activity.

49

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

It's Quite a View

All widgets, including the ones shown above, extend view, and as such give
all widgets an array of useful properties and methods beyond those already

described.

Padding

Widgets have a minimum size, one that may be influenced by what is
inside of them. So, for example, a Button will expand to accommodate the
size of its caption. You can control this size using padding. Adding padding
will increase the space between the contents (e.g., the caption of a Button)
and the edges of the widget.

Padding can be set once in XML for all four sides (android:padding) or on a
per-side basis (android:paddingLeft, etc.). Padding can also be set in Java via
the setPadding() method.

The value of any of these is a dimension - a combination of a unit of
measure and a count. So, 5px is 5 pixels, or 2mm is 2 millimeters. We will
examine dimension in greater detail in an upcoming chapter.

Other Useful Properties

In addition to those presented in this chapter and in the next chapter, some
of the properties on view most likely to be used include:
+ Controls the focus sequence:
* android:nextFocusDown
* android:nextFocusLeft
* android:nextFocusRight

* android:nextFocusUp

+ android:visibility, which controls whether the widget is initially
visible

50

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

Useful Methods

You can toggle whether or not a widget is enabled via setEnabled() and see
if it is enabled via isEnabled(). One common use pattern for this is to
disable some widgets based on a CheckBox or RadioButton selection.

You can give a widget focus via requestFocus() and see if it is focused via
isFocused(). You might use this in concert with disabling widgets as
mentioned above, to ensure the proper widget has the focus once your
disabling operation is complete.

To help navigate the tree of widgets and containers that make up an
activity's overall view, you can use:

« getParent() to find the parent widget or container
+ findviewById() to find a child widget with a certain ID

+ getRootview() to get the root of the tree (e.g., what you provided to
the activity via setContentview())

Colors

There are two types of color attributes in Android widgets. Some, like
android:background, take a single color (or a graphic image to serve as the
background). Others, like android:textColor on Textview (and subclasses)
can take a ColorstateList, including via the Java setter (in this case,
setTextColor()).

A cColorstateList allows you to specify different colors for different
conditions. For example, when you get to selection widgets in an upcoming
chapter, you will see how a Textview has a different text color when it is the
selected item in a list compared to when it is in the list but not selected.
This is handled via the default colorstateList associated with Textview.

If you wish to change the color of a Textview widget in Java code, you have
two main choices:

51

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

1. Use colorStatelList.valueof(), which returns a ColorStateList in
which all states are considered to have the same color, which you
supply as the parameter to the valueof() method. This is the Java
equivalent of the android:textColor approach, to make the Textview
always a specific color regardless of circumstances.

2. Create a ColorstateList with different values for different states,
either via the constructor or via an XML drawable resource, a
concept discussed in a later chapter

52

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 6
Working with Containers

Containers pour a collection of widgets (and possibly child containers) into
specific structures you like. If you want a form with labels on the left and
fields on the right, you will need a container. If you want OK and Cancel
buttons to be beneath the rest of the form, next to one another, and flush
to right side of the screen, you will need a container. Just from a pure XML
perspective, if you have multiple widgets (beyond RadioButton widgets in a
RadioGroup), you will need a container just to have a root element to place
the widgets inside.

Most GUI toolkits have some notion of layout management, frequently
organized into containers. In Java/Swing, for example, you have layout
managers like BoxLayout and containers that use them (e.g., Box). Some
toolkits stick strictly to the box model, such as XUL and Flex, figuring that
any desired layout can be achieved through the right combination of nested
boxes.

Android, through LinearLayout, also offers a "box" model, but in addition
supports a range of containers providing different layout rules. In this
chapter, we will look at three commonly-used containers: LinearLayout (the
box model), RelativeLayout (a rule-based model), and TableLayout (the grid
model), along with Scrollview, a container designed to assist with
implementing scrolling containers.

53

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

Thinking Linearly

As noted above, LinearLayout is a box model — widgets or child containers
are lined up in a column or row, one after the next. This works similar to
FlowLayout in Java/Swing, vbox and hbox in Flex and XUL, etc.

Flex and XUL use the box as their primary unit of layout. If you want, you
can use LinearLayout in much the same way, eschewing some of the other
containers. Getting the visual representation you want is mostly a matter of
identifying where boxes should nest and what properties those boxes
should have, such as alignment vis a vis other boxes.

Concepts and Properties

To configure a LinearLayout, you have five main areas of control besides the
container's contents: the orientation, the fill model, the weight, the gravity,
and the padding.

Orientation

Orientation indicates whether the LinearLayout represents a row or a
column. Just add the android:orientation property to your LinearLayout
element in your XML layout, setting the value to be horizontal for a row or
vertical for a column.

The orientation can be modified at runtime by invoking setorientation()
on the LinearLayout, supplying it either HORIZONTAL or VERTICAL.

Fill Model

Let's imagine a row of widgets, such as a pair of radio buttons. These
widgets have a "natural” size based on their text. Their combined sizes
probably do not exactly match the width of the Android device's screen -
particularly since screens come in various sizes. We then have the issue of
what to do with the remaining space.

54

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

All widgets inside a LinearLayout must supply android:layout_width and
android:layout_height properties to help address this issue. These
properties' values have three flavors:

« You can provide a specific dimension, such as 125px to indicate the
widget should take up exactly 125 pixels

« You can provide wrap_content, which means the widget should fill
up its natural space, unless that is too big, in which case Android
can use word-wrap as needed to make it fit

« You can provide fill_parent, which means the widget should fill up
all available space in its enclosing container, after all other widgets
are taken care of

The latter two flavors are the most common, as they are independent of
screen size, allowing Android to adjust your view to fit the available space.

NOTE: In API level 8 (Android 2.2), fill parent was renamed to
match_parent, for unknown reasons. You can still use fill_parent, as it will
be supported for the foreseeable future. However, at such point in time as
you are only supporting API level 8 or higher (eg,
android:minSdkversion="8" in your manifest), you should probably switch
over to match_parent.

Weight

But, what happens if we have two widgets that should split the available
free space? For example, suppose we have two multi-line fields in a column,
and we want them to take up the remaining space in the column after all
other widgets have been allocated their space.

To make this work, in addition to setting android:layout_width (for rows) or
android:layout_height (for columns) to fill_parent, you must also set
android:layout_weight. This property indicates what proportion of the free
space should go to that widget. If you set android:layout_weight to be the
same non-zero value for a pair of widgets (e.g., 1), the free space will be
split evenly between them. If you set it to be 1 for one widget and 2 for

55

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

another widget, the second widget will use up twice the free space that the
first widget does. And so on.

The weight for a widget is zero by default.

Another pattern for using weights is if you want to allocate sizes on a
percentage basis. To use this technique for, say, a horizontal layout:

« Set all the android:layout_width values to be o for the widgets in the
layout

« Set the android:layout_weight values to be the desired percentage
size for each widget in the layout

« Make sure all those weights add up to 100

Gravity

By default, everything in a LinearLayout is left- and top-aligned. So, if you
create a row of widgets via a horizontal LinearLayout, the row will start flush
on the left side of the screen.

If that is not what you want, you need to specify a gravity. Using
android:layout_gravity on a widget (or calling setGravity() at runtime on
the widget's Java object), you can tell the widget and its container how to
align it vis a vis the screen.

For a column of widgets, common gravity values are 1left,
center_horizontal, and right for left-aligned, centered, and right-aligned
widgets respectively.

For a row of widgets, the default is for them to be aligned so their texts are
aligned on the baseline (the invisible line that letters seem to "sit on"),
though you may wish to specify a gravity of center_vertical to center the
widgets along the row's vertical midpoint.

56

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

Margins

By default, widgets are tightly packed, one next to the other. You can
control this via the use of margins, a concept that is reminiscent of the
padding described in a previous chapter.

The difference between padding and margins comes in terms of the
background. Widgets with a transparent background - like the default look
of a Textview — padding and margins have similar visual effect, increasing
the space between the widget and adjacent widgets. However, widgets with
a non-transparent background - like a Button - padding is considered
inside the background while margins are outside. In other words, adding
padding will increase the space between the contents (e.g., the caption of a
Button) and the edges, while adding margin increases the empty space
between the edges and adjacent widgets.

Margins can be set in XML, though only on a per-side basis
(android:layout_marginTop). Once again, the value of any of these is a
dimension - a combination of a unit of measure and a count, such as 5px for
5 pixels.

Example

Let's look at an example (Containers/Linear) that shows LinearLayout
properties set both in the XML layout file and at runtime.

Here is the layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<RadioGroup android:id="@+id/orientation”
android:orientation="horizontal"
android:layout_width="wrap_content"
android:layout_height="wrap_content”
android:padding="5px">

57

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

<RadioButton
android:id="@+id/horizontal”
android:text="horizontal" />
<RadioButton
android:id="@+id/vertical"
android:text="vertical" />
</RadioGroup>
<RadioGroup android:id="@+id/gravity"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:padding="5px">
<RadioButton
android:id="@+id/left"
android:text="1left" />
<RadioButton
android:id="@+id/center"
android:text="center" />
<RadioButton
android:id="@+id/right"
android:text="right" />
</RadioGroup>
</LinearlLayout>

Note that we have a LinearLayout wrapping two RadioGroup sets. RadioGroup
is a subclass of LinearLayout, so our example demonstrates nested boxes as
if they were all LinearLayout containers.

The top RadioGroup sets up a row (android:orientation = "horizontal") of
RadioButton widgets. The RadioGroup has 5px of padding on all sides,
separating it from the other RadioGroup. The width and height are both set
to wrap_content, so the radio buttons will only take up the space that they
need.

The bottom RadioGroup is a column (android:orientation = "vertical") of
three RadioButton widgets. Again, we have 5px of padding on all sides and a
"natural" height (android:layout_height = "wrap_content"). However, we
have set android:layout_width to be fill_parent, meaning the column of
radio buttons "claims" the entire width of the screen.

To adjust these settings at runtime based on user input, we need some Java
code:

58

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

import
import
import
import
import
import
import

public

}

android
android
android
android
android
android

package com.commonsware.android.linear;

.app.Activity;
.0s.Bundle;
.view.Gravity;
.text.TextWatcher;
.widget.LinearLayout;
.widget.RadioGroup;
android.

widget.EditText;

class LinearLayoutDemo extends Activity

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

implements RadioGroup.OnCheckedChangelListener {
RadioGroup orientation;
RadioGroup gravity;

orientation=(RadioGroup)findViewById(R.id.orientation);
orientation.setOnCheckedChangeListener(this);
gravity=(RadioGroup)findViewById(R.id.gravity);
gravity.setOnCheckedChangeListener(this);

public void onCheckedChanged(RadioGroup group, int checkedId) {
switch (checkedId) {

case R.id.horizontal:
orientation.setOrientation(LinearLayout.HORIZONTAL);

break;

case R.id.vertical:
orientation.setOrientation(LinearLayout.VERTICAL);

break;

case R.id.left:
gravity.setGravity(Gravity.LEFT);

break;

case R.id.center:
gravity.setGravity(Gravity.CENTER_HORIZONTAL);

break;

case R.id.right:
gravity.setGravity(Gravity.RIGHT);

break;

In onCreate(), we look up our two RadioGroup containers and register a
listener on each, so we are notified when the radio buttons change state

Subscribe to updates at http://commonsware.com

59

Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

(setonCheckedChangelListener(this)). Since the activity implements
OnCheckedChangeListener, the activity itself is the listener.

In onCheckedChanged() (the callback for the listener), we see which
RadioButton had a state change. Based on the clicked-upon item, we adjust
either the orientation of the first LinearLayout or the gravity of the second
LinearLayout.

Here is the result when it is first launched inside the emulator:

Chifll & 12:22 am

LinearLayoutDemo

. horizontal .venical

[I
. center
. right

Figure 13. The LinearLayoutDemo sample application, as initially launched

If we toggle on the "vertical" radio button, the top RadioGroup adjusts to
match:

60

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

Al @ 12:22am

LinearLayoutDemo

. horizontal
°vertical

0
. center

. right

Figure 14. The same application, with the vertical radio button selected

If we toggle the "center" or "right" radio buttons, the bottom RadioGroup
adjusts to match:

M@ 12:23AM

LinearLayoutDemo

. horizontal
°vertical

0.
o center

. right

Figure 15. The same application, with the vertical and center radio buttons
selected

61

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

ChMl & 12:23 AM

LinearLayoutDemo

. horizontal
1"venkm

@ -
. center
e right

Figure 16. The same application, with the vertical and right radio buttons
selected

The Box Model

As noted earlier in this chapter, some GUI frameworks treat everything as
boxes - what Android calls LinearLayout containers. In Flex and XUL, for
example, you create boxes and indicate how big they should be, as a
percentage of the available space, then you put widgets in the boxes. A
similar pattern exists in Android for LinearLayout, as is demonstrated in the
Containers\LinearPercent project.

Here, we have a layout XML file that contains a vertical LinearLayout
wrapping three Button widgets:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent”
>
<Button
android:text="Fifty Percent"
android:layout_width="fill_parent"

62

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

android:layout_height="0px"
android:layout_weight="50"

/>

<Button
android:text="Thirty Percent"
android:layout_width="fill_parent"
android:layout_height="0px"
android:layout_weight="30"

/>

<Button
android:text="Twenty Percent"
android:layout_width="fill_parent"
android:layout_height="0px"
android:layout_weight="20"

/>

</LinearLayout>

Each of the three widgets will take up a certain percentage of the vertical
space for the LinearLayout. Since the LinearLayout is set to fill the screen,
this means that the three widgets will divide up the screen based upon their
requested percentages.

To request a percentage, each Button:

+ Sets its android:layout_height to be epx (note: we use height here
because it is a vertical LinearLayout we are sub-dividing)

+ Sets its android:layout_weight to be the desired percentage (e.g.,
android:layout_weight="50"

So long as the weights sum to 109, as they do in this case, you will get your
desired breakdown by percentage:

63

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

5l @ 9:29am

Fifty Percent

Thirty Percent

Twenty Percent

Figure 17. A LinearLayout split among three Buttons by percentage

All Things Are Relative

RelativeLayout, as the name suggests, lays out widgets based upon their
relationship to other widgets in the container and the parent container. You
can place Widget X below and to the left of Widget Y, or have Widget Z's
bottom edge align with the bottom of the container, and so on.

This is reminiscent of James Elliot's RelativeLayout for use with Java/Swing.

Concepts and Properties

To make all this work, we need ways to reference other widgets within an
XML layout file, plus ways to indicate the relative positions of those
widgets.

64

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.onjava.com/pub/a/onjava/2002/09/18/relativelayout.html

Working with Containers

Positions Relative to Container

The easiest relations to set up are tying a widget's position to that of its
container:

+ android:layout_alignParentTop says the widget's top should align
with the top of the container

+ android:layout_alignParentBottom says the widget's bottom should
align with the bottom of the container

+ android:layout_alignParentLeft says the widget's left side should
align with the left side of the container

+ android:layout_alignParentRight says the widget's right side should
align with the right side of the container

+ android:layout_centerHorizontal says the widget should be
positioned horizontally at the center of the container

+ android:layout_centerVertical says the widget should be positioned
vertically at the center of the container

+ android:layout_centerInParent says the widget should be positioned
both horizontally and vertically at the center of the container

All of these properties take a simple boolean value (true or false).

Note that the padding of the widget is taken into account when performing
these various alignments. The alignments are based on the widget's overall
cell (combination of its natural space plus the padding).

Relative Notation in Properties

The remaining properties of relevance to RelativeLayout take as a value the
identity of a widget in the container. To do this:

1. Put identifiers (android:id attributes) on all elements that you will
need to address

2. Reference other widgets using the same identifier value

65

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

The first occurrence of an id value should have the plus sign
(@+id/widget_a); the second and subsequent times that id value is used in
the layout file should drop the plus sign (@id/widget_a). This allows the
build tools to better help you catch typos in your widget id values - if you
do not have a plus sign for a widget id value that has not been seen before,
that will be caught at compile time.

For example, if Widget A is identified as @+id/widget_a, Widget B can refer
to Widget A in one of its own properties via the identifier @id/widget_a.

Positions Relative to Other Widgets

There are four properties that control position of a widget vis a vis other
widgets:

+ android:layout_above indicates that the widget should be placed

above the widget referenced in the property

+ android:layout_below indicates that the widget should be placed
below the widget referenced in the property

+ android:layout_toLeftof indicates that the widget should be placed
to the left of the widget referenced in the property

« android:layout_toRightof indicates that the widget should be placed
to the right of the widget referenced in the property

Beyond those four, there are five additional properties that can control one
widget's alignment relative to another:

« android:layout_alignTop indicates that the widget's top should be
aligned with the top of the widget referenced in the property

+ android:layout_alignBottom indicates that the widget's bottom
should be aligned with the bottom of the widget referenced in the

property

+ android:layout_alignLeft indicates that the widget's left should be
aligned with the left of the widget referenced in the property

66

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

« android:layout_alignRight indicates that the widget's right should
be aligned with the right of the widget referenced in the property

+ android:layout_alignBaseline indicates that the baselines of the two
widgets should be aligned (where the "baseline" is that invisible line
that text appears to sit on)

The last one is useful for aligning labels and fields so that the text appears
"natural”. Since fields have a box around them and labels do not,
android:layout_alignTop would align the top of the field's box with the top
of the label, which will cause the text of the label to be higher on-screen
than the text entered into the field.

So, if we want Widget B to be positioned to the right of Widget A, in the
XML element for Widget B, we need to include android:layout_toRightOf =
"@id/widget_a" (assuming @id/widget_a is the identity of Widget A).

Order of Evaluation

It used to be that Android would use a single pass to process
RelativeLayout-defined rules. That meant you could not reference a widget
(e.g., via android:layout_above) until it had been declared in the XML. This
made defining some layouts a bit complicated. Starting in Android 1.6,
Android uses two passes to process the rules, so you can now safely have
forward references to as-yet-undefined widgets.

Example

With all that in mind, let's examine a typical "form" with a field, a label,
plus a pair of buttons labeled "OK" and "Cancel".

Here is the XML layout, pulled from the Ccontainers/Relative sample
project:

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout
xmlns:android="http://schemas.android.com/apk/res/android"

67

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

android:layout_width="fill_parent"

android:layout_height="wrap_content">

<TextView android:id="@+id/label"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="URL:"
android:layout_alignBaseline="@+id/entry"
android:layout_alignParentLeft="true"/>

<EditText
android:id="@id/entry"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_toRightOf="@id/label"
android:layout_alignParentTop="true"/>

<Button
android:id="@+id/ok"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@id/entry"
android:layout_alignRight="@id/entry"
android:text="0K" />

<Button
android:id="@+id/cancel”
android:layout_width="wrap_content"
android:layout_height="wrap_content”
android:layout_toLeftOf="@id/ok"
android:layout_alignTop="@id/ok"
android:text="Cancel" />

</RelativelLayout>

First, we open up the RelativeLayout. In this case, we want to use the full
width of the screen (android:layout_width = "fill_parent") and only as
much height as we need (android:layout_height = "wrap_content").

Next, we define the label as a Textview. We indicate that we want its left
edge aligned with the left edge of the Relativelayout
(android:layout_alignBaseline="@+id/entry") and that we want its baseline
aligned with the baseline of the yet-to-be-defined EditText. Since the
EditText has not been declared yet, we use the + sign in the ID
(android:layout_alignParentLeft="true").

After that, we add in the field as an EditText. We want the field to be to the
right of the label, have the field be aligned with the top of the
RelativeLayout, and for the field to take up the rest of this "row" in the
layout. Those are handled by three properties:

* android:layout_toRightOf = "@id/label™

68

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

* android:layout_alignParentTop = "true"

* android:layout_width = "fill_parent”

Then, the OK button is set to be below the field (android:layout_below =
"@id/entry"”) and have its right side align with the right side of the field
(android:layout_alignRight = "@id/entry"). The Cancel button is set to be
to the left of the OK button (android:layout_toLeft = "@id/ok") and have its
top aligned with the OK button (android:layout_alignTop = "@id/ok").

With no changes to the auto-generated Java code, the emulator gives us:

ChMl @ 12:34 AM

RelativeLayoutDemo

Cancel m

Figure 18. The RelativeLayoutDemo sample application

Overlap

RelativeLayout also has a feature that LinearLayout lacks - the ability to
have widgets overlap one another. Later children of a RelativeLayout are
"higher in the Z axis" than are earlier children, meaning that later children
will overlap earlier children if they are set up to occupy the same space in
the layout.

69

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

This will be clearer with an example. Here is a layout, from
Containers/RelativeOverlap, with a RelativeLayout holding two Button
widgets:

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<Button
android:text="I AM BIG"
android:textSize="120dip"
android:textStyle="bold"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
/>
<Button
android:text="I am small"
android:layout_width="wrap_content"
android:layout_height="wrap_content”
android:layout_centerInParent="true"
/>
</RelativelLayout>

The first Button is set to fill the screen. The second Button is set to be
centered inside the parent, but only take up as much space as is needed for
its caption. Hence, the second Button will appear to "float" over the first
Button:

70

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

il @ 10:11 am

Tam small

Figure 19. The RelativeOverlap sample application

Both Button widgets can still be clicked, though clicking on the smaller
Button does not also click the bigger Button. Your clicks will be handled by
the widget on top in the case of an overlap like this.

Tabula Rasa

If you like HTML tables, spreadsheet grids, and the like, you will like
Android's TableLayout - it allows you to position your widgets in a grid to
your specifications. You control the number of rows and columns, which
columns might shrink or stretch to accommodate their contents, and so on.

TableLayout works in conjunction with TableRow. TableLayout controls the
overall behavior of the container, with the widgets themselves poured into
one or more TableRow containers, one per row in the grid.

71

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

Concepts and Properties

For all this to work, we need to figure out how widgets work with rows and
columns, plus how to handle widgets that live outside of rows.

Putting Cells in Rows

Rows are declared by you, the developer, by putting widgets as children of a
TableRow inside the overall TableLayout. You, therefore, control directly how
many rows appear in the table.

The number of columns are determined by Android; you control the
number of columns in an indirect fashion.

First, there will be at least one column per widget in your longest row. So if
you have three rows, one with two widgets, one with three widgets, and one
with four widgets, there will be at least four columns.

However, a widget can take up more than one column by including the
android:layout_span property, indicating the number of columns the widget
spans. This is akin to the colspan attribute one finds in table cells in HTML:

<TableRow>
<TextView android:text="URL:" />
<EditText
android:id="@+id/entry"
android:layout_span="3"/>
</TableRow>

In the above XML layout fragment, the field spans three columns.

Ordinarily, widgets are put into the first available column. In the above
fragment, the label would go in the first column (column e, as columns are
counted starting from o), and the field would go into a spanned set of three
columns (columns 1 through 3). However, you can put a widget into a
different column via the android:layout_column property, specifying the e-
based column the widget belongs to:

72

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

<TableRow>
<Button
android:id="@+id/cancel”
android:layout_column="2"
android:text="Cancel" />
<Button android:id="@+id/ok" android:text="OK" />
</TableRow>

In the preceding XML layout fragment, the Cancel button goes in the third
column (column 2). The OK button then goes into the next available
column, which is the fourth column.

Non-Row Children of TableLayout

Normally, TableLayout contains only TableRow elements as immediate
children. However, it is possible to put other widgets in between rows. For
those widgets, TableLayout behaves a bit like LinearLayout with vertical
orientation. The widgets automatically have their width set to fill_parent,
so they will fill the same space that the longest row does.

One pattern for this is to use a plain view as a divider (e.g., <View
android:layout_height = "2px" android:background = "#@@@OFF" /> as a two-
pixel-high blue bar across the width of the table).

Stretch, Shrink, and Collapse

By default, each column will be sized according to the "natural” size of the
widest widget in that column (taking spanned columns into account).
Sometimes, though, that does not work out very well, and you need more
control over column behavior.

You can place an android:stretchColumns property on the TableLayout. The
value should be a single column number (again, e-based) or a comma-
delimited list of column numbers. Those columns will be stretched to take
up any available space yet on the row. This helps if your content is narrower
than the available space.

73

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

Conversely, you can place a android:shrinkColumns property on the
TableLayout. Again, this should be a single column number or a comma-
delimited list of column numbers. The columns listed in this property will
try to word-wrap their contents to reduce the effective width of the column
- by default, widgets are not word-wrapped. This helps if you have columns
with potentially wordy content that might cause some columns to be
pushed off the right side of the screen.

You can also leverage an android:collapseColumns property on the
TableLayout, again with a column number or comma-delimited list of
column numbers. These columns will start out "collapsed”, meaning they
will be part of the table information but will be invisible. Programmatically,
you can collapse and un-collapse columns by calling setColumnCollapsed()
on the TableLayout. You might use this to allow users to control which
columns are of importance to them and should be shown versus which ones
are less important and can be hidden.

You can also control stretching and shrinking at runtime via
setColumnStretchable() and setColumnShrinkable().

Example

The XML layout fragments shown above, when combined, give us a
TableLayout rendition of the "form" we created for RelativeLayout, with the
addition of a divider line between the label/field and the two buttons
(found in the containers/Table demo):

<?xml version="1.0" encoding="utf-8"?>
<TablelLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent”
android:stretchColumns="1">
<TableRow>
<TextView
android:text="URL:" />
<EditText android:id="@+id/entry"
android:layout_span="3"/>
</TableRow>
<View
android:layout_height="2px"

74

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

android:background="#0000FF" />
<TableRow>
<Button android:id="@+id/cancel”
android:layout_column="2"
android:text="Cancel" />
<Button android:id="@+id/ok"
android:text="0K" />
</TableRow>
</TablelLayout>

When compiled against the generated Java code and run on the emulator,
we get:

M@ 12:35 AM

TableLayoutDemo
e

Figure 20. The TableLayoutDemo sample application

Scrollwork

Phone screens tend to be small, which requires developers to use some
tricks to present a lot of information in the limited available space. One
trick for doing this is to use scrolling, so only part of the information is
visible at one time, the rest available via scrolling up or down.

Scrollview is a container that provides scrolling for its contents. You can
take a layout that might be too big for some screens, wrap it in a Scrollview,

75

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

and still use your existing layout logic. It just so happens that the user can
only see part of your layout at one time, the rest available via scrolling.

For example, here is a Scrollview used in an XML layout file (from the
Containers/Scroll demo):

<?xml version="1.0" encoding="utf-8"?>
<ScrollView
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="wrap_content">
<TablelLayout
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:stretchColumns="0">
<TableRow>
<View
android:layout_height="80px"
android:background="#000000" />
<TextView android:text="#000000"
android:paddinglLeft="4px"
android:layout_gravity="center_vertical" />
</TableRow>
<TableRow>
<View
android:layout_height="80px"
android:background="#440000" />
<TextView android:text="#440000"
android:paddinglLeft="4px"
android:layout_gravity="center_vertical” />
</TableRow>
<TableRow>
<View
android:layout_height="80px"
android:background="#884400" />
<TextView android:text="#884400"
android:paddinglLeft="4px"
android:layout_gravity="center_vertical" />
</TableRow>
<TableRow>
<View
android:layout_height="80px"
android:background="#aa8844" />
<TextView android:text="#aa8844"
android:paddinglLeft="4px"
android:layout_gravity="center_vertical" />
</TableRow>
<TableRow>
<View
android:layout_height="80px"
android:background="#ffaa88" />

76

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

<TextView
android
android
</TableRow>
<TableRow>
<View
android

<TextView

</TableRow>
<TableRow>
<View

<TextView

</TableRow>

android:
android:

android:
android:

android:
android:

android:text="#ffaa88"

:paddinglLeft="4px"
:layout_gravity="center_vertical" />

:layout_height="80px"
android:

background="#ffffaa" />
android:text="#ffffaa"
paddingLeft="4px"
layout_gravity="center_vertical” />

layout_height="80px"
background="#ffffff" />
android:text="#ffffff"
paddingLeft="4px"
layout_gravity="center_vertical” />

</TableLayout>
</ScrollView>

Without the scrollview, the table would take up at least 560 pixels (7 rows
at 8o pixels each, based on the view declarations). There may be some
devices with screens capable of showing that much information, but many
will be smaller. The scrollview lets us keep the table as-is, but only present

part of it at a time.

On the stock Android emulator, when the activity is first viewed, you see:

Subscribe to updates at http://commonsware.com

77

Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

ChMl @ 12:35 AM

ScrollViewDemo

Figure 21. The ScrollViewDemo sample application

Notice how only five rows and part of the sixth are visible. By pressing the
up/down buttons on the directional pad, you can scroll up and down to see
the remaining rows. Also note how the right side of the content gets
clipped by the scrollbar - be sure to put some padding on that side or
otherwise ensure your own content does not get clipped in that fashion.

Android 1.5 introduced HorizontalScrollview, which works like
Scrollview...just horizontally. This would be good for forms that might be
too wide rather than too tall. Note that neither Scrollview nor
HorizontalScrollview will give you bi-directional scrolling - you have to
choose vertical or horizontal.

Also, note that you cannot put scrollable items into a Scrollview. For
example, a Listview widget — which we will see in the next chapter - already
knows how to scroll. You do not need to put a ListVview in a Scrollview, and
if you were to try, it would not work very well.

78

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 7

Using Selection Widgets

Back in the chapter on basic widgets, you saw how fields could have
constraints placed upon them to limit possible input, such as numeric-only
or phone-number-only. These sorts of constraints help users "get it right"
when entering information, particularly on a mobile device with cramped
keyboards.

Of course, the ultimate in constrained input is to select a choice from a set
of items, such as the radio buttons seen earlier. Classic UI toolkits have
listboxes, comboboxes, drop-down lists, and the like for that very purpose.
Android has many of the same sorts of widgets, plus others of particular
interest for mobile devices (e.g., the Gallery for examining saved photos).

Moreover, Android offers a flexible framework for determining what
choices are available in these widgets. Specifically, Android offers a
framework of data adapters that provide a common interface to selection
lists ranging from static arrays to database contents. Selection views —
widgets for presenting lists of choices — are handed an adapter to supply the
actual choices.

Adapting to the Circumstances

In the abstract, adapters provide a common interface to multiple disparate
APIs. More specifically, in Android's case, adapters provide a common
interface to the data model behind a selection-style widget, such as a

79

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

listbox. This use of Java interfaces is fairly common (e.g., Java/Swing's
model adapters for JTable), and Java is far from the only environment
offering this sort of abstraction (e.g., Flex's XML data-binding framework
accepts XML inlined as static data or retrieved from the Internet).

Android's adapters are responsible for providing the roster of data for a
selection widget plus converting individual elements of data into specific
views to be displayed inside the selection widget. The latter facet of the
adapter system may sound a little odd, but in reality it is not that different
from other GUI toolkits' ways of overriding default display behavior. For
example, in Java/Swing, if you want a JList-backed listbox to actually be a
checklist (where individual rows are a checkbox plus label, and clicks adjust
the state of the checkbox), you inevitably wind up calling setCellRenderer()
to supply your own ListCellRenderer, which in turn converts strings for the
list into JCheckBox-plus-JLabel composite widgets.

Using ArrayAdapter

The easiest adapter to use is ArrayAdapter — all you need to do is wrap one of
these around a Java array or java.util.List instance, and you have a fully-
functioning adapter:

String[] items={"this", "is", "a",
"really", "silly", "list"};
new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_1, items);

One flavor of the ArrayAdapter constructor takes three parameters:

The context to use (typically this will be your activity instance)

+ The resource ID of a view to use (such as a built-in system resource
ID, as shown above)

« The actual array or list of items to show

By default, the ArrayAdapter will invoke tostring() on the objects in the list
and wrap each of those strings in the view designated by the supplied
resource. android.R.layout.simple_list_item_1 simply turns those strings

80

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

into Textview objects. Those Textview widgets, in turn, will be shown in the
list or spinner or whatever widget uses this ArrayAdapter. If you want to see
what android.R.layout.simple_list_item_1 looks like, you can find a copy of
it in your SDK installation - just search for simple_list_item_1.xml.

We will see in a later chapter how to subclass an Adapter and override row
creation, to give you greater control over how rows appear.

Lists of Naughty and Nice

The classic listbox widget in Android is known as Listview. Include one of
these in your layout, invoke setAdapter() to supply your data and child
views, and attach a listener via setOnItemSelectedListener() to find out
when the selection has changed. With that, you have a fully-functioning
listbox.

However, if your activity is dominated by a single list, you might well
consider creating your activity as a subclass of ListActivity, rather than the
regular Activity base class. If your main view is just the list, you do not
even need to supply a layout - ListActivity will construct a full-screen list
for you. If you do want to customize the layout, you can, so long as you
identify your Listview as @android:id/list, so ListActivity knows which
widget is the main list for the activity.

For example, here is a layout pulled from the Selection/List sample project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill_parent" >
<TextView
android:id="@+id/selection”
android:layout_width="fill_parent"
android:layout_height="wrap_content"/>
<ListView
android:id="@android:id/list"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:drawSelectorOnTop="false"

81

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

/>
</LinearlLayout>

It is just a list with a label on top to show the current selection.

The Java code to configure the list and connect the list with the label is:

public class ListViewDemo extends ListActivity {

private TextView selection;

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_1,
items));
selection=(TextView)findViewById(R.id.selection);
}

public void onListItemClick(ListView parent, View v, int position,
long id) {
selection.setText(items[position]);
}
)

With ListActivity, you can set the list adapter via setListAdapter() - in this
case, providing an ArrayAdapter wrapping an array of nonsense strings. To
find out when the list selection changes, override onListItemClick() and
take appropriate steps based on the supplied child view and position (in
this case, updating the label with the text for that position).

The results?

82

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

O M@ s5:38 M

amet

consectetuer

Figure 22. The ListViewDemo sample application

The second parameter to our ArrayAdapter -
android.R.layout.simple list_item 1 — controls what the rows look like.
The value used in the preceding example provides the standard Android list
row: big font, lots of padding, white text.

Selection Modes

By default, Listview is set up simply to collect clicks on list entries.
Sometimes, though, you want a list that tracks a user's selection, or possibly
multiple selections. Listview can handle that as well, but it requires a few
changes.

First, you will need to call setChoiceMode() on the Listview in Java code to
set the choice mode, supplying either CHOICE_MODE_SINGLE or
CHOICE_MODE_MULTIPLE as the value. You can get your Listview from a
ListActivity via getListview(). You can also declare this via the
android:choiceMode attribute in your layout XML.

83

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

Then, rather than use android.R.layout.simple_list_item_1 as the layout for
the list rows in your ArrayAdapter constructor, you will need to use either
android.R.layout.simple_list _item_single choice or
android.R.layout.simple_list_item_multiple_choice for single-choice or
multiple-choice lists, respectively.

For example, here is an activity layout from the Selection/Checklist sample
project:

<?xml version="1.0" encoding="utf-8"?>

<ListView

xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@android:id/list"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:drawSelectorOnTop="false"
android:choiceMode="multipleChoice"

/>

It is a full-screen Listview, with the android:choiceMode="multipleChoice"
attribute to indicate that we want multiple choice support.

Our activity just uses a standard ArrayAdapter on our list of nonsense words,
but uses android.R.layout.simple list_item_multiple choice as the row
layout:

"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_multiple_choice,
items));

What the user sees is the list of words with checkboxes down the right
edge:

84

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

amet
consectetuer

adipiscing

Figure 23. Multiple-select mode

If we wanted, we could call methods like getCheckedItemPositions() on our
Listview to find out which items the user checked, or setItemChecked() if we
wanted to check (or un-check) a specific entry ourselves.

Spin Control

In Android, the spinner is the equivalent of the drop-down selector you
might find in other toolkits (e.g., JComboBox in Java/Swing). Pressing the
center button on the D-pad pops up a selection dialog for the user to
choose an item from. You basically get the ability to select from a list
without taking up all the screen space of a Listview, at the cost of an extra
click or screen tap to make a change.

As with Listview, you provide the adapter for data and child views via
setAdapter() and hook in a listener object for selections via
setOnItemSelectedListener().

85

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

If you want to tailor the view used when displaying the drop-down
perspective, you need to configure the adapter, not the spinner widget. Use
the setDropDownviewResource() method to supply the resource ID of the view
to use.

For example, culled from the Selection/Spinner sample project, here is an
XML layout for a simple view with a Spinner:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent”
>
<TextView
android:id="@+id/selection”
android:layout_width="fill_parent"
android:layout_height="wrap_content”
/>
<Spinner android:id="@+id/spinner"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:drawSelectorOnTop="true"
/>
</LinearLayout>

This is the same view as shown in the previous section, just with a Spinner
instead of a Listview. The Spinner property android:drawSelectorOnTop
controls whether the arrows are drawn on the selector button on the right
side of the spinner UI.

To populate and use the Spinner, we need some Java code:

public class SpinnerDemo extends Activity

implements AdapterView.OnItemSelectedListener {

private TextView selection;

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0Override
public void onCreate(Bundle icicle) {

86

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

super.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);

Spinner spin=(Spinner)findViewById(R.id.spinner);
spin.setOnItemSelectedListener(this);

ArrayAdapter<String> aa=new ArrayAdapter<String>(this,
android.R.layout.simple_spinner_itenm,
items);

aa.setDropDownViewResource (
android.R.layout.simple_spinner_dropdown_item);
spin.setAdapter(aa);
}

public void onItemSelected(AdapterView<?> parent,
View v, int position, long id) {
selection.setText(items[position]);

}

public void onNothingSelected(AdapterView<?> parent) {
selection.setText("");

}

}

Here, we attach the activity itself as the selection listener
(spin.setOnItemSelectedListener(this)). This works because the activity
implements the onItemSelectedListener interface. We configure the adapter
not only with the list of fake words, but also with a specific resource to use
for the drop-down view (via aa.setDropDownViewResource()). Also note the
use of android.R.layout.simple_spinner_item as the built-in view for showing
items in the spinner itself. Finally, we implement the callbacks required by
onItemSelectedListener to adjust the selection label based on user input.

What we get is:

87

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

ChEl & 11:35 PM

SpinnerDemo
n

Figure 24. The SpinnerDemo sample application, as initially launched

Al @ 11:35 M

consectetuer

Figure 25. The same application, with the spinner drop-down list displayed

88

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

Grid Your Lions (Or Something Like That...)

As the name suggests, Gridview gives you a two-dimensional grid of items to
choose from. You have moderate control over the number and size of the
columns; the number of rows is dynamically determined based on the
number of items the supplied adapter says are available for viewing.

There are a few properties which, when combined, determine the number
of columns and their sizes:

+ android:numColumns spells out how many columns there are, or, if
you supply a value of auto_fit, Android will compute the number of
columns based on available space and the properties listed below.

+ android:verticalSpacing and android:horizontalSpacing indicate
how much whitespace there should be between items in the grid.

+ android:columnWidth indicates how many pixels wide each column

should be.

+ android:stretchMode indicates, for grids with auto_fit for
android:numColumns, what should happen for any available space not
taken up by columns or spacing - this should be columnwidth to have
the columns take up available space or spacingwWidth to have the
whitespace between columns absorb extra space. For example,
suppose the screen is 320 pixels wide, and we have
android:columnWidth set to 1@epx and android:horizontalSpacing set
to spx. Three columns would use 310 pixels (three columns of 100
pixels and two whitespaces of 5 pixels). With android:stretchMode
set to columnWidth, the three columns will each expand by 3-4 pixels
to use up the remaining 10 pixels. With android:stretchMode set to
spacingWidth, the two whitespaces will each grow by 5 pixels to
consume the remaining 10 pixels.

Otherwise, the Gridview works much like any other selection widget - use
setAdapter() to provide the data and child views, invoke
setOnItemSelectedListener() to register a selection listener, etc.

89

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

For example, here is an XML layout from the Selection/Grid sample project,
showing a Gridview configuration:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill parent"
>
<TextView
android:id="@+id/selection”
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>
<GridView
android:id="@+id/grid"
android:layout_width="fill_parent"
android:layout_height="fill_parent
android:verticalSpacing="4edip"
android:horizontalSpacing="5dip"
android:numColumns="auto_fit"
android:columnWidth="100dip"
android:stretchMode="columnWidth"
android:gravity="center"
/>
</LinearlLayout>

For this grid, we take up the entire screen except for what our selection
label requires. The number of columns is computed by Android

(android:numColumns = “auto_fit") based on our horizontal spacing
(android:horizontalSpacing = "5dip") and columns width
(android:columnWidth = "1eedip"), with the columns absorbing any "slop”

width left over (android:stretchMode = "columnWidth").

The Java code to configure the Gridview is:

package com.commonsware.android.grid;

import android.app.Activity;

import android.content.Context;
import android.os.Bundle;

import android.view.View;

import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.GridView;
import android.widget.TextView;

20

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

public class GridDemo extends Activity

implements AdapterView.OnItemSelectedListener {

private TextView selection;

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);

GridView g=(GridView) findViewById(R.id.grid);
g.setAdapter(new ArrayAdapter<String>(this,
R.layout.cell,
items));
g.setOnItemSelectedListener(this);

}

public void onItemSelected(AdapterView<?> parent, View v,
int position, long id) {
selection.setText(items[position]);

}

public void onNothingSelected(AdapterView<?> parent) {
selection.setText("");
}
¥

The grid cells are defined by a separate res/layout/cell.xml file, referenced

in our ArrayAdapter as R.layout.cell:

<?xml version="1.0" encoding="utf-8"?>

<TextView
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="wrap_content”
android:layout_height="wrap_content"
android:textSize="14dip"

/>

With the vertical spacing from the XML layout (android:verticalSpacing
“40dip"), the grid overflows the boundaries of the emulator's screen:

91

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com

Using Selection Widgets

Ml @ 11:55am

consectetuer

lorem

amet

adipiscing

ligula

aliquet

etiam

placerat

sodales

pellentesque

dolor
morbi
vitae

mollis

porttitor

augue

Figure 26. The GridDemo sample application, as initially launched

2 Ml & 11:56 am

amet

adipiscing

ligula

aliquet

etiam

placerat

sodales

purus

pellentesque

consectetuer

morbi

vitae

mollis

porttitor

augue

Figure 27. The same application, scrolled to the bottom of the grid

92

Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

Fields: Now With 35% Less Typing!

The AutoCompleteTextview is sort of a hybrid between the EditText (field)
and the spinner. With auto-completion, as the user types, the text is treated
as a prefix filter, comparing the entered text as a prefix against a list of
candidates. Matches are shown in a selection list that folds down from the
field. The user can either type out an entry (e.g., something not in the list)
or choose an entry from the list to be the value of the field.

AutoCompleteTextView subclasses EditText, so you can configure all the
standard look-and-feel aspects, such as font face and color.

In addition, AutoCompleteTextview has a android:completionThreshold
property, to indicate the minimum number of characters a user must enter
before the list filtering begins.

You can give AutoCompleteTextview an adapter containing the list of
candidate values via setAdapter(). However, since the user could type
something not in the list, AutoCompleteTextview does not support selection
listeners. Instead, you can register a TextWatcher, like you can with any
EditText, to be notified when the text changes. These events will occur
either because of manual typing or from a selection from the drop-down
list.

Below we have a familiar-looking XML layout, this time containing an
AutoCompleteTextview (pulled from the Selection/AutoComplete sample
application):

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<TextView
android:id="@+id/selection”
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>

93

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

<AutoCompleteTextView android:id="@+id/edit"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:completionThreshold="3"/>
</LinearLayout>

The corresponding Java code is:

package com.commonsware.android.auto;

import android.app.Activity;

import android.os.Bundle;

import android.text.Editable;

import android.text.TextWatcher;

import android.view.View;

import android.widget.AdapterView;

import android.widget.ArrayAdapter;

import android.widget.AutoCompleteTextView;
import android.widget.TextView;

public class AutoCompleteDemo extends Activity

implements TextWatcher {

private TextView selection;

private AutoCompleteTextView edit;

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);
edit=(AutoCompleteTextView)findViewById(R.id.edit);
edit.addTextChangedListener(this);

edit.setAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple_dropdown_item_1line,
items));

}

public void onTextChanged(CharSequence s, int start, int before,
int count) {
selection.setText(edit.getText());
}

public void beforeTextChanged(CharSequence s, int start,
int count, int after) {
// needed for interface, but not used

}

94

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

public void afterTextChanged(Editable s) {
// needed for interface, but not used
}
¥

This time, our activity implements TextWatcher, which means our callbacks
are onTextChanged(), beforeTextChanged(), and afterTextChanged(). In this
case, we are only interested in the former, and we update the selection label
to match the AutoCompleteTextView's current contents.

Here we have the results:

Chifll & 11:47 PM

AutoCompleteDemo

Figure 28. The AutoCompleteDemo sample application, as initially launched

95

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

Al @ 11:47pPM

AutoCompleteDemo
lar

lor

Figure 29. The same application, after a few matching letters were entered,
showing the auto-complete drop-down

& 11:47pPM

AutoCompleteDemo

Figure 30. The same application, after the auto-complete value was selected

96

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

Galleries, Give Or Take The Art

The Gallery widget is not one ordinarily found in GUI toolkits. It is, in
effect, a horizontally-laid-out listbox. One choice follows the next across
the horizontal plane, with the currently-selected item highlighted. On an
Android device, one rotates through the options through the left and right
D-pad buttons.

Compared to the Listview, the Gallery takes up less screen space while still
showing multiple choices at one time (assuming they are short enough).
Compared to the spinner, the Gallery always shows more than one choice at
a time.

The quintessential example use for the Gallery is image preview - given a
collection of photos or icons, the Gallery lets people preview the pictures in
the process of choosing one.

Code-wise, the Gallery works much like a Spinner or Gridview. In your XML
layout, you have a few properties at your disposal:

+ android:spacing controls the number of pixels between entries in
the list

+ android:spinnersSelector controls what is used to indicate a selection
- this can either be a reference to a bDrawable (see the resources
chapter) or an RGB value in #AARRGGBB or similar notation

+ android:drawSelectoronTop indicates if the selection bar (or brawable)
should be drawn before (false) or after (true) drawing the selected
child - if you choose true, be sure that your selector has sufficient
transparency to show the child through the selector, otherwise
users will not be able to read the selection

97

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 8

Getting Fancy With Lists

The humble Listview is one of the most important widgets in all of
Android, simply because it is used so frequently. Whether choosing a
contact to call or an email message to forward or an ebook to read, Listview
widgets are employed in a wide range of activities.

Of course, it would be nice if they were more than just plain text.

The good news is that they can be as fancy as you want, within the
limitations of a mobile device's screen, of course. However, making them
fancy takes some work and some features of Android that we will cover in
this chapter.

Getting To First Base

The classic Android Listview is a plain list of text — solid but uninspiring.
This is because all we have handed to the Listview is a bunch of words in an
array, and told Android to use a simple built-in layout for pouring those
words into a list.

However, you can have a list whose rows are made up of icons, or icons and
text, or checkboxes and text, or whatever you want. It is merely a matter of
supplying enough data to the adapter and helping the adapter to create a
richer set of view objects for each row.

99

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

For example, suppose you want a Listview whose entries are made up of an
icon, followed by some text. You could construct a layout for the row that
looks like this, found in res/layout/row.xml in the FancyLists/Static sample
project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="wrap_content”
android:orientation="horizontal"
>
<ImageView
android:id="@+id/icon"
android:padding="2dip"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="@drawable/ok"
/>
<TextView
android:id="@+id/label"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="40sp"
/>
</LinearLayout>

This layout uses a LinearLayout to set up a row, with the icon on the left and
the text (in a nice big font) on the right.

By default, though, Android has no idea that you want to use this layout
with your Listview. To make the connection, you need to supply your
Adapter with the resource ID of the custom layout shown above:

public class StaticDemo extends ListActivity {

private TextView selection;

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new ArrayAdapter<String>(this,
R.layout.row, R.id.label,

100

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

items));
selection=(TextView)findViewById(R.id.selection);
}

public void onListItemClick(ListView parent, View v,
int position, 1long id) {
selection.setText(items[position]);
}
¥

This follows the general structure for the previous ListView sample.

The key in this example is that you have told ArrayAdapter that you want to
use your custom layout (R.layout.row) and that the Textview where the
word should go is known as R.id.label within that custom layout.
Remember: to reference a layout (row.xml), use R.layout as a prefix on the
base name of the layout XML file (R.1layout.row).

The result is a Listview with icons down the left side. In particular, all the
icons are the same:

LM @ 1:15em

v lorem
v ipsum
v dolor
v sit

v’ amet

v’ consectetuer
v’ adipiscing
v elit

N
Figure 31. The StaticDemo application

101

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

A Dynamic Presentation

This technique - supplying an alternate layout to use for rows - handles
simple cases very nicely.

However, what happens when we want the icon to change based on the row
data? For example, perhaps we want to use one icon for small words and a
different icon for large words.

In the case of ArrayAdapter, you will need to extend it, creating your own
custom subclass (e.g., IconicAdapter) that incorporates your business logic.
In particular, it will need to override getview().

The getview() method of an Adapter is what an Adapterview (like Listview or
Spinner) calls when it needs the view associated with a given piece of data
the Adapter is managing. In the case of an ArrayAdapter, getview() is called
as needed for each position in the array - "get me the view for the first row",
"get me the view for the second row", etc.

For example, let us rework the above code to use getview(), so we can have
different icons for different rows - in this case, one icon for short words and
one for long words (from the FancyLists/Dynamic sample project):

public class DynamicDemo extends ListActivity {

TextView selection;

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new IconicAdapter());
selection=(TextView)findViewById(R.id.selection);

}

public void onListItemClick(ListView parent, View v,
int position, long id) {

102

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

selection.setText(items[position]);

}

class IconicAdapter extends ArrayAdapter<String> {
IconicAdapter() {
super(DynamicDemo.this, R.layout.row, R.id.label, items);

}

public View getView(int position, View convertView,
ViewGroup parent) {
View row=super.getView(position, convertView, parent);
ImageView icon=(ImageView)row.findViewById(R.id.icon);

if (items[position].length()>4) {
icon.setImageResource(R.drawable.delete);

}

else {
icon.setImageResource(R.drawable.ok);
}

return(row);

Our IconicAdapter — an inner class of the activity — has two methods. First,
it has the constructor, which just passes to ArrayAdapter the same data we
used in the ArrayAdapter constructor in StaticDemo. Second, it has our
getview() implementation, which does two things:

1. It chains to the superclass’ implementation of getview(), which
returns to us an instance of our row View, as prepared by
ArrayAdapter. In particular, our word has already been put into the
TextView, since ArrayAdapter does that normally.

2. It finds our Imageview and applies a business rule to set which icon
should be used, referencing one of two drawable resources
(R .drawable.ok and R.drawable. delete).

This gives us:

103

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

LMl @ 1:24em

DynamicDemo

Blorem
B ipsum
B dolor
v sit

v amet
Ed consectetuer
B adipiscing

v elit
™ .

Figure 32. The DynamicDemo application

Inflating Rows Ourselves

The solution shown in this version of the Dynamicbemo works fine. However,
there will be times when ArrayAdapter cannot even be used for setting up
the basics of our row. For example, it is possible to have a Listview where
the rows are materially different, such as category headers interspersed
among "regular” rows. In that case, we may need to do all of the work
ourselves, starting with inflating our rows.

A Sidebar About Inflation

In this case, “inflation” means the act of converting an XML layout
specification into the actual tree of view objects the XML represents. This is
undoubtedly a tedious bit of code: take an element, create an instance of
the specified view class, walk the attributes, convert those into property
setter calls, iterate over all child elements, lather, rinse, repeat.

104

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

The good news is that the fine folk on the Android team wrapped all that
up into a class called LayoutInflater that we can use ourselves. When it
comes to fancy lists, for example, we will want to inflate views for each row
shown in the list, so we can use the convenient shorthand of the XML
layout to describe what the rows are supposed to look like.

For example, let us look at a slightly different implementation of the
DynamicDemo class, from the FancyLists/DynamicEx project:

public class DynamicDemo extends ListActivity {

TextView selection;

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new IconicAdapter());
selection=(TextView)findViewById(R.id.selection);

}

public void onListItemClick(ListView parent, View v,
int position, long id) {
selection.setText(items[position]);

}

class IconicAdapter extends ArrayAdapter<String> {
IconicAdapter() {
super(DynamicDemo.this, R.layout.row, items);

}

public View getView(int position, View convertView,
ViewGroup parent) {
LayoutInflater inflater=getLayoutInflater();
View row=inflater.inflate(R.layout.row, parent, false);
TextView label=(TextView)row.findViewById(R.id.label);

label.setText(items[position]);
ImageView icon=(ImageView)row.findViewById(R.id.icon);
if (items[position].length()>4) {

icon.setImageResource(R.drawable.delete);

}

else {

105

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

icon.setImageResource(R.drawable.ok);

}

return(row);

}
}

}

Here we inflate our R.layout.row layout by use of a LayoutInflater object,
obtained from our Activity via getLayoutInflater(). This gives us a view
object back which, in reality, is our LinearLayout with an Imageview and a
TextView, just as R.layout.row specifies. However, rather than having to
create all those objects ourselves and wire them together, the XML and
LayoutInflater handle the "heavy lifting" for us.

And Now, Back To Our Story

So we have used LayoutInflater to give us a View representing the row. This
row is "empty", since the static layout file has no idea what actual data goes
into the row. It is our job to customize and populate the row as we see fit
before returning it. So, we:

« Fill in the text label into our label widget, using the word at the
supplied position

« See if the word is longer than four characters and, if so, we find our
Imageview icon widget and replace the stock resource with a
different one

The user sees nothing different — we have simply changed how those rows
are being created.

Obviously, this was a fairly contrived example, but you can see where this
technique could be used to customize rows based on any sort of criteria.

106

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

Better. Stronger. Faster.

The getview() implementation shown in the FancyLists/DynamicEx project
works, but is inefficient. Every time the user scrolls, we have to create a
bunch of new view objects to accommodate the newly-shown rows.

This is bad.

It might be bad for the immediate user experience, if the list appears to be
sluggish. More likely, though, it will be bad due to battery usage — every bit
of CPU that is used eats up the battery. This is compounded by the extra
work the garbage collector needs to do to get rid of all those extra objects
you create. So the less efficient your code, the more quickly the phone's
battery will be drained, and the less happy the user will be.

And you want happy users, right?

So, let us take a look at a few tricks to make your fancy Listview widgets
more efficient.

Using convertView

The getview() method receives, as one of its parameters, a view named, by
convention, convertvView. Sometimes, convertview will be null. In those
cases, you have to create a new row Vview from scratch (e.g., via inflation),
just as we did before.

However, if convertview is not null, then it is actually one of your
previously-created view objects! This will happen primarily when the user
scrolls the Listview — as new rows appear, Android will attempt to recycle
the views of the rows that scrolled off the other end of the list, to save you
having to rebuild them from scratch.

Assuming that each of your rows has the same basic structure, you can use
findviewById() to get at the individual widgets that make up your row and

107

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

change their contents, then return convertview from getview(), rather than
create a whole new row.

For example, here is the getview() implementation from last time, now
optimized via convertview (from the FancyLists/Recycling project):

public class RecyclingDemo extends ListActivity {

private TextView selection;

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new IconicAdapter());
selection=(TextView)findViewById(R.id.selection);

}

public void onListItemClick(ListView parent, View v,
int position, long id) {
selection.setText (items[position]);

}
class IconicAdapter extends ArrayAdapter<String> {
IconicAdapter() {
super(RecyclingDemo.this, R.layout.row, items);

¥
public View getView(int position, View convertView,
ViewGroup parent) {

View row=convertView;

if (row==null) {
LayoutInflater inflater=getLayoutInflater();

row=inflater.inflate(R.layout.row, parent, false);

¥

TextView label=(TextView)row.findViewById(R.id.label);
label.setText(items[position]);

ImageView icon=(ImageView)row.findViewById(R.id.icon);

if (items[position].length()>4) {
icon.setImageResource(R.drawable.delete);

108

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

¥
else {
icon.setImageResource(R.drawable.ok);

}

return(row);
}
}
}

Here, we check to see if the convertview is null and, if so, we then inflate our
row - but if it is not-null, we just reuse it. The work to fill in the contents
(icon image, text) is the same in either case. The advantage is that we avoid
the potentially-expensive inflation step. In fact, according to statistics cited
by Google at the 2010 Google I|O conference, a Listview that uses a
recycling ListAdapter will perform 150% faster than one that does not. In
fact, for complex rows, that might understate the benefit.

Not only is this faster, but it uses much less memory. Each widget or
container - in other words, each subclass of view — holds onto up to 2KB of
data, not counting things like images in Imageview widgets. Each of our
rows, therefore, might be as big as 6KB. For our list of 25 nonsense words,
consuming as much as 150KB for a non-recycling list (25 rows at 6KB each)
would be inefficient but not a huge problem. A list of 1,000 nonsense
words, though, consuming as much as 6MB of RAM, would be a much
bigger issue. Bear in mind that your application may only have 16MB of Java
heap memory to work with. Recycling allows us to handle arbitrary list
lengths with only as much view memory consumed as is needed for the
rows visible on screen.

Note that row recycling is only an issue if we are creating the rows ourself.
If we let ArrayAdapter create the rows, by leveraging its implementation of
getview() as shown in the FancyLists/Dynamic project, then it deals with the
recycling.

Using the Holder Pattern

Another somewhat expensive operation we do a lot with fancy views is call
findviewById(). This dives into our inflated row and pulls out widgets by

109

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

their assigned identifiers, so we can customize the widget contents (e.g.,
change the text of a Textview, change the icon in an Imageview). Since
findviewById() can find widgets anywhere in the tree of children of the
row's root View, this could take a fair number of instructions to execute,
particularly if we keep having to re-find widgets we had found once before.

In some GUI toolkits, this problem is avoided by having the composite view
objects, like our rows, be declared totally in program code (in this case,
Java). Then, accessing individual widgets is merely the matter of calling a
getter or accessing a field. And you can certainly do that with Android, but
the code gets rather verbose. What would be nice is a way where we can
still use the layout XML yet cache our row's key child widgets so we only
have to find them once.

That's where the holder pattern comes into play, in a class we'll call
ViewHolder.

All view objects have getTag() and setTag() methods. These allow you to
associate an arbitrary object with the widget. What the holder pattern does
is use that "tag" to hold an object that, in turn, holds each of the child
widgets of interest. By attaching that holder to the row view, every time we
use the row, we already have access to the child widgets we care about,
without having to call findviewById() again.

So, let’s take a look at one of these holder classes (taken from the
FancyLists/ViewHolder sample project):

package com.commonsware.android.fancylists.five;

import android.view.View;
import android.widget.ImageView;

class ViewHolder {
ImageView icon=null;

ViewHolder(View base) {
this.icon=(ImageView)base.findViewById(R.id.icon);
}
¥

110

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

viewHolder holds onto the child widgets, initialized via findviewById() in its
constructor. The widgets are simply package-protected data members,
accessible from other classes in this project...such as a VviewHolderDemo
activity. In this case, we are only holding onto one widget - the icon - since
we will let ArrayAdapter handle our label for us.

Using ViewHolder is a matter of creating an instance whenever we inflate a
row and attaching said instance to the row view via setTag(), as shown in
this rewrite of getview(), found in ViewHolderDemo:

public View getView(int position, View convertView,
ViewGroup parent) {
View row=super.getView(position, convertView, parent);
ViewHolder holder=(ViewHolder)row.getTag();

if (holder==null) {
holder=new ViewHolder(row);
row.setTag(holder);

}

if (getModel(position).length()>4) {
holder.icon.setImageResource(R.drawable.delete);

}
else {
holder.icon.setImageResource(R.drawable.ok);

}

return(row);

Here, we go back to allowing ArrayAdapter to handle our row inflation and
recycling for us. If the call to getTag() on the row returns null, we know we
need to create a new ViewHolder, which we then attach to the row via
setTag() for later reuse. Then, accessing the child widgets is merely a
matter of accessing the data members on the holder. The first time the
Listview is displayed, all new rows need to be inflated, and we wind up
creating a ViewHolder for each. As the user scrolls, rows get recycled, and we
can reuse their corresponding ViewHolder widget caches.

Using a holder helps performance, but the effect is not as dramatic.
Whereas recycling can give you a 150% performance improvement, adding
in a holder increases the improvement to 175%. Hence, while you may wish
to implement recycling up front when you create your adapter, adding in a

111

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

holder might be something you deal with later, when you are working
specifically on performance tuning.

In this particular case, we certainly could simplify all of this, by skipping
ViewHolder and using getTag() and setTag() with the Imageview directly. This
example is written as it is to demonstrate how to handle a more complex
scenario, where you might have several widgets that would need to be
cached via the holder pattern.

Interactive Rows

Lists with pretty icons next to them are all fine and well. But, can we create
Listview widgets whose rows contain interactive child widgets instead of
just passive widgets like Textview and Imageview? For example, there is a
RatingBar widget that allows users to assign a rating by clicking on a set of
star icons. Could we combine the RatingBar with text in order to allow
people to scroll a list of, say, songs and rate them right inside the list?

There is good news and bad news.

The good news is that interactive widgets in rows work just fine. The bad
news is that it is a little tricky, specifically when it comes to taking action
when the interactive widget's state changes (e.g., a value is typed into a
field). We need to store that state somewhere, since our RatingBar widget
will be recycled when the Listview is scrolled. We need to be able to set the
RatingBar state based upon the actual word we are viewing as the RatingBar
is recycled, and we need to save the state when it changes so it can be
restored when this particular row is scrolled back into view.

What makes this interesting is that, by default, the RatingBar has absolutely
no idea what item in the ArrayAdapter it represents. After all, the RatingBar
is just a widget, used in a row of a Listview. We need to teach the rows
which item in the ArrayAdapter they are currently displaying, so when their
RatingBar is checked, they know which item's state to modify.

112

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

So, let's see how this is done, using the activity in the FancyLists/RateList
sample project. We will use the same basic classes as our previous demo -
we are showing a list of nonsense words, which you can then rate. In
addition, words given a top rating are put in all caps:

package com.commonsware.android.fancylists.six;

import android.app.Activity;

import android.os.Bundle;

import android.app.ListActivity;
import android.view.View;

import android.view.ViewGroup;
import android.view.LayoutInflater;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.RatingBar;
import android.widget.LinearlLayout;
import android.widget.ListView;
import android.widget.TextView;
import java.util.Arraylist;

public class RatelListDemo extends ListActivity {
private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

ArraylList<RowModel> list=new ArrayList<RowModel>();

for (String s : items) {
list.add(new RowModel(s));
¥

setListAdapter(new RatingAdapter(list));
}

private RowModel getModel(int position) {
return(((RatingAdapter)getListAdapter()).getItem(position));
}

class RatingAdapter extends ArrayAdapter<RowModel> {
RatingAdapter(ArrayList<RowModel> list) {
super(RateListDemo.this, R.layout.row, R.id.label, list);

}

public View getView(int position, View convertView,

113

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

ViewGroup parent) {
View row=super.getView(position, convertView, parent);
ViewHolder holder=(ViewHolder)row.getTag();

if (holder==null) {
holder=new ViewHolder(row);
row.setTag(holder);

RatingBar.OnRatingBarChangelListener 1=
new RatingBar.OnRatingBarChangeListener() {
public void onRatingChanged(RatingBar ratingBar,
float rating,
boolean fromTouch) {
Integer myPosition=(Integer)ratingBar.getTag();
RowModel model=getModel(myPosition);

model.rating=rating;

LinearLayout parent=(LinearLayout)ratingBar.getParent();
TextView label=(TextView)parent.findViewById(R.id.label);

label.setText(model.toString());
}
¥

holder.rate.setOnRatingBarChangeListener(1l);
¥

RowModel model=getModel(position);

holder.rate.setTag(new Integer(position));
holder.rate.setRating(model.rating);

return(row);
¥
}

class RowModel {
String label;
float rating=2.0f;

RowModel (String label) {
this.label=1label;

}

public String toString() {
if (rating>=3.0) {
return(label.toUpperCase());
¥

return(label);
¥
}

114

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

Here is what is different in this activity and getview() implementation than
before:

1. While we are still using string[] items as the list of nonsense words,
rather than pour that string array straight into an ArrayAdapter, we
turn it into a list of RowModel objects. RowModel is the mutable model:
it holds the nonsense word plus the current checked state. In a real
system, these might be objects populated from a database, and the
properties would have more business meaning.

2. Utility methods like onListItemClick() had to be updated to reflect
the change from a pure-string model to use a RowModel.

3. The ArrayAdapter subclass (CheckAdapter), in getview(), lets
ArrayAdapter inflate and recycle the row, then checks to see if we
have a viewHolder in the row's tag. If not, we create a new ViewHolder
and associate it with the row. For the row's RatingBar, we add an
anonymous onRatingChanged() listener that looks at the row's tag
(getTag()) and converts that into an Integer, representing the
position within the ArrayAdapter that this row is displaying. Using
that, the rating bar can get the actual RowModel for the row and
update the model based upon the new state of the rating bar. It also
updates the text adjacent to the RatingBar when checked to match
the rating bar state.

4. We always make sure that the RatingBar has the proper contents
and has a tag (via setTag()) pointing to the position in the adapter
the row is displaying.

The row layout is very simple: just a RatingBar and a Textview inside a
LinearlLayout:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="wrap_content”
android:orientation="horizontal"

<RatingBar
android:id="@+id/rate"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:numStars="3"

115

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

android
<TextView
android
android
android
android

android:
rrating="2" />

:id="@+id/label"

:padding="2dip"

:textSize="18sp"

:layout_gravity="left|center_vertical"
android:
android:

</LinearLayout>

stepSize="1"

layout_width="fill _parent"
layout_height="wrap_content"/>

The viewHolder is similarly simple, just extracting the RatingBar out of the
row View for caching purposes:

RatingBar

}
¥

package com.

import android.view.View;
import android.widget.RatingBar;

class ViewHolder {

ViewHolder(View base) {
this.rate=(RatingBar)base.findViewById(R.id.rate);

commonsware.android.fancylists.six;

rate=null;

And the result is what you would expect, visually:

116

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

Al & s:1apPm

RateListDemo

ﬁnﬁr*lorem
T 7 Wripsum
ﬁnﬁr*dolor
¥ 7 W sit

Y Y W amet
¥ Y W consect

etuer

A A A ' . .
Figure 33. The RateListDemo application, as initially launched

This includes the toggled rating bars turning their words into all caps:

£ Ml @ 7:46 Am

RateListDemo

‘L‘.{ﬁ*lorem
T 7 W ipsum
ﬁnﬁr*dolor

Y W sit
Y Y AMET
¥ ¥ W consect

etuer

A A A .
Figure 34. The same application, showing a top-rated word

117

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 9

Still More Widgets and
Containers

This book has covered a number of widgets and containers so far. This
chapter is the last that focuses exclusively on widgets and containers,
covering a number of popular options, from date and time widgets to tabs.
After this chapter, we will still introduce the occasional new widget, but in
the context of some other topic, such as introducing the progressBar in the
chapter on threads.

Pick and Choose

With limited-input devices like phones, having widgets and dialogs that are
aware of the type of stuff somebody is supposed to be entering is very
helpful. It minimizes keystrokes and screen taps, plus reduces the chance of
making some sort of error (e.g., entering a letter someplace where only
numbers are expected).

As shown previously, EditText has content-aware flavors for entering in
numbers, phone numbers, etc. Android also supports widgets (DatePicker,
TimePicker) and dialogs (DatePickerDialog, TimePickerDialog) for helping
users enter dates and times.

The DatePicker and DatePickerDialog allow you to set the starting date for
the selection, in the form of a year, month, and day of month value. Note

119

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

that the month runs from e for January through 11 for December. Most
importantly, each let you provide a callback object (onDatechangedListener
or OnDateSetListener) where you are informed of a new date selected by the
user. It is up to you to store that date someplace, particularly if you are
using the dialog, since there is no other way for you to get at the chosen
date later on.

Similarly, TimePicker and TimePickerDialog let you:

- set the initial time the user can adjust, in the form of an hour (e
through 23) and a minute (e through 59)

+ indicate if the selection should be in 12-hour mode with an AM/PM
toggle, or in 24-hour mode (what in the US is thought of as
"military time" and much of the rest of the world is thought of as
"the way times are supposed to be")

« provide a callback object (onTimeChangedListener or
onTimeSetListener) to be notified of when the user has chosen a new
time, which is supplied to you in the form of an hour and minute

For example, from the Fancy/Chrono sample project, here's a trivial layout
containing a label and two buttons - the buttons will pop up the dialog
flavors of the date and time pickers:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent”

>

<TextView android:id="@+id/dateAndTime"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>

<Button android:id="@+id/dateBtn"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Set the Date"
android:onClick="chooseDate"
/>

<Button android:id="@+id/timeBtn"
android:layout_width="fill_parent"
android:layout_height="wrap_content"

120

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

/>

android:text="Set the Time"
android:onClick="chooseTime"

</LinearlLayout>

The more interesting stuff comes in the Java source:

import
import
import
import
import
import
import
import
import
import

public

}

}

}

package com.commonsware.android.chrono;

android.
android.
android.
android.
android.
android.
android.
android.
java.text.DateFormat;
java.util.Calendar;

class ChronoDemo extends Activity {

DateFormat fmtDateAndTime=DateFormat.getDateTimeInstance();
TextView dateAndTimelLabel;

Calendar dateAndTime=Calendar.getInstance();

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
dateAndTimeLabel=(TextView)findViewById(R.id.dateAndTime);
updatelLabel();

public void chooseDate(View v) {
new DatePickerDialog(ChronoDemo.this, d,

show();

public void chooseTime(View v) {
new TimePickerDialog(ChronoDemo.this, t,

show();

private void updateLabel() {
dateAndTimeLabel.setText (fmtDateAndTime

app.Activity;
os.Bundle;
app.DatePickerDialog;
app.TimePickerDialog;
view.View;
widget.DatePicker;
widget.TimePicker;
widget.TextView;

dateAndTime.get(Calendar.YEAR),
dateAndTime.get(Calendar .MONTH),
dateAndTime.get(Calendar.DAY_OF_MONTH))

dateAndTime.get(Calendar.HOUR_OF_DAY),
dateAndTime.get(Calendar .MINUTE),
true)

121

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

.format (dateAndTime.getTime()));
}

DatePickerDialog.OnDateSetListener d=new DatePickerDialog.OnDateSetListener()
{
public void onDateSet(DatePicker view, int year, int monthOfYear,
int dayOfMonth) {
dateAndTime.set(Calendar.YEAR, year);
dateAndTime.set(Calendar.MONTH, monthOfYear);
dateAndTime.set(Calendar.DAY_OF_MONTH, dayOfMonth);
updatelLabel();
¥
s

TimePickerDialog.OnTimeSetListener t=new TimePickerDialog.OnTimeSetListener()
{
public void onTimeSet(TimePicker view, int hourOfDay,
int minute) {
dateAndTime.set(Calendar.HOUR_OF_DAY, hourOfDay);
dateAndTime.set(Calendar.MINUTE, minute);
updatelLabel();
}
s
}

The "model" for this activity is just a Calendar instance, initially set to be the
current date and time. We pour it into the view via a DateFormat formatter.
In the updateLabel() method, we take the current calendar, format it, and
put it in the Textview.

Each button has a corresponding method that will get control when the
user clicks it (chooseDate() and chooseTime()). When the button is clicked,
either a DatePickerDialog or a TimePickerDialog is shown. In the case of the
DatePickerDialog, we give it a OnDateSetListener callback that updates the
Calendar with the new date (year, month, day of month). We also give the
dialog the last-selected date, getting the values out of the calendar. In the
case of the TimePickerDialog, it gets a OnTimeSetListener callback to update
the time portion of the calendar, the last-selected time, and a true
indicating we want 24-hour mode on the time selector.

With all this wired together, the resulting activity looks like this:

122

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

EhMl & &:50PMm

ChronoDemo

g A
Set the Date
Set the Time

Figure 35. The ChronoDemo sample application, as initially launched

EhMl & &:51pPm

G Sat, August 23, 2008

+ f + +
Aug il 23 § 2008

Cancel

Figure 36. The same application, showing the date picker dialog

123

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

EhMl & &:51pPMm

Cancel

Figure 37. The same application, showing the time picker dialog

Time Keeps Flowing Like a River

If you want to display the time, rather than have users enter the time, you
may wish to use the DigitalClock or AnalogClock widgets. These are
extremely easy to use, as they automatically update with the passage of
time. All you need to do is put them in your layout and let them do their
thing.

For example, from the Fancy/Clocks sample application, here is an XML
layout containing both pigitalClock and AnalogClock:

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent”
>
<AnalogClock android:id="@+id/analog"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_alignParentTop="true"
/>

124

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

<DigitalClock android:id="@+id/digital”
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_below="@id/analog"
/>
</RelativelLayout>

Without any Java code other than the generated stub, we can build this
project and get the following activity:

Ml & 6:52Pm

ClocksDemo

Figure 38. The ClocksDemo sample application
If you are looking for more of a timer, Chronometer may be of interest. With
a Chronometer, you can track elapsed time from a starting point. You simply

tell it when to start() and stop(), and possibly override the format string
that displays the text:

125

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

M@ 9:23 Am

Initial format: 00:12

Set format string
Clear format string

Figure 39. The Views/Chronometer APl Demo from the Android 2.0 SDK

Seeking Resolution

The seekar in an input widget, allowing the user to select a value along a
range of possible values:

126

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

Ml @ 9:38 AM

Figure 40. The Views/SeekBar APl Demo from the Android 2.0 SDK

The user can either drag the "thumb" or click on either side of it to
reposition the thumb. The thumb then points to a particular value along a
range. That range will be @ to some maximum value, 100 by default, that
you control via a call to setMax(). You can find out what the current position
is via getProgress(), or find out when the user makes a change to the
thumb's position by registering a listener via setonSeekBarChangeListener().

We saw another variation on this theme with the RatingBar in the previous
chapter.

Putting It On My Tab

The general Android philosophy is to keep activities short and sweet. If
there is more information than can reasonably fit on one screen, albeit
perhaps with scrolling, then it perhaps belongs in another activity kicked
off via an Intent, as will be described later in this book. However, that can
be complicated to set up. Moreover, sometimes there legitimately is a lot of
information that needs to be collected to be processed as an atomic
operation.

127

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

In a traditional UI, you might use tabs to accomplish this end, such as a
JTabbedPane in Java/Swing. In Android, you now have an option of using a
TabHost container in much the same way - a portion of your activity's screen
is taken up with tabs which, when clicked, swap out part of the view and
replace it with something else. For example, you might have an activity with
a tab for entering a location and a second tab for showing a map of that
location.

Some GUI toolkits refer to "tabs" as being just the things a user clicks on to
toggle from one view to another. Some toolkits refer to "tabs" as being the
combination of the clickable button-ish element and the content that
appears when that tab is chosen. Android treats the tab buttons and
contents as discrete entities, so we will call them "tab buttons" and "tab
contents” in this section.

The Pieces

There are a few widgets and containers you need to use in order to set up a
tabbed portion of a view:

« TabHost is the overarching container for the tab buttons and tab
contents

+ Tabwidget implements the row of tab buttons, which contain text
labels and optionally contain icons

+ Framelayout is the container for the tab contents; each tab content is
a child of the FrameLayout

This is similar to the approach that Mozilla's XUL takes. In XUL's case, the
tabbox element corresponds to Android's TabHost, the tabs element
corresponds to TabWidget, and tabpanels corresponds to the FrameLayout.

For example, here is a layout definition for a tabbed activity, from
Fancy/Tab:

<?xml version="1.0" encoding="utf-8"?>
<TabHost xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/tabhost"

128

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

android:layout_width="fill_parent"
android:layout_height="fill_parent">
<LinearLayout
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">
<TabWidget android:id="@android:id/tabs"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>
<FramelLayout android:id="@android:id/tabcontent”
android:layout_width="fill_parent"
android:layout_height="fill_parent">
<AnalogClock android:id="@+id/tab1l"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:layout_centerHorizontal="true"
/>
<Button android:id="@+id/tab2"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:text="A semi-random button"
/>
</FrameLayout>
</LinearLayout>
</TabHost>

Note that the Tabwidget and FrameLayout are indirect children of the TabHost,
and the FrameLayout itself has children representing the various tabs. In this
case, there are two tabs: a clock and a button. In a more complicated
scenario, the tabs are probably some form of container (e.g., LinearLayout)
with their own contents.

Wiring It Together

You can put these widgets in a regular Activity or a TabActivity.
TabActivity, like ListActivity, wraps a common UI pattern (activity made
up entirely of tabs) into a pattern-aware activity subclass. If you wish to use
the TabActivity, you must give the TabHost an android:id of
@android:id/tabhost. Conversely, if you do not wish to use TabActivity, you
need to get your TabHost via findviewById(), then call setup() on the TabHost,
before you do anything else.

The rest of the Java code needs to tell the TabHost what views represent the
tab contents and what the tab buttons should look like. This is all wrapped

129

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

up in TabSpec objects. You get a TabSpec instance from the host via
newTabSpec(), fill it out, then add it to the host in the proper sequence.

The two key methods on Tabspec are:

+ setContent(), where you indicate what goes in the tab content for
this tab, typically the android:id of the view you want shown when
this tab is selected

+ setIndicator(), where you provide the caption for the tab button
and, in some flavors of this method, supply a brawable to represent
the icon for the tab

Note that tab "indicators" can actually be views in their own right, if you
need more control than a simple label and optional icon.

Also note that you must call setup() on the TabHost before configuring any
of these Tabspec objects. The call to setup() is not needed if you are using
the TabActivity base class for your activity.

For example, here is the Java code to wire together the tabs from the
preceding layout example:

package com.commonsware.android.fancy;

import android.app.Activity;
import android.os.Bundle;
import android.widget.TabHost;

public class TabDemo extends Activity {
@Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

TabHost tabs=(TabHost)findViewById(R.id.tabhost);
tabs.setup();

TabHost.TabSpec spec=tabs.newTabSpec("tagl");
spec.setContent(R.id.tabl);

spec.setIndicator("Clock");
tabs.addTab(spec);

130

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

spec=tabs.newTabSpec("tag2");
spec.setContent(R.id.tab2);
spec.setIndicator("Button");
tabs.addTab(spec);

We find our TabHost via the familiar findviewById() method, then have it
setup(). After that, we get a TabSpec via newTabSpec(), supplying a tag whose
purpose is unknown at this time. Given the spec, you call setContent() and
setIndicator(), then call addTab() back on the TabHost to register the tab as
available for use. Finally, you can choose which tab is the one to show via
setCurrentTab(), providing the e-based index of the tab.

The result?

LMl @ 6:54 PM

TabDemo

Figure 41. The TabDemo sample application, showing the first tab

131

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

Al @ e:54PM

TabDemo

Button

A semi-random button

.-l
Figure 42. The same application, showing the second tab

Adding Them Up

Tabwidget is set up to allow you to easily define tabs at compile time.
However, sometimes, you want to add tabs to your activity during runtime.
For example, imagine an email client where individual email messages get
opened in their own tab, for easy toggling between messages. In this case,
you do not know how many tabs or what their contents will be until
runtime, when the user chooses to open a message.

Fortunately, Android also supports adding tabs dynamically at runtime.

Adding tabs dynamically at runtime works much like the compile-time tabs
shown above, except you use a different flavor of setContent(), one that
takes a TabHost.TabContentFactory instance. This is just a callback that will
be invoked - you provide an implementation of createTabContent() and use
it to build and return the view that becomes the content of the tab.

Let us take a look at an example (Fancy/DynamicTab).

132

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

First, here is some layout XML for an activity that sets up the tabs and
defines one tab, containing a single button:

<?xml version="1.0" encoding="utf-8"?>
<TabHost xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/tabhost"
android:layout_width="fill parent"
android:layout_height="fill_parent">
<LinearLayout
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">
<TabWidget android:id="@android:id/tabs"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>
<FrameLayout android:id="@android:id/tabcontent”
android:layout_width="fill_parent"
android:layout_height="fill_parent">
<Button android:id="@+id/buttontab”
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:text="A semi-random button"
android:onClick="addTab"
/>
</FrameLayout>
</LinearLayout>
</TabHost>

What we want to do is add new tabs whenever the button is clicked. That
can be accomplished in just a few lines of code:

package com.commonsware.android.dynamictab;

import android.app.Activity;
import android.os.Bundle;

import android.view.View;

import android.widget.AnalogClock;
import android.widget.TabHost;

public class DynamicTabDemo extends Activity {
private TabHost tabs=null;

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

tabs=(TabHost)findviewById(R.id.tabhost);
tabs.setup();

133

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

TabHost.TabSpec spec=tabs.newTabSpec("buttontab");

spec.setContent(R.id.buttontab);
spec.setIndicator("Button");
tabs.addTab(spec);

}

public void addTab(View v) {
TabHost.TabSpec spec=tabs.newTabSpec("tagl");

spec.setContent (new TabHost.TabContentFactory() {

public View createTabContent(String tag) {
return(new AnalogClock(DynamicTabDemo.this));

}
s

spec.setIndicator("Clock");
tabs.addTab(spec);

In our button's addTab() callback, we create a TabHost.TabSpec object and
give it an anonymous TabHost.TabContentFactory. The factory, in turn,
returns the view to be used for the tab - in this case, just an AnalogClock.
The logic for constructing the tab’s view could be much more elaborate,
such as using LayoutInflater to construct a view from layout XML.

Initially, when the activity is launched, we just have the one tab:

134

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

]

3:49 PM

Dynamic Tabs

Button

A semi-random button

-, _—,__—i
Figure 43. The DynamicTab application, with the single initial tab

B & 3:49 PM

Dynamic Tabs

Button Clock Clock

A semi-random button

—]
Figure 44. The DynamicTab application, with three dynamically-created tabs

135

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

Flipping Them Off

Sometimes, you want the overall effect of tabs (only some views visible at a
time), but you do not want the actual Ul implementation of tabs. Maybe
the tabs take up too much screen space. Maybe you want to switch between
perspectives based on a gesture or a device shake. Or maybe you just like
being different.

The good news is that the guts of the view-flipping logic from tabs can be
found in the viewFlipper container, which can be used in other ways than
the traditional tab.

ViewFlipper inherits from FrameLayout, just like we used to describe the
innards of a Tabwidget. However, initially, it just shows the first child view.
It is up to you to arrange for the views to flip, either manually by user
interaction, or automatically via a timer.

For example, here is a layout for a simple activity (Fancy/Flipperl) using a
Button and a ViewFlipper:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

>

<Button android:id="@+id/flip_me"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Flip Me!"
android:onClick="flip"
/>
<ViewFlipper android:id="@+id/details"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

>

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content”
android:textStyle="bold"
android:textColor="#FFOOFF00O"
android:text="This is the first panel"

/>

<TextView

136

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

/>
<TextView

/>

android:
android:
android:
android:
android:

android:
android:
android:
android:
android:

</ViewFlipper>
</LinearLayout>

layout_width="fill_parent"
layout_height="wrap_content"
textStyle="bold"
textColor="#FFFF0000"
text="This is the second panel"

layout_width="fill parent"
layout_height="wrap_content"
textStyle="bold"
textColor="#FFFFFF0Q"
text="This is the third panel”

Notice that the layout defines three child views for the viewFlipper, each a
Textview with a simple message. Of course, you could have very
complicated child views, if you so chose.

To manually flip the views, we need to hook into the Button and flip them
ourselves when the button is clicked:

ViewFlipper

@0verride
public void

}

public void

package com.commonsware.android.flipperl;
import android.app.Activity;

import android.os.Bundle;

import android.view.View;

import android.widget.ViewFlipper;

public class FlipperDemo extends Activity {

super.onCreate(icicle);
setContentView(R.layout.main);

flipper=(ViewFlipper)findViewById(R.id.details);

flipper.showNext();

flipper;

onCreate(Bundle icicle) {

flip(View v) {

This is just a matter of calling showNext() on the viewFlipper, like you can on
any ViewAnimator class.

137

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

The result is a trivial activity: click the button, and the next Textview in
sequence is displayed, wrapping around to the first after viewing the last:

£ G5l @ 3:49 PM

FlipperDemo

Flip Me!

Th the first panel

Figure 45. The Flipperl application, showing the first panel

£l SRl @ 3:49 PM
FlipperDemo

Flip Me!

Figure 46. The same application, after switching to the second panel

138

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

This, of course, could be handled more simply by having a single Textview
and changing the text and color on each click. However, you can imagine
that the viewFlipper contents could be much more complicated, like the
contents you might put into a Tabview.

As with the TabWidget, sometimes, your ViewFlipper contents may not be
known at compile time. As with Tabwidget, though, you can add new
contents on the fly with ease.

For example, let us look at another sample activity (Fancy/Flipper2), using
this layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<ViewFlipper android:id="@+id/details"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
</ViewFlipper>
</LinearLayout>

Notice that the viewFlipper has no contents at compile time. Also note that
there is no Button for flipping between the contents - more on this in a
moment.

For the viewFlipper contents, we will create large Button widgets, each
containing one of the random words used in many chapters in this book.
And, we will set up the viewFlipper to automatically rotate between the
Button widgets:

package com.commonsware.android.flipper2;

import android.app.Activity;
import android.os.Bundle;

import android.view.View;

import android.view.ViewGroup;
import android.widget.Button;
import android.widget.ViewFlipper;

139

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

public class FlipperDemo2 extends Activity {

static String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
"consectetuer"”, "adipiscing", "elit",
"morbi", "vel", "ligula", "vitae",
"arcu", "aliquet", "mollis", "etiam",
"vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque",
"augue", "purus"};

ViewFlipper flipper;

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

flipper=(ViewFlipper)findViewById(R.id.details);

for (String item : items) {
Button btn=new Button(this);

btn.setText(item);

flipper.addView(btn,
new ViewGroup.LayoutParams(
ViewGroup.LayoutParams.FILL_PARENT,
ViewGroup.LayoutParams.FILL_PARENT));
¥

flipper.setFlipInterval(2000);
flipper.startFlipping();

After iterating over the funky words, turning each into a Button, and adding
the Button as a child of the viewFlipper, we set up the flipper to
automatically flip between children (flipper.setFlipInterval(2000);) and
to start flipping (flipper.startFlipping();).

The result is an endless series of buttons, each appearing, then being
replaced by the next button in sequence after 2 seconds, wrapping around
to the first after the last has been shown:

140

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

T Ml @ 7:00em

consectetuer

Figure 47. The Flipper2 application

The auto-flipping viewFlipper is useful for status panels or other situations
where you have a lot of information to display, but not much room. The
key is that, since it automatically flips between views, expecting users to
interact with individual views is dicey - the view might switch away part-
way through their interaction.

Getting In Somebody's Drawer

For a long time, Android developers yearned for a sliding drawer container
that worked like the one on the home screen, containing the icons for
launching applications. The official implementation was in the open source
code but was not part of the SDK...until Android 1.5, when they released
slidingDrawer for others to use.

Unlike most other Android containers, SlidingDrawer moves, switching
from a closed to an open position. This puts some restrictions on what
container the slidingbrawer itself can be in. It needs to be a container that

141

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

allows multiple widgets to sit atop each other. RelativeLayout and
FrameLayout satisfy this requirement, where FrameLayout is a container
purely for stacking widgets atop one another. On the flip side, LinearLayout
does not allow widgets to stack (they fall one after another in a row or
column), and so you should not have a slidingbrawer as an immediate child
of a LinearLayout.

Here is a layout, showing a SlidingDrawer in a FrameLayout, from the
Fancy/DrawerDemo project:

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:background="#FF4444CC"
>
<SlidingDrawer
android:id="@+id/drawer"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:handle="@+id/handle"
android:content="@+id/content">
<ImageView
android:id="@id/handle"
android:layout_width="wrap_content”
android:layout_height="wrap_content"
android:src="@drawable/tray_handle_normal"
/>
<Button
android:id="@id/content"
android:layout_width="fill_parent"
android:layout_height="fill_parent”
android:text="I'm in here!"
/>
</SlidingDrawer>
</FrameLayout>

The slidingbrawer should contain two things:

1. A handle, frequently an Imageview or something along those lines,
such as the one used here, pulled from the Android open source
project

2. The contents of the drawer itself, usually some sort of container,
though in this case we are using a Button

142

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

Moreover, slidingbrawer needs to know the android:id values of the handle
and contents, via the android:handle and android:content attributes,
respectively. This tells the drawer how to animate itself as it slides open and
closed.

Here is what the slidingbrawer looks like closed, using the supplied handle:

< Gl @ 8:28 pm

DrawerDemo

Figure 48. A SlidingDrawer, closed

And here it is open, showing its contents:

143

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

O € 828w

I'm in here!

[k |
Figure 49. A SlidingDrawer, open

As one might expect, you can open and close the drawer from Java code as
well as via user touch events. However, you have two sets of these methods,
ones that take place instantaneously (open(), close(), and toggle()) and
ones that wuse the animation (animateOpen(), animateClose(),
animateToggle()). You can also lock() and unlock() the drawer; while locked,
the drawer will not respond to touch events.

You can also register three types of callbacks if you wish:

1. Alistener to be invoked when the drawer is opened
2. Alistener to be invoked when the drawer is closed

3. A listener to be invoked when the drawer is "scrolled" (i.e., the user
drags or flings the handle)

For example, the Launcher's slidingbrawer toggles the icon on the handle
from open to closed to "delete" (if you long-tap something on the desktop).
It accomplishes this, in part, through callbacks like these.

144

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

SlidingDrawer can be vertical or horizontal. Note, though, that it keeps its
orientation despite the screen orientation. In other words, if you rotate the
Android device or emulator running bDrawerDemo, the drawer always opens
from the bottom - it does not always "stick" to the original side it opened
from. This means that if you want the drawer to always open from the same
side, like the Launcher does, you will need separate layouts for portrait
versus landscape, a topic we discuss in the chapter on resources.

Other Good Stuff

Android offers AbsoluteLayout, where the contents are laid out based on
specific coordinate positions. You tell AbsoluteLayout where to place a child
in precise X,Y coordinates, and Android puts it there, no questions asked.
On the plus side, this gives you precise positioning. On the minus side, it
means your views will only look "right" on screens of a certain dimension,
or it requires you to write a bunch of code to adjust the coordinates based
on screen size. Since Android screens might run the gamut of sizes, plus
have new sizes crop up periodically, using AbsoluteLayout could get quite
annoying. Also, note that AbsoluteLayout is officially deprecated, meaning
that while it is available to you, its use is discouraged.

Android also has the ExpandableListview. This provides a simplified tree
representation, supporting two levels of depth: groups and children.
Groups contain children; children are "leaves" of the tree. This requires a
new set of adapters, since the ListAdapter family does not provide any sort
of group information for the items in the list.

Here are some other widgets available in Android beyond those covered so
far in this book:

+ CheckedTextView: a TextView that can either have a checkbox or a
radio button next to it, used with single-choice and multi-choice
lists

+ Chronometer: a stopwatch-style countdown timer

« Gallery: a horizontal scrolling selection widget, designed for
thumbnail previews of images (e.g., camera photos, album covers)

145

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Still More Widgets and Containers

« MultiAutoCompleteTextView: like an AutoCompleteTextview, except that
the user can make multiple choices from the drop-down list, rather
than just one

+ QuickContactBadge: given the identity of a contact from the user's
contacts database, displays a roster of icons representing actions to
be performed on that contact (place a call, send a text message,
send an email, etc.)

+ SeekBar:a "slider" widget that allows the user to choose a value from
arange

+ ToggleButton: a two-state button where the states are indicated by a
"light" and prose ("ON", "OFF") instead of a checkmark

+ viewswitcher (and the ImageSwitcher and TextSwitcher subclasses):
like a simplified viewFlipper for toggling between two views

146

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 10
The Input Method Framework

Android 1.5 introduced the input method framework (IMF), which is
commonly referred to as "soft keyboards". However, the "soft keyboard"
term is not necessarily accurate, as IMF could be used for handwriting
recognition or other means of accepting text input via the screen.

Keyboards, Hard and Soft

Some Android devices have a hardware keyboard that is visible some of the
time (when it is slid out). A few Android devices have a hardware keyboard
that is always visible (so-called "bar" or "slab" phones). Most Android
devices, though, have no hardware keyboard at all.

The IMF handles all of these scenarios. In short, if there is no hardware
keyboard, an input method editor (IME) will be available to the user when
they tap on an enabled EditText.

This requires no code changes to your application...if the default
functionality of the IME is what you want. Fortunately, Android is fairly
smart about guessing what you want, so it may be you can just test with the
IME but otherwise make no specific code changes.

Of course, the keyboard may not quite behave how you would like. For
example, in the Basic/Field sample project, the FieldDemo activity has the
IME overlaying the multiple-line EditText:

147

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Input Method Framework

T | 12:35Pm

FieldDemo

Licensed under the Apache License,
Version 2.0 (the "License"); you may
not use this file exceptin

compliance with the License. You

qw e r ty ui

a s df gh j k|l

£ 'z x cvbnmoxm

P

Figure 50. The input method editor, as seen in the FieldDemo sample
application

It would be nice to have more control over how this appears, and for other
behavior of the IME. Fortunately, the framework as a whole gives you many
options for this, as is described over the bulk of this chapter.

Tailored To Your Needs

Android 1.1 and earlier offered many attributes on EditText widgets to
control their style of input, such as android:password to indicate a field
should be for password entry (shrouding the password keystrokes from
prying eyes). Starting in Android 1.5, with the IMF, many of these have been
combined into a single android:inputType attribute.

The android:inputType attribute takes a class plus modifiers, in a pipe-
delimited (where | is the pipe character). The class generally describes what
the user is allowed to input, and this determines the basic set of keys
available on the soft keyboard. The available classes are:

+ text (the default)

. number

148

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Input Method Framework

* phone
* datetime
. date

. time

Many of these classes offer one or more modifiers, to further refine what
the user will be entering. To help explain those, take a look at the
res/layout/main.xml file from the InputMethod/IMEDemol project:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent”
android:stretchColumns="1"
>
<TableRow>
<TextView
android:text="No special rules:"
/>
<EditText
/>
</TableRow>
<TableRow>
<TextView
android:text="Email address:"
/>
<EditText
android:inputType="text|textEmailAddress"
/>
</TableRow>
<TableRow>
<TextView
android:text="Signed decimal number:"
/>
<EditText
android:inputType="number |numberSigned|numberDecimal"
/>
</TableRow>
<TableRow>
<TextView
android:text="Date:"
/>
<EditText
android:inputType="date"
/>
</TableRow>
<TableRow>
<TextView
android:text="Multi-line text:"
/>

149

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Input Method Framework

<EditText
android:inputType="text|textMultilLine|textAutoCorrect"
android:minLines="3"
android:gravity="top"
/>
</TableRow>
</TablelLayout>

Here, you will see a TableLayout containing five rows, each demonstrating a
slightly different flavor of EditText:

1.

One has no attributes at all on the EditText, meaning you get a plain
text entry field

One has android:inputType = "text|textEmailAddress", meaning it is
text entry, but specifically seeks an email address

One allows for signed decimal numeric input, via android:inputType
= "number|numberSigned|numberDecimal”

One is set up to allow for data entry of a date (android:inputType =
"date")

The last allows for multi-line input with auto-correction of probable
spelling errors (android:inputType = "text|textMultiline|
textAutoCor‘r‘ect")

The class and modifiers tailor the keyboard. So, a plain text entry field
results in a plain soft keyboard:

150

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Input Method Framework

N & 9:19 Am

IMEDemo1

No cial rules:
Email at

decimal number:

qwe r tyui/olp
a s df gh j k|l

£ 'z x cvbnmoxm

!
Figure 51. A standard input method editor (a.k.a., soft keyboard)

An email address field puts the @ symbol on the soft keyboard, at the cost of
a smaller spacebar:

Ml & 9:19 am

D e e e e

qwe r t yilu

a s df gh/j kil

2 'z x cvbnmcax

(@] . Next

—_

Figure 52. The input method editor for email addresses

151

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Input Method Framework

Numbers and dates restrict the keys to numeric keys, plus a set of symbols
that may or may not be valid on a given field:

18 P21 131 14 151 16 17 F81 19 [0

@# $ % & *

Figure 53. The input method editor for signed decimal numbers

And so on.

By choosing the appropriate android:inputType, you can give the user a soft
keyboard that best suits what it is they should be entering.

Tell Android Where It Can Go

You may have noticed a subtle difference between the first and second
input method editors, beyond the addition of the @ key. If you look in the
lower-right corner of the soft keyboard, the second field's editor has a
"Next" button, while the first field's editor has a newline button.
This points out two things:

1. EditText widgets are multi-line by default if you do not specify

android:inputType

152

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Input Method Framework

2. You can control what goes on with that lower-right-hand button,
called the accessory button

By default, on an EditText where you have specified android:inputType, the
accessory button will be "Next", moving you to the next EditText in
sequence, or "Done", if you are on the last EditText on the screen. You can
manually stipulate what the accessory button will be labeled via the
android:imeOptions attribute. For example, in the res/layout/main.xml from
InputMethod/IMEDemo2, you will see an augmented version of the previous
example, where two input fields specify what their accessory button should
look like:

<?xml version="1.0" encoding="utf-8"?>
<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent”
>
<TablelLayout
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:stretchColumns="1"
>
<TableRow>
<TextView
android:text="No special rules:
/>
<EditText
/>
</TableRow>
<TableRow>
<TextView
android:text="Email address:"
/>
<EditText
android:inputType="text|textEmailAddress"
android:imeOptions="actionSend"
/>
</TableRow>
<TableRow>
<TextView
android:text="Signed decimal number:"
/>
<EditText
android:inputType="number|numberSigned|numberDecimal™
android:imeOptions="actionDone"
/>
</TableRow>
<TableRow>
<TextView

153

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Input Method Framework

android:text="Date:"
/>
<EditText
android:inputType="date"
/>
</TableRow>
<TableRow>
<TextView
android:text="Multi-line text:"
/>
<EditText
android:inputType="text|textMultiline|textAutoCorrect"
android:minLines="3"
android:gravity="top"
/>
</TableRow>
</TableLayout>
</Scrollview>

Here, we attach a "Send" action to the accessory button for the email
address (android:imeOptions = "actionSend"), and the "Done" action on the
middle field (android:imeOptions = "actionDone").

By default, "Next" will move the focus to the next editText and "Done" will
close up the input method editor. However, for those, or for any other ones
like "Send", you can use setOnEditorActionListener() on EditText
(technically, on the Textview superclass) to get control when the accessory
button is clicked or the user presses the <enter> key. You are provided with
a flag indicating the desired action (e.g., IME_ACTION_SEND), and you can then
do something to handle that request (e.g., send an email to the supplied
email address).

Fitting In

You will notice that the IMEDemo2 layout shown above has another difference
from its IMEDemol predecessor: the use of a Scrollview container wrapping
the TableLayout. This ties into another level of control you have over the
input method editors: what happens to your activity's own layout when the
input method editor appears?

There are three possibilities, depending on circumstances:

154

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Input Method Framework

« Android can "pan” your activity, effectively sliding the whole layout
up to accommodate the input method editor, or overlaying your
layout, depending on whether the EditText being edited is at the top
or bottom. This has the effect of hiding some portion of your UI.

« Android can resize your activity, effectively causing it to shrink to a
smaller screen dimension, allowing the input method editor to sit
below the activity itself. This is great when the layout can readily be
shrunk (e.g., it is dominated by a list or multi-line input field that
does not need the whole screen to be functional).

« In landscape mode, Android may display the input method editor
full-screen, obscuring your entire activity. This allows for a bigger
keyboard and generally easier data entry.

Android controls the full-screen option purely on its own. And, by default,
Android will choose between pan and resize modes depending on what
your layout looks like. If you want to specifically choose between pan and
resize, you can do so via an android:windowSoftInputMode attribute on the
<activity> element in your AndroidManifest.xml file. For example, here is
the manifest from IMEDemo2:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.imf.two"
android:versionCode="1"
android:versionName="1.0">
<application android:label="@string/app_name"
android:icon="@drawable/cw">
<activity android:name=".IMEDemo2"
android:label="@string/app_name"
android:windowSoftInputMode="adjustResize">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

Because we specified resize, Android will shrink our layout to
accommodate the input method editor. With the Scrollview in place, this
means the scroll bar will appear as needed:

155

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Input Method Framework

THI @ 10:58 AM

| IMEDemo2

" al num h': " _

Emall adt

qw e r ty ui

a s df gh j k|l

£ 'z x cvbnmoxm

P

Figure 54. The shrunken, scrollable layout

Jane, Stop This Crazy Thing!

Sometimes, you need the input method editor to just go away. For example,
if you make the action button be "Search", the user tapping that button will
not automatically hide the editor.

To hide the editor, you will need to make a call to the InputMethodManager, a
system service that controls these input method editors:

InputMethodManager
mgr=(InputMethodManager)getSystemService (INPUT_METHOD_SERVICE);

mgr.hideSoftInputFromWindow(fld.getWindowToken(), 9);

(where f1d is the EditText whose input method editor you want to hide)

This will always close the input method editor. However, bear in mind that
there are two ways for a user to have opened that input method editor in
the first place:

156

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Input Method Framework

1. If their device does not have a hardware keyboard exposed, and
they tap on the EditText, the input method editor should appear

2. If they previously dismissed the editor, or if they are using the
editor for a widget that does not normally pop one up (e.g.,
Listview), and they long-tap on the MENU button, the input
method editor should appear

If you only want to close the input method editor for the first scenario, but
not the second, use InputMethodManager.HIDE_IMPLICIT_ONLY as a flag for the

second parameter to your call to hideSoftInputFromWindow(), instead of the o
shown in the previous example.

157

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 11

Applying Menus

Like applications for the desktop and some mobile operating systems,
Android supports activities with "application" menus. Most Android
phones will have a dedicated menu key for popping up the menu; other
devices will offer alternate means for triggering the menu to appear, such as
the on-screen button used by the ARCHOS 5 Android tablet.

Also, as with many GUI toolkits, you can create "context menus”. On a
traditional GUI, this might be triggered by the right-mouse button. On
mobile devices, context menus typically appear when the user "taps-and-
holds" over a particular widget. For example, if a Textview had a context
menu, and the device was designed for finger-based touch input, you could
push the Textview with your finger, hold it for a second or two, and a pop-
up menu will appear for the user to choose from.

Flavors of Menu

Android considers the two types of menu described above as being the
"options menu" and "context menu". The options menu is triggered by
pressing the hardware "Menu" button on the device, while the context
menu is raised by a tap-and-hold on the widget sporting the menu.

In addition, the options menu operates in one of two modes: icon and
expanded. When the user first presses the "Menu" button, the icon mode
will appear, showing up to the first six menu choices as large, finger-

159

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

friendly buttons in a grid at the bottom of the screen. If the menu has more
than six choices, the sixth button will become "More" - clicking that option
will bring up the expanded mode, showing the remaining choices not
visible in the regular menu. The menu is scrollable, so the user can get to
any of the menu choices.

Menus of Options

Rather than building your activity's options menu during onCreate(), the
way you wire up the rest of your Ul, you instead need to implement
onCreateOptionsMenu(). This callback receives an instance of Menu.

The first thing you should do is chain upward to the superclass
(super.onCreateOptionsMenu(menu)), so the Android framework can add in
any menu choices it feels are necessary. Then, you can go about adding
your own options, described below.

If you will need to adjust the menu during your activity's use (e.g., disable a
now-invalid menu choice), just hold onto the Menu instance you receive in
onCreateOptionsMenu(). Or, implement onPrepareOptionsMenu(), which is
called just before displaying the menu each time it is requested.

Given that you have received a Menu object via onCreateOptionsMenu(), you
add menu choices by calling add(). There are many flavors of this method,
which require some combination of the following parameters:

« A group identifier (int), which should be NONE unless you are
creating a specific grouped set of menu choices for use with
setGroupCheckable() (see below)

+ A choice identifier (also an int), for use in identifying this choice in
the onoptionsItemSelected() callback when a menu choice is chosen

« An order identifier (yet another int), for indicating where this menu
choice should be slotted if the menu has Android-supplied choices
alongside your own - for now, just use NONE

« The text of the menu choice, as a String or a resource 1D

160

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

The add() family of methods all return an instance of MenuItem, where you
can adjust any of the menu item settings you have already set (e.g., the text
of the menu choice). You can also set the shortcuts for the menu choice -
single-character mnemonics that choose that menu choice when the menu
is visible. Android supports both an alphabetic (or "qwerty") set of
shortcuts and a numeric set of shortcuts. These are set individually by
calling setAlphabeticShortcut() and setNumericShortcut() respectively. The
menu is placed into alphabetic shortcut mode by calling setQwertyMode() on
the menu with a true parameter.

The choice and group identifiers are keys used to unlock additional menu
features, such as:

+ Calling MenuItem#setCheckable() with a choice identifier, to control if
the menu choice has a two-state checkbox alongside the title, where
the checkbox value gets toggled when the user chooses that menu
choice

« Calling Menu#setGroupCheckable() with a group identifier, to turn a
set of menu choices into ones with a mutual-exclusion radio button
between them, so one out of the group can be in the "checked" state
at any time

Finally, you can create fly-out sub-menus by calling addsubMenu(), supplying
the same parameters as addMenu(). Android will eventually call
onCreatePanelMenu(), passing it the choice identifier of your sub-menu,
along with another Menu instance representing the sub-menu itself. As with
onCreateOptionsMenu(), you should chain upward to the superclass, then add
menu choices to the sub-menu. One limitation is that you cannot
indefinitely nest sub-menus - a menu can have a sub-menu, but a sub-
menu cannot have a sub-sub-menu.

If the user makes a menu choice, your activity will be notified via the
onOptionsItemSelected() callback that a menu choice was selected. You are
given the MenuItem object corresponding to the selected menu choice. A
typical pattern is to switch() on the menu ID (item.getItemId()) and take
appropriate behavior. Note that onoptionsItemSelected() is used regardless
of whether the chosen menu item was in the base menu or in a submenu.

161

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

Menus in Context

By and large, context menus use the same guts as option menus. The two
main differences are how you populate the menu and how you are informed
of menu choices.

First, you need to indicate which widget(s) on your activity have context
menus. To do this, call registerForContextMenu() from your activity,
supplying the view that is the widget needing a context menu.

Next, you need to implement onCreateContextMenu(), which, among other
things, is passed the view you supplied in registerForContextMenu(). You can
use that to determine which menu to build, assuming your activity has
more than one.

The onCreateContextMenu() method gets the ContextMenu itself, the view the
context menu is associated with, and a ContextMenu.ContextMenuInfo, which
tells you which item in the list the user did the tap-and-hold over, in case
you want to customize the context menu based on that information. For
example, you could toggle a checkable menu choice based upon the current
state of the item.

It is also important to note that onCreateContextMenu() gets called for each
time the context menu is requested. Unlike the options menu (which is
only built once per activity), context menus are discarded once they are
used or dismissed. Hence, you do not want to hold onto the supplied
ContextMenu object; just rely on getting the chance to rebuild the menu to
suit your activity's needs on an on-demand basis based on user actions.

To find out when a context menu choice was chosen, implement
onContextItemSelected() on the activity. Note that you only get the MenuItem
instance that was chosen in this callback. As a result, if your activity has
two or more context menus, you may want to ensure they have unique
menu item identifiers for all their choices, so you can tell them apart in this
callback. Also, you can call getMenuInfo() on the MenuItem to get the
ContextMenu.ContextMenuInfo you received in onCreateContextMenu().

162

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

Otherwise, this callback behaves the same as onOptionsItemSelected() as is

described above.

Taking a Peek

In the sample project Menus/Menus, you will find an amended version of the
Listview sample (List) with associated menus. Since the menus do not
affect the layout, the XML layout file needs not change and is not reprinted

here.

However, the Java code has a few new behaviors:

package com.commonsware.android.menus;

import android.app.AlertDialog;
import android.app.ListActivity;
import android.content.DialogInterface;
import android.os.Bundle;

import android.view.ContextMenu;
import android.view.Menu;

import android.view.MenuItem;
import android.view.View;

import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.EditText;
import android.widget.ListView;
import android.widget.TextView;
import java.util.Arraylist;

public class MenuDemo extends ListActivity {

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet", "consectetuer", "adipiscing", "elit",
"morbi", "vel", "ligula", "vitae", "arcu", "aliquet",
"mollis", "etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

public static final int MENU_ADD = Menu.FIRST+1;

public static final int MENU_RESET = Menu.FIRST+2;

public static final int MENU_CAP = Menu.FIRST+3;

public static final int MENU_REMOVE = Menu.FIRST+4;

private ArraylList<String> words=null;

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

initAdapter();
registerForContextMenu(getListView());

}

163

Subscribe to updates at http://commonsware.com

Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

@Override

public boolean onCreateOptionsMenu(Menu menu) {
menu
.add(Menu.NONE, MENU_ADD, Menu.NONE, "Add")
.setIcon(R.drawable.ic_menu_add);
menu
.add(Menu.NONE, MENU_RESET, Menu.NONE, "Reset")
.setIcon(R.drawable.ic_menu_refresh);

return(super.onCreateOptionsMenu(menu));

}

@0verride
public void onCreateContextMenu(ContextMenu menu, View v,
ContextMenu.ContextMenuInfo menuInfo) {
menu.add(Menu.NONE, MENU_CAP, Menu.NONE, "Capitalize");
menu.add(Menu.NONE, MENU_REMOVE, Menu.NONE, "Remove");

}

@Override
public boolean onOptionsItemSelected(MenuItem item) {
switch (item.getItemId()) {
case MENU_ADD:
add();
return(true);

case MENU_RESET:
initAdapter();
return(true);

}

return(super.onOptionsItemSelected(item));

}

@Override
public boolean onContextItemSelected(Menultem item) {
AdapterView.AdapterContextMenuInfo info=
(AdapterView.AdapterContextMenuInfo)item.getMenuInfo();
ArrayAdapter<String> adapter=(ArrayAdapter<String>)getListAdapter();

switch (item.getItemId()) {
case MENU_CAP:
String word=words.get(info.position);

word=word.toUpperCase();

adapter.remove (words.get(info.position));
adapter.insert(word, info.position);

return(true);

case MENU_REMOVE:
adapter.remove(words.get(info.position));

164

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

return(true);

}

return(super.onOptionsItemSelected(item));

}

private void initAdapter() {
words=new ArrayList<String>();

for (String s : items) {
words.add(s);
}

setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_1, words));

}

private void add() {
final View addView=getLayoutInflater().inflate(R.layout.add, null);

new AlertDialog.Builder(this)
.setTitle("Add a Word")
.setView(addview)
.setPositiveButton("0OK",
new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog,
int whichButton) {
ArrayAdapter<String> adapter=(ArrayAdapter<String>)getListAdapter();
EditText title=(EditText)addView.findViewById(R.id.title);

adapter.add(title.getText().toString());

}
b))

.setNegativeButton("Cancel”, null)
.show();

In onCreate(), we register our Listview widget as having a context menu. We
also delegate loading the adapter to an initAdapter() private method, one
that copies the data out of our static String array and pours it into an
ArrayList, using the ArrayList for the ArrayAdapter. The reason: we want to
be able to change the contents of the list on the fly, and that is much easier
if you use an ArrayList rather than a ordinary string array.

For the options menu, we override onCreateOptionsMenu() and add two
menu items, one to add a new word to the list and one to reset the words to
their initial state. These menu items have IDs defined locally as static data

165

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

members (MENU_ADD and MENU_RESET), and they also sport icons copied out of
the Android open source project. If the user displays the menu, it looks like
this:

LM & 2:37em

amet

consectetuer

@ [¥
Add Reset

Figure 55. The MenuDemo sample application and its options menu

We also override onOptionsItemSelected(), which will be called if the user
makes a choice from the menu. The supplied MenuItem has a getItemId()
method that should map to either MENU_ADD or MENU_RESET. In the case of
MENU_ADD, we call a private add() method that displays an AlertDialog with a
custom View as its contents, inflated from res/layout/add.xml:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout_width="fill_parent"
android:layout_height="wrap_content”
>
<TextView
android:text="Word:"
android:layout_width="wrap_content”
android:layout_height="wrap_content"
/>
<EditText

166

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

android:id="@+id/title"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_marginLeft="4dip"
/>

</LinearLayout>

That gives us a dialog like this one:

@ Add a Word

Figure 56. The same application, showing the add-word dialog

If the user clicks the OK button, we get our ArrayAdapter and call add() on
it, adding the entered word to the end of the list.

If the user chooses MENU_RESET, we call initAdapter() again, setting up a new
ArrayAdapter and attaching the new one to our ListActivity.

For the context menu, we override onCreateContextMenu(). Once again, we
define a pair of menu items with local IDs, MENU_CAP (to capitalize the long-
tapped-upon word) and MENU_REMOVE (to remove the word). Since context

167

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

menus have no icons, we can skip that part. That gives the user a context
menu if they long tap on a word:

T Ml & 2:39em

Capitalize

Remove

Figure 57. The same application, showing the context menu

We also override onContextMenuSelected(). Since this is a context menu for a
Listview, our MenuItem has some extra information for us - specifically,
which item was long-tapped-upon in the list. To do that, we call
getMenuInfo() on the MenuItem and cast the result to be an
AdapterView.AdapterContextMenuInfo. That object, in turn, has a position
data member, which is the index into our array of the word the user chose.
From there, we work with our ArrayAdapter to capitalize or remove the
word, as requested.

Yet More Inflation

We saw earlier in this book that you can describe views via XML files and
"inflate" them into actual view objects at runtime. Android also allows you
to describe menus via XML files and "inflate" them when a menu is called
for. This helps you keep your menu structure separate from the

168

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

implementation of menu-handling logic, and it provides easier ways to
develop menu-authoring tools.

Menu XML Structure

Menu XML goes in res/menu/ in your project tree, alongside the other types
of resources that your project might employ. As with layouts, you can have
several menu XML files in your project, each with their own filename and
the .xml extension.

For example, from the Menus/Inflation sample project, here is a menu called
option.xml:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
<item android:id="@+id/add"
android:title="Add"
android:icon="@drawable/ic_menu_add" />
<item android:id="@+id/reset"
android:title="Reset"
android:icon="@drawable/ic_menu_refresh" />
</menu>

+ You must start with a menu root element

+ Inside a menu are item elements and group elements, the latter
representing a collection of menu items that can be operated upon
as a group

« Submenus are specified by adding a menu element as a child of an
item element, using this new menu element to describe the contents
of the submenu

« If you want to detect when an item is chosen, or to reference an
item or group from your Java code, be sure to apply an android:id,
just as you do with view layout XML

Menu Options and XML

Inside the item and group elements you can specify various options,
matching up with corresponding methods on Menu or MenuItem.

169

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

Title

The title of a menu item is provided via the android:title attribute on an
item element. This can be either a literal string or a reference to a string
resource (e.g., @string/foo).

Icon

Menu items optionally have icons. To provide an icon - in the form of a
reference to a drawable resource (e.g., @drawable/eject), use the
android:icon attribute on the item element.

Order

By default, the order of the items in the menu is determined by the order
they appear in the menu XML. If you want, you can change that, by
specifying the android:orderInCategory attribute on item element. This is a
o-based index of the order for the items associated with the current
category. There is an implicit default category; groups can provide an
android:menuCategory attribute to specify a different category to use for
items in that group.

Generally, though, it is simplest just to put the items in the XML in the
order you want them to appear.

Enabled

Items and groups can be enabled or disabled, controlled in the XML via the
android:enabled attribute on the item or group element. By default, items
and groups are enabled. Disabled items and groups appear in the menu but
cannot be selected. You can change an item's status at runtime via the
setEnabled() method on MenuItem, or change a group's status via
setGroupEnabled() on Menu.

170

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus
Visible

Similarly, items and groups can be visible or invisible, controlled in the
XML via the android:visible attribute on the item or group element. By
default, items and groups are visible. Invisible items and groups do not
appear in the menu at all. You can change an item's status at runtime via
the setvisible() method on Menultem, or change a group's status via
setGroupVisible() on Menu.

In the layout XML shown above, the other_stuff group is initially invisible.
If we make it visible in our Java code, the two menu items in the group will
"magically" appear.

Shortcut

Items can have shortcuts - single letters (android:alphabeticShortcut) or
numbers (android:numericShortcut) that can be pressed to choose the item
without having to use the touchscreen, D-pad, or trackball to navigate the
full menu.

Inflating the Menu

Actually using the menu, once defined in XML, is easy. Just create a
MenuInflater and tell it to inflate your menu.

The Menus/Inflation project is a clone of the Menus/Menus project, with the
menu creation converted to use menu XML resources and MenuInflater.
The option menu was converted to the XML shown previously in this
section; here is the context menu:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
<item android:id="@+id/cap"
android:title="Capitalize" />
<item android:id="@+id/remove"
android:title="Remove" />
</menu>

171

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

The Java code is nearly identical, changing mostly in the implementation of
onCreateOptionsMenu() and onCreateContextMenu():

@Override
public boolean onCreateOptionsMenu(Menu menu) {
new MenuInflater(this).inflate(R.menu.option, menu);

return(super.onCreateOptionsMenu(menu));

}

@Override
public void onCreateContextMenu(ContextMenu menu, View v,

ContextMenu.ContextMenuInfo menuInfo) {
new MenuInflater(this).inflate(R.menu.context, menu);

}

Here, we see how MenuInflater "pours in" the menu items specified in the

menu resource (e.g., R.menu.option) into the supplied Menu or ContextMenu
object.

We also need to change onOptionsItemSelected() and
onContextItemSelected() to use the android:id values specified in the XML:

@Override
public boolean onOptionsItemSelected(MenuItem item) {
switch (item.getItemId()) {
case R.id.add:
add();
return(true);

case R.id.reset:
initAdapter();
return(true);

}

return(super.onOptionsItemSelected(item));

}

@Override
public boolean onContextItemSelected(MenuItem item) {
AdapterView.AdapterContextMenuInfo info=
(AdapterView.AdapterContextMenuInfo)item.getMenuInfo();
ArrayAdapter<String> adapter=(ArrayAdapter<String>)getListAdapter();

switch (item.getItemId()) {
case R.id.cap:

String word=words.get(info.position);

word=word.toUpperCase();

172

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

adapter.remove(words.get(info.position));
adapter.insert(word, info.position);

return(true);

case R.id.remove:
adapter.remove(words.get(info.position));

return(true);

}

return(super.onOptionsItemSelected(item));

173

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 12

Fonts

Inevitably, you'll get the question “hey, can we change this font?” when
doing application development. The answer depends on what fonts come
with the platform, whether you can add other fonts, and how to apply them
to the widget or whatever needs the font change.

Android is no different. It comes with some fonts plus a means for adding
new fonts. Though, as with any new environment, there are a few
idiosyncrasies to deal with.

Love The One You're With

Android natively knows three fonts, by the shorthand names of “sans”,
“serif”, and “monospace”. These fonts are actually the Droid series of fonts,
created for the Open Handset Alliance by Ascender.

For those fonts, you can just reference them in your layout XML, if you
choose, such as the following layout from the Fonts/FontSampler sample
project:

<?xml version="1.0" encoding="utf-8"?>

<TablelLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout_height="fill_parent”
android:stretchColumns="1">
<TableRow>

175

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.ascendercorp.com/oha.html

Fonts

<TextView
android:
android:
android:
/>
<TextView
android:
android:
android:
android:
/>
</TableRow>
<TableRow>
<TextView
android:
android:
android:
/>
<TextView
android:
android:
android:
android:
/>
</TableRow>
<TableRow>
<TextView
android:
android:
android:
/>
<TextView
android:
android:
android:
android:
/>
</TableRow>
<TableRow>
<TextView
android:
android:
android:
/>
<TextView
android:
android:
android:
/>
</TableRow>

<TextView
android:
android:

text="sans:"
layout_marginRight="4px"
textSize="20sp"

id="@+id/sans"
text="Hello, world!"
typeface="sans"
textSize="20sp"

text="serif:"
layout_marginRight="4px"
textSize="20sp"

id="@+id/serif"
text="Hello, world!"
typeface="serif"
textSize="20sp"

text="monospace:"
layout_marginRight="4px"
textSize="20sp"

id="@+id/monospace”
text="Hello, world!"
typeface="monospace"
textSize="20sp"

text="Custom:"
layout_marginRight="4px"
textSize="20sp"

id="@+id/custom"
text="Hello, world!"
textSize="20sp"

<TableRow android:id="@+id/filerow">

text="Custom from File:"
layout_marginRight="4px"

Subscribe to updates at http://commonsware.com

176

Special Creative Commons BY-NC-SA 3.0 License Edition

Fonts

android:textSize="20sp"
/>
<TextView
android:id="@+id/file"
android:text="Hello, world!"
android:textSize="20sp"
/>
</TableRow>
</TablelLayout>

This layout builds a table showing short samples of five fonts. Notice how
the first three have the android:typeface attribute, whose value is one of the
three built-in font faces (e.g., “sans”).

The three built-in fonts are very nice. However, it may be that a designer,
or a manager, or a customer wants a different font than one of those three.
Or perhaps you want to use a font for specialized purposes, such as a
“dingbats” font instead of a series of PNG graphics.

The easiest way to accomplish this is to package the desired font(s) with
your application. To do this, simply create an assets/ folder in the project
root, and put your TrueType (TTF) fonts in the assets. You might, for
example, create assets/fonts/ and put your TTF files in there.

Then, you need to tell your widgets to use that font. Unfortunately, you can
no longer use layout XML for this, since the XML does not know about any
fonts you may have tucked away as an application asset. Instead, you need
to make the change in Java code:

import android.widget.TextView;
import java.io.File;

public class FontSampler extends Activity {
@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

TextView tv=(TextView)findViewById(R.id.custom);
Typeface face=Typeface.createFromAsset(getAssets(),
"fonts/HandmadeTypewriter.ttf");

tv.setTypeface(face);

177

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Fonts

File font=new File(Environment.getExternalStorageDirectory(),
"MgOpenCosmeticaBold.ttf");

if (font.exists()) {
tv=(TextView)findViewById(R.id.file);
face=Typeface.createFromFile(font);

tv.setTypeface(face);
}
else {
findvViewById(R.id.filerow).setVisibility(View.GONE);
}
}
}

Here we grab the Textview for our “custom” sample, then create a Typeface
object via the static createFromAsset() builder method. This takes the
application’s AssetManager (from getAssets()) and a path within your
assets/ directory to the font you want.

Then, it is just a matter of telling the Textview to setTypeface(), providing
the Typeface you just created. In this case, we are using the Handmade
Typewriter font.

You can also load a font out of a local file and use it. The benefit is that you
can customize your fonts after your application has been distributed. On
the other hand, you have to somehow arrange to get the font onto the
device. But just as you can get a Typeface via createFromAsset(), you can get
a Typeface via createFromFile(). In our FontSampler, we look in the root of
"external storage” (typically the SD card) for the MgOpenCosmeticaBold
TrueType font file, and if it is found, we use it for the fifth row of the table.
Otherwise, we hide that row.

The results?

178

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://moorstation.org/typoasis/designers/klein07/text01/handmade.htm
http://moorstation.org/typoasis/designers/klein07/text01/handmade.htm

Fonts

5 il @ 9:31 am

Hello, world!
Hello, world!
Hello, world!

Custom from File: Hello, world!

Figure 58. The FontSampler application

We will go into more details regarding assets and local files in an upcoming
chapter.

Note that Android does not seem to like all TrueType fonts. When Android
dislikes a custom font, rather than raise an Exception, it seems to substitute
Droid Sans ("sans”) quietly. So, if you try to use a different font and it does
not seem to be working, it may be that the font in question is incompatible
with Android, for whatever reason.

Here a Glyph, There a Glyph

TrueType fonts can be rather pudgy, particularly if they support an
extensive subset of the available Unicode characters. The Handmade
Typewriter font used above runs over 70KB; the DejaVu free fonts can run
upwards of 500KB apiece. Even compressed, these add bulk to your
application, so be careful not to go overboard with custom fonts, lest your
application take up too much room on your users’ phones.

179

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Fonts

Conversely, bear in mind that fonts may not have all of the glyphs that you
need. As an example, let us talk about the ellipsis.

Android's Textview class has the built-in ability to "ellipsize” text,
truncating it and adding an ellipsis if the text is longer than the available
space. You can use this via the android:ellipsize attribute, for example.
This works fairly well, at least for single-line text.

The ellipsis that Android uses is not three periods. Rather it uses an actual
ellipsis character, where the three dots are contained in a single glyph.
Hence, any font that you use that you also use the "ellipsizing" feature will
need the ellipsis glyph.

Beyond that, though, Android pads out the string that gets rendered on-
screen, such that the length (in characters) is the same before and after
"ellipsizing". To make this work, Android replaces one character with the
ellipsis, and replaces all other removed characters with the Unicode
character 'ZERO WIDTH NO-BREAK SPACE' (u+FefF). This means the
"extra" characters after the ellipsis do not take up any visible space on
screen, yet they can be part of the string.

However, this means any custom fonts you use for Textview widgets that
you use with android:ellipsize must also support this special Unicode
character. Not all fonts do, and you will get artifacts in the on-screen
representation of your shortened strings if your font lacks this character
(e.g., rogue X's appear at the end of the line).

And, of course, Android's international deployment means your font must
handle any language your users might be looking to enter, perhaps through
a language-specific input method editor.

Hence, while using custom fonts in Android is very possible, there are
many potential problems, and so you must weigh carefully the benefits of
the custom fonts versus their potential costs.

180

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 13
Embedding the WebKit Browser

Other GUI toolkits let you use HTML for presenting information, from
limited HTML renderers (e.g., Java/Swing, wxWidgets) to embedding
Internet Explorer into .NET applications. Android is much the same, in that
you can embed the built-in Web browser as a widget in your own activities,
for displaying HTML or full-fledged browsing. The Android browser is
based on WebKit, the same engine that powers Apple's Safari Web browser.

The Android browser is sufficiently complex that it gets its own Java
package (android.webkit), though using the webview widget itself can be
simple or powerful, based upon your requirements.

A Browser, Writ Small

For simple stuff, webview is not significantly different than any other widget
in Android - pop it into a layout, tell it what URL to navigate to via Java
code, and you are done.

For example (webkit/Browser1), here is a simple layout with a webview:

<?xml version="1.0" encoding="utf-8"?>

<WebView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/webkit"
android:layout_width="fill parent"
android:layout_height="fill_parent”

/>

181

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Embedding the WebKit Browser

As with any other widget, you need to tell it how it should fill up the space
in the layout (in this case, it fills all remaining space).

The Java code is equally simple:

package com.commonsware.android.browserl;

import android.app.Activity;
import android.os.Bundle;
import android.webkit.WebView;

public class BrowserDemol extends Activity {
WebView browser;

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
browser=(WebView)findviewById(R.id.webkit);

browser.loadUrl("http://commonsware.com");

The only thing unusual with this edition of onCreate() is that we invoke
loadurl() on the webview widget, to tell it to load a Web page (in this case,
the home page of some random firm).

However, we also have to make one change to AndroidManifest.xml,
requesting permission to access the Internet:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.browserl">
<uses-permission android:name="android.permission.INTERNET" />
<application android:icon="@drawable/cw">
<activity android:name=".BrowserDemol" android:label="BrowserDemol">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

If we fail to add this permission, the browser will refuse to load pages.
Permissions will be covered in greater detail in a later chapter.

182

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Embedding the WebKit Browser

The resulting activity looks like a Web browser, just with hidden scrollbars:

hMl & s:18Pm

BrowserDemo1

Home

Comms
All
About
the
Commgq

The
firm's
misslon
Is to
help
people
and
organizatiorﬁ

Figure 59. The Browserl sample appllication

As with the regular Android browser, you can pan around the page by
dragging it, while the directional pad moves you around all the focusable
elements on the page.

What is missing is all the extra stuff that make up a Web browser, such as a
navigational toolbar.

Now, you may be tempted to replace the URL in that source code with
something else, such as Google's home page or something else that relies
upon Javascript. By default Javascript is turned off in webview widgets. If you
want to enable Javascript, call getSettings().setJavaScriptEnabled(true);
on the webview instance. This notion will be covered in a bit more detail
later in this chapter.

183

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Embedding the WebKit Browser

Loading It Up

There are two main ways to get content into the webview. One, shown
above, is to provide the browser with a URL and have the browser display
that page via loadurl(). The browser will access the Internet through
whatever means are available to that specific device at the present time
(WiFj, 2G, 3G, WiMax, well-trained tiny carrier pigeons, etc.).

The alternative is to use loadData(). Here, you supply the HTML for the
browser to view. You might use this to:

« display a manual that was installed as a file with your application
package

« display snippets of HTML you retrieved as part of other processing,
such as the description of an entry in an Atom feed

« generate a whole user interface using HTML, instead of using the
Android widget set

There are two flavors of loadbata(). The simpler one allows you to provide
the content, the MIME type, and the encoding, all as strings. Typically, your
MIME type will be text/html and your encoding will be uTF-8 for ordinary
HTML.

For example, if you replace the loadurl() invocation in the previous
example with the following:

browser.loadData("<html><body>Hello, world!</body></html>",
"text/html", "UTF-8");

You get:

184

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Embedding the WebKit Browser

hMl @ s:18PMm
BrowserDemo2

Hello, world!

Figure 60. The Browser2 sample application

This is also available as a fully-buildable sample, as webkit/Browser2.

Navigating the Waters

As was mentioned above, there is no navigation toolbar with the webview
widget. This allows you to use it in places where such a toolbar would be
pointless and a waste of screen real estate. That being said, if you want to
offer navigational capabilities, you can, but you have to supply the UI.

Webview offers ways to perform garden-variety browser navigation,
including:

« reload() to refresh the currently-viewed Web page

+ goBack() to go back one step in the browser history, and canGoBack()
to determine if there is any history to go back to

« goForward() to go forward one step in the browser history, and
canGoForward() to determine if there is any history to go forward to

185

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Embedding the WebKit Browser

+ goBackOrForward() to go backwards or forwards in the browser
history, where negative numbers represent a count of steps to go
backwards, and positive numbers represent how many steps to go
forwards

+ canGoBackOrForward() to see if the browser can go backwards or
forwards the stated number of steps (following the same
positive/negative convention as goBackOrForward())

« clearcache() to clear the browser resource cache and clearHistory()
to clear the browsing history

Entertaining the Client

Particularly if you are going to use the webview as a local user interface (vs.
browsing the Web), you will want to be able to get control at key times,
particularly when users click on links. You will want to make sure those
links are handled properly, either by loading your own content back into
the webview, by submitting an Intent to Android to open the URL in a full
browser, or by some other means (see the chapter on launching activities).

Your hook into the Webview activity is via setWebviewClient(), which takes an
instance of a WebviewClient implementation as a parameter. The supplied
callback object will be notified of a wide range of events, ranging from
when parts of a page have been retrieved (onPagestarted(), etc.) to when
you, as the host application, need to handle certain user- or circumstance-
initiated events, such as:

* onTooManyRedirects()
* onReceivedHttpAuthRequest()

. etc.

A common hook will be shouldoverrideurlLoading(), where your callback is
passed a URL (plus the webview itself) and you return true if you will handle
the request or false if you want default handling (e.g., actually fetch the
Web page referenced by the URL). In the case of a feed reader application,
for example, you will probably not have a full browser with navigation built
into your reader, so if the user clicks a URL, you probably want to use an

186

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Embedding the WebKit Browser

Intent to ask Android to load that page in a full browser. But, if you have
inserted a "fake" URL into the HTML, representing a link to some activity-
provided content, you can update the webview yourself.

For example, let's amend the first browser example to be a browser-based
equivalent of our original example: an application that, upon a click, shows
the current time.

From Webkit/Browser3, here is the revised Java:

public class BrowserDemo3 extends Activity {
WebView browser;

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
browser=(WebView)findViewById(R.id.webkit);
browser.setWebViewClient(new Callback());

loadTime();
}

void loadTime() {
String page="<html><body>
+new Date().toString()
+"</body></html>";

browser.loadData(page, "text/html", "UTF-8");
}

private class Callback extends WebViewClient {
public boolean shouldOverrideUrlLoading(WebView view, String url) {
loadTime();

return(true);
¥
}

}

Here, we load a simple Web page into the browser (loadTime()) that
consists of the current time, made into a hyperlink to the /clock URL. We
also attach an instance of a webviewClient subclass, providing our
implementation of shouldoverrideUrlLoading(). In this case, no matter what
the URL, we want to just reload the webview via loadTime().

187

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Embedding the WebKit Browser

Running this activity gives us:

Al @ 9:46 P

BrowserDemo3

Thu Aug 21 21:46:26 GMT+00:00 2008

Figure 61. The Browser3 sample application

Selecting the link and clicking the D-pad center button will "click" the link,
